![pic](data:;base64,/9j/4AAQSkZJRgABAgAAAQABAAD//gAEKgD/4gIcSUNDX1BST0ZJTEUAAQEAAAIMbGNtcwIQAABtbnRyUkdCIFhZWiAH3AABABkAAwApADlhY3NwQVBQTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9tYAAQAAAADTLWxjbXMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAApkZXNjAAAA/AAAAF5jcHJ0AAABXAAAAAt3dHB0AAABaAAAABRia3B0AAABfAAAABRyWFlaAAABkAAAABRnWFlaAAABpAAAABRiWFlaAAABuAAAABRyVFJDAAABzAAAAEBnVFJDAAABzAAAAEBiVFJDAAABzAAAAEBkZXNjAAAAAAAAAANjMgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB0ZXh0AAAAAEZCAABYWVogAAAAAAAA9tYAAQAAAADTLVhZWiAAAAAAAAADFgAAAzMAAAKkWFlaIAAAAAAAAG+iAAA49QAAA5BYWVogAAAAAAAAYpkAALeFAAAY2lhZWiAAAAAAAAAkoAAAD4QAALbPY3VydgAAAAAAAAAaAAAAywHJA2MFkghrC/YQPxVRGzQh8SmQMhg7kkYFUXdd7WtwegWJsZp8rGm/fdPD6TD////bAEMACQYHCAcGCQgICAoKCQsOFw8ODQ0OHBQVERciHiMjIR4gICUqNS0lJzIoICAuPy8yNzk8PDwkLUJGQTpGNTs8Of/bAEMBCgoKDgwOGw8PGzkmICY5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5OTk5Of/CABEIAoADwAMAIgABEQECEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAAAQIDBAUGB//EABgBAQEBAQEAAAAAAAAAAAAAAAABAgME/8QAGAEBAQEBAQAAAAAAAAAAAAAAAAECAwT/2gAMAwAAARECEQAAAfI12V5miWWS2JRG4Bt9T5j0Venphhrl8f0UI8hLrZMscGDmWTUHYLXLu9PWPFy6dEuUupi3Vzuoaeb1MNku3PRpzOf2OdLyb4+gjZp1Wbnj+F7ry2LjcVLKDBOVkV9zj769bu4G/eeo8uipAAAAAhghlIZCGgAoAgAoAAAAAAACGJgIGgAEAKgCACxDAAVDEAFAATUIYiAoAgaYNNfkMWslJImlEnpz3lnYwWnbq830bPSUrPbm5lvHyrlGwd9Nmbo05dS+l1cbs7nPx9/kyedx9XnRHucaxe0+X3bNNHQ5RHLhqzZ9/wA/ol9jr8/q6Zu8vv4OLRZV1SMPU1aeUr1wzaNVekZZGO52+P1+mdMqp02AJoABADEAAAAAUAAAAEAAAAAAAAAAIChMACAAAATQDVAAACGCGQkykMkGCjA+PtGQpxEEiA5G+2zsV5OHf45t7Pn+mafN+kgea0SjlbXcS0z39m3heh53HT2Gbz2su4lolFevFGn0Pl9S+s5OTRXGXV50t1OnMPTk0RGGlS19Xma9T0hTt3nznP8AUcfOsltUIlppkdzZ5+ep6TXxOjqbljibnmvJpMAAAAAAAAAAAAAAAAQxMAABDEA0AAAACBoBoAEUCEYgkRcrEDAAGAgaA+PyTy01usrk2QHE6nX8pYdaHK6Z18m7PU7OUhZXnjVr5myO3v41+lXF9JnTz1kSWW3MRbhnEU4aZV0clyyybLVyW3KaphpRVfRE2z59Z2dPElZ3cuKSVU7Yy55pkYRoTsXcLbrPS283TqdifHhZ2L/PdM6tme6pJCsQg0AAMQrEDEICBiBkQkIGIGIViBiEYhQQjQAIGIAAAAAG4uG0KxAxAxB8hYZRCJMhII2RHKLJ9Xl+hDn+nyWecs1Qly16KbM3Qy+oNNvShpmquojz2/R0zkc70fCzeS99WekbJQVRnYRi4Q41KopwsnJRRygxNoiFZr0c1nZXK1S21bJB18HR6cpY9nPqzbzOkmc0ZDr6ufuLHEWREJEQkRCRFEhAxAxAxAxAwAAAAAAAAAAAAEMENAAAAAAJwxAxA3FjEL8mHblTV38dcuSIkQZZFofe4/aOxVz81dNV6TjZ+zWnO9Bi6ddWSdV49tBxdnPo570ZXnm5WwiKUbZZRKQpUbmdDvsqI3FclaIpSzqsaZ1rkZpWQJzpDTt5d8vZv5Owu5++u553cw9TWN1pPcJpwAAAAAAAAAANAxA2gABiFbiEiISIhJIGIGIGIGIAAAAAAAAAABpiAGIj5XdVPF7tFTrgm7EIAHKRPucT0hj5XruCPscPqWdHLDCdDpec0HqrOFpt28RYsbiTx56E5wSVdrUjKuK63VrNQbbI1W1ykYyslCuEXqFlmed0ylzJZToS9CXNujbTG5c97qs2beTrOhZXn3z6V/G2ax1LeZebiEwAAAAAAAAAAAAABMAAAAAGmACgAAAAAgYgAAAAAABiBiBghiD5TOl87fs5myupx+pyDPbXaEJVk+/52xPX83n1Lfv4m6NeBVARDZ1Me3PRpk6UUrVc03QnLW5QDFdlsvw27bkTpmlXIsVMZ2Q0WEQnjibTnxrpvlWRuryWllbRZPPaaNGOUt9lFldK/mdK5p1F2+eXoZejZqsTAaAAAAAAABAxMAQxAxMBAxAxAxAxAxAxAxAAAAAAAAAAIYmMQAB8oc1z3Gyt2WUu0zrXkAiEiISIyJuKibrsLNuXsZ3dZXZOkYzosJ2xVQsUsK4xswRo3a56ouvOnljfZHM7RbI1Sz5zrskVw1m+NchOTAsJqFpKVFpK7YXmfRnsTRoxo9NVjs6c9/R5nT1i9AMTAQMQMQNAAAAAAAIYgYgYgYimIGIGgQAABQAGEDBUNCGIhgmCgAAJ8thdVz3FSLI6M7NGRxEmgCRGxXFcLqSwWg3bEc+16VCzlRrscIuWxToqvJt4tzDq8/QllKYoTsI2yzSme3NZXK6es1OblhJkqsVk0nOWdUztuWmy25abb5nPy9TKlE6nrFnX4/W1z6XQzbOnOSEkhFrEIAAAAAAAAAAAAAAACBiBgAAIGJgAOVDAaFYIYgAAAAEMQgAfL6rKuemRdScWQjNEFIEwC6mRKEmR6+DrZ2XZ789IRKq0WpFeqmyFllCx8bo8zWdTqIsFElfVnLKqdNzTq01tRjXSWxrmkrI6c9FdK3G4WTtWM5NZWxkjkMqo01rzs+/nXF3R42vfL1ezn7uvG5J2DABkIABlIZKhlIaQAAAAAAUGgAEwABAAAFARIRDIumRBtEMQNCGIGJgIPltcoc9MRTBEiDBSQmkScbCNleqW/YUZ66065UoXWaKpEsrFQUOi7WceHRmubbM4ls40LZVLXYaK4Z1PLCFkop2SuevHSOiy3n1hcprKSsE5FEkwlEBMM2DpY05Vlcd8fZdjzXpuvFuFlyNCsQDQMQMQMRQAgAAAAAJgIVghiBiEAAAAAAFAAAAAAAAQAUAAA+WxnLlrOtECEWVBgMQA2Ikg6OTqZ1KseemnLdlWe/HosHC6WOeeYhbmlrOTNbTrErYVo7ITLNFVudxzJXInaV6r9uOtGqyWOichYuQpIY5CRg6GIacSOTZRHGx9Dl9eHo/Y/PPfdON06rNZAYAgAAAAAAAAAAAAQMQMQMQMQNAAAAAADQAAAADBAMQMQNAAB8ztjb59V5tWGkoy3QbIMAakJu2NG7PbjrTrza7c0JwNcbK5ZWVwFkux2SHRc54uveJlckude3Op5Lq2oyLpVrjr59HerZocmqG4g5JRhUhA2OwGCUgjVfBOTw/Seb6cdf0L5/
7zpy03Z79ZkDEMhDBDBDBKSpDEQwQMQADFQ0iGCGAAANUpBEYIYiAAAYgAAAAAAAAPm0yzz2jNsrrGa6dWtt21ljKycSGrLul2xksdYX1TKLI6aKxStQglVDWpKlRuaYi1iUoyLbKzO3N6M6L5XY6Q1OyaLoTVsATBKQJMECWcq5WTcZAANNpk8t7DzW+UPbeX9R049KSes2CYCAaBiBgAmCGCGgAE2AmCTBDBDABiYKJgJoE0gAAAJghoAQ1GNljpZZGFR4HVg08LbCUcnRfGsjuNWFkrIyU30VHp4ui6Shdnz0saRG7PosrgRhVumoJR1mEZ03EANR2Qtld618+q0yu59I2SFnKE5XZAq0z5tZ11cyrWOrLj1p3bPOSPSR4Wqa6kslud6J02LNRSWyqnZLh9zJcY+3zOn14daas1lsBDBMAAABQAAYhghggYJghAxMAAAAACISUQkRSTUUTIMkoVliojZpjQksrirJOBU4BHgZo4btlC6KyUYhOMqnKmcVUX16t3Rzac9pZNFLTASnVltqqBEVF2ZCLhrKqsq1kZJHohrxu3VDTy7yk7Fi5OWIsVllFZrEKr7SqyyMsSZWHN16rjlWaatTXu53Qx012UWZ2sS4++fTfHe+XX08aa9rs+d7uufZsx6dZsIIsVSq50TiwgiwrCwi1kRCREJEUSjXBLlnVl8aFZpMwapZJS6zOLes4lkKVZeZwvVIXKoLnQycEkBOhNDAACBCPDFZw3bZnsLVEicVElKsUlHQui6M52paFjBgkq7IxQQzzquROvWYody7IWy27c3Q59brlbjqTJSuuVZmq050ijHZbnz19OVrolrOmXR1xxrbcGem6ojnejZm2TVspVnHz6M++V2rm6DolGqMHcwbu/Dq6M1u+VsYAxKpTrC6MFEytlrpS3vOGhUBeqQnAEQKgCgCBoGJDEACGACaGIAENCGJoNCsRAIAEeAJPj0VlTL3VPNkRkkVNC3U6Ju5SrdYwlAK5VEqp1WJoMgnrEa5RuUSKlop0y29DD0OXa+yM8dJTUlcbGZKOmHEj3IWchdChM9W2es55aQx4+pRNYp2TQ6GXbN6eX1stz423oWdeF2Tco5fo+P0zSpnXj0babtYYimgAAaAAAEDQDQAJjQgBDEwABAAAAAIAEMQACIAGgYiViAQWAgYg8MRPP1cGqbQrnVbFs8uyLrKtM6SgN0pplFCsCLjKyFN2ZKhw3iKCxyUonbXbNaOlzujz7aJ1zx0tlCcSlCVMYRJBTm3C8g6GWykBKTRdWeWiMppq0LbdTfc+Zs6HOk1X49Fb6br+nHFdTo7cNF9F1ywLAAAQwAEDQAACAAAEAADQAACBoABDQIAKCEAFAAEDSEYkMSJEWNIPCuL8/ZCKmlIUpELdSS36M2mbjbBt5ap0E0KxSUiOTXlsrqmtYgySOcXLK2uxrR0MG3n01ThLHSdlM5bZVzJSjKgslVTmVXC9LljrgZ1oCguIrnMp212JZx+1nueffZOV6KrNY52rLo9Hk2OMbi51upkAkQCZBpMiLIFKxCAAmkSEwTQCBoVMiEkkSSSWslNUqJZMHLEiWSUYk1WkscXLJAsUJJIQKKs8WyXDrFyCMhjlFyucJro049WdyhPO3QnGxxnGUnGuyzFtxWVqb1ionWTtjOadkZy3bsWzG9UieOgMllOEiyyqVWlcbLikW4qVWKuJbVn58vQnXqHbVOy6Sdkp1zsxznnl0W5bkyzV/o8dkLI65qVdokQsmVsmVoudEy8RncVVC40vOLdXXBNM8lhoVbWRGJYVItdNiyjOIKURvNHOrZVyq51WJBONjrlFIsLLpRsz0qkpWQhZWknFkASeOJR47EorKVd8sJRRbdDRNU6qNDVuLZlm45r8+s6K7IyldtZPLqy2VKauQGsnIzqQmaNmHdnWy6m/HRKyEqcAtdDq1VRLikW5Uqy3PHKlGiqqz0Wrh6JvpxxqzoPnTN7wzN3N085NtuS+Lrov0+Oag9ZrnXJJQtSVOSshGUELIur3VLO6Y2QuECsAYpxctk6ptTi5FdOvOldtU7LpVmdzrUSui6jOr7891lk6p6hTOlG6WzbGETVbjuatKkWQTCUZSxjZGzxsHDjuQCqyMyI5RayU1LVi0tTyX5ptwsr1mZGUqISWNV1SUDq1i8jOavTed1tWXMelyurNbbqbufRxlGWuuygZTGy8piXlJV1dNSTtVllebdSYFqqshbWjVZiul2XYbl24qJG/Xg6CaTLb6PJZZXZrMU6zTFBBEbkk7SuF9S12QlZKqVcNEkhJxJQI1ZZnslvnRKa0Vwco3KyFdlKRlVKlnvoxu22i25ejJfqWZ9FZkJK4FJKTgyTgRbOiU1e6bJZOEq8MD5aFKITg10QHDtqiui6mc0QnCdIqVes3xuyypgRJhmy7s+sUycdZnoyXZ1paM7OnzehnW63PbjpNKMqotpM7jZc1xcbHVCFk7a7avnCcTUpLRm3VxhNcbI7Ktxm5nb41lGvH0JdW3Np6cp166OnOc4W6xXC6KSdaJzpvJSiiUHCoxcUK7YIrISV0ziRJFkGxHNWTUCdebKdUrHXaVndgV5tWTHSd+fdc53rWs0O4Mq1hlWtmN62Y1uRjNgZbrplDuF8E5HDVasSwkprNqUVKyq3ROlzVyjObgnGr8eiuycLIStxnLDPoq1nNTqp3zjZBxsVV2elmzFqx032UWY6TSUrrlFM9sbbnLXoosyFmXeNFmO1ddmOc1ulz4r1Hy7o6M+fcbLceS538PbSi35+jnVHS5Pb7cLnbPpyx7Mu4rVjsyV6xMk9BVBoIzrSGY1BmWoMr0hlNQZjSGY0hnlcFMdAZ5XBUWhTG6lc3O2c/OtXT5nVubRuoExIEmVk0IYJSCJIENAMPn6hZx2ywiiUpUKUZYt2ECVjbnbCaywvjbZTJWJEScYvNshYlx07KN86nMsdlds09mW7n02XZbcdLXWLN1WRCcZWLJuyJBaJanI6Mlcx2czr5tcdGg5R07zhatukzc7sYapzbs01ZLRztc36Hgd3rx1in05Z7qrJZtOxMYAAAAAAAAAAAAmCGCJBFSQJgozrXPjlkllRbVNaepyurcXsdiUgQwi2ESQQJIQwSkgGHzq+iXHeuNBFxTInVIV6KdLUpOubgmqnGalzOcNSyjdWmC+EFnpz2Z0qd2UzrRDeM9kWllue3PTXZns59NBByylXMlKAX49eYtCVikiqLZWauTTpjD2YpsXXczWQtterz67jlTn2Q68Le1w+/vGmdF++dE4WEmp0NOEMpAIAACViYAADhDQCLGIGgUQkdVtS8zFrwZ1ZU6jb2eH27nS0wBDEI0ACFYhAQMBRNJ82snPGyrfSZbFbLXbOyWy6EM9L6ULKlxSWnL2NTm09KoyFkDHRuzg8+hdtCvxvLC+FmerXRvELaZGqzPbz63yqlnVsq5xISNES5c12e8Yixg6dtI1rtxTrcYZ2aSjQzmhdxs5q05de8T9Fwu9vnKyE986rK5kp1zsbixiBgAACaEAMAYgAIAKAAAVDEVV1a8jndLl5sqrKF2dzz/AHrnYDsQAAABKJxsAAGA04AF8nk0VZsa7cktd8LppwsqlmQnNXb7+vvHOy9yWs+Y7Oukw5OjhzvOtNE1nyb8cuRI1i+7JfjeuELs7oq1Rs5zvq3gvz2Z1olTLHS62iyW6MkGrFfKSkhq2BEI2SUHZJwZZOuw06KNNmPze7m656N3N2L0u3we/vlNWV75xthMU1Kk00AAAABQEMTAEMiJIQrEDEiRFjEQ651nJ43a40saNMYn6Tzvfs6Dg6aAGAhoSkgYCTQ2mMEfPbKjGtMGs6lCuS3yrkPfn9RqScl05Vq2oEwpp1VTfPo35uXXHRtzzXJjsruaZ7GuTRbTLc6bcbjm3xs5Urqd4nZRPOrrc9md6rc2jNzF+Wt1mK+XXOjQVV7YGQ0zrKtliYr9EyFydz4ypR68dOnJdnfU7/
nvRb56Ip75xnXYTYWAADQAQAAACYAADBDQAAmCYAAKFkTBg7NMcqvq5kwdTNtTVZGd0DAAAQDQNAJSQCAAPBl9vLWfPuxNQthbYao9Ca6nRa7coKULJVTSVqcFULIxVn2VzWLH0qOXbmy00TS1Z7wp1o55rqlptjVnTy7yuVDXm1h2UtdV+KzG92ax5uS2mOp0dPLumuvbz9MugTpsSSlWF1L5us+ZcTr59F+W/O+p6XzHp7i+uyPTnG3PpJNCMQNAAACBgAAAAADQDIgxMQIkIGIFGSWFd9RntqUmyeW6rBMBAADEwQCBgACaPLK483WmjaHOlsWlPqOf2O2CM475pCEpxIk4kIzCuN1RRTsS86roVc+uJ3VY3KUZrXKUEqq0xmsc7ac6uw33y8qrfRrOaThZfp512d35NNZVZnNZ6Wvk346de3m35u2WSdXPLFNfmNPK68WBrnOyuya6Xq/I+sTVFrpzq057yQIYCACgAAAIsYgbRDQKJghqxiAAAAACKlGWFN1JSTtRXkhgAAAAmmCaAAGgYg86B5e4gCEtnSdW0O/BQnGxoZFiAASlIrLpmSy+C0w0kc6rqI4tXabXEfoM3Ppx32a5efXsqXnV9KjNry6ljpza+jns58NlOsxspCdNoVWJ2XX5Lc72yx5Wehgzx3gJFyKaFdRomtfrvG+xs0klvnXYkWkXTAAAGAIAEJIQrQAAjEKJoGgYAIEYhROMRqugUWkklKMlbQMQAixuJEkCgAAAAeecZeTtGMoasvSZtnp4xk465xcwipBBWhW7GKQlbgJJ1skhAIpg4SjOs90ZzVdsJxiw91y+Yj6LBjfGhto59seTpPOuVVur1nBPTG5qlKmroUK5iJXMmrFULqYmpFK6NudT9d5P01nTQunKaGMCmgATAAEwAAAgAoAACENAAMQNAIYIaEpITAGmAAAAAAAAAJgIGJnnit+fu+lk9D0ypD7edNtUSQgQxJJJAhsTAi2xNgkkKMo6yrK0tlM6s6urujK9Ga7WZxhDOli0wOdj79GOnFq35+PfDT0KZcOfo594zA7miG6iyi6rRYqra5ZSVg7rbM2j0PB7VnXddnXlKUJAJgBQCGIRiYAKxENBQIGAAAJggIaAYgkkhqKJEUSdcyQkSIumIhoYDBCABg0Hl7mcPT2t9c/R5RhcsiDUQlEkIbENiYCbAFAmRkqlREsz2rWaVpCS5uTN6efLcr1RjZbZnguqmuaShOuy2uy3O+PR6DJw78ivVHn15vP71Ws8i6s1iTh0JebXuy2KY16kNlKZulkvl6+rn7+vEAsGmMQNMBMpMUMRQ0QwAAAABAxAACAoACM1FanAi1Ic4yAAAAAoAhoAAAYIaODfj6vH0dKWfR6PKIlYAoGIk0xpg0IZGJOBAJUU2b6I6JqKWOXZRn3WZ7Fzbnfl50bNOWFRZbkknT0crRXRnmtWV0Yq7s7zXfCrOp5J2Z3ho6mPh6MHP7WdOTtzS1nZjt0S8y0md3NdLWKc+zHnfY1c7d05XuE9ZbTsAAAAAE0AwQwAAAAAAAABMEAAIkkAhiBDEDAEwAAAAAAEMQSEHnfRQvms90KtY3RcrlDQk4EpVBN1V1e6iJWVhOMq1jntlrKqjkzqzozwXN+OqNjhKVlSvdlMdspeLR2sscuV1BbdgddS3l3HXhislv05qZrWnnN0sOzG8VPX5/D0c6jpZprJOMridM2uzocjqazRC2Eq6vH6tl1tF3TlMCwBDEDAAAGgaABAxAxA2gABghgAgEpIiME2CGAAAAACGCGgBwhlIA0Cnc4pq1Y6M4WTiXMUIi4goWRCcQnTdWR0qmasx5p2R6kKLkyaSzmz3ysw3aAgXSKbFaQp0s5WLu0p5yvtYpefK2mW3Tz5V0dXL0F2rPGXTVVYuzVyt8uXP1+f5/Tkz7VjeGUVcrp8nWu+ty3inTksxrsAduNrhO5QwTCgAAABAAAAMAAAEMQMQNANCGJgIgaBiYCBggAGIAAABiABn//EAC0QAAICAQQABgMAAgMBAQEAAAABAhEDEBIhMQQTICIyQTBAUEJgFCMzBSRD/9oACAEAAAEFAtEN+nH34SZFmV8Z473mw+lejbZslrWlmNm5GZ28Hh9xHDGsmOiQ+8OJylhw0njPGYTazYzazbIp6o8MYhf6biPC8ClxmmKNkok/DrdlxbVovR4bBw8CrLgqXlSQx6YIcSxqseJueKFHRPkzR4irl4aBCqaszYzxClFtyOS2bmeZI3I2oxZNhizoWZEZif8ApKEhRZgbiedSUtxjXGWkTZnlxpYmLkxxV4a2k8fMjN8iPePox8tWicmWZZcQ7wTRjZZlZ4qRZGmRxMyQcS7OS2yDkNURyyR4fI5EP9JiJkGNjyu/C5bPM4yNyM2+JOTlptNr0iyDow5CLHVZYGTCVTI5XEhkcngPrxHA848lkWRnteLNY8xm8QZJ3p4XHbhjSWXHGp4nu2sinZ0RimeHikol/wClYupRbJQkiM3F4fENuPJmVxlF2L0VJmK4PDlVeYiUrMzJP3aYnTwZFTyHiJ2OLEiuGRyOJ57Y5WeXJiwnh/aQupWZ8dutrTOGOzCY5HmkJ2J6WX/oFD9Ee8EbaiqzxNnMUouGZCe4ljTWWG2UTgjEx4U3HFFLPBJbnEhnZ56rJkc3GKJxVCIZKFlemSKaiPqVsjjZ5SRaR7mODMVp4pFmSKMkRrTtRdPzKI5LMUxTPMN5Fll/3UIl6fDZKPMRmzIwrcLFGp4lFw6lKlmdiEJGAtHiclkhMsXZN8axfKmTfFFM2FSrypCwigbUJpCyqJHxA8tqXI+BtED7sWSiGdH/ACBZiMiMjzDzSMxP+5uG/Sjc9PCvmzLJG+h5SXJyhMjMhuPcRwWZ/DcSxuLUWLFI2yiPWONsWMUDbEVDkbrLNx5xubGbhWb6Fkkb+NyZLFZ5e1qNlOIyKbI42Rx0J0eYx7mKzEyP+hLRLnFAlCdThNCFArmWnh8Tm8eGk8RFGVcZMbc8Ph+J4KJolHlYRQjEq10cs604HI3tm03RgXORURSb0s3iTEmhNo3ocR2UYsaRHGOHEkQRtJxohNEJC/0OHeHkUeMsR4uebn2JXLwkCK4kijIyKtxpGRmTl0XZVEpiR1o2NiihzPdISUTfYkhu9fcbzeeYLMY8gpWKKIcEZm/jLIxZEKRJbl5PONC/t7GNetHhWzeTlejSMsedoo8+HZF6NGXrdTWXjJnch8L5aSlTXtEdkpHZairlMUVEcja3ptLRJlnBybZM26JJCTRDJxETJSom2xWngsijaJf24KyEDxMOPViVyhwZMlCzcwkmbbJ4zyxQ5wxoiihkjN8nyN7TmWkntUI0fcmNlEpJEYOZ0czPbApyOIkp2VJrYkLYJwLsplMcGbZo8yUWpxkozojktWpEsSYoGERf9zHw49Z43F8P04uHjVmXFIrnAY2UTEzE0RekpJGfPZ2NnzlLg6UY3rJi5Mk6MeNyJNI27i+ElbbNpujEcpzNtiiijg4FI4a4KTHBC4IsiyD03UKYpCkX/aRin7ZOyWJsfD0WkPlgXDVrPj2vHKjHMlkMmUjMhnohnPPM2XcUMm7EtsYq21ubekuEuTLPasOPc2zZzJitj6tligzaUjabVpcj3FyRHIeYbhqx2RkQkfJNkWQZvIzsX9mxToxPc6PEL3CWlkXz4bMqeRVllZF8x4Jy4skxSISk3FukdmR0saJcvpdHRZJ7pSajHHF5ZNqKolKyMSTOzsUOFWm4803RZwMbaN2kZFkZ091nAmY8hNCEyXJiRH+3hlQ5qsstz0eqdCz8TyWKVCyjmXpHl4oFWSPqXMviscXpSO3kexR4Uk8kqUIoySEiUqOytxGBKq3jkxss3MvclJoU9K0RHkuhSZuQmYncZRqW0S5xr+zWq4HJ/lRVmKFiPrsnwQgNcsom6ImR7p3ZBLHD6ftilbk60itxGKRkyG7W0bzczcy9VrF8zExUy0QlRanHHK1HuH96KJRH+LojZFbVHTo7l0kMQybqFmFFlje9/
GNOTIrjJmHyOSN7O9KKRQkUUUJG0RVqiLZ2K4mGY3U8XJH+9EbH+FaYIUhEmNmNcNi5ZIXL8VMirI1V7nJ7hUjmTrh1AcpScmol7jy5sWJmw2opHBRRRQkUbTYUSgNCYyEnFvkjGiP9p+lv1olrijbiLnS/d/kuCyPS4UhPjO7liRJje1IrcRiOW04HKO3ehSnpZukXI49KiKNFCiUUNEkNUJ0SRie7w65guv8ARUyTOiPLxR4k+eo2dLF3eiJPhv2ZHtxy+adC9ouW9E3cpKI3tEp5GoRiIe1DyG9st6IoooSKEvTJEi6Iujw/w8O/+iOq6/0BorVogueox5lLSZBUpC7v25Wf5eIZ/kjsboXJ25T0hiFBktsSU3Io40QkJCRRWlC9DGTRMUjBkcJeE/8AHR9f6Kzw0CXcO5CI8y+iKJUi/dAzy90Sz4rlljkU2RisRHglkHJaxQkKIkJCWlfhkZFpFn/zpWfS/wBFVDRiQvartobJPjEvazoXBN8XwvbHLouBcuy92kFR9ylQ717FEhAUShfkkZDJwJn/AMuXv+13/Yr8a0RgJdY+X9Pk+10K25MyEnbm+MmnZwOVnRFUIlKvRRCBCAlpRX4a9GTrN0mf/OdZl39/2KKGvw1pFEFxkZi6yOorvDzOXZ9N3KT5j88jMnRwMRFCRKWxaURjZHGQiV+jPrP8TwmTbM+v66RQ0P8AEiFH1LkiqWR2LiOL2w7f23o2YzITFpSLRbkf+ceWUURiRRFeqvyyM69iPDfPHzCD9v8AXQiRL8CvSCMaJEVy+5dn0iJJ8SZJi4UnxL0w9iSsbEJEUJCFpX6DMq9vUsPywfFL3/2ZDRX4F3HuPB248yb0xr3SP8Vzoz6kPr0R7bOWJCiJEVykJFfp5FxkVT8OpX4V3H/L+tYihoo2jXoorWC06WIYzGS5H0uE37ZPj7kyY/R9CQoiRFCX6zR4mNZMXtMHEI9L+lZZZY2IQ9ZIooSNpI+65gtJGMZ0o8Q+5dSfE3xrPvVaJEYiiUL0LXeeaeceaeahZEcF/i8atuTDj3GKP/XFOl/NssssssssvRCZer1SGS0r3wQ++3DSXb4S6fcnzLR6P0IiiMRIS9VpDyEspLKbjcxtm48xi8RIjnsU+bFrei08Vj3w6WG/Li7S/hWWWWWWWWWWWWWWX+BP0P0y0xi7ekdP/wCj6sXf23o9H6IoSIor0uSiSmOZKZUmLGeWeUPETxjjpEg+Yi0bolmP+Qf8g89kc/DfOLqHwX6lllllllll62WWbjcbjcbjcWWWN/mX4JaYkR6mJc/XUV/6ZuvofWr9CIoihC9EmTcjkooRvSPNiecjzkXGQ4EoG0gRFpmlSnNsvRWKzDO1ilcsb9pZZZZZellll+qyyxsssvSyyyyyyy/2r9bEj6J9o+vuHDmPokffqiQRFCFrJEjjWU0h5GbzezdI3s3JkJktIoiRJdZbk/KI4kLGhQRKHGL/ANML5xlll+iyyyyyyyyyyyyy/wCJf4qPuB9vmVkumRMnb0m/WiJjQtEUcjnQ9rHtG8aJzHeqMEF5flxPEYlpfCIkUJGbiMpqI8p5hGcS2lzKEcdQwdw/tr8CVNaSdL6fCkQMmsux+hCIkPTZuGkxwHhZ5bRsjI8lDwo8lCckk5klKQ8bi9tCRFECKP8A6LcIcvTyoyjkwUoScSFLHFceE7h/Yor03rRHgXWncpfKXZAn8vufHrWkO4C9NehkoJm1oss4OBjmhciREgRPGYvNxf8AHieRE9xKM5L/AI8yEHGHS8P8cfK/u2WLT6jzojpIk7kR6l8495GL1IRAx/iocEShJDlRaLLHKxRFESEIRVxlcJxYhUQSay2jMYesfX958FkDtxPt9TGfbMfT/wDSJk0fqRAx6L8coWPCh42eWKBWlCQhETxmLnaIiQZJXF+7Jh+K4/v9kVb+JE+okhu5P5DIfH7RPv02IREh6L/E0UbSiiihaIRKO+Ow2iihCF/64vj9L+Civ07L9fQhOjm10R7mz6Wj6j8V2iWj0iP0QIi/PRXrQjLGmJaIXDxdI+/4C0b9dl/orWPafPbfZIk+KrR9R6tW+3o+xarSBH8C1sv1OdHmikJi9DVrVE+DHoxeuyy9bLLLLNxZZell6X60xy9L9S/OtFyoERcH2ZWfT+SH1H4jGIRJaLRaQIi/Betllllk8lDm5vFDjaUL0IyrWLPEfKCrVfhQhjLLLL1v1XovQxl6rR+peh/j+iIhHbj0+svdH+WiH39zPpF+hH3EiL12WWWWWWWTmTnZhIHGtlllj90VITESjbWr4d/gQhj/ACssT9DJFkdFo/TYmXq/xWLlPo7OJPbZjGT+UfkhdD+UiRM/x9P39xMYvVZZellllkpD5JRIPa45RZBZTzDzDzDebyMyTqcWLW9JC/Dej/CtaGivRektI+hj9KZZZfqr1R0+oj+SdkRMydH+X1DkbbZ2pEha1p9/SMXpetll6WWOR2UMkjlFyFOYspuFMUhSFOjdbiyA2fQhi9VFD/GtVrRWj1lotEIZJeu9F+NaIVNNOxdLuXUfjHk/xXERP2/TJ9WJ6J6/UTF6WMsssssscjsWriNFFaUIRxElk3kSJj6sT1Z9r0IWj1f4UWWbi9WPVjFqnox/gssv1vRPX7TPv7/yYv8AzXVcS5GLs+pdPTcbxcrSJi9LGN8+hz0j6XEaOdIoWOI4KJm7iRIKyPI0Lhlj0Rf5n+CxSNxY/QyOtifqooooooSKK/B9FpP7ixctjF0T+O4fX21o+tllFaQese8YvQxi5kx6N6rRatDRtNrIkTIuMpEij4rEhmREFuWw2DhqhfgrVlFFFFCRRRRRRtHE2m0aJESMTYbDYbDabDabTabTabTabTaUUV6kLg7KGR4jEjyM/wAi7xsXT1aJFUtU9EYxelkexk+iyzchSQpo3o3o3o3I4ODgszzqL9xBGKNu7y4Bm21hGjaOJRtNpRRRRRtNptNptNptNptNptNptKKNptNpRRtGiZIxkEUUUUUUUUV6K9S9K0omI+yD5Z9sivZRD46LrSVVWiI6IiJ+paNczNo3yJWbRQZTRZuExNiYrJ5ZbpRdKJFWL2Y8XeBcVovblEPSiiiiiiiiiiiiiivzSZNj7xEP0+l6F6IrlcaQXMhk/kvj9vgXJ0dP/EmvQtYsT1vX7JHYkTxbhmJe2a5hHicBY+JYUeQzY0QxSIx4lD/9E0NEIniXSh3g+OmT5fvMnIlMYzGQ/T70iuShIeqR9RW4S26Vy17r4XDlonz9QGUVquJaRF60PqOnRkxqaj7I+apTgSEV7qHH3JD6SueQRjRnleSPDw8R0zaL92RlerMZD9NCF16LIienRfLfNe5o7Fyu0dH+K4Ks+6tkl6IsRf4P8vQ8EWLfFbp7/PiY5pll+7cjc5G2jIRROWzHkXMSHGsxdL92Rl1ZiIfqWbuLNwpFli5IxKLF20f49m0gcXJDVuM+ZcmOROJ2djJC1RfoWqJ8SXp3CpjxxYsVFTqMc+7ZJpJRGT7ijNLdPMIh1HSQviv3ZGbVmEx/qJG0YhaKLZGNLgY1o+4u1HHZRQiXJJaRuiLuLjT70eqF+CJkXEH6lwbmbhM3G4b0feR7IQ5nk7x8zifZMXUf3ZGbVmEx/pvG0RVaSWkShMs3Hbk6PoihR2xyx2jVpLmS5cSSL5vcJ1pKNN9dp9CEIXqi9OpeqyzcbjcI+jxOS5w7fWJe6PWkj6X7sjPq2YWY/wBNxNujH3DSxssj1j8K5j8JBKfhJGPE1kpMnyLgftlVjJcNn0nxGXHacRxoaJI+kLVehCJoX4kR0zS8uF2R7XJi+cevpEtI/uyPEFljPD94v09/Fj6ZGPpieF8PwIux0OkTdqRQ0MyrRES0K0dnQxrVaoWjLIvRdjX4EREePyXNaQPD/NfFdLiUvkR/dkZxo2jgYlTxP9OyLG7FE5I6bThHhsPmSqlR99ehqyhjJEkRV6JM6Is7Q1Y4nWt6Ji0ZEWiKGiiiijaKIoiQjM/+xaQdPwzuUXxHp9v5/
vMyRHjNg4kVzjF+mhIcqN4pMtvSEHKWLEsUHpQ9OjtvuavRofJKBsFCzZRwbNIyNpKJOOqeiExEj7sjIQtHEo2lFFa/T7I6eGI9Ikf5/vtG0cSUBQIRF+k0JFbCtKEiJ4TDtQ9Xo9GmxkolEo87eeJCjRHkcInlscGbbE3FkosqxrRMTEJ6TRYmKRGQnrXqzSrFohM8M+cXx0j8v4NDRQhfpbbIokMWiXHhMXmTH6WV6GiSGSibS9ouRUUj7aKLoUrJY7Gh6WITEMkWKQpkZCl+Dx2RLDohHh+JYvjpH+G2NliYv0aKJKzaSxiiVZgx+Vj0fpZt0fQ0SjSocdKiJFUPu7HEasqiMqNqkpxK1sTEyQ+BMTIyISNxuL0s3DkeKy+bk0WmDkx/HT/P+Cx6UJC/UaKKPCY7l+Kj6KNo4mwcSjlG6x00upRa0cRoTaHUlKFDSHEeikWSHwWWKRGZYpG4s3Hic+i1+vCfLH8dH8v4LHol+w+Xijsx/jZRVm0pDHDlwHwNkYuRtZ7ixJMljJRE6KtShejQ0dCloytEyMiMzcbyWVIyZpS0Yhi08J/6YtEPpP8AhPRfrt0vA4rYh+tIoooooooo2HlnkRFggjy0Two8uFTxRH4dW4TgXY4IS2jQ1ZOLWjiUWXpRQhDaRLI9USF09P8AHB/6R79HP8Kv2IQ86aW1evvRLSvW/QmjcRdSIo2IyYEyWGcdZRaLJQUjmJtscPTwhzG71Qu5d/WiXtw94uY/3WeGxeXD1UV6b9T9NckraVtSTIy0onhjIl4ZocSUNJRsljaKtUbNNw3Y/REQ+z7emD54H/1rr+2+DwuH9exs7E6G5Eb3NURZfNl6T2jwRZPCynA22OKY4UUNUN88G0qtY9LVDRBcYf8A0xcOPX9lsRhx+bOvxXrX4qHwJjZ5g1I8uz2wb4mNHuJcljHFNT8PKAmpppocbHAlCxwI7kOpEsbKFytPqKscOcJ1khyQ6/sx08HCsX67oe07NsmYqROaF4hbcniPavEqTXiYnnwI5FMm0yzctt8QMnh45CUJYxxHybSeKypRaYmSipCiSXIlxDtKzGjJ8sTMff8AZiLl4+Ifo36JTFuY4CqIu2Zs6T3ZZkPC5ml4TGhSxYj/AJKrz0NY5lVHs2pwinopo4ZPANaVRKKkskKaXCI04yjw0Ij3ij7I8SzxowdQ4kv4tfqM8NHdkg+P0HLRMbUT3TflpaNseeETdmyHlI83HAn4tj8RIeaRvbIyLP8AGO5L5m6SIcOfMtsR7oOM9ylFMljo2jRKCmOEoHQvhj98XEXDowr/AK2qnk+OB000IX9izwa9vUlz+i+DdtWP3jGSzi8PlyOMcWIy52ieRsdlDQ0dCYmKYpxIzFLcOFjnOIsikuxwVLKJ7XPGMaJq1KO2SuJAdSJQaInh37cq57jVSxOxf2ccHknWwmRZWleqyy9L50dEuBR3S5MmWOIxxyeJI+XhTyMlJ7pcm02iibBxJwKrTebhTFN15rQs3E4xyCm1K5VGO4va4zJQUx8DRNEUiPBdrg208DJnxlkXON1JEf7Hh8XlRydCTUojLHo9bG9ejdo2UPh5s0cSwYPNbpLIxzGy9EihI2koE4DgVpuFOhOxMi3EuMyLeOSe0k/d8SMqJxUyUdrlEcNy2yIFcsgxe6EuV2Ixu1Yv7E/iNcRYmVWr16K0Q+Sy3IilEdMz5vLWLA5O6JNkqHFlCQo8UULSkSgSxkoDgbR99G4UuNxamlLZL/LJk4i9qUzZvU4uMpKm1ZJUXce1G0Y2R7lwzA6dC/sfT4ESRuvR6PRKtOx6v3Efbpl8SeHw8ykhy0287DYhR0oo2CYkUUSgTxkoUSjy9Ito3CfFxmosr3SnEx8EZ0e3JGUHB1TonChDtOEi+cmkRcoX9b//xAAkEQACAgIBBQADAQEAAAAAAAAAAQIRECAwEiExQFADQWFRcf/aAAgBAhEBPwH0nhaP5q+ys2Xyr597UUUUdizsUUVpfza4ry/mqNlVxVpVlD+VGO3nWtmUV8iK1Z50rFll6sfx4rh84b0ooorLXvPhWrFo2UdihIoorFYl8aK2efGKykVs0S+Mu2zz5PBeIx4WPz8SKyt1hIjHin5JfEjq9FhIS45j+GtmPRIS5Jj+HHd5iteo6jqOsU9ZD9iyy+GOr0ihZvFFYcTpFiUjqZbHm+Cyyyyyyyyy+ZC1ekdnItlsWjr9nYfge9lll+wuFEdaKOhHSVlnQxQZL4a4UR3rKWHmaw/gx1eq4L3l4H6VYrWuFayysLlYhokvQooRW73QsPLzWFwNieKKKEMl5wytWtmt3lPStlxR3vWzqLJPsPdD0T1WGIeqZZfI1hPEeV4mLhQ8ovVlYoooriWryhbMW1D7Ei/grC2awhC1ooss6hyEImyfpL0EiuCsIW9FIcToH/D9H7JfBSFlvRPLQmLioZJ4n6Sw+RYRKR1M6rI6J4aKE+S8S9Ky+SsydaJi74o6ctHgT4nmXwfA3qpCleLZeaxYsWXq/GETw/cooom90KZaZ3wmXisJjLE9JyvCJfAfZcfUR/IdafZn/GdVeRNMaxZ5x1DkOTeUS99InK+V9+5/RTYpIUsUUWN6ol7yPySrtzIjnqoj+QTTw1ihaS95diXnkaKOqht2WWPEWR/L/uHHVH6H7s32Hw3myy9bFiM3HsRlY1lH7ENe65W+KjwXrelll15EyE+oazIRMfu/3h8bLN6fws/pCdjw8Puvd//EACQRAAIBBAICAgMBAAAAAAAAAAABEQIQIDBAUBIxIUEDUWFx/9oACAEBEQE/AcFeMIuldlNngvgnrVirSJkjYiMF1cEWm8k4qzV562NUWnD5I6lYPXBFl083V/I97/ZT0sCtJI6svWM5ImOuWM2gjJC7JLGScJ616G86emeSxm7eaF2MWb1L1zpye11aqSnmsWT1tjeukXORODyQsG9tIua7yTZ6m8YIIPEjFC5EEaUPFYN4ySTZVEjskRZbIIIItBBHFWFWSpIPgeCkhi9izgggjoqsZJPIkm6PIkXWvfS7Lpli9EYuyF06xfAXCfFWL1SSSSO1O5YrksembxZIXDXFVotVuZQPUsIIwROE8BYPJEYwSeynqk7MeSGPFlKKefBGpXemCCCLfRT0LwSwdpu9EknkSK1PRqk8RKB4NWmzWyLU8RbqVg0P4tJN07NbaehXzk0NReLzaBq8YqzKOdJJJSs2Ok+UfFovNmhEDWFKvT0FCnX4joPFo/08f0RAnaLweIqbsp56KVG90jTHTaSbRiynnQUU/e5jv4yVfjGosnacVzvYtiZJBCi0CtUir8f6snl9i5tHsXEdqqExqBO7PoYualGv3lGXv0NFVPiTekZTzv5wotN4P4V0QLD0+b//xAAwEAABAwIEBQQCAQUBAQAAAAABABARITECIFFhEjBAQWAiUHGBA5EyE2KhscFS4f/aAAgBAAAGPwLkxknlW5EBV5FFZWVl/FW8Xl5HJorZKtXlUXd6Fq4VSijEr+HUVefPQlu67r+K0etQpCv4fdV9jorK7Stj4dR4e3T0L2VSFCsq4Q1y1L+JzCjlUKqr86pVKtTLV9/EKPI5MDmXXdWVZXpHCqnLdXCtmPht+oueR3ajXq189PDqcyMlFVWWgVMt1RerEqBaBST+16B9qpOJdh8Kkrs3dpFG1HiM8+i3UDLAXqULQL/q9Nd1WpyaBXax8guow0Dx3XCBJVqtsoC2allu3qUNSpWq0XcqgWiuqq0Kng89RPZR3XDhupyVbixWWypZbqS2yorq6t/hRxj9KyvC7KyrhWh8agKW2aTdobZSt1OJpNtFGFt1UtKqW7qpA/yu6sftWVms9/DZ5MPAaVHZQFTJJWyktOL9NooWjarRWVlZ6qq1CkKz7+ExyKvJWzShhDbuGlQFVQFPZ6LTdQPUXuv/AI3ZfxWiuVBeVZ58JrmlWUw0NDcR75uAfa4Qp7qAqtJUBU/ahrtZt8kvDUVRDQVPbw/
ZRknXLK2UKe6rcokqSt1JelFRS9lYcu3iO6jJGSWluIriNuwXEVtkk0CopxFqCFU9CPDpyzqoyAKGjRRoo7LZoFlJ+g2pXcr+J6Gv7fCfEd3lyX4RdQt1ei2VhxaaKcWJd4VMK0D2/auOds0iyP8AagR8+GQ86qch2VO6LT+lVcRb/i/uWuJVqdFK1KoFefhUA6GGxBYCo8JjJChBRq0oYVGiAyV+gpNv9tGFU/anH+lEdP8AKOHQoHwgKVClp1clQgji0yQt1JaAoC1xInuqdRiRHhAcPLBwPvJOSA8AdTiCPhEvJ7sAMgUcjd4HVYa+EQ0Il50UKcwyy0C/V4flYcXg9HAYr5RP1lJYNdXUcLf3dUW+PBxu0ZAEFiU8uTdSTRU6kuPgI+Cn9IBgES0tGuWM09aQqIfrwYD7ecpOSNPZCvxkaLCPBYRLlFSxUe0A6okqcOLwUFAOWAYbvHRX6UAdgjRWPggzBSbKWPRbK/QUyVXEEd0PBJUqXhgEeqtz5XDujN/BQFCjIWv1UtoVB52LwQZi46GrVCuqZRIVlI5dypBkPi8H3PT2X8Av4L+CrheysqN2ziHFFIUdigWKPgU5AGDHqacz4yQ0Sgp8Eq+LFmnp6FVGSmeEcOUDdAIojwaMs7ey8eWdEEfnwQMAxyH49lIez4vAoUMXnKfZpy4z4DLQqKMgyU7o+yxljwHEipQRaEMx9mnIN/AqZocv9ezEZAdPAhiCjuqWcnRH4RyBD2fF8uPAKZZUtKKKrZgpR666uq5ZKnwgZCvvJDD2OcRWzz4MHxOWPsdlZW8Jhw2IbIKoYP8AOS/sfy8+AaZ/piC8dGem+MkeAxlGQnqY5nDhCq5xZfnwiGjTJRT0k981s2JoYYMuE+CQ/wDlpU6schDx0VUByZ5I96PMLYshybjppsVaVJFGnJTJ8rD4WS3006rEhKq8hT3VensvSVRGyqcoCwoeFFiO6lQ+6jupXxk360uAfCC0IaLihSLIqX3W6lQ09dHYPh8G3U4qKAqAwq0UKFw9lxfvL8KMkjrCcg8G4zmsrKCwUqHq8dZw6ZQ497nNsOZVqXVVqFqFenW4vnwKcwwhRnrm2V8npNVpiUHqijyPrwDiNzzpF1o1Q1Hg2c9NjO3hE9go5tQqPdXV3oatBUjpjh7nkR7/AAgM855yWV3qMmylqdHsMw8B4tOh0azVbugYyz0fBh5WE++jCLlAdDbJZWhQw4l2Uq1FqFRUURzrqBQcyfe5R/Ji+uVvyIh7lWaWkBekvZXUhV/fTBDJt72B2UDqLIiy7rh0s+oVWlUVLtTPTlFsJ9+otz1NKqQFQqZrkqF6aqohT3Xquq1XpqH1VL80oKNPfuM/XUw8Eq6I0yWalHkKryOaUFGvvuw6uWmIVSgQ3dXK1W6q1VxYDIbUKj0emaFDz75CnXoK8i71VFBLGqwTP0qYPyFVJHyF6cQKjLP8cWoUYh95bLRVW+ULEUVKCPvgHS1VFdXVQqBoC9P48RXqIwr1Y+JRhwgKgQkKYhf+h/pUKsqKohouFOH9KCqvXIaKngU6dNstS3rMN6cNN1OPH9BHhwh7vLURIoVw4hA1Ug0XYrRbaq6mFN8KpZ6hS1b5BkCj3onXoNssmzVMBcOASVP5cXCNAvThE6tGejQ1VODFwlTjwT8L0FqUK4cS2U4P00woVVW2ePfOEIB56Cqk2VFqVJpgUYQ8qeXu1VOGmLZcGP8AahQVBqFRSLqC1vpR+pUNBcKO2SPeN1Lx0FaKivVf1PyfQUBhXoIbhK4MX8OxYoHs26gqQ1qjLCDfHvvxzKqVKpcrfVUUXxLj/J08Ff0/yVwGxaEOI0aCoP7UvvkIePfNlPLAajTPpXB+NceOp5FedLwV/T/IfgqqhQVEqCoP7eiq4Klgfef/xAArEAADAAICAgEDBAIDAQEAAAAAAREhMRBBUWFxIIGRQFChsTDB0fDxYOH/2gAIAQAAAT8hZ2MJkKMomW0dH4GMVXAM0WUaEPlCEE2iGpWiCRQsMkUsihsWZYmEohsoxeUbEhSwKRgktYNzQzbC30f9zPcGjbIS42FkGwSX/wCEY+FeM8LjOXGc8LjFPDRUfQgBsQgkQlcEtG0O68a7gww+OXhFQ1DGALQZ6yDvikKMhkMSSIXPJktw7HDDaZ5X4YlYaT+wnnRqsvIx0icM52IfZb/4R8Lhi1iPA2wujD7g96ICAsQnRRMXCXsMLgkg1gfU8J0MsXuMpG0LnSEQd4aiGLVkCmxW3lkNbFRsQGnlidgfykMk1Z1YYqbJJXUSR/QyCLnaXRFeSIg2Bf8Awk4vDZ4ESk1aLwsCiMJOwgwMnKwMMiQmZDoSMEF7MzJFhegzVIs72NocIiDEMbGJtGSNDuNMyITeRaUpaoY5VcoSp8AccWd6Dn0YjVCXZYD2r4BIRiIJ/wDwsIQTY+jFGLGtaKBCGwzSsVASYJceuVqJjqUayaG7vgKEtmNjYnISKxMwPpI3HgZRIha+DLsJc4ZpNMow08nakIkSGxm/kusD4POT0dREG2vJ5CQzRqHgJwzDkV/+CKYjWxcogv1CuiFktxIQR+QlKa0dET2ZYgm5EpkBEPDh3AWcZkgmFo7yM4lOGgwNRJizsYTBiYYFwQ7TQkMCND8xX5eDbSm+pRUlqMfEJxNkNaNMuZaEnEKr4GdzELmxp5M2UFwX98WsTHFE40VRinljjjU7xuESoSEAphlBsi3khLJJbMwLRk4MoFBYlfMUYprBpCcZGXc0qP6H/cwnZ/mojyJT/wBEOkeCNcv5GvF17MM0fwyVKwaaPMKT6a9CzFG23RaQez1Y9se+JquyfJQp+9rAkmywuWM1pl+xWMwFCy+BWaZQduMHdjEUSaMsG40bywOI3rI0PCyM3s9iWTZYErbS+RPcvwLw/kRF4IaYm8h+Q1SsS+Rxii01AzSyLojY06X5PHXoNLROyfY8z8iMkkb1nwNpt1jeaaqZ68CbHZ8HqQ3mHrhb98fFL9K0HehjMZhtmTg15KUMVDw6hHuhYIXQpKC2xgAStCSpE9j3gH9zo1E1A8U+4q9pES+C+cIcPVZgzA2orZbS/iNZbZ3mTXlMIpFeRVcj4Wil4fAfRGH3WvuPET7n/RMTFn+RDy15Qk5V9jtuhM7ERYEOhaKsSQpppUshubxf3ScPlDRBFGisVQIwFx4GKCEk0LLhNQpJCeFSYxIVVoVAuTsQcVdlMF2ZDNlH7ffQtvJhu2lV4Rljk2nr8C1gkvSJkYJqsexTxfkEHf8ATR2cr8ISxpIbWll+xvs0ELzPvEWGGmhDeHfuJj2Nf8l7yCJMffB5MCSiFlgwgnVjUuNLxSlKUpf2+EpbQ1OMn0w3FYmhKtiBs8YhQkpjtIdgfBx8CBX1CVThGMfYMqPYrlpf2Jp4/d44hCpLk4zWW8+T24BX3nkafC8s1Fg3jothZN2p4PSTwimstRfgiDseXhDfwa2b8hvHC2v5CdZuiT01+xlqYyDVCoT37HTXR0szI4NJVeMoleGSP73VBMErBlfQmXhQPsKTZbJnecNeiTUh4BgGK0S1kjsI9tCEp2fgvI6omx3B2YlYr+RZy+7I/wCkSWypcV0hbdvpGbBhH0hWSkMPQtq4NomhiTQWINJ9iWrVGHFmhgFoO9YDe8X8MdI39GR2t9xNbFJOFBhho6rJVvoST8D1tCJIdcE/3qDQZLRoQ5COH0ZIxhgwOKjfAR0oxoOkxWBoWxiqtlT0mc2hS0TE9f5GTZ6PkpurX9jfT/wy8Lo6/uOwvhF0TokEhi0Jl09A9BF5HK/liDiTYjdn+RtYWfyMmmElRtsM7iQmmo96F/oATVYbNeoUWXBOR5eH2Tq6PYLnwlXNRsvwZdR7MbWPQkHtK8S/eVGNDjOqhHJ8pwuAuGLgY8OcRsh2UZhyxTyifJkvI/GKnOuzLWuhnuC7jLz+RBt1pDxj8hlui8iXXj/QjHvSGw6KXwEz6PQtW9dCZDHQZKm4vRbWH8jZ9p4Q7tJRdE1gt229C71fDY9mXyJvoyeI+yG7/
wCo1G39x7xt0yE5avY1UrBObf7IPNL4EWrA5OiedY7HQN88OHEf94T4OfBviYKVIQjlGhumxDYSjophpLQbbHdMYst8FFRTJiZD0DWzA15DtK+SC3E2Eor+x/BDlOukMXrZXNb+BBTha9lvP4me6eyjrTXsWn/wZetrHfSK3mK8kMPuCXl7HRNrDk8I9Z+RKsP8DzQ3road/wDXybZJ5RM0/gNvah5Qx5KjDHgZgcQ9Bq9oaZVMjxUdhOMu477KWIYhm0RCCfvCLxaJVTMiExuENapmoNMc1TKLjnyNrYfd/wDgRh48I7HpG0H8B3NtiSqKJ7BuzArVjbwi4J4Qzo9vLZ1EC1Au2J8G1647FlSKUwzY4XKMeCS7MNkOtfyPxePCwhrGnrB5GyemZ5UXBxL/ACdkI01GYHOGCJ62NjIjplRNiKKuWcoE6Tyayb2v9k9Flw8biSn7yghugwPJCsvFKUomUvBVFtjCfyYISUJf8hlgukdl5FETsRgsmiXR0hImxjOhkSLLYwMvY1XxB05ZHao8P4eBJt7EMiKHRUipHsNnpjyNUJKVq/I1+B+pjYC6kjLMKvAnOhiXKK/sSRyiq1IYsDIzQl4kGNurzTTpVrJtXlGQRY/eXzSiXliIJ9SRCiPDszJLLEJFnsTTG+/wJ5MeJHZlmxnds9uyEm3Q7dbGPozeT4wyfT+4zKsGetobVFvooLflkX27ZL/9aQwibEeyE8b+DrQI8qsi6rEnh/kkL0PSMIodI/yFazNj2IfM0NkSRop7nkxonnsTiWGNX71aGTlsCoZP6kh44w+T12ajl6K9GolYeyeG75GUqyOgsIbBljTbg2IK/AOv5FasW8rESukyNWdP+oXJdBkVrAbYS358CRIp+3knSMjPbfrSMMvk6G3ki0PxQQ2lR+TF3ti8rEleEJPBfSLb1xh8i6pCp5VIeWjFSCCeTSiRtYf3JB/YnBw8lP8AQkX7yzbhrhNrQx7+tYuC2WfJn30QpcFhxDv4ZZuBSeoPZeNixhFhli9ZZDs8CxZRDNewqAmxudmTqqXQhKzDSXYh7TpQebzn4MhV69Uno++R5RsK5ghbbbO1Mgu78B8WL4Yl8IST7ZnSG6or5CfxxIvDjzlsD+tQub/6j3nG8l8dnxhAyaNd8MX7s2N/S/qTMBgNPbEcETqFvYL7zHTyYu3sLkxUbfyJvHdyYIzi0MZbCAo1y0TxsNF+4RyvgyUu9+xaXjryNJn06GETv2b0/hIqlft8YI3insbbYJ6A/A/AvMxV4bZPSbE72heIvHHvhw40lxBrgTplN5CsHoxTyv8ATKLdYHi9OGaP3Zj5peHyt5GUr4MISTyPq+DGSChps4taXbMmkZHPY902/gVOjod4R2O/9iVVNYf9/Jh8jNsZuv7FvLwuyCgW/wAINtjwuvgkVjmT7CqqZ0ox/QujRbT9IxWEjLbpFEI3kX4PUeQXiIwTeBHwuScSPfaMGdCXHjD7GodTUj0+mawbBfuzY3/hUKX0hfA2n6KSZ6awRz+w2MYEy8jfA0TTeCEXwIeB+V4QyeTH0MIbtz/0I/vTd8cHhBVZu+AtoOVjBjp8sTEMsVZVf4NxF2fg66SOoit9DozsuyXC3gS4ThfRsYu+F4c6Z0MTJawyUDWEV/eH9DKX6UeQb1GhzaRNXTEU10KgWR4VYn7syuyNB9owiSwxUuz8swa7djZexrnyv9lmTsbKoyJ6GzRLBK9xhefJ5Yv9C0IzOvjAqxiIcCgQSEY4hfoeBiUTF4EEqNoQYOv3iDE5fC+o2K6L2WOh6zZNZt0uYGeqlGmRCy6Lcds2LJpEape0ISsZwSj7Gp88MFvAx4sIsxbEB6vMGpp9lfn8DZl5YnZ66ztYlE5EvZJ2yP0JMyRmSM8lxR6EyF3FaehHnMD6ejy/eFwf+EReSJhMnpl5krsSl9mDL5M/tDA+cI/iyK2eAbBNszAsU/k3PSLM/sZpejDfCbGBMsZqGveBUq/AxsJu6/CEfNmNtuvL5PHmEroUE4+xnjD1xDP1PhchMhaPiCCdj9/3oKzEPC/SuEhi16orYw8ssoaNZZfMdssQqYfYip2xnyg3K4G9vyzFT8gZ1lCOx56ChXfwhShH8iaiWOkJrobfwfcPdka2es8K4UhXwJEROEYlzPrgmD8APloXf5DYV9ii3f8Ain7ebi+f8D6Ib+KVjTGDC3/QwQ3fgdrT5ErNaHWlrujwh9IXS6wfZuDodkVF4L4g+X0WTzobNGbPXSEsCKprheDoYLeFiE+jdBCHt9E5pfonE4UxnAqv4Y5jEjp5E/3hDFR/ThJsuHMC1EbfjA1HRmhOkHQHWXB8tnTyUbYb2+h9m2flxDxQOGUQhbRYR5cje36KXj0cC4TmC5wKFFwvoaKj5gHES5dQ5q6QejXS4X7pRjIXKPgKER9i2MQWM+zOz5CwjtuRVkLhLyJm/wAGH22aUh1/EGDEPyR4TohmGwNnneCyEJXnsJHgSFwuITiDxx9+Ey8XzxeaKDWoItI6ZczKeSEGuehft9L9HfFczEIiVfR1eCThDQX8Lc+yHnPgbXo0Qy+KF8zoQPAYohgJGGdr0U2xr8OV54JX6MEF5XJ4VHDGuV0egsLTzNDHZfIz7E4J+yiZRexTiHhMI9WoSoRMiXJeU+v2yj5bLL+mGnHkUTRDINcWC4MVeUqQXGdfQ+MR6bb2fPtlxKSvKD2vJiDaF2xsC3T+3K+pmQS4WBHcC+jqpbCLe6eLjfeJTwxTDjLM00BWa8U2KvI3sqRCa2mNtyycUu/gmtaOxN/p6Upfrv8AiADDL57F/wAAnwsDFExMbonCV1ohMzBdC2/uYrYvPSMt3hip2YGTWiSMrHlhkbLj5GOoNykXfOoJCRBI3TyVfj2F6WA3pKCZy98csjwIfREYsEaGZvdHyHE0LCEw/HYm0nDNstFNDu4pBcD3sOvsfQpS/wCa/QX9P0KXgw/8cDt/xznMDQ0JcUTGEqJywqdLwUf2jTeeh1CFtIMoXgbf2BYW+h57sfgbmjY2OULxUE4QhUtkdNDGmvyNM8tPlwOxBoeGe5+Dy38DUw1yGAmfQmOPRWGBYmxfERdCP2hlummTFyJ+/qOhfpClKUvBh/Rdi/QEUXxstl4v1X/KuE+FLw3xeONN6JF9iXUelevCM5djyJ7DY6bba0qRIfY9L+Ax+BuvhISE5FBBfAhiGm2xtuyLob98K93B/d8i6jD4C8dFhv5hidqQb4NMkGAwKF5M8DmLcReXSZmx8P55GKUouB/4l/ZYf+GlKX9QomL6aUpsUaJg6N72PFGSyMtDalKux/6GvojFDpGQWvk9jffKFE4V8CQnBpehOlofS0IuxHYSnfgd7p1xeASehDBIVlXRmNhbzLXNkyumVctjW0ffjrrS2xTfLyx00Jdo1fz9dL9NKUpSl/Z0xi8waNZEm8J5Yu/fRdHsog1PZkoyPRstDZa9jf8AwPQ1g9HgPPEEFNljghCFglDTwZ3V9h71/M/9YTvUdJT0IW9KYlimIGC9DXaNsxWTHZfsi45MQoeUzHStiVaE4NLBD+o84BU3wIc+YPfe2ap7/eHyJiZeCY8l/YWGnQuz7NIW6NeAQ1jo0fY8u/PFTn2YhMdpCtv6lyLgXHBIgkQjiJkER0SHtqhTsXmJ+KL6krTNQwNcCcGFR8qLyti35E0wpBrpZEh5WCoNPA85k4V7Q+X3+9PilMDeHtgTTxBpT4WxXPS0e0hMZ6FlNiWGY4fIyntiJr8jdwbHxBI8zzNjJC4XCMcxmWx7yjtgZgScfIarsbgHvLJ8Ci44tHN2KwdMS+Y0YE9mG6MwWISwnCfkfvDZRvicsmwt9iYWoeC68HbwN3AxadlOddmBQ8oj+we/CZgn8Q2glhsbP0JN4ROuGCNBcExPlfRBoRskzqVCGmynsyikn0oboS0TvDLRa7I7ZhiF2LOR/ZFWYzUX7jS80v1wgalQqWLZlZ+ToT6yJlsTH5jUD34DqjPZj95/Ehmo8GRuIPTfCEvJXWFydB+hCZRcr9E4iED9R8L5qC4PxK3on7R4gnwZpoex6wb/
AJEHL+wJR8L9VKUvLKUpfoHzeK4QjZpNsa2MeR8UsIdy4JX8HbyGbz5Y/A0+wm2I2kqz1x6NEuEu+CQhfUkJi4WRIiIQhENIfBCCIQSE44FpiSfAlxUrSjwLBSlKUpSlLwylLxSlLzSl4pSlLw43gyCYuG+LwYouWP6HwuIQgmT2xOJjO/A5Syuxa/wGjBOMXfgqGn26za9mkUOnSkO0e7JWkZMx3VHhtiEOubr6EIWMcqY8KVDeSlgrsZPA3vhZcIXjg2hOCZuLb83zzQ1SZnilKXkQTG/pR8SK4LyXhfpb4UwtExMbGExjGIUnL4QxiIInPkLyz7ZkeL4CT7Drb7G04CqRNJOzsGvqkd6Rr5K/IbyvyPo/AuL7Nr4RL5dRaNDsxFzwSGiCKIvBY7o39AYaoV2IRaI5E8bTEa4Yh6sonwVRbQiIQwbXDZS8UpRuVvoDFExBP6LwvKcm4r6SjfK4sYuDFwyk5o6uPSQ8cXZpdX/AuM6YqxlKn2bEZfwNp6yKtsmlfsJBpF0LPsH06Yxc9jw5oew0rwjw98NeMiWBk74on9IQP2MFsxEJDm9DrZMog5xhwgwE/jTJOBindBMcMxXwY0ThjfDjDY+hfoQhDINcFwEyjYwxsML6BspS8vIpRvpYxmRi6sRX8C2k0RxeUSO7swNdCmW3oJhJ5Gv34A/3h/UNHvTNOkNFpJGLY2Txg8x6IRBIgkLoMP0ZqCwWuGUvMy2fLg+OBW5VDZMl2e/gfuJ/IuFUjIKS64LHXwLwpnOEGuGPhLhCifTOEJ8kh8ohFGLwe+CYmXHBilKXgX0CEITg2UrG/SEqM8rqE7yXgmy6MdaZdP8AkiWY/PFVvwwj+wmPgSVPdoRMn2ZHJvt37ktPrZn5AuKZhBuFtCDU4zYY2FgXg7ozApeL4byKSK3EMBLGtDZLsJeQzoJ3lMZ2V4ELbCFe3b4MmbC0Lk8RDKN8LkJ5ExjfK4eijCZRhjXO1wYuD5tngn1ifCjFL9D5WSi5INHYYWx2mRWUzTnZgjyMlB1exlHoSq6RNvKH3ehPOfJmYE02Qz+6EyehBAmjqG0LLIsTJo0O+XxYcfUGZW+RRPoaT5llmCnKwynvhUYCKMYTS5MGFLX3LCFxoYYyCCDEIIYfEJw3wmNwXMTKOMNifDYfhPPFTMTP10XChSiLxBvwIg6ON1DEfBgTbpnVnV47unS8jz3bGkrq1mQ7Z7HdDWR35pmATwJtCFIcEhuYN+C2hOFG/pIylOpCyUIXDV5meAl6M8DwzaCPNsfjZBtFpcOoJ8G2N5GHwSIIYx8PhCH9JMv1Q6G4Qx8jcOlLhbHSMhGUUUUUUMFwJcvx9CzXgrawqZN5fgbzFtoanwRWOon/AGOzWxCqEGzvwK/mRhIvK/kys7a8BaUzXrsa2WfI1T0JgZIJVfQWyUo39CU5XwhCGQnynA0ogK10LwWWhazQjSuwoUalPRlCinOCMY3Bso2NjMkGIxUoossssaItxuWJyvoKRsKYP84X+voRIhOU8jrNKja0fxHlRrlDYHtmKt6Oo3PDyx4bRnLw0y18lNfQnTLH0tk0/AhfcvXTHld8JitJoTog2GuFKNl4rkIbwwNgglEHlHkC8gvMe4oIJBQJBDFcjtqyOWOB3+MEJsQeKxIn4sijbksIL9Ddb9f4WMkmDZEpg/xCCEJwhCEIZDINEEIJOx00vCHtTs3PjA6o0MSCQW56RpKtlHc+SGvg3DSS/sT/ACJf8mTGXaOvX4MxJdmWmTyN0+CwPTFvPFS8MYuXxI5syHewj7GihvKHjQpbTFXImlizI05WZRqySrLqS78YMmZu+eGhK+MhtQbgl+gAAEIQhOIT6W4JLj8Gn6NfcYuGjPDR7GqJQSPZ8Dax3UZrHkWKHUKkybh1UpDNdBPuRG1aweLKHcp/BJ6wjJo38mUY7RmqswTom06QMQmXheJGEJiiXBUkBWsNC4wJSQWETQt6CiJCnobUjHsvBBfkU8Hf0Il/dmSsDSdiyzD3OFwv1bECgzYmeOn6OtqJF/QavDtZApk+DE2P5D+ghPIbzIQ46tFR7GNdjW8BMsHcNHYDby8D53sTE6LydaLyLwLbY/KImyTg5WUpRMexhKV6JkQ8IY91quySaux8DJxexES64oaCtEL7yz58ErpnpKYqR8FwYuNPkdGgxfrRRsb9LIIzHiS7ZaMbCeT1NETxl/c1UyW2iZHUSerox0XZ4FxPsmAScG6rbZ6PY9Rj2k0SBox9jWPaND7Ln0bVQneBhBPXFE+EdGmOqbFgw9mLL4DFfhIo9HR7n+C6mUSQzBNtmigp8ch8xgRoRUaPEyLS4zNTNTLIT9Y0bGHya/o0+NfkX5L8jPJfkTLKg76MT7NLBtJ0K802d2yT0IeD6RWfIbrTWSMnRDWFdYhlLyFTYM+etmZ7GNXHyQkka/MRpoTwtcE8xiHEE+OqQNiZoJk88dcaE/AowyTMNohtwOoVMgSpikK+xjESLRkFpnhMeoY0L+SPBnXHBDT9eUbGGNP8lL9VHM0FYlYlThJsznQnAhJF7HUlGdCQ6SIzLzkfec9Cw6CGmHz5Kyjq2h9l4yUq7Q1caGAywGsJNibeRm0NLNKeSVTsVrPT+UaeNPR0mPxTExMT5XCtFF9MKCpsWXCkGKi0LTUd9DtDZ2DMpr6FgLhp/wA6/Rf8y+DZGx+j6g7gkmIJHghayR4O7SEso3pYCsCunQ19xTbR4eHwQto20TtjoVg8El/Ig/OCuUNo68vJWX3IxmE1K/8ABlJkhww+0ReJrIqwntCfXng43Ci43zPKN30J8USbFxfLgzbNHsxVg8o9fZnjqOhaMqLQ3f63Q0Z2N8V2a/ooIaMGa0OOx2b0POR0/SPwid/JiwT0h6GGvsQ2PQgUf2GbCYu1/cz+T+GXBpiE/oTKhUbjwKu/sJzN+jGOm3/J3Pg8r0MTwkOYE2rXjwQeB5R8GEyjZEJDFdpodi4tc0x9CNhj0JY/YdL5GiDUOmhdGj44P0JlfPHb9c0Y8xh2MNRfomnYlmFdjWulI3uic9lhMjzgRvQpIn4L4WjuVoxX3BGY/gU2NRc1wJXWZ/7k/AJtY1svgZmS+43lDJYv2IyPuM2p3xBRIns2rv8AkSqrfk3+DShH1wTExhhGGdlifPCSDf0GUXiiEyKbGC6D1C6HoyVG4ZDQ4DNP1zRmUy5IwCeC/oW6Fp52Lwoz4DSLTybeSe/sabiIiLLZ1fkMRLCQ2esMaayJWIvsPRfL+0GpmMWtWGholnXXoRpuU/sZJrBwanBuLf8AISWmQssGm1ot6ZhNQev6I1/z5PAN+MEYohCkhyUVrA8GFkghkR/Q9XQzwO4kgxstDC2ZxlZNYGJfA2JgdXwPK+RYX6KfVOJypQ9Bh1xQ/QqlKPHCo6WEVKdB4FiNiVxsWTWxUVZ7YnlmsjpWUxaUyN3SwLoZd0En9Ta7Guux0soiWSlF5CRMsW1N+y3ryNMt/wADW2Hgbcf+piHVR+x6DH8nYl8oVyXAjyJjEnxVNFaCPQxh0RPHAjAl8EkCSINx3oa/IJjdCwYtuHWYfB0OgkYv1rLj5plJCfom94Olfkwx5o6e8kySsXgVL5MXA0mMbdL30Rs95/4MtI3hUyAnWxj7MsD07RGQ12Jiaoa9t+TB0jC1n4H2Ez5S8Mawrnp9kA/I2UVLPga6BqsTguQYWypnYIP7GcnhmOE4RRNEI6YT52MhFtL4Ohvsyp+BbYv1zIMLGifFi/oU/QUhYK9nkxPOidGZItYGGx+zNx+TWqNp9fYSdxmEjf3PubTxgab2yHcZRXvyeDC2WVG7y1CoqYyyUHkb4G7wHVKeSu1kbvIK7ZFKsD6ZM/uDlh4fkR3PCDZ43olQjTF9ErzCaZT7jKU0URwoeZGVGVDU70bwNbG7+Ba/SUpf8d5hcVv0ODFDqFZQfmqjTNC/wJ2j4EIVnsybeSEM2TtsxapgV0K3+xG/9h37mRuR+RGRDDanZbKtFVh5Fsik3hi9o16GSRpjXW+xkw0LTQ/FUaDz5DlI/nsi/BazHwyX0zKNuPCJRW3KYSovYXC2+KEVsyK8S+hex/
M6ngT7Hliw68oX7Cw7GmIOE/QwhBHH4i7VjT5P9G8I0XBmTs6yTJ3meidTBEtD6QjYeNSsrzkaN+y+8L4H2jFvZdg0xfkWpWJhw8EMpDr3BLLTf5wMWYzwYGOMCRJRz1D2GsnkKXQn3zUTKCKhLJMqL34fkP34XTZ8v6CwNBrA/wCB1wv8QW/2B8E5kv0jGLwN2AgtT0ehvpLBG3bgSxeFvJv4/sTTftjXQ0l0KdoW9fYS+KxbjDL+56KxfGAvo/weAX3MGK+xs3Co02NJhonBFjyjTsPeCHL/AEFYbeXoTl+JHaCehom+BRKMVqcORcCQY3IoAbQsiE5GNFXRKq8547MW4dZRT047/XMfCcE/qpf8l4ohzDFIOrgkwuxLMM3eB5wTwNJ7Uf8AZ962dFo3uaJvAvHZNyNoeez4lhXgrppFt5B7VXyOfU+DUrKEypfljywZszKcqozDvyYK3n3/AMjiyGtj7WWdGmJ1x9IbdUiZ6qY+YbYF5IxDLigrZtXWMJzA6+ENxMWdBLJsYt9mL14ELskI1hBPwFT7froNcUhforniYH7HpdNi1qwhZY1j2LwfBnwemeULyJ/XDBDeuMdlH7LX4RCz2XAvEJ3RDDyNbEG4hGS2mPtkKLCKTWPYkqB5qSExgwCe0U+jHlwDTI0xplgMesMWMMzoVIdjOoMbLLpDEpu4+ptoxSjPAhZMWLQhi/d1zbaWTEZvcQ18Hedk/JNdIj2tnpaIQiI7XydfrjL0J4kPxSn1w06Q+4vO2jCWAVSFr2Ok8BFgjWRDSa0zDZHcP7BGNZeg9VMZFsMeQvCTyEYJBnQeAPz0eScCTsBsvIzd5K8cdnXBc3i2kSoIsYEqvgKoMr5g1QQ/3s6vh7J5EldEIRrwfY/B9zA+inwa0TmXbEmRIbvo/JkffobeZ48IkmBjCV+TIVXcQ3oHy6WygrTORLnJT6G0wjYaHlb/AFImmk15RZHoex+TxF+TzTF1MWjb9hWU2O9qFtbKz/BjQ8YE2fCZHiG14KfAfyTJQaTs7/ZKUpf0T5Dov3CRJJLC5wjPnHFKJ35KbZwS5M+jLh6yb3ga8CU6NDfsr+xLlD+0hMv8sSvAlNURIsmD94xbXnZHTHm1Y+iVdC2kfBjI0nsho1BVjCRYZi3PlFqCz9iQivjhVeZzeGJSaaHLYr2UR4YhXkvRhsXIavEDmSds/DCJZYlqxkfHsNWyPZdfsLZSlKUX0X/LT6Q8DNVkPhcVDfkvZvSGxvoyZWT2aH/JhZYauRcX7E7HKdHxB9rS4RMuyiEW4XyROn0hldeMi2pdBwK2L2P5YQzMOTKH6ZlzjG3yvJ2MUcpHUds5Md/tvkffhNMzVYYmjQ/MUuNjkCm77Ef6My6aQesNZRBhLJki4h6fYND2JECsjBHCX7C+ccIX6GErBHh22J8ITop10PjZkTvRON5PkiKmIhfuODfZhd1mEqwjQbT+RNZoXMg7MBPbSEp32Q2GvtGDzv3jJnXZa0hM/hCGif4iuB+Ce1l2hNZN+fsJqtfY3NRNDya18CaqTAziob0F2C46ISeRPyaxo++mZsMjH+TDR+RmrTRPkT4QxMnBkTao7FJGd3tktx2Pp/dD2GxnT0MLv9hg0NcEhfonSPUkNQT88ZWiY3Si4guP7KOMx2fJfwQwipfLJ4WRZl5PInkbefIyx5efBJUL4F0WX7FuKZ7wRDb8g8FfcK2l/A0pWOdjzyjyJH2MN5MjVDbB94wx/YqaPyIg2tI6FLTb0ZJqknFkXWy7HJ2tjjahyzBU/wDsMJgu0R7E/THeSrIaoDlU1CoMWWBQPeymtGQY9Q4bL/Y4Qn+el5dWj0x8BPEzsLHGjCQ/Iknk8+heRfHFg4Us7NZLew3jCIlhb/oV5Uuj2K6//cY6wM0r/cC06ulLZ/Nrh/sQMoSG1MZnnJfeBleKN8FZxzyedD2YHEuwlZS/kWruC4c6IIVD7Z34S2nhlx8My2B4KdOdjH9vsw7gjopaKM6jG5DjHpDpDtK9r+RYN76Y5sqIeUIcMbTXyREqiUEhn+BPP7Ff0y99wSx6ShvZoWsvgzroTLZ8DVxwnxBCMRO/JlkOSIiWFW+yHyQlajOoGDWnhC+t+waXf8zFg97fks+xIdY73FsPD2MuUQtZEeKYtdjfoVoTPoWeGR7wKYO/IoUfoVsxDKUnsXrH0vfyL/d+RFZEKeUcMnljWKb+Rblnwa832NabyffkQ296B59T5CE/J9mdH9iTG2mDOBkRpEAySZpQv2WE/Qr9vYmCbRE0QTY2fQXtCXR6U9jdl7Kz+hToV7L1qmFpX3Z0hWkqzNq8tLsRoX2Dilk2xq7wG8MIvavs7DM8f8iTwLODzdmyb0Y/TPBGEwRokWZQoyK+XCQ5BoHkg20Rr1nxjWjSV01pmMaTTFUg3/QkvTQnVx0YyZP6Y54MisUX/I5Wl3DL4b6MHX4Fsf4ZkpmtsSobn32JM9sIxi0G/d+hFgKrD2hrVrYprbKYHS9FxF/4axwr0XHQ7X+jD15LDPIjJ0KG3+3sqmYe6CnCsTA6eDH/ANLwNViHO3PBkeRJrY93KPgzpkUG6cwRZfgzNZR+BmaHfB66GK4K8COhNw0LzL7ZRhmU7MUHK/gANJIm/hi8Jmg6x6PxDSXvXo8SteRWT7o2l/4Pyw0QqrAc2zyOytCYlwE21TRsYxj+7saoXZdEPPQasVnwJJSeSp/Bgp/I3gy7EvkouxtPJjYRaGwb6xBKws6FS7y9sbTTmk78maOTafnFJBOTDy2kicpTbA4QhVMQiTQTWIeEI+6KN50YIx0o/sPqyvQ3qmlC1JbFZnQ0gec8jYSfyxPfBBazAVs6TW6Ieoz8fpmI1tfyOvP/AMm4K6HQGjTxhjsy2fRZFrXX9GuGJJfmXEXY8YOls6G/dv/aAAwDAAABEQIRAAAQ3KiGo0yjD1NTwFqXL4VxGRcjYeyuCCywy286kAAAA2auSGkuJ1MxAoGzpCruGumnrJUiJXnWLB85XNGpqjG3kWSvjXi+O+uAAAOOOO+yCoQOOCWkAAwyYXmAAiIWVQRUnTM+yRTBUQAB9LHmJeIc8SS++6yiC+yy2KCGOu+yuSSI99KOGINYEKgwOqDIA7cpATtOZVo9UmGnmiQGsJhpcNpxQQB5Bd19889A5RoM4w8LiEMOom2wcC3O1ztrDTwE1nEcLOPV5hkn8BQbgAAAEwwAAMAQ0999BBw0sIw6T/rOg8yOc50q71FZr1pGKDXp5IhfGT3VCLEbyz37/wD7z4cULDDHPPPCMMMMIAKPDzipjpogHTzfudEzFwXFNE40UzByuMKthn//AM89PMMMsH32kABCAwjDDDARyQC+76hK0Cp7U3jkOsocKgAe0zpJ5E/j+uTff/MMM8sc/v8Az7//APwy889+89+weYrHPqmklmQSeUFnOUw683uBscdZYT3jIkyzzz3+48xjjjjDBEccNJxpM87PMcEFOKCthnc36lzKnmaeVqVd7Y9LCU4F+jxDcceYYQQQQTTQQeYeohlLOMJC873KKELEKcRvOIiqEjrY1CIYAaRBwhBnDqVY/wAHKAEk11zQygEEBQMk2INf4s4ISxzzAQbh53sNWYOZSsdlWq/N0ABBR65u46Y54CHHHHnyQw3HHHDDDDDFDBATpi76BxMd4mfIxC/KrMMb1SDwdxQRoC03EX3mAIJGEwkU0133vO/P/l00132oZACLSMcnAeaydRVMSwpVUudFbUFDVGAAhrIIJSEEk0QXnEEhCwE30332EH0d+uChCvXemL+Ao+kL2UWSUNZPYHHoJGJNO+88NOMc7NN/74uJBZ885rYJmGEj9ExIOBiIkelDNTACYCoaylscnE2LgJvuPOMMwzjGFlkikAEEp4NfsLbvPBMOmOHtmZYs3kOLTfeZ16aPoOAkRWrCWRcrtSo8fAQkBoIFW4gFg7p4iOpYANYdnf8AGpZqyJgW872/5sNfGDuqBEEqQInInfk0Db2sYIbkwSgkQGAUIwGbsDjm5puuXndR2KOC/wAAV7cEBLWxXrubLiHt8/
xHPHAjmkCFJigHAADNAq773qmXSnjUMurHLWkoybR+iHEmNT3zw4GEc+/GUJEMBMLGAHMLPIMLHZE6icACHRdyGKlEI525VnXkVEzzJUQ75cqejWF1HsTdZG4APuxNQ65lXQ1CGFfdCuFJdiUlntcYTlX0pHvjOUoKqcmhhEy5PNkcXrJfFN96QrEeE5Fi+Yvrt8fhE8M62rTrRiec+67AyCSUcrVmtjtqCN8nVQiOVNBg2XUFtY44r7Y4nVV+Vlg51WI18QUeoVNFSvBBQSjFuq0dTEvECZwAtGBfWxLKi4uQzc2uQQd0JvHnQyO66QcVKcfUze4UFHZbBWrcUjawQwQDIfTlA8mnr+WxwDPz2j4ctQCrKZJv2RH7bpnGncRMVB2tiwxoqrGLgWZ2XJFjMeQ7cAChu1dnAqaUlNvgkp6lotkoh8D/AEjEnc8HsREFJFaezfFUnu5OhGsrkJhbzf57IrIwEVnemkMMN0EkFEXFUnhkR2102GEUFBWMtqqge2t1vhJKD7xYJvT1EKRoMTqM8drqArAEEwhxrYkEB3Ap2moYNv6O8ZdQAqvMYuqY/thbqS1QwM9GMsUZt15e7buYG00HEHVEGMEECFifW1GkG4UV2sJl+iXldVoaRQEcWXnsaQWHEMcmsMAMxpGfCnH3yRiQ0gQwh6/+8qbqbbYbZrbj5wXWdNMC8As0WZK4u7LllVto/PfUAVkqQyT7IpI8Mc5IY/eLQIJZq69rI7IGTH/ADHBcAuSooXrAajaOPCRSwKh5ztFlctMM8fvPNM8v9e8SAavo7ptro54yo0Tm3YUsdgRuJMFW8ZKo1yieA+WOI8Q1b9rapUGdrJUnWEGYRCX88+tPONfBbEL464YYGz5Iw6YCOL1aMPno8XsMoCeMSCSAg0RDEBSQBkyYbnKIa29YIAKtcSWos8MCkvPi6CS3wMwIbPA1PKfVJrk/BAhRAQKAAKZ88vKfOWsJKoIIooKCp2yQQEs/9sm4Egk6npaGFYQLI00l9H0qrDTHnwJDyABD5tZ88Oq5i5rL7qLntGG9PvvcOdxRRw942D56BJnkH7WAFIF3Y55yYCZIJM44KgTa7q645jJ45cZJkSOd/VUKd2FZnNmXF1KiOJByeKakdZMYEFHlUbMYEUElG4V3k1GWG7/67YbV4PWcYC6NjSFeow2oZlFqMXpuJBfU00DVGV/MmFN4o6XUUF2CiQ0gGHzTuFALDGG6Zra4wwPaj7ZlFuP5qNID0Qq+qlsKveF3kXzyCEUU1lQi+ct+f4uN06r/xAAjEQEBAQACAwADAQADAQAAAAABABEQISAxQTBAUWFQcYGx/9oACAECEQE/EPBCeoIeBkAu4b1LLAcDwdXUP2c4zwz8BZ1t7nq1TjWz67v8tyNu7veU4BltYFtnv/gM884WPd77hiKfXBe+MsWyYFsyevlsif8AZJHjf2Nt/H64ctbYulrDDwa+oUcWLJiRWZ4GcOWtvntttttvO8b5n4izI4e5LdjYNjPuzIONlmzj/uwWjJsEbu35Kw22222222/o7bbz68A2bSGTvrj3ONgdC9QfZlu2yzbqdeGXcMiOPz9t/QyTTx/zhefqz0QWcL9sezxmy5dxALSEZBvUNJ1a/W38T75zkgh9vHtjhfL2/wAvRrZvbKsf1aF1jdh4OCOdkPt7/dzPwFpwsGdcL3brHVuswMNZJS1jYWRwETjDr8e222222+WeGfjBvRDDOPbEuSwhhstm3rgw+4IDgORhPWSGc7+jlkeG+D55fa9ywdcN75bf5bNX1BJf5Gs7EyznOIaT75znLPHLLLPLbfN8hghjI6vbPH2XcNuF3AI6vd0dwR5JdHI5y3jbbfLbf1cuy+zf1wt/s+7cjWGS7I2PuCPNuk9t/ePENYRMdQynoliCz3a2RBwfg9znlllllnjlnhlln4y3n/riGEerO+VrLgi398BBxtttvgsdPwssss5yyyDzyzjZc8N4IazfI4WWXXAcIZBBLIlfLREBh3htvTzZ+HLPLZZ4Gb5kep4PTEsJZi0Ycv8AEixQFhaWhtk2Et6v6cdt4bbbbbbbPgp4Rq1a2svIc5w28C9Z4+cPvJeAjBZZMoT/ADiGm/bIJjqD82e09JbeBtbX9AN5zjeDgL7EYMMsmfUXubIQg46sLEmYDGLIIqITQHuDmT6Z9/p75byEHGR76hry3wnono4CHfA8mZIvCgQh2TZ82Xr9Bn4N/CGcCWWPRes2bZ8g4j4bbDYtt4Y6cuoj4u28Z55wvBokjwBwSzjbeCOaz6vRekG3YwszgeAWWWRn22beC0uqy6sSTuzOR7vktssPDwGzCCYM+5s7g6iHcHV9iCDbGF78KPV8vWPc98HiR4bbY3Z3Pf3gRoxzg+1owmZMEeuTIIk3gNIYdb5L1HAZbSW9wTC23Lb5x+cH8gnstxupyDeBxttts8stf7CnEfTY6u/cTe5IJMkkr3ZlvBt7sJl3e5Su3JbwBs+GR1DyucttrLvfAizh4V+Rzl3ZKHqemS+MmM7tuQ7epbZLpKzk4tbuPcertaseQ4Mgs4HgW6iWkmT3DwdJIlvE4Zm6XaCB4wZfka93RPCYss9wcZZZZZZZznARL3bbbbbbxvDBnccjvq6dScbDJYNk+KtnhJD7thelsJvTPVYWjl6TfPzkLZ98ZzlnmWnqMWcPUMOMfyTZh0zlbLwkkWGWu3q/0yAyDkXdcXwzyzyIeH3+LZs2D7dJYs7RNie7TqO5LssGUPBzkNtg2Jh1dASY8Hh/Lkcvb8X3gda2yseiylYuxe7L7x+7SccQ8EcttrLJ3OmfUc4f0DgXX8RA9yjGWLLYeMpnaydsQUhG0k4Qx45ZN6Q9x2XvZ34Z4ZZZxnikx2/iDuUiUGyLsw5wOMgxRIgP0jH1DOpEiLeOkeLqmJxj9124Ha7M8dlknq+bH1WfHcvWpdMRNnFqWsNIZ74dltvSOFPbJ/RbIPwnD7pd43z3IZIdLCsIzf8A6Q+QBE9QychpCsbpJ/Sc8c/E8Gnr1+DZ5FtAi6QHXy2ddWHTYJ1P92icSvAaydWQvTzzyz9HtYM+O+TKw53PXP7F1P7Bjjf+wlOOMb1JJ8s/pOPXB9WRmQ6/eOJ6n8QbHu7MhwBhdoT249jq1+SnZAuX3aWpYPclkvcmw4+Gfs4O9735+ow9w9bIe2Yi1ds22pAfcHdG0em7BAeoWy6eB1iHyyZP3OqvZ/pJ9uuNt4JMJ7W/+pROt9tu4/qwbLW7RoxjDIhiQjPtp6kyGHey7hD9zf5PsMnWnq9cvCPyCU6Hu3Gec2/1ZeomWXrRhE1DOm+4bPj7h9iGl6YQ2ft//8QAIhEBAQEAAgIDAQEBAQEAAAAAAQARECEgMTBAQVFhUHGB/9oACAEBEQE/EPD24T8mepYd4Y3vgy7lnq7O8HO7LLLsgW/8TLu9OQ3u6mcujD/ZJ6hkT/kzCxkL1DWTdQbJ3dD/AI2/26nsySTgE92o3ae5IRdibJA9R74Hqy4GIP8Axdj3a2yX+WT+7J6tnh7ssgtQJattnY0Qj3d/kf8ADCQb1wO+GALJf+cbxmwcbvGcGHUzOpSEZLOc+0Sc5bl/FjJ4HHVr2eFiC6LZu26tLeEhRtfSGff3IZ5Ccd2JYmLbojtlt4C3043ILq/xa2TtqR3LHg3bfu5HV+c6ksMvC8eieB+3ovdudWZMxeTE4euHuemN06g736GWfIPnkkvAS8BBhLeo6lXgxsLq2eDYeD9R9nfA+Bcnt49HGQdyi3L3BbKyvBrbbbb3DKOc+0eO22zvRE8HDL/bNsD3MD+yBASw28bbKeMevq5Z5nwLrN6OT1B1ZZt0SrHLXfgOye/dbnk2V+R2zwX+RZt1LsGS5bepeTy9L0z48+km72eC5K9RPbZB3BryuRYSPx/vnvjvx7bbb8CyyNcby/Z8BkOGbGXecsss4PB4/G3w35MsghwOPBhOL9n1wWRwtnLvIRC54LJPD2un185A8GybJdS7g4/
k+uQTZEu8hAJum1kLLy2g2H5xyyyyyzjLLLPEM4HBllkHlkllkk9HBF+zDqOGU22wwLDYkEB43hY6n9LfSONllkllniGfHkHG8Zw8PGy8bEe54LZlPJahwrvMHffGN7gyWZu36R6+Mt+Jec8kk8C/WPfg+XIOTqWIkxhbuyPf0G/NnK7MwQT7b2ieHi8kFlnDOSGkE8fM2222228bxnC22+DD8DMxHu9t723snk8ltttsq+oOCJ6Ye57bDDvGzxlkElnK5bbKGeCGXjbfB64Zv2C9N+3tzvJ8wk66jHEpFpsMOuBhmJstju2XjZTZw+Iks4YY4bZe+D3w/wBmPdmnBsueEcFkHHqJ0yEanrq2Z/k+GwzwOXuySbbYn1PBI4J4bGxm3nNsjjN5V1Izrhdz4EH943khi9oY7D9IdhPA5TgvCcDgzybbbM22223h4OExh4ZlDMnB8D3DZBdWWWRHEdod2RztttvO28b4Mx8e9yxbbMPGWQ+ItnJLJbBLcJYY1b2ujb34/foLweO+KbyBk+B3ZJpP9lDMZLOSIcumZuFvqME9sGY4n0Xg+POFPOndiOTHUP2eogyaQ8htiHF2j3tunM+g8Hx7LJJfu2HhdW9W8nqMQ7wJZ4ngMYL1Pgj52b0+LZWBJ1t3XjONIelsYJr3IlhDvAkx3ZwW28Hu/J6b1+k8HxDscDWQYYRJvIpLCwn+Z39kjEOzwPVmzwONu7wODH3BcS5G+RAb9ST2FsD8ntkkORq6eFZOrGyyyz7eGOLwfO858eWrnPLqyQxewk2k+ukhiuAOzDScZEJgI5ez98WOPDbOTlCHOoM6he/TYu+7TshSJhs2Bww98K9vpb8nW/Z455mSfl07Zk9m8YFp2SruGD9v/I/qYtn3k++D6WfEqoYZ8S5JdGzVvbHuQdcBlh3sL7kDZuWN02pDbJ6hyLrjfg23jfoDZ6fASbJjC/lkDYFsRYMierGZdl2pO8bC2dJSaG9tnv1t88cdOQ/l3xlnDHcPUH/xAN6sssJmpDxlmSa2A9M6/wAjFu35LrITh4PtZvuOzUO9N78RJYF7b3HBbP8Alt7manD33OnZIfU+tSdz1Lgcb8h7ON8tt534tt8v/8QAKRAAAwACAQMDBAMBAQEAAAAAAAERITFBEFFhIHGBkaGx8DDB0eHxQP/aAAgBAAABPxBx8uwnDwYw0PGDY6Wp4YrQ2Bpspg1m8ItpRtCqbXIZ2o16W8idKLnAz3F2hBd/RfaY/eFDsIFuqcAGEMoIIaaCUwCtsJ7GoFWaCGqm7pjFkfYWGvoGw/EcCVlwD8Cx2b7PYmxqiptW8iIHRCQ30+es/mf8S6L+PPSmekJ6n6J/CgmTPk9wlQ2KVeRlciMqCUkaKDPubitix4DOI2yUS5yigl6jK4MZORADORpU6LSwrN9grfR4HE9hSbbEn2cDATTFnEF5D6GtjMdg+cMeLHgRLDwYmM7lRtNx3+BQw/7hdlfvsT/2GCznuQ+AAwlnzLY7+4OI7l2PuOJYfUeLAihKdNfwTpSei/y76X0X0Xpnp8E6T066P1P0QXqKN0ZfECTbQpJtmhQo2UYlwqZGO2DCIyZAzEEewDkaSiIFCjwcyBCw0Or0vjoxSGYlCbMLtRyFCjSZizyxiVVF90Ih14CUYmjyECzDY6GgYRMfZIU4AQe4BTjsGloujGH7tEdTsNKPfQz/ALGSvLFDNsqnSukJ/E/4H/G+r6w2T+CHIy+uEF0gulIMWGRSeQpMxqGEBnYDoyiiRBipjW2MNufUnvRJHMKkyCK2YJVqDjIZbQprtphjbaY9E8o0JzRLkWmmkiNgEsdGaw4Y1ckMMe8kWe4ozydFi0RR7bSfuUhKvYQCMWLF3NSaOQRhJnBE/NFmAvhBrFhrsaX7Y5MKkyFQsp6M9L/8EIQhCE6Xq+sITpOr6vrf4oQhOq30Y0ZdLjRZt7EKF/BmYHRpC3RND2H8iyDKyTwPFNKZMkobWJE3CJPAtzEVq0vIm/dChxDhCXZQUjV6dNGYoJwEz/oBSg2/AlUP3DiJ0t3W2PysMFAOaaBre4DzUfTYKr2bclQW1yajsLsJugNurciqshkFp3gp37AHox3IdYlHYDSyJElXS2JGqErLf556769+iE9V6X030LrshPTRC1Exvg0N0ZIvcSroQaBzhZPAL0kCSNUiKBmjBgmNYngL3RtMIMCtFlyKKkgSKDcwPkpWp3J4M8E2hJWzLtRFjKqbFssDnuY7LuzBSsFbNzRDQMYbIw1tcJlkjX1EthZctTZHgV1fIkQjXcn00xUBO9y621/aGBBrRkq20FbrAuAfcRZNstoTq5sMYbJowcnEBZ6Gon0WIjwJS9KUpSlKUvWlKUpSlKUvSlKUvW9KUpSlKUpSlKUvonSl6XqEgqaEz0QTbiHBnUonwwnPuGIUy4B42BqyjIJgcwFToUUIuMjBgps8wQEErSDwngUdYHAJ5ExTjEENu2Z8E2KzJi/ImIqdnDO2diGMj2Mv5ELyAswzKlN/I/7cQLPZl6HjaL8CJQcC5gUp0dX2FY0qmhSflDJz3ASsE0+RjurKiRlwU2ST7jbWzQlKuk20Wls4sV4HHfTWlKUpelKUpSlKUpSlKUpSlKUpSlKUpSlKUpS+mifSlKUvSkHtM4AVwVdGxh7WJjSjgKnJyA4wGlE0XNoj26OmyjFQw8mKkqmPWIJ5TaRzA2JbvTC4qx0uzriZb0I5Ayby0WQSWk+5kPrB/QQQbjO/ccaTwaS0vYdSsuBa3XshxgIPwLeyL/yBBMl3uRD+g4jNSnuE0LvCYhJ92xrrc5UwYke4H+VfKeC4G7MiEmxMZwYy1yYXLyuwwTpMUraEias1mNG1md0F8qMiLoTL6aUpelL0pSl6UpSlKUpSlKXpTPovovqXopetEfnoQhuPXUkQ05HqUTKJ1GGEGbs6Zw1UNlhaKKikhIjQSFnQxTGgOm0WwZpVmBiYp8Mnd2NbfCQjxByTy/QG0sSb3yGn9z3MvhPfY2l8Dv8AQfCHPE9g2Vf0HSc3GLKzy8v6EGTzb+ghXkLY+hADtsRZhKSVvZlY9Kh77pzJNPPsj3gzENZgNZKbSOFlDg0CzrvY2jMtHLyh7gkZiiCyi2qYEyOB7JIxXQs1DYtEZUpei9FKUpSlKXyUpS+q9L/AzfSemEJ6LClKXouqDT6GUTuYOhJ0XTuJJ6Yio+g2wj0mwmXwU3DsNTCqImjgMkjXHBFQYixXwhV2nghzol9SGJgcyfnhFapbs8GoG5fYwq36gjbBNPsOl0jl8exuEvvMVmG/bKEM3scjf6oX8spyO+sPlUB5LOdKHJq5mwizmPZjiqL4RxzuBxYN3HyXDAv/ADVYxPf8QtijIrkMwi4NDRprIpTZtKjANu4OmWgubUM6awJzB4IQ2KSMF1L6AvQFLSlL1pS9L0vpvS+m/wAF63rSlKUpRDtEODIIafQtDYsiQwjmU1JcGwJGMUwJp5iCi0pY5D3P5I6wKKCJaO3JHK0MuQco7D5GmI33KKPLzYwNb5ViYl29mGiiuwsCz3g+PdsqyaCEjQwyG4dPw7k+Cdlokq+6v2Gwjv7mPMHcFmD7CLsjLwfdax9SJ7a+x9hUnfgQwsFab0vY/OjRDmvfkpyHlDcifZLIw2YfbUJPiHY5XkiUozba1xulwrHMCq1TfJpY3eNmx6HL2jVGRiaHywohdhCOAsfzUvopSlL6KXpSlvppSlKX1XpfTSiIfkcOqRFEDZYUzCwGxBswXpBBayNcpa2aRGe4UZtjwJqE4J4MK5F1HoZEgrKRCO6TxPgYSkvC5HzCrl8DwNjP9HYkbHDCdhn5M6F92WxHupL5PCJdJ59g4ZGrVz/wbMhue6VyaFjVwcETLLknKoy0VFKk0hR48+TESjg4ANdha/Cz3Gv5VshgP75FG0Z+HkLwQs1+UwQfu5/
li3uQLAmiJvTkwj4RuAJOahnQh6omC4E5Ee3koXLlNmJNZZDGW9xKRMJCnXn10pS+jXWlKUpSlKUpS+S9L6L6L1vpXV9L0zOxlMEI0Uuk5geG46QReHSiEehxTgQdrRaq8DoDMeKIehRtUIllFhVYGRAaGSK7kKmRLq8il4LuysRfPkPbdT9QSvSP0ROlNO/n/gZw3l8CswJciVwj6ilyl9Q3gNseIVPvyaUJ2/oqHnt92YiWlvgmEa1/kiYQ+wnOLsILM2vy+pYCmbekNL4hZEW0lVhvOTYO4f8AT/C/0Bm30WD42g/MZoHWP2YtZGaGHHA+Vr7Gtn82/DFnQnMxCNJv5/sSv6gW8zL/APQ4gTT4Y02B9zEzSZGDvi+xLE7/AC313pS+ilL6uetL/Del9FKISOQ0NVrLGqQ8Laa31+oIQyQxBjbsUMqFnWRzyN9MMx1iXoNHcIItPb3PF9jFDqk/q/B4K2NOi6f2OM9bfbyKGCSRxB2vcntUuWICFhN/0JCpHvuHnR33M7cNLs/0ytm4Dwtyr4EKSxs8jkjxdxQjNpsq+fItTSfUTxV+kZqZs4t+TN0T5DPhSNqsyfAHYJvKjgTqKfpkVdM/NnAvZMbBMb3DKNuPhB/SGlQyVfoCF+JDyBLv7iPKb3h/pwE7gYxPcJeS7DMAnR8+fclWtQxNkQWxpzRiRlV0fR9Z6+fXgn8N9F6X03pSl63pS9b0cCmYa/RIbXqFmF5NjkDSXYccjFBBbEMYTJiVCSRpBrMPcb06EnWChMJfUzKBeDYrux7yI9G3FNkBKsQ0oqYUCyImkvgvpG/Y0o33fkzTkW1mBmVR+SIRJawkYO9pBhS08ncUmu3/AEx6Ok5ngxz2gkXnHy/4Rigm2nwLA3O+2OWt2f8AiYY8QL6lSFeFQaLi93/AppnZKhS1vs+4xhI1b/Qy1g4rT/XyLM33q+w3ZpPnNEnuQq+UYQFaZL5cFgnYmjUBPaMCh2WjvmQ9ChcikQaT5FrpkYlt+RJoOSqSRkz6KX1Po+uunHovSl89aUpSlKX03retL1pelG6a2S29ckQFDgYM5BU6Yl0Ex7WlWNjEjQp6AheUmXxbTmhnjPCNHPu+wzCRYpRYqL8g9pl2eDx15fcVr/gXLEFNSRl2P6xu8ic+PB2hHhVViCh/cGOX2bLsJuFctxexiKle8XjJoRXw/wBY7gnOd/JSWd2MvwWUTGMfhCSAOT/wTMDj/dnFn8lheyGne4if0Nk3IewDGsGkkCZ+cS3A3PCaMnGdDhr8PI7EPBorN69zUW3MFmwvAwsLp+whwR8cDGmqsCEgs6f4Fky8imhOH3QvAlp/fs/spFod+w0ax2GBNKkmNlpel64/gpfPWlL0vW9L0pfRTBSl6X10vT7+ml0IMahJGy2GJcsz5KKOuukxGW5YxFsGNdwfLEqSY0jaWXXcZWcv6EaQSyjXUMbfhCoRn9xGtUm1PZChyJs/BAlFmPB2MI3BbWymU6BDpvn3PgVwmxUIIXpGXFZxx/0z1CjAJdGZ9/8AgxWC7mvbuxD3F7pldiHufwXaeRk+Cd76XwZxRpvEPcZ8xUXpODTR4hxD7Iw0gmaT6HYPhmFNVE6KfKIPyMAU0MXFjOdPoBIsi4eyMnhexIaXtKIPY0tMbDJDJVRBE6X+d+qlL1pSlKX/AODPSel9DLOnLpgzikmiTNF9FtjjT6KbxclwwfAVv6EmtDlvItpjr5LutT4eRaIWs/4PFtheBRIooLhN/JTSeDQ2ZWg0Qdq+vApEtr/wyMmrWLujmZew0fIPLCXHl9l4FS4Zg+X3Z2QMfPf3EjNHu57EsKNPmLNOx/bx4JW4MIbWM+FpCTaeNB6hvnktbHyC7w7jwE47+SrwxgHC5nsR3ljU0lDE24GSYkmf+g40i7DbLTVa8jX7MTRJ/kbk3CWxcU/AwQrV8nwguBNncWi9fx1vovSlKUpf/gpS9F016IQhPTS+gGXJhaFOIwNddiQzgxZNicPYJRx8jLkYGx/W33ZHbJlrsck7Tv4Jcs8+5jzStd4Qn2Sk+RaFwKsi08smySWe7MqL7i3/AAQbYiwkvoIC4NuGGCsTsIJViwGpKX0UIDlYl3HkJNttKKSLjjLDMl2379zOzjrR/eTSqd1gxpnwEsGqK74PqRcz3dhPTfYwMD2E1E32Rgh7ujXD6lokDrNsYNuGWYUbX+mFMPz3JkkXIskeDQNkoxhlmyaFtwvsg8JE2kYlpreW7CLSiYvg8kWcrLuTD8ljvnIilKW9KUvSlKXpTZS9b6uC9Of4ELpSj9V63pp0FnoTo7bijZsSEhIVkFqPtZHLitmcFAicELHsUVc5GSk4lt5OD/fgTkyVOvwQOEr2Kd3LurO8Dx79/wChqLVYy0ymnzn98DlESK33JkdUwIJK3HlmGgx1vItVr13fn5FZGotpzPLILvktf6VR/cDlEZrGuAzPDVn9aRuA6JJf7MdNHbi+OCOHaXImtTXdspj5xkng3DY86B1LX3Fiqr9R+Plb2coL8nYpe44tHdo0kbDGmRGVZMExNlxRNwjSVImzfYcvyWu/lDFFM+SglBi5T/gmU1b8GoBKun5fYaq+h/8Axz1zrkQidF0pSlL0vpZ+etmKbEhoXI0MS6UyCGEDT7htZ3wJXBXaOWX7ETo/wKzqLZcEtQnR7bbMWZbu6SWkWJXtObF99YQ+w0lJe7/5koxeBfF/fqJ3Br/wU7ROEQdjCdvIhr137vYeEG3p2My0zjf/AAbjzUUEND1vRfH+jw0xlMkmRaq+53Y8+QdhCBL5O3+DWNOeC+WN3ZHCYXzoQ3j7tt/Yg1fFUUV0NU/uKuPtRmET3pg2M0RdwR5olXFMCcRFxRYwlTXJtXYwu9ydpBMG0GkGm5RUYhPXOJ/eFsNpMvsI+ydumCp2vHqhOsJ6Z/DCfwUvTfovn0fPS+nXTXpRReQw8iE6Ko4USaJzgXJEE0RNs514QyvFfcPss28tMzTtMdg59BsNKdsGWHkfgbJFv0QigbbY+NlGIs3ELIh0DE0Nmr7hkxZfR+voah2PY7znI2qi07Dt7kxFQ02p2F/o7I56bbsOJ7Lh2Q2qKv6ise26vwhhdg7xkSlnaSfvIzPsEX+mNQ8GevFGm2YyJIe1o7YdgMe2OyQ6cPJiignnA5tnfJBMoSXuMvBYYfJTeSvzgWwOq8mP+COTKrpt/hlWhl24FMiK/c/6Ks8mhsijxhCRJdvROkJ6uek9U6QnW/wUvWl6XpS9KUvWlMZkE+tZejRDuX6ErSfyzMEvAwSbQxI2iMzToLcqHX7CPLNDYJtIbhmw4RvfB9//AEdyePPgTwjDe7F/4KOkbJsWUjTn9+SKzav6ild2b79/7HtVmDaRpnkxtjeiehuXD5LGw3yzg3BDck2FKGSykcyBkrHuP2DHaJ5beX7mg5+49z6mIy59jeEYk4KrCYhuktwyYFT5Eq4yL5M3in0wXxRPGYPNbiEMYhZwZ2hxai0KHk2XsuRntRtf2SPzIzsF3F/HSj/lvopf/hfq2jcQs9G6V0MY30SxecCTy4DowdctiYgakMAbvPsZBEoA527ngQtmGIJTdNowouFPqRggcaVX+/kzVsfwbYzf0D6Hycf0/JHto/Ile7hDRvfRSyE3tSfctwhgpUbEPDycCVZo9mv+kcscPfu/JZKH3E6FwORyRJOkC7swLAtMFLoo+BVhCYSuoYaEqeKW5UXufKLcYMHPRpGcEwtycjAt6m1IXBw4/wB+g/sFXTkpelNFKUpel/gpTZSlKUpS9L1pS+il89KXpelL0pTUsMcifUwmN9GeRYcvKg3Qh5HxgGRg8j2MOaNv2Gbf9AN0d8EdXdhtLva34NwVb8negyE0yhNiCRgvtf8AwlpOMPuPh7pfb/pl5CTfeBZbZLvyQggwcv2zBKXl92XlojlpESvufFHbVhKMmQc6fsMu3YI904T3F4ipaMd3Bl2F4g7Fe4g+3syeRbKgk22kLkMUDe1kXdUU67lfbJ/pwLT5XYuWGBmG2H/V/wDSfi/
fuZL7ir8ePVS+ulKUpSl6X1MvS+jXrvopS9ciXo8JgHgY10sEJU7rfCOSaYmt2SyacEkvYuy4FTgTzHYwJNVyUESWCB68sWvcymmzycsPz4QslPOIuxxjly1wLa1WH79R0/5P37DrTaD5MIvP9HBmCTqfHJb9BQQVnkZwrHEUM0C5JtkeR7a+Rs9hd2xhpsjKdEqiHCRgfVka4HZhkadgmjJsS0YJaHAm5tC3yvjpcnz8lyHEwj5dPBHFwjNvAiqugjkzPqE9s6f5G539E8EIQz/AjRvrfRf4L6KX/wCIgErh0DplHknRDJRryb4IKrwMYPyuOYTvJ9uwvM1IduAHIZ5f9HOISHPPIyJ8jweO/wDQpnIswxcNLYmNiX1jAbbbfya82KHELCSMFTX0E8HuJX9oq9y6BFWC1txZ7AhDAlH2/wAv6RGN1s3X58i7CkHDYQ2qErCCHklOTQmKbTGgW40t5OY9snKgsrNPJkS7e4qu3SLwT6MlT+x8rC+hUnvQ3XB/RkVhMfkqvyaMwafvRZeSEIQnSE6J4IQhCEJ0hCEIQnrhCE/mvoXSEUNBmAnkRCDRwUWe3mCriuwa0KfsKqEfHsJtNPJRWNPhmV0np4/WWy7zXwW8zQwwuBFFRFzXfl/Viys1TB/H9UYsSb/0YOTSDaREkrgXqY+4bddhhbcDXPAlRzkHCbz9RQyHdT3ZlxD522NKO49sz2Ol932IcCnMEzDyKpIR3ES0fD+okL3sej3MFtCvGUJxZtFrN6ZwnA8sEMBXK0x13hiE3hsT+B8Hy5ilS31lfcSIT1fHTHTRjrfRCE6wnSEEQhCEIQhCfyI0JGA51Du4hwyTuIcGr3KfckE6Rgh7uF8+v3+L9REsGGWZTew+mE8zwNINrcVLI17kllXx4WzGOOPYXKadD/ff7D6WSuJClyIXfiIXIMP+kV8M8+3RjlGi0bpaF3YtVtTdfljVVhaXCKvBi0sl9Q2icNEHe6WuF0NTI6+xeT5DSbPqMZKe0a7E32hgyEnJM4PbENfiMwlo/dUIv1jFNUfTkTm8jGsxJoaopjpfQy/z5J1hBKdZ6YQhCeulKOOmiGEzm8MdN9iFrbPeEpwH3BHZjR57mFJ5pP5n/iX1Ie+dQj5RYJN3f8f+lldsjMbS13D5ajTyfJkaje/YWTnZf35PvrZNrmWziWsUiuF88jHK4wSXyfQ4FsUvIskhKuUa1Yx9eQcM7s6TJb+BOrseVweKzPVbMt0l5cH2JDr4FTWMew2poLGsGV1oXvghYCiz4E6SoQ5tC2DCy38tlkTjO5msR5p7MwvJio9+rn1whCeCdITpCEJ1nof8CJ6MdGGXHQhi6ecaOOm1dukQLN9NSMF4OEaTsPJyKKLDTnR+BY8GEQSPE59xpjbg1Mm07r6pGyv9jMR3d+uStxaqfwjeGUr+SFRWGB4VG/27MFn3Y377dPZRt9MX4CpVv5HNXtlT3+lNIhgiF2VI5MOxfDIsnsK8bKkWPoLP7GbREu7F513NOjOaKPgQ+o+5yhe+HaKGnCjVkqPgx3DUYkaa5OpojoEZ7RM1vj3FR0Vv44QnWE6pEJOs6Qn81KMxPd6BZChP3Y7Q2XEidh9CkEvRgxRzNiFYX1KRvVRCVHEktjr8hTyMe5L8cJFaUNESqPS8cDMjznfJxxUU3Kf+F34KeAfIY07mx8XoQuRMRZKKumRYI6IIWPgg9MSFDXtTjV7IRUudyadNbpQ4SYSIIkPuOE+s2nRS/wCxkyn3RB+QMMyd6VScGbPoNQnND7eBULcCiyi9xbkEHchViL4d/sXSAvbgfK0SISdS89Z0n/wUbI6YIKvS2Ppe7oYjv0e/paE+v136GmZfRejEX7jvkthnkttGDJIk6Uyyajk/CMATBhLl3G8UQXlfTFHTS2GtTcoxycSckPFTc98IeGXc5w+C2GOlXO3sQr5/A/mZZpdui9mWZG2KxFo7wqdFrJfEO+YhS7DPrFzsxNUexHBHDuyyZQ2KjQ9iEwOYfCGti4Y12HuUouRryPLA2Mp/pw4iGOwkdIqn5eEO1X9jbDeRZC0EtoO2YPNkl+b/APCEhKTTsPPWFBpe/SkdamClKX046sMMtPSddCi+szPce7ofl0e7pXSYN2NlL/AikJ3EgwYKon0UmPofEIKZEhEYit0Pj7BrswyDuE2zYaIcX3FTRF/gttWN933FtKw/OPwYTwg+phngWP4U8jjc4Q9iQpdilLvwK0J8oSCpaO/RAI7oaTySJe6GUQ93JS4a+BJePoI+3Pc7C+TaiMjoSfogygMU64mIKfkxW0+zItJlGnI/eTSMpbgsktKYqcRX8GJMmtpjdAn0IvQDgzHcMHlHuY5H0EPL6Oiv4HxLossMZYmK8ifrMTMwF2UXopenJehulL6UXqxsDZMWJqKxpEDefuJIPTtly/ImnHDbi5ZFPsTRYSJRIdGowFq07PBUe2BKDTWf34GEpnLvYI6IvlOjJ8suIXTeFwjPDCyGpj5vZqLOCFDVDTCsFJKfghhpkGtGGwl4LDU/oqcnwf2AaNr8neGkyztgZs0O1JexZUr4GGGFewhSrsZgqEqyQeELECNtf9GoW8uSv9Qi1h8i/ZewhqCU8FOwvYZDKKVVIwmkguu2WxP6Sl7xdH3iLPv6yg3Sl6XrrpfWZfq0aL0bnoXrb9KU5ss0NsZgSLsS7ipjTmeBG0lHopqVdhXgUkkSoe3giiZbeTimT+hR+FRrqoJrvXf6KYS8sylnuC0/kcttI3NtnDYmZvI1l2kamxKUj3KOQ90yMqmfsNIg8oy7ngcBIcfVM1JHdmeusR9A8R3GU0RArVO8HlCDOiy4LBjfIUHk9wUyyyvcds4xnBQhfBVIC7w+SNXEJembtFlW8IsFXmBpqxd8DeyKXpeq6DZSl9Bv0h/xX0r0UpSlJ0XopS9NjE31nLo10ZM4RpApob4PDZvDskh214SGvlkkFlk9kIXYFZk2zLSq2oNguofpGjFih5ldQ92MazHA3hDINdVMSW+At1oXUK5yY9xuCORB5Z+AZtOPk18S96HG8L7zIFeKHrTIN8JC5UvyhoZB2oJNoLMDRqPwKGmKJSM3QSk8qIMCBEzBVaSUeqLXfgalN+SwwjvIBBnjQuPcBmQTs+DQSifr/wAKN5qJ8SDRTnpz1v8AJRj9E6U1/BS/QvS/w0vnpro30EGoNNYlHTwTVfQTsuIRF7mMXMrfCJPhjP3DijI2JajUF2Xv/fghlOX8B8V3LMPLCSbDbXwTCKCcu0sQ3k9u4ulkMdcCXIigjwOE3kTyLHkwaQlDkD9ghbEiy8ndDio7DH6Yxb4QaX9BQNvBhWsmgaM2ENpgfKKDVNRTlY9xJpHj5I40OKK1Ns+DFQrDGfJyJkS/0ZVxjeH9+q9L1Zrrej6t+ifwcFKXyUpfTrrSl9NGxi6eRFdJ4DhhmfDlj3BBJESzeRdNjBD3uNEskSVmsKwqRplV7+TlWI19BppcYpfK5YJlbMsYpKOvgcxo+5gmRuOqWWY14eTZmjmRpny+BeGcdn0E9hQob7mtQdOB94zQU8MowTsxzR2NJUTVkKRiBjTK2OXWGZBdNpJGIkBxIKNzM7QOnwoYpFgq3yF6PAyKXWCe5LhSB07CkLrv1P1vq/5L0pfVS+iwpS9aX0C6KdGuTb2NUuVbY462zty5b8EZbiv7C2+GEJWm1gVfByjElygyZ95gc25mfglZbaaGGsT+go4cjzEaSY/IO8xLtF0Cd8kvSIhtseSwwfDoMOy9OG4X7lJsVFjyzvwS5yzQ17CyLn4nC1/QDHIFyBwka0WDHSRg9DatmGMG8QzZfIg18xdxf8InOGpQFQltCpwEzFtOZ+KGwi2feOi7N+i9KUvpvSl659V8F60bM9dFL6dFKUpZ1KX0zYn0aon204jBHtaEBZ5MS1sUvczsOpgmXkxiYwKk2tijgld+Dw5WhvYtKCSbJOR/Bma3G7G432Fj5FEbE+BfOdfQEoMc4Uv/
AECTLEx9zNDSGnucyN6e0U+oqwK+TT4JXsXgNTuNm0z6oSltsa3ipCl6GdhYaHfA1byhBCDSwIabax7izTjpJbLBUwoM0mUbYcQzjXJWrrRhnKwbCZSlKUvRdH1hOi6R9H6WUpSl6KaG4ZG+lKXoZfn0J9T6hhj3CY2OqCZiHv4Mi4l3FcREpJTCp2wgi7nsSo1wl8GTLMSRFm9L/RhLVcfY+IxKmWBufIXyGUZzV7YlcomX2FteH3Y9hfK2yS2ld0Q/3HY6EwNWqLHgTvg4EqLzimThDXsJ3R3IXWaYuxL0hrrIywa7nLg/66ZQk8iVoXHRPZhMJWxMT/U90MusCe0MX4NWcoefMGiY+MzdC/g/0UxupA2PoooUb9Ao+ofQuTALvoKmQ1skJjD8ugrHovQUWRoWCT6Jejs6aJdckt5uCmTGEVFmG6Y0sdV8kopE032QizqSz45MhcPYppHFVY5uXLEhJlcvco7Ze4jNqQsrx2hvTAP7fvuVHCzs+JRe5YI1CwMiyQq8Ez8CfJsEhnsfChwErjgSgsiViYGw7jLuayoh3MmAVMaN8fUbDDjxyO24xyFzcDxg7yKLOPceJdUS8wZJ08lbZ7Q1XlM75irnk0di9p5W/YppJX/g3JDMnThYUbN36v26GIc9KLKEMV65l+gmU6PQ9iJE9s5gdtkunh6g+Bhh+g5G2nBKinPToKKIJ1PIuG2kNQ+KJPgUzVwRW2mPuNCrabD2RWCsPUWTOVcyJucMiJrtO5SfyUSqa6fj/SSpJbcDZLifchrSCbe3Ydm7yEz8jERHyMTxSZWxOa6S5+41AnKjsCXivpQhFaJXaoTTgb5Yo/weQ7qtT5MuaeJljl9b2GiR8DIxHVE3+BYMIw7dYJxwVPsNT2y1Jjb7meND+WjsnJCCRPssPyHsh6nGTjpMLzL5GH0842jUmVRN0ub2MQ6VSjG+hhWNg4gwh0kRMtj0QzotCGBUeRo26VEvozFNzAckhSE86KO48J5V+43y9VkeSdTyxcUZXVy2CDYbCCVJdzkRpieRIs84pWdTCQyXgp/hDtOzvwJQfQpM3lGSN1n6/wDgpKzsP8gRkThOLQtNwSUjKi4JQXIuAbxT7D7MdyrJk+DEwJjkxehX8CzI7NstHvHOslvezAaZkxNBs/Jgy2NWRjtQYdCQoZltGLENMhORdouRrZ2Hg7yS+4RXYUM4rTG/kRHGBPvGYYH7M9ioyQwQnUJmT0k0fDrof0B10Hj9VNoRLDWh8EXo+PQ7O2yRiGMSo2JlwNdPIYcDksFRwEkjnvR6GisZzaWRZHYI2cLh4OBJy7PuNCZIwxJo2Wl4OKsvy+KPmSae+kVo3hz7wSOu4Z3YNKWPcYkLh03z+tmYXsxZiWr7wSpt3X4MMLLYvYZa38i6RpL3OwZ8l3GhlhI31JYS0lg8p+TA2sZxRFwe4hybZ0MvgYv9HhyRPI7ewvyGds4Iv9Fcqhk2ZohRkWXHubbR2TpHs5CiLvfk4HoaoWQ67C/UFwjTocmo+CN9FY6TpdFqD9BqDdJhl0YzKYsWGg56WSE2IHhhEp7EwZvd61Fn3EjGMMJ3oQobD6JlI0YcsGtYkuRKUzVdxysjN8hXS3QsKmsk8kHn3ibN1dkMt7WW7Db3hpg8Nsndcc/YekVqpe+Sx1Zc+aYRIP2c9Bylyjf4DaLXCX5KoyJIwlXTFxXKkKngfZ2HTeRJ4mzJvJiQ6SQS+gWdww5dHm9HZTudCOHYc9hqMw7DFpF4Por7CFoo+TSw8ob2LyjEtirg8otyMEGYdvrn0EihGSaaWBEYa7F+w0vyGwObdHZcZw6ibBmL02Ex+q6xUaBqi1MmSR9xZ0Ng0Num4OUNUVQ5D6wWBqMmLoF9Ak8FwUWRsHIjuYQ6wsItHcbp4qMtRsso2EX2Yxg7KT0xJ4PcMspkTLbM3rCo9rc/VsZhW2ja2x/RZkrVP40jqwkozQr/AKEKJVOfGRZTyNf2Msk8wYWzvCIeT5FbfJSE0LK7lj1GJ4rnDE7GimWXwaDE8dIz5jZSc9L9gvVumxMmtCE8HemZCYh9TRRgyFyXI1xkUsdvljYoI2H0N3lLBmOs6EWGb9LYfsYr5KdKla6MUKZ6YjQwjCyKhhuFRsh6GZGfIrYunv0MY9G6O4IdG8RoJBdbC+hYF2LDo06EZPwimFhBoSOxlLZ2E8HY4Rrbwnz+CLE688NDfAKmLPKC+Msl8DAhXKP0X/otnKvtC04y02u1VRCrRBpzn+zE+S/fuhWym0Wkbl5RmV+w5vOxMQiOvJJqiaTtpCpKQu5k7waH06Ng6fe9jNlo+gsbGncvjp8yU2bSj0hosJ0fGZTilXMEvQ9NpVMasP5DXtylGa8oQ5j2YoiXl5GKD6HcNSgtsOpCqM7emhj5mB46tay4pNPQmxh7MhxkNWIfSIinSwwI9ecN0bA+OsU6tCdjF3Ax7pdCM+lY+IXkF5j3h9g8DMGmdsx86WiXRuHyNEFg1Vu5KyNMwS66PCN4dTz7ikf1OTD5KXwkWzOVR8rNtnBFg/mP9HHvTMhkpoX770yN7T6jzEsYCJG0JvjAVB1UTyNfd/fwTFM5o9ZJUHFgj5b/AActi7Ud7IgNtOlBrME1Ziw73OhsIYsBX2MhBmYoSnj7GWcG8NIc7pBcip9xCbFM78CWDTA1ruND7GxoaImRgVRRqLbDsBqFlki78+EWR2UTVONkQQMToJFyNDyyOS2xKQzSMwxgF1o5G7lnvC7QiCeRQXkH5DwC6Cb0lQvMecIm9hsJ0iRifcVZfgLwHnrqe0w668T2nsH4dHsJ8Cg9nU4q9DU6JezQ0obzozCvYwXdGsJew9o5kb7sutSyD5GWE/fcaW20xb7GWOnafT/TlVyPHLMLW1/QuHENFFyz+MEmqUGexRrP1Q2SRWmFrb1ohJqbN4MijfXgbbdM+R0w0Qcoze7ezMl25M+2hteBcjkbND9grzCfIo9qlTgUdqS2x86PCKdi7LQlw6BNodkFogT60M3YeWYXRQVXAjCY2dEClX0BDb5HNoi77Ml0u7NwMvTeRHZM+B0q4SFTQ7WvBlI8GA7RB9WvA9o/AXge0fge0SdiOx7Cex4RFlr2PaKOBF9JAVG6KxGAQST4IJ7daCOlmfWylJIzeH1VFi/BjYzsKBKYojCEgdamUGUatYOTbU/cubzhEwGsrMXZWWx1BK19Sn5G4eW0plijTl1j+zcneKfYtdWSQhiP6ojeSVfGxfsH5CMwPBL2SJqXs8MUvBon2Bq44ZHrJctnvBFkmS1imhW9mQlRD3BKnnEYU0jO3gRwShI5CzFF5sCkMibpkvuT8lBTlyj3Dv2EbmizVQFlG9bZ4YH0JiJhVR7jBmtVlF5hrgaULuc9hHuNL7mVjXgrTfpWPo6M9umCOxHYjsQQST2RJHROiCeOmDAsIImfSNobD0P+F9GPpRv34hvkWSa1sweKhn4HhXBOuuBtpcmgOrZV3TIqli1DSEVBwSzkSUolhcH/AHfNmFsDjXe/9FZFw+7e2RNL5+SSh3IcffMvbsI8GOc5DRHrwHerZQlnQuJudmZPR5QjwrbQ7IQGTlJN4JQ6X1k+Y9On3yKh3PEzU7GSzNpklqewtqTRcNHjk4GMeWoU0ZMucM00xDFC60MyQJsQnGDR/YxQ1Ivc1KCEXILVeVkTsa7G5wLBsxqcGWJIXDG+Onnotei+m+rZOk6P0QXQtwQoz0WLRoEiEPghCE8DQ0Q11ZkhDMOS60bTTLLW/sMQ7AnYyCq9hyZODqNTAqdbdkRJw2aCg0ia2SG7AQp5DuttP63+i4q9vl6J9sv3G2GXGKyYaNy2KxEQynlPJkgwvKjQ0ZlyvI+p1hiaakFBqQoTDfuOt4PZFi8MriHa2jfk94bbJwaLCIVhSMhYLuVdGIVuvoHqasILgpQxJBZTgSWCMEO2TNilUIyaXcwT4RzimXwDVQmVSRqC51xYnU6SZEkJka/hk9GSEIQhCdPgnRomORuYTIPlGqEukIQhDRsg0QhOkEQftEGmZWZcQ3FplLSDZtf8HiLMUc9M9jPEh4Y3GnzCtqsKS1E2eOUoEqqf1a/
IhrTqx9f1i0kczMDbWJ+UNVNW9ecr/TaLDw/cwzi48c/0JaKeDa/BvRV4EKk3BOqGxf4YAdyN7TjQJwhyu28g1DYib8kIn9TKe8ZxfqKnwcX6xuofKHn+osXybQJQNoyKkZHvujET6gNBKBbUFyq92GLuSChahOXwkLFoilNRv6GCw4bQqNBE6B78pcslztrAsRYRDwjgWFzKxPhFLdCXYVHHPPROj6z0TpOkJ6KX0Lpqx8s38GEylUNXSdb10L0whDXTIJlqncsKWWg2eB3AbNho0N3bLqXuJiFbbOcimDRMuIqn2IkB8dh1SWsexSi4Tzy/+Fzw0v0ElvygSnSbGQ0dFFVwxeCJzPtcMrCIy/CRiBmig5ZTNSlex3MceOf8NIJAweORf7Ko1jAvOB7IfhQm31B8cGLY7Rx4G85ZP9Bqz8GzRPuZjxoNV4IGkzuQ2rQxgZKGY7/AFNQj2hoajhWJMZOnXCJVcpBKkqcsdm0p0HGNLjxEZHUzv3Y88L5MCYae7TE+CYxyLEGy30a9N6cdMGOtKXpk0fkpTVj7NjAZGZkNgXpelL5L0vkpepei6pl0nv8AcS7jfYGkI0KF8hKTG+5lb2FFRC5Nlnk3JTKeSYK7C6jteDMErlyJxlpfUQ2iePgXKENYypXURJzP1GAvI14YniR3xRm5AJdzuS7c+BPdu5fYyk32fccuq8IOJ7Gn/Rwjy6BxGUKG7k9um05q46GHioQ7ulYulxkasbXJaRZWSD3ESYF2JDJeRoTg3gw5YI8HeIRIcDELeXBlSetWoNhWWxqj1ahI2UwXGgmjkzR8dGF+xyvYTL0vTHpZS9FKXovq0MhBYmasuRsG3SYgmUpfQywbKXohdacwMSBDmF2EhvHTkRK2MaHWmDAmwC1KqjEKK6Hdi1xyxwmlSVYuwEQyJzJ77o43Uc5/UYzHCT/fckQ0t/wYCP2KYg5alh7fqGKvZO6MTj8gpfqMSyNEgU6KLob7sQnkJvv/ANH3g0ni8hyRvwYkSkf+g2tX3ZFXYnRcGSsoPKaXgoqMLIzfsJzjZp7CexCfApJQcCykxuLuXFPZLUSiihfLQl3UhdkmT2zAaT3GNU59aCbsZu4rT4LSVX+jSJgZ+0aHe3g5o2LsZfhC6XpS9L0ZCE6zpCdMeqeBcjAG/uEwn0nNRLBCEM+h9x9JSdYToeW4S2pw1CJWNJ2uhGko4HmVnTXYetLGIpvCcHdWxibcBIqdSZZlAuO2JYqM3SkrHGkYQg1TsEvh4Fq1bMJ7BUWcHkhu05Vljbv/ABisvltDCmWMhuSTdNPHH+DlHcnwKqtX9Akk0fh+RB4HHPkQIprPgQhd5f4jKRDEMNvJrzDCvPSR0tj3DMR2WEzNLQy2MiVrZrPBhqOcjUWBBtkLyPwIX3G0yWa8eBqwNQV0hYeuhVjRITai8mFGB1pY+d2Vb5DEruJE/GDJ+8fZdF1vov8ADS9GUx00Upr0TA9rpn70bE0+Oj6QnV9EaH0QuvDIWuDJ7ba8FDGIb+34LpgfT/I2fhwJWR2R2bHEmra5FirLRrlkSpNTYuALl9hhk6WbaUCLxBsiDlgpVz7oX/6ARqb91LU0DIwMjE0ZvEhHHg2dhLvj5TFI2ccfYsMnLRmQUy9mNNib2THkv8O1D6vDFrC5c8EiyWHBO7h3zPqeejJTU2VeB6lNi8CYVM+484FH2Gu4cMS0xBiZJvQ1NdDLQ2KOHR2+m7wl/AfXfP5ZiDPyWCFqupCFwhkhFg4EyhIZR4NZTDouJ4EMn8VNFL0pS9MmemfRSmolB9idOT3ejyTpkL0RsnSZIJDHgQhFKYJMQMkFkJBt4UMWKPodprwuTsSNc8h1TXyCcUIytLJ/kchhwk9GUb7nwJGAk2zddGFNtrWdIa9xcJ+sEqRC1omxd2/7FBIoeS34GsX6m0caXjsPgGB79mPDbKlfBfh7kEZcRP8AwYqptImlbhp7QtuXDejKFvzyw3UqnxGvccJE1odNHd2Gxm+5Dj0+403S3sI4BMarGPHkVKt3psvAcIL35j6GSFHHTbAKPYwHGSaIG84Q5DNRJrE7jBOYkMYCmj3OGaC6Oanw+gNyhYdUiEJ6IQhOkITok6wnROiEKIneEZegKNGPhDuciIQgh9N9GMfSldFCbNDStkiw8rsZyRdhcjZSVv7FCgm8ZMYPfkUyyrZXAuOBDKs95nIxScnuV92JbRO1+xEpG72GfeewqeKo8jyBpP1w38z37LWjSfxvyO002PMyp3eyZJhrkitXvLgSYnutiUnw5semC4UJ+rzfyGof0onsUdxWRnAa208rIjxEnHdjI/gBBQscin5mw0KZLvB2xjVZ2XEyOUOSTu0IbwJsbVyhpLSIaELsIW0LgSZ2wSOF9CDxDxhaw8WMxzz3TJspkWyNFbEq4vFRd9w2W+DbGFBdGU6QhfTf44T0U31W9B4i/HTV3nkmMSEYKUpsvSzq/S47H5FMMvIbeAS48m4FfGncjJa2yCnv9hcgsy8I2EnBBqp267nKWjLC8BGeuMRj9irU4GRwxobVMw2/Ipi1PXcWkkSR8/4aRru6+DI232mS4LuaYiM0S2J76ohMERhMLI+TgQKp4DkybO0aEDGfIwngSmHWAnnGslRaN9wqak2hVQTZt7CUuRnEJvinOQ7xEnB5GNNVoUaHXIixs0E5QXY+hnlwKOxwj9UJDFdifI+MGE3KTynR+VCZswNn7DzZ2DX7Bp6d9di9E6Upf4KJlNjEGrEnYGEIdLsIIKUvWlMdLCmyEMdGDmSG+qxi5Sa7MscQXOnyWeoIUxy+6/LEkiwDTY/wzy68Dt80pGwpyIJHl8CKL3CsNxjvSqGpjLvFDCSbsuhK2isy3HkTwvKOwvpP/o7rQeZr4Jmw3auzFBuLyJRJHzMfQ0heB6a8Jn+Bs4j7VFcQcbS2Lv6PaFrgTauxONNl7TxgizAG8P7GmROkYtdt9xr3pLueMQfTqYnDEtE3ycb2aLllUm2jhZdEXlBNMMuTxMixgkymJJfka/4OMaLg8Qzso8CRINPIwd7Q8dyoMU8iwUpSlKXpS9aUpfQy6KXpelKUbKOD2jLwTLGgQ+l60vR+jHSD1JjsYEkY9iLwJawBRYAph/IW0N3ATY5ebEkbxnuz4HfuJCW9x0sK1YyfHcKWguBxbS0oKsms8+Bd6lzc/A3ImuCqhwmvlkVbUq0ngpEhlkUDwTKG+4zWDWiigI14T4ZiN8mQ4QPuh4nkixumnwtCLY7sdjuKzIK7eDleRTfHwB7a7lfp9RfPG0+B2aGydcJcgrcowfZ9PpEKcwGISnaxGGTDsJPMFtia4GFaUhHcoNpPcoNf6LFk0x/JdWRQ9MGLnqiosMiPk8Yr1ofSemFKUvovRk9D60vRjbGdxoYZn56aIvTv0aMFKUp8EjUmjm0ho1hQSrgNKxm340G74OfcbTTHgcUo2+yJwH5cijpLvjZ3L8YGlGZNZFtV2FeBobKcTVEKtC3Z+Ows0m12WDNk2uPfuLdTTvwMFzW+3yYmHFyb/wAOQguyFpx5LZkM18bE7ke2BnoJzsaKvi4ESWVMPOPozFEcIMWEnksaQn4qZPPudmWdeHAuQdxhBgQtBdyGLkvJX+UGcjVtiraQh8lh8BdQ6OdbFKlRcQjzTNdGweWjLEnhf4HiHkPgWk2nGYDIdLJZJzaYu65FI5JCGFNh8sGxduOl6UvovVfwXpetL0Y0IJ0JnoLQi9Ia9L63ren0IR3EujBB1S4glBuMvux2xxsjIBoDs8mkzXwJPdT/AAYRy52OI7J7sZhIYGqJXnD39e52E/fQtLQvDwZSTRa/4FreY2OycaX7oWKE7mNGGnu4+g9qO8P6EErmlns+RMiP3jKp9jyzVp8DMMjACPMEroXZuosqDDwm0a7FFtK8ZX2/
wfO0nuhqIzjsODAmWLuFrZamSfgduA547PuNJz5FPDqM146STO8D1yyOrYzmw7w4EZRHsJGGzttkiU+AsuH0NlLyK0l2K9yKHtxw8cuCQnZmQSxsi4P6FKU3r+K+l46Upej9LdKiyGa6CZel6PoUx6Z6HaVkSyaQ+Ng5eMVjoSgm1zOWOTI42Oum1ORU7fhFWR75HLiZfMHOZixV9ROzZK86GJ5WcN7M7Nk5bou3l4XYnH7gsjnwu5hKlXwNbgsORKsJneBsWR3wXccP3HaXPH4GxfEJwrX7pkIvymJXwJJUUVe0CGiz6XKHESLMOFDA1H+oxEHpUgZHkfOmvkYoNPSY4e8AdvfuaCf4DMoheGtjoTJbZO5D35BRsfz0RpsM9HAj8ZGq2kI3bsUyoR6JE22xqnELj7EbM0Sr8hiDwvFTHGeYDDS0Lw7jwuKUWqurBjt+SHuZ7jPZE7+jXS9aX0Xo+tF62MX6IiMS6ZM9H/Im0g0nYuBzRgrBWzZ4kiCIkLkacIPsJpo2+w15ChYTOTHA2/sSPJjcEeVp9hL2V7DQ8NLa7jtZUYhLLU7dzshobXN7Dadi+4lepjxg4N/pwVJz7g2Q2k7C5G85VGuxruPaEGtHVG6rfk7BAionWjJ93CltnYZx2HhhYEGV7EfGmQsMe7As9uLjsU0sv1aEjocrkaq8yHH5wsZntgyE8gjbJboqKEvoL2NjlwwJryNjojJAez0VMTBjRlgaQmPBcGkdY2ZeS2MFrayeAAfgHnyziaGur9F6wnj1sXSE8+h+jPRkITprpOmiEITpetN9NjFG61SEmzsLMcj9hJHyuRJZKhVUwzuFhxwY4TQ1yLEhdiKd/wCA040duKnwS0q+w0aHZF5eDsy++NjIitclkxn8DosvORtMja2aS+RjQ4NfIkmuHO/A133vkwaaLVlM8iPkJaGezIug1UwtBS4FO4NB7CfZ4Y3kbmi6yotQvYOixqnljvuULAlfhB4ACGLuTKPpvLaIs2TRdLFpyN0pE8odjy0I3hvL5N4L7BmSrLEJlbyPfwN1GciTjJoacHhuBZvtyYXUg5Ij7lHkr4Lruj36ZnBa6UvrnoXW9ab63pR9IQyQfTPWl6X0Upel6UyXpJuIbytDReWUi2dH+RKcMkmSzruJm7Hhdham04Flnngi1fg3GgsaSjU3A4tt5KmJLpdxqsjOZZl4+Qk6XybM1Vru9vwcvLST32G0vfcMFY+w08yD0Gu8hJmIhwlh0FslLfB7KGE4J9WK1Hgoor8EL2I2ArZF2puAFrD6WUXI5obr0SVIy5U+hdSzwyQCcTLfBFBeUwe2+sVCkuXYuDnHGiOarXtsaWK+NDgDbzCyhrAuceBsfuJ/Y3c009pjWbxv9UTbRe6NDEciPRg3woPJ7iQmBe7g0PyNlyLWhaCpoSh29x59M1hyPCdHvpS9KUpfRetKUvpz89b0XSjGyj6tUbKUpel9V6I0MsLayYpU3P8A0ReKiROG0LhiBrk39jS7EcUx/wBFYRf2LT2hwlLs8CevLI6tyb+DAtrzyTvtCVMF4E+0j+47z7KaNBpPweUIqYeEez7hxi/ZDmttd4Ym0JaxDf8AqKoudR2+BsyWeklWONENNBBU8LA1XUbw5MoSbgLYVOx+a4d+9qxY1YVwyDbmDd2MoakptrBgx1DTL9yGhvdDhUzaaMqJPsymVWLzJ6DS2IsGNiIRmnwhojsmnF8voPDtPux9H/BqjMPQqrsMQS7mi1klPvIsNwa6GyRpDWQ2ldEecG+SRLDdG/RSmei6Y6X0r1c+ilKXoMsv29TPo3SzopvoulKXpSlLgwRL3OQHfgbHFO/KQ1jyYml5g1dzDs/bkeLyR3Ixx2KWtTmF4ls13EsJld2SCN/2JK1xtC92eDfFZaZBv6EFJ/DFxwhuLlDvXw7lpREu4yZVvuxLZNexJ58xRgbm5G7UHEvBQSk5zwZmPLvZDnCRhvRK9XI9EtrJkdDHk167aGE4l1cTKgsqk+o0PkEio0h47ol2/C0K14l+hss6ZVZR2aH0VbCMN4f2ILUeshYSf7BaNK9+wqJRjTGpo0mmkZmfSlC0l7Bz1G+ao9534fuKbFsRImephoe0yuHYWTCxx5CWtkCcqqoKbNZo/wBUXsS3WinbBoWRdNn4IQnovqnjpOlEXq2Upb1Mb8lCaEQnSEILpTJTfp2PB584ENUzTTjI+TPYx7CcTueB9pK0vhzyVs+/YiZfHfk1k0XcS+U+wkmsTzBY1N67k5dCVpu8I7RCXwmQtpXufNPAvBTOhZttG/wJs5HA3pTsY8c6bNLpd6yZRldlDKBe4loPwXArJ+aGsklim0IgTUuPypi53Ir7CTYiasEN5LIIaHssBso29tbCWZMJkEmwT9WUdlD2P3GCx8RYaGl4b2Pf0RCsDRcoMI1ThiWtfAyDwEQ+24gNmNzX3Q/wWMI9Mbpi1o2LPxhpjI7Sdn/Bovtfb/g9WdlK/VCsgC3GsEu4FNcHsEgw+a7EA7oMEK0LTN4h3sU+R8jZoXohsnXRTfTH88pB9Svw6KCN9Z1ovTCE6YBREbCpzudkUItuL9hvtGjLOWzJKwaTFISrbq3yS2/+mtUfajaf78jkehaev6Creu7Eg60vCMHtkdlwXZDWWjRHvtoVr2XABgI2ykLgqbaQpI+gmPau1c0/JV2PiFwJq2yPgxpF85HQ06WRF9T39C22J1V9AyMht1JM2ODkonyMlcTiE1NHxmwWSV3OHZI8JZTFkDxp+pREUQ4snyMWhXLJoqZTsqPNgcZb+BmkN0PSIhFKqvDFGA6J78ogiXEbXuQuFtPgeOmd+TfaWq/yRcYcZw/8/wBE/SjxzNeUaVLjukYDNEx6sa5pg1iEwcVh08hIJhj4KGdWhiy9mOSp5WV7G4OSYN+lemE6XrekJ6J0nVF6P0OdGMyLpDXR9b6TMfAtOq3Esqk3UYct7/oSwDbeuxO49j3mpmDR4YxvJ4TuGjhPUG8MoTuHW/yOmG8DMsX2Npz2O+nYeDZ4euCv8GhlSutiV2d+whcHd9xMmOtJjhlpnr9aNKZIsKLY0ZBe7HuisfIyguW2v4pexG2VfkWVi4GCRGHsffuFW3CGEM03RFbe0GtyuDABfdLTJRNnGRTHIWU/qU3q9WqZSE7HPh2fD+BAJHdv6GCOmo/BKQ8HK4GGvmLg37GdRlAq2AMrE29sEhrDWGnlezGOByfYd8V5TSn0Zboc7JKj49s1GptlXDuLYUy/4EqbsCpVL+BIgoJKdoJg1yJlQXFMC+9hEtX8DY4E89F15/iRfRjrfWylnRRsuS9F0nSel+jQmUorG8uyEtZUNLXYSdnU5ZDuCc+gmmUj7HGo9jXc55EaPbI4lHB6xkqldT5LOKvvB6ETgwTk52U8qu3+CpAx0/gA2XG+sm0DhLguhLZN+w0gxaBrSjG3fxgYeEnwf0TCfI+Q/lEnCHKlTn8GUZdkPcJuZGLRpnwbwi22OBou79+UNK6uaVdpORYmD5a0JnAo2wLdwfKKHdGCvYwK7ooFMSuXDLullEXyhxknYUWnhM/AVMYJ7P8AWUjkJduD3InuKqaB8e4e1tRnl8FE6hcdlFqRGHLT/R5mErqxnhMspngrWvApX7iJsCNY715KTzLfJEepZJ1Z6P2K20aTePxwTHcwLemNlSrRnntgXS+il9F6PpSlKUpSl6wfRmhmukZPQY9M68myEJ1o3HlYvOpSkqKFXgrDSbI9hcDi0S58EXKNCxw2YpSzshSPColLjwilbrIqrRvstMdlIT7j22cuwlY749xYdME0qSatNAM8YfsJ0nI2H9QjiqEhn3mvwYCB1vAkoSUaKF4lyMjZDMUNVK2LYaWEfESwY9JnktVb4NodXMu2DhVKxf3yNcusVWNjnEwymQfJW0p9B8mE2+BVbb8juD6jFPPJHbJ5yXRFzLzwPHbDKpuBODzwJMZuV9BTATI+Qswvp8HBpp3fuFwPgZGZqe32Q/
rUF1Kc7yM+Y3c8BJG4J5NOLZ8vByq2r37owdupf8BSRoncNLYydHhV5GsI2sE3aTCFeUoXsZwWsEEzTq2YvcWulKX0TrkpsZnrOiwX00vVohCE6r03+Beh3a4fYyDZS7Nnw1wSIWRPz2J0qW4TmSfvyPalbPbX2HwyQeUVzRD7M4iTX5HOCaqK8iobtxsmJFjlZnP7+7GkTnPkXWSuv+kDokmuwy5dejGhsjFwvI5bXmbg3h4f7FhLDb/BHM5lmRgBNaKGBlIfP7+BsBLvuZgReSOg7muiS3k+8H79RbYng0TVz2/cCbD2av6xUrw/T+i0tSM3hi6Se5Sw7Q74jMKhx4Eu5QUvG13EzDTGv+yJbXlGt8hcmJTqwGvPGUSCiVrh6GNt37UzSMMMStc9tYeRg0mXPkYdp+yDqEEbiW6hSbzJ9x3jeuHtc8sfJcDDzymbAj0Ls52hGWjbIaTJ8ciGMngUniDWtzpOkEidefSjRsnSE6cdaUpSjZTjpr0X+FmyepmlueRmfPsx7cjZnKMSn/Z3Fed5NimF7SXHhO4/ccsUZ6pCN8MrGEQVTbO0Q+xjJmDcWaRq4LdHOWOO4m4I+b9xmGpNZFza3A5PdjSpeZ4tDJkHO030lceWYzOxttD5KS7CzycaqSy/3/BpMhzl3H7+TiCbqWBZPy/f2jFkq/s+5U7gGCEo89hj5CL3sev36DRFKy/v0KBQ9v34ErIj3e/6ylCrY3LjfMOO09hjgeqMR4F4LCGGB/ETfBKWFKox+SCJlZoWSF9gii3ibLX0DZHl9UFcpWo6csR42iJFpPsERCwqdyoWjZIXvIbs0nBQE5kOKNzD9iftCd1Rrr7OQq2URhGGxIMtNI1IaWhOJVsSblCy2yyz056rqzXS303petL/AA0pSGOnwcFL6NdL6Pp0XT//2Q==) |
Prof Dr Maria Beatrice Pozzetti
Office 3/309, 3rd floor
Mathematical Institute
Heidelberg University
Im Neuenheimer feld 205
69120 Heidelberg
Germany
Tel: +49-(0)6221-54 14206
Email: pozzetti@mathi.uni-heidelberg.de
|
I am head of an Emmy-Noether research group on Discrete subgroups of semisimple Lie groups beyond Anosov
With the project Rigidity, deformations and limits of maximal representations I am part of the DFG priority program SPP 2026 Geometry at infinity
With the projects A8: Symplectic geometry of representation and quiver varieties and B5: hyperbolicity in dynamics and geometry I am part of the DFG CRC/TRR 191: Symplectic structures in geometry, algebra and dynamics
I am PI of the RTG 2229: Asymptotic Invariants and Limits of Groups and Spaces
Group members:
- Valdo Tatitscheff (Postdoc)
- Alexander Thomas (Postdoc)
- Marta Magnani (PhD student)
- Colin Davalo (PhD student)
Former group members:
- Mitul Islam (Postdoc)
- Giulio Belletti (Postdoc)
- James Farre (Postdoc)
- Leon Carvajales (Postdoc)
- Gabriele Viaggi (Postdoc)
Research interests: Discrete subgroups of semisimple Lie groups, Anosov and maximal representations, (complex) hyperbolic geometry, (Higher rank) Teichmüller-Thurston Theory, geometric group theory, bounded cohomology
Published/accepted papers:
- (with J. Beyrer)
Degenerations of k-positive surface group representations.
Journal of Topology 17 (2024) nr. 3 arXiv:2106.05983
-
(with L. Carvajales, X. Dai, A. Wienhard)
Thurston's asymmetric metrics for Anosov representations.
Accepted in Groups Geometry Dynamics arXiv:2210.05292
- (with M. Burger, A. Iozzi, A. Parreau)
Weyl chamber length compactification of the PSL(2,R)xPSL(2,R) maximal character variety.
Accepted in Glasgow Math J. arXiv:2112.13624
-
(with K. Tsouvalas)
On projective Anosov subgroups of symplectic groups.
Bull. London Math. Soc., 56: 581-588 (2024) arXiv:2305.05018
- (with M. Burger, A. Iozzi, A. Parreau)
Positive crossratios, barycenters, trees and applications to maximal representations.
Groups Geom. Dyn. 18 (2024), no. 3, pp. 799-847 arXiv:2103.17161
- (with A. Sambarino, A. Wienhard)
Anosov representations with Lipschitz limit set.
Geometry & Topology 27-8 (2023), 3303--3360 arXiv:1910.06627
-
(with M.Bridgeman, A. Sambarino, A. Wienhard)
Hessian of Hausdorff dimension on purely imaginary directions.
Bull. Lond. Math. Soc. 54, 3 (2022) 1027-1050
arXiv:2010.16308
-
(with B. Duchesne, J. Lecureux)
Boundary maps and maximal representations on infinite dimensional Hermitian symmetric spaces.
Ergod. Th. & Dynam. Sys., (2023), 43, 140-189
arXiv:1810.10208
-
(with S. Maloni)
Geometric limits of cyclic subgroups of SO(1, k+1) and SU(1, k+1).
Algebraic & Geometric Topology 22 (2022) 1461-1495
arXiv:2008.11653
-
(with M. Burger, A. Iozzi, A. Parreau)
Currents, Systoles, and Compactifications of Character Varieties.
Proc. London Math. Soc.(3) 123 (2021) 565-596
arXiv:1902.07680
-
(with J. Beyrer)
A collar lemma for partially hyperconvex surface group representations.
Trans. Amer. Math. Soc. 374 (2021), 6927-6961
arXiv:2004.03559
-
(with M. Burger, A. Iozzi,
A. Parreau)
The real spectrum compactification of character varieties: characterizations and applications.
Comptes Rendus. Mathematique, Tome 359 (2021) no. 4, pp. 439-463.
pdf
-
(with A. Sambarino, A. Wienhard)
Conformality for a robust class of non-conformal attractors.
Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 2021, no. 774, 2021, pp. 1-51
pdf
- (with F. Fanoni)
Basmajian-type inequalities for maximal representations.
Journal of Differential Geometry, Vol. 116, No. 3 (2020), pp. 405-458.
pdf
- (with F. Franceschini, R. Frigerio, A. Sisto)
The zero norm subspace of bounded cohomology of acylindrically hyperbolic groups.
Commentarii Mathematici Helvetici 94-1 (2019), 89--139
pdf
-
(with M. Burger)
Maximal representations, non Archimedean Siegel spaces, and buildings.
Geometry & Topology 21-6 (2017), 3539--3599
pdf
-
Boundary maps and maximal representations of complex hyperbolic lattices into SU(m,n).
PhD Thesis, ETH Zurich
pdf
-
Maximal representations of complex hyperbolic lattices into SU(m, n).
Geom. Funct. Anal. 25 (2015), no. 4, 1290–1332 pdf
- (with R. Frigerio, A. Sisto)
Extending higher dimensional quasi-cocycles.
J. Topol. 8 (2015), no. 4, 1123–1155
pdf
-
(with M. Bucher, M. Burger, R. Frigerio, A. Iozzi, C. Pagliantini)
Isometric properties of relative bounded cohomology.
J. Topol. Anal. 6 (2014), no. 1, 1-25.
Conference papers:
-
(with F. Lopez, S. Trettel, M. Strube, A. Wienhard)
Vector-valued Distance and Gyrocalculus on the Space of Symmetric Positive Definite Matrices.
In Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021) arXiv:2110.13475
-
(with F. Lopez, S. Trettel, M. Strube, A. Wienhard)
Symmetric Spaces for Graph Embeddings: A Finsler-Riemannian Approach.
In Proceedings of the 38th International Conference on Machine Learning (ICML 2021)
arXiv:2106.04941
Preprints:
- (with J. Farre, G. Viaggi)
Topological and geometric restrictions on hyperconvex representations.
Preprint. Available online: arXiv:2403.13668
- (with M. Burger, A. Iozzi, A. Parreau)
The real spectrum compactification of character varieties.
Preprint. Available online: arXiv:2311.01892
- (with A. Sambarino)
Metric properties of boundary maps, Hilbert entropy and
non-differentiability.
Preprint. Available online: arXiv:2310.07373
- (with J. Beyrer)
Positive surface group representations in PO(p,q).
Preprint. Available online: arXiv:2106.14725
- (with O. Hamlet) Classification of tight homomorphisms.
Preprint. Available online: arXiv:1412.6398
Expository/notes:
- Higher rank Teichmüller theories Exposé 1161 in the Séminaire N. Bourbaki (Mars 2019)
- Compactifications via affine buildings Notes for the Workshop on compactifications of moduli spaces of representations
- Maximal representations Notes for the Workshop on Sp(4,R)-Anosov representations
- Maximal representations of complex hyperbolic lattices Oberwolfach reports 30 (2015)
- Bounded cohomology and the simplicial volume of the product of two surfaces Master Thesis (2011)
Service:
I am co-organizer of
- the conference Homogeneous dynamics and geometry in higher rank Lie groups (IHES, June 19-23 2023) with M. Bridgeman, D. Canary, F. Kassel, H. Oh, J.F. Quint
- the conference Groups and Dynamics in Geometry (Ascona, May 28-June 2 2023) with H. Baik, M. Bestvina, S. Hensel, A. Iozzi, H. Masur and B. Petri
- the workshop Minimal surfaces in symmetric spaces and Labourie's conjecture (Autrans, August 22-August 26, 2022) with A. Seppi and J. Toulisse
- the conference Marc Burger's Prime (Zurich, June 27-July 1, 2022) with M. Bucher, A. Iozzi, N. Monod and A. Wienhard
- the Mini-Workshop Anosov^3 (Oberwolfach, December 5-11, 2021) with B. Küster, C. Guillarmou and T. Weich
- the conference Geometric Analysis meets Geometric Topology (Heidelberg, February 25-28, 2019) with E. Mäder-Baumdicker, V. Disarlo, F. Fanoni and F. Dittberner
- the conference Groups, spaces and geometries, in honor of Alessandra Iozzi (Zurich, January 22-25, 2019) with C. Burrin, T. Hartnick, E. Kowalski and A. Wienhard
- the GEAR Junior Retreat (Stanford, August 1-7, 2017) with S. Ballas, S. Kerckhoff, T. Yang and T. Zhang
- the conference Asymptotic Geometry of groups and spaces (Heidelberg, February 20-23, 2017) with D. Alessandrini, R. Sauer, P. Schwer and A. Wienhard.
Teaching in Heidelberg:
- Winter 2023/2024: Seminar: Hyperbolische Geometrie
- Sommer 2023: (Pro)Seminar: Konvexgeometrie
- Winter 2021/2022: Lecture: Einfürung in die Geometrie
- Winter 2021/2022: Lecture: Geometrische Gruppentheorie
- Sommer 2021: Seminar: Dynamics in one complex variable
- Winter 2020/2021: Lecture: Differential geometry 2 (Symmetric spaces)
- Winter 2020/2021: Working Seminar: Bridgeland's stability conditions for meromorphic differentials
- Sommer 2020: Lecture: Translation Surfaces
- Winter 2019/2020: Lecture: Geometrische Gruppentheorie
- Winter 2018/2019: Lecture: Differential geometry 2 (Symmetric spaces)
- Sommer 2018: Seminar: Groups acting on trees
- Sommer 2018: Bachelor-Master Seminar
- Winter 2017/2018: Lecture: Differential geometry 2 (Symmetric spaces)
- Sommer 2017: Seminar: The arithmetics of the hyperbolic plane
- Sommer 2017: Junior Geometry Seminar
- Sommer 2017: RTG lecture: Incidence structures on flag varieties and rigidity
Past teaching:
Bonn:
- Sommer 2019: Lecture: V4D4 - Advanced Geometry II
- Sommer 2019: Seminar: S4D1 - Graduate Seminar on Differential Geometry
Warwick University
ETH
- Spring 2012 Running exercise classes for Linear Algebra 2
- Fall 2012 Running exercise classes for Complex analysis
- Fall 2013 Organizing Exercise classes for Algebra (Prof. Brent Doran)
- Spring 2014 Running exercise classes for Algebra 2
- Fall 2014 Organizing and running exercise classes for Algebraic Topology (Prof. Rahul Pandharipande)
- Fall 2014 Organizing the student seminar Geometric group theory 2 (with Alessandro Sisto)
Student supervision:
PhD theses:
- Colin Davalo, Geometric structures and representations of surface groups (June 2024)
- Marta Magnani, On arc coordinates for maximal representations (Januray 2024)
- Mareike Pfeil, Cataclysm for Anosov representations (September 2020) co supervised with A.Wienhard
Master theses:
Bachelor theses:
- Luca Tittel, Mapping Class Groups and Fundamental Groups: a closer look at the Dehn Nielsen Baer theorem with illustration (March 2024)
- Benno Wendland, The multiplicity of the smallest positive eigenvalue of the Laplacian on the Klein Quartic (August 2023)
- Cornelius Zenkert, Dimensionen fraktaler Schwämme, Methode der Konstruktion, Berechnung und Visualisierung (July 2022)
- Marcel Stoklasa, Limit sets for once punctured torus groups acting discretely on the Riemann sphere (April 2022) co supervised with G.Viaggi
- Erik Lewerenz, Apollonian circle packings (February 2022)
- Antonia Seifert, CAT(0) spaces and Gromov's condition (February 2022)
- Eric Ommert, Löwner-John ellipsoids (February 2022)
- Benedikt Pfahls, Universal Constants in 3-Dimensional Hyperbolic Manifolds (July 2021)
- Jannis Heising, Algorihtmic implementation of the solution to the word problem in Right-Angled Artin groups (March 2021)
- Noam von Rotberg, Reflection length in affine Coxeter groups (June 2020) co supervised with P. Schwer
- Ferdinand Vanmaele Coxeter groups, the Davis complex, and isolated
flats (February 2019)
- Lukas Bohsung, Über die hyperbolizität des Kurvengraphen (July 2018)
4th year projects (Warwick):
- Paul Colognese, Simple closed geodesics and Teichmuller spaces (June 2017)
- Ben Miller, Automorphism groups of Right-angled Artin Groups (June 2017) co supervised with K.Vogtmann