Maximal Representations

Maria Beatrice Pozzetti

Abstract Following the work of Burger, Iozzi and Wienhard [BIW10], and Burger,
lozzi, Labourie and Wienhard [BILWO0S] we use bounded cohomology to define
maximal representations. This allows us to list the possible Zariski closure of a
maximal representation in Sp(4,R). We deduce from the bounded cohomological
framework the existence of reasonably well behaved boundary maps, and discuss
how boundary maps can be used to prove topological and geometric statements
about maximal representations. The note contains no new result.

1 Introduction

Maximal representations are interesting components of the representation variety
Hom(I",G) where I' is the fundamental group I = 71 (X) of an hyperbolic surface
X, which might or might not have boundary, and G is an Hermitian Lie Group. We
fix once and forall an auxiliary finite volume hyperbolization of X and a realization
of I' as a discrete subgroup of PSL,(RR) = Isom™ (H?), this is not really necessary,
but helps streamlining many statements.

In this note we will mostly discuss maximal representations in PSL;(R) and
Sp(4,R). We begin discussing some of the ideas involved in the definition of max-
imal representations in the case of PSL,(IR). We will see that they correspond to
points in the Teichmiiller space. We will be naturally lead to the introduction of
Hermitian Lie groups, a class containing Sp(4,R), and, in Section 3, we will dis-
cuss some features of the symmetric space of Sp(4,R) that generalize to all Hermi-
tian Lie groups and play an important role in the study of maximal representations.
Bounded cohomology will first appear in Section 4 and will be imediately used,
in Section 5, to determine the possible Zariski closure of a maximal representation
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with values in Sp(4,R). In Section 6 we will discuss how the bounded cohomologi-
cal information allows to deduce properties of equivariant boundary maps. We finish
exemplifying how to obtain geometric and topological information on the represen-
tations from the existence of a well behaved boundary map in Section 7.

For the sake of concreteness, most of the statements are only given in the case
Sp(4,R), despite they can be easily generalized. We won’t give any complete proof,
but we hope to point out the major steps and ingredients and to convey at least some
of the nice ideas in the area. We refer the reader to [BIW 15, Har13] for more detailed
introductions to the subject.

2 A motivating example

Probably the most familiar instance of maximal representations is the Teichmiiller
space, as we will now shortly discuss.

We denote by H? the (upperhalf plane model of the) hyperbolic plane, and we
focus on the group G = PSp, (R) = PSL,(R) = Isom™ (H?). Let I denote the fun-
damental group of a compact surface of genus g. It is by now well understood that
the algebraic variety

Hom(I,PSLy(R)) = {(x1 ey X2g) € PSLy(R)

g—1
[ T i x2i1] = 1} )]

i=0

parametrizing the space of homomorphisms from the discrete group I; to PSL;(R)
has 4g — 3 connected components, which are distinguished by the Euler class. Bill
Goldman, in his thesis, undertsood the geometric significance of representations
with maximal Euler class.

Theorem 1 ([Gol80]). A representation p : I’ — PSLy(R) is the holonomy of an
hyperbolic structure if and only if e(p) =2g — 2.

What will be important for us is that the Euler number is a characteristic invariant
that selects two particularly interesting components of the representation variety.

It is possible to reinterpret the Euler number of a representation p as its volume
in the following sense (cfr. [BIW15, Section 3.7]). Let @ € Q%(H?,R)PSL2(R) be the
Riemannian volume form of the hyperbolic plane H. For any smooth p-equivariant
map f : £ — H? we can define the volume of the representation p as

1
7(p) = vol(p) =~ [ f'o. @)

Using uniqueness of geodesics in H? one can construct p-equivariant homotopies
between any two p-equivariant maps and thus show that the invariant 7'(p) doesn’t
depend on the map f but only on the representation p. The invariant 7(p) is referred
to as the Toledo invariant.
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Through the next (commutative) diagram we can find a more cohomologi-
cal reinterpretation of the volume of the representation p. Recall that the coho-
mology of a group G is the homology of the complex of G-invariant functions
C*(G,R) = {f : G**! = R}, and, in case of countable groups, is isomorphic to
the singular cohomology of a K(G, 1): for example in the case of the fundamental
group I of a compact surface X, the cohomology H*(I,R) is isomorphic to the
singular cohomology of X. Each differential form on a symmetric space 2" induces
a cohomology class on Isom(.2") defined chosing a basepoint and integrating on
geodesic simplices [Dup76].

) [Dup76 2(H2,R)PSL2(R) (3)

l P

Q*(Z/I,R)

smg( — HdR(E R)

\ e

R

The power of group cohomology is that it is relatively easy to prove that most
natural diagrams, as diagram (3) in this case, commute. This is the idea behind the
fundamental theorem of homological algebra. We won’t have time to discuss it here
in detail, apart from pointing out places where it plays a crucial role, and refer to
[Bro82, Gui80, Mon01] for a thorough discussion in different settings. It is however
worth mentioning that most cohomological theories are set up so that an analogue
of the fundamental theorem of homological algebra works.

We just introduced a differential geometric, and a cohomological way of select-
ing components of the representation variety. There are two directions in which this
ideas can be generalized. On the one hand, we can also approach the study of rep-
resentations of fundamental groups of surfaces with boundary. On the other we can
consider different Lie groups G as targets. The only requirement is that the associ-
ated symmetric space admits a G-invariant differential two form that can be used
to define the volume of a representation. Such Lie groups are precisely the Hermi-
tian Lie groups whose basic properties will be discussed in the next section. We
will discuss how bounded cohomology can help integrating differential forms on
non-compact surfaces in Section 4.
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3 Hermitian Lie groups

Definition 1. A noncompact simple Lie group G is Hermitian if one of the following
equivalent properties holds:

1. The symmetric space G/K admits a G-invariant complex structure;
2. the symmetric space G/K is a Kihler manifold;
3. there is a G-invariant differential two form on G/K.

Hermitian Lie groups are classified. In addition to two exceptional Lie groups
E¢(—14) and E7(—25), there are, up to isogeny,four classical families: SU(p,q),
SO(2,n), Sp(2n,R), SO*(2n).

We will now describe in a bit more detail the symmetric space associated to
Sp(4,R) = SO°(2,3) highlighting some general features that are useful in the study
of maximal representations. We refer the reader to [Kor0O0] for the general case. We
identify Sp(4,R) with the subgroup of GL(4,R) consisting of matrices preserving
the symplectic form (-,-) represented, with respect to the standard basis, by the

matrix <_? " Igz) . The elements of Sp(4,R) have expression
'AD—-'CB=1d
A B P
(natnc ) 4C=ch @

We extend by linearity the symplectic form (-,-) to a symplectic form (-, )¢
on C* and denote by .Z(C*) (resp. Z(R*)) the complex (resp. real) Lagrangians,
namely the maximal isotropic subspaces for (-, )c:

ZL(CH) ={V €Gna(CH | (-, )yxv =0} . ©)

The group Sp(4,R) acts on .#(C*), and the real Lagrangians . (R*) naturally sit as
an half-dimensional submanifold of .#(C*) preserved by the Sp(4,R) action. The
symplectic form (-,-)¢ induces an Hermitian form

h(v,w) = i{v,W)c

which is also preserved by the action of Sp(4,R). A model for the symmetric space
associated to Sp(4,R) can be given as the open, semialgebraic subset of .Z(C*)
given by

X = {V € Z(C*)| hly is positive definite} . (6)

Notice that .Z(R*) is contained in the topological closure X of X in .#(C*) and
is the only closed Sp(4,R)-orbit in dX. Indeed the real Lagrangians are the Shilov
boundary of the symmetric space X, and can also be characterized by the property
that it is the unique minimal subset of the closure X with the property that all con-
tinuous functions on X that are holomorphic on X satisfy | f(x)| < max 2@y f()
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for all x € X. What we just described in our specific case is the Borel embedding of
the symmetric space, and has an analogue for each Hermitian symmetric space.
A more concrete model is the Siegel upperhalf plane:

2 ={X+1iY|X € Symy(R), Y € Sym,(R) positive definite}. (7

The group Sp(4,R) acts on 2" by fractional linear transformations and the iden-
tification of X with .2 is given by restricting the affine patch Sym,(C) of .Z(C*)
parametrizing subspaces transverse to span{ej, e }: each such Lagrangian is uniquely
spanned by the columns of the matrix (Izd) for some complex symmetric matrix Z. It
is easy to verify that the restriction of / to the subspace associated to the symmetric
matrix Z is positive definite if and only if the imaginary part of Z is positive definite.
Clearly 2" admits a Sp(4, R)-invariant complex structure, and hence is a Hermi-
tian symmetric space. The Kahler form o at the point Z = X +iY € % has expres-
sion
o=tr(Y 'dzZAY~'dZ) (®)

where the multiplication is intended as matrix multiplication (cfr. [Sie43, Section
11]). This is normalized so that the minimal holomorphic sectional curvature is -1.

As in Section 2, if X is compact, we can use the Kéhler form @ to define a volume
for a representation p : I; — Sp(4,R). We chose a p-equivariant map f: X — 2
and define

1
T(p) =[S0 ©)

This is known as the Toledo invariant: in [Tol89] Toledo introduced this def-
inition of volume of a representation and combined it with ideas of Gromov and
Thurston on bounded cohomology and simplicial volume to prove that what we
would now call maximal representations in PU(1,n) = Isom(H{,) stabilize complex
geodesics.

We will see in the next section that for any representation p : I' — Sp(4,R) we
have |T(p)| < 4g —4. Maximal representations are precisely those homomorphisms
for which equality is attained.

3.1 Some totally geodesic subspaces

We finish this section singling out some totally geodesic subspaces of 2~ that will
play a crucial role in the following. These are all tight subspaces as defined in
[BIWO09].
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3.1.1 Polydiscs and diagonal discs

An important feature of Hermitian symmetric spaces is that maximal flats complex-
ify to polidiscs: in our setting this means that each two dimensional totally geodesic
flat subspace R? — 2" is contained in a unique totally geodesic holomorphically
embedded copy of H? x H2. If H denotes the upperhalf plane model of the hyper-
bolic space, an example of such a polydisc is given by

H>xH> - 2 (A, p) <’Ol 2) (10)
We will refer to this polydisc as a model polydisc since each other polydisc is trans-
late of our model by an element in Sp(4,R).
It is easy to verify that the Kdhler form o restricts to the product of the Kéhler
forms of the two factors. This implies that if we consider the diagonal disc

5 A0
H* — 2 lH(O)L). (11
the restriction of the Kihler form of 2" to H?, is twice the Kéhler form of H?. Using
this information it is easy to verify that if we denote by A : SL(2,R) — Sp(4,R) the
diagonal inclusion (the unique homomorphism equivariant with the diagonal disc),
we get that for any hyperbolization p : I — SL;(R), the composition Aop : I" —
Sp(4,R) is a maximal representation.

3.1.2 The irreducible representation

Another example of totally geodesic subspace of 2~ isomorphic to the Poincare’
disc is the subspace associated to the image of the irreducible representation
1:SL(2,R) — Sp(4,R): as opposed to the image of a diagonal disc this totally
geodesic copy of H? is not holomorphically embedded, however it also has the
property that the Kihler form restricts to twice the Kihler form of H? and hence
the composition of any hyperbolization with the homomorphism 1 is a maximal
representation.

4 A crash course in bounded cohomology

Let G be a locally compact, second countable group (in this note G will either
be I' = m(X) endowed with its discrete topology or Sp(4,RR)). The continuous
bounded cohomology of G with real coefficients is the cohomology of the complex

»(G.R)? = {f:G**' - R| continuous, bounded, G-invariant } . (12)
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The continuous bounded cohomology of G is endowed with a canonical seminorm
I - ||l defined by the infimum of the /*-norms of the representatives. Burger and
Monod proved that this seminorm is a norm in degree 2 [BM02], however, at least
for I', this is not a norm in degree 3 [Som97], namely there exist classes of zero
norm. In general the (continuous) bounded cohomology is a quite misterious theory
and many basic questions are still open, however, in degree two, the picture for Lie
groups is completely understood:

Theorem 2 ([BMO02, vES3]). Let G be a semisimple Lie group without compact
factors, then
H:4(G.R) = H}(G,R) = 2*(G/K,R)“ (13)

In particular H2, (Sp(4,R),R) = R. However it is worth keeping in mind that the

bounded cohomology of discrete groups is rather wild: Hi(l" ,R) is infinite dimen-
sional both in the case of surface groups and in the case of free groups [Som97].

4.1 Toledo invariant and Milnor-Wood type inequalities, compact
surfaces

The bounded cohomological class corresponding to the Kihler form is called the
bounded Kdhler class and usually denoted by Kg. In the case of classical Lie groups
the norm of the bounded Kihler class was computed by Domic and Toledo:

Theorem 3 ([DT87]). Let G be a semisimple Lie group all whose factors are of
Hermitian type. Then
K2 |o = rank(G). (14)

Since bounded cochains form a subcomplex of ordinary cochains, there is a nat-
ural map, the comparison map, between bounded cohomology and ordinary coho-
mology:

c:HY{(I;,R) — H*(I3,R). (15)

We already pointed out in Section 2 that the cohomology of the group I is isomor-
phic to the cohomology of the surface X. In particular we can follow the arrows
H2, (Sp(4,R),R) = H2(I'y,R) — > H2(Ty,R) — > H2(L,R)
16)
and use the pairing of the singular cohomology with the singular homology to define
the Toledo invariant as

T(p) = (cop™(Kepam): [Z])- (17

Bounded cohomology turns out to be a precious tool for the first time now: it
allows to easily prove a Milnor-Wood type inequality for the Toledo number (this
is in general hard to acheive with differential geometric tools only): we know that
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the norm of K’é’p< 4R) is 2, moreover one immediately checks from the very definition
that p* is norm non-increasing. In particular we get

IT(P)] < llp* (Kpa )l [E - (18)

Since the simplicial volume of X is 2g — 2 this reads |T'(p)| < 4g — 4.

4.2 Surfaces with boundary

The most important reason why bounded cohomology is needed in the definition
of maximal representations will be clear in Section 6: it allows to deduce informa-
tions on boundary maps. Another advantage of bounded cohomology with respect
to ordinary cohomology is that it allows to treat compact and non-compact surfaces
within the same framework.

If the surface X is non compact, H?(X,R) = H?(FF,,R) is trivial, hence the co-
homological definition of maximality discussed in Section 2 doesn’t apply. Also the
differential geometric definition of the Toledo invariant gives problems: the value of
the integral isn’t anymore independent on the choice of the equivariant map (as an
example one can consider f being the lift to the universal cover of a retraction on
a spine of the hyperbolic surface). However amenable groups (for example the pe-
ripheral subgroups of the fundamental group of the surface) are invisible to bounded
cohomology, and this allows to prove the following:

Theorem 4 ([BBI" 14, KK15]). Let X be a surface of finite type with boundary 0X.
There is an isometric isomorphism

i :HL(Z,R) —» HL(Z,0Z,R) (19)

Since Hy(X,dX) is one dimensional generated by the relative fundamental class
[X,0X], one can define the Toledo invariant as

T(p) = {coi*op* (K p)): [£:9Z]) (20)

and prove, also in this case, that the Toledo invariant satisfies a Milnor Wood type
inequality. See [BIW10, Section 3] for more detail.

5 Zariski closure

The same arguments that allow to prove the Milnor-Wood inequality also allow to
understand the possible Zariski closures of a maximal representation. Indeed the
pullback map p* factorst through the restriction to the Zariski closure of the repre-

sentation p. Denoting by p (I )Z the Zariski closure of the image of a representation



Maximal Representations 9

——Z
p:I' - Gandbyi:p(I')” — G the inclusion, we have that p* can be written as
the composition

H2,(Sp(4,R)) ——= H2,(p(T)) ~L> H3(T, R) @1

This observation, together with Theorem 2 implies that, if p is maximal and the

Zariski closure p(I" )Z is simple, then it needs to be a group of Hermitian type:

otherwise we would get that Hz(p(F)Z7R) = 0 and the same would necessarily be
true for the pullback p*(Ké’p( 4,H@).

It follows from the proof of the Milnor-Wood inequality that we discussed in
Section 4 that if p is maximal then ||p*(Kgp(4))||m = ||K§p(4)||w We observed that
the p* factors through the inclusion i* of the Zariski closure of the image of p. Since
both i* and p* are norm non increasing, we deduce that, whenever p is maximal,

the inclusion i : p(I")” — Sp(4,R) needs to be a tighr homomorphism: the induced
map in continuous bounded cohomology is isometric [BIW09].

Tight homomorphism were defined and studied by Burger, lozzi and Wienhard in
[BIW09]. They also discussed the notion of tight embedding of symmetric spaces.
For us these will be totally geodesic embeddings equivariant with a tight embedding
of Lie groups (see [BIW09] for a more direct definition).

Determining the tightly embedded symmetric subspaces of Sp(4,R) is easy: their
rank is at most two, therefore, apart from 2" itself, can only be H? and H? x H?
and it turns out that the only possible tight embeddings are the ones described in
Section 4. Determining the precise Zariski closure of a maximal representation is
slightly more involved (since there might be factors in the compact centralizer of
their image). All the details can be found in [BGPG12].

5.1 The general case

In general the symmetric spaces associated to the possible Zariski closures of a max-
imal representations where discussed in [HP14] building on ideas from [BIW09] and
[Ham12]: in order to classify all possible tight embeddings between classical Lie
groups, it is useful to consider the associated linear representation, and its decom-
position in irreducible factors. It was already proven in [BIWQ9] that the irreducible
factors of a tight representation of SLy(R) can only have odd weights, these up to
standard Lie group inclusions, up to standard Lie group inclusions, correspond to
the irreducible representations of SL;(R) having values in Sp(2x,R). In his thesis
[Ham12] Hamlet smartly deduced that a tight homomorphism of any other simple
Lie group needs to be holomorphic. Similar ideas allowed us to prove in [HP14]
that any irreducible tight representation of a semisimple Lie group essentially fac-
tors through a simple factor and finish the classification comparing the ranks of the
groups involved.
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6 Boundary maps

We now go back to the bounded cohomological framework, and in particular to The-
orem 2 and discuss how bounded cohomology can be used to deduce information
on equivariant boundary maps.

Domic and Toledo (and in wider generality Clerc and Orsted) gave an useful
representative of the class in H? (G, R) corresponding to the Kéhler form, which
also allows to compute its norm:

Theorem 5 ([Dup76, CO03, BIW10]). Fix any Lagrangian | € Z(R*). The class
Ké’p( 4R) corresponding to the Kahler form is represented by the cocycle

1

,81,82) = — o =sign(Q’ ) 22
Blsogra) = [ o=@y 2)

In particular || Ké’p(4 R) l|loo = 2.

Here A(gol,g11,g20) denotes an (ideal) geodesic triangle in 2~ whose sides are
pairwise asymptotic, and point to the Lagrangian g;/ in the sense that the stabilizer
in Sp(4,R) of the ray is the same as the stabilizer of the Lagrangian g;/. We denote
by Qg,ol’gll,gzl the quadratic form on gol ® g1/ @ g»! given by

il a6 (V0:V1,v2) = (vo,v1) + (vi,v2) + (v2,v0) (23)

and by signature of a quadratic form we understand the difference of the number
of positive eigenvalues and the number of negative eigenvalues. The cocycle f; is
referred to as the Kashiwara cocycle [LV80]. One can verify that if (gol,g1/,g21)
are pairwise transverse then the signature of Qfgoh 110l is equal to the signature of

. . l
the quadratic form Qg / ¢,1.6,1 0N g0l given by Qg ¢11.0,1(V) = (¥, ng()ll,gzl(v)>’ where
a1l

wol.gol - 801 — g2l is the linear map defined by v+ ngolll,gzl(v) e gl

It 1s possible to check that the value of the Kashiwara cocycle is a complete in-
variant for the action of Sp(2n,RR) on triples of pairwise trasnverse Lagrangians.
In particular there are exactly n+ 1 Sp(4,R)-orbits in the set of triples of pairwise
transverse Lagrangians and a triple (lo,l1,12) is maximal if Qy,, , is positive defi-
nite.

Ideas in the proof of Theorem 5. We already mentioned that Dupont [Dup76] showed
that the correspondence Q%(G/K,R)® — H2(G,R) can be obtained integrating on
totally geodesic triangles with endpoints (gox, g1, g2x) in the symmetric space. This
was another instance of a fundamental theorem of homological algebra. Inspired by
the work of Domic and Toledo [DT87], Clerc and Orsted [CO03] showed that, if
the triple (gol,g1l,82!) consists of pairwise transverse subspaces, the limit as the
basepoint x converges to the Lagrangian / is well defined, and can be extended for
all triples restricting to suitable tangential limits.

We will now verify the equality with the signature of a quadratic form, in the case
of pairwise transverse Lagrangians. Observe that, for each element g € Sp(4,R), and
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for each triple (ly,!,l») of pairwise transverse Lagrangian the equality

1 1
—/ 0= —/ o (24)
T JA(lg 1 k) T JA(gly.g 'l gln)

holds. A direct computation shows that, up to the symplectic action we can assume
that lp = (ej,e2),l; = (e3,es) and I, corresponds to (%‘ fz) These three points
belong to the boundary of the model polydisc (cfr. Section 3.1.1). The result follows
combining the fact that the area of an ideal triangle in H? is =7 depending on the
orientation and the fact that the quadratic form Qy, ;, s, is represented by the matrix
(Al 0 ) 0

0 A

Unfortunately we won’t have space to discuss this in detail here, but the strenght
of bounded cohomology as opposed to ordinary cohomology is that the bounded
cohomology can be computed on the boundary. An exemple of this is provided in
the next theorem, whose main ingredients are, again, the fundamental theorem of
homological algebra and the fact that amenable groups are negligible in bounded
cohomology:

Theorem 6 ([ BMO02]).

Hi(m (2),R) = L (0H7), R)™ ), (25)
Theorem 6 is particularly useful since it can be used to realize the pullback via
measurable equivariant boundary maps:
Theorem 7 ([BI09]). For each measurable p-equivariant map ¢ : 9H> — 2 (R?)
the diagram

(OH2) Ry <L (2 (R, R)S 26)

o

mathb fH} (I',R) <————H2, (G, R)

(==}
Lalt

commutes. In particular p is maximal if and only if for almost every positively ori-
ented triple (xq,x1,x;) we have

2: ] X X X d . 27
/SLz(R)/F slgn(Q¢<g 0):9(gx1),9(g 2)) 8 27)

By now the existence of measurable boundary maps equivariant with respect to
Zariski dense representations is well established (a proof for the result needed in our
setting can be found in [BI0O4, Proposition 7.2]), and another application of the ideas
sketched in Section 5 about tight embeddings is that, when dealing with maximal
representations, one can reduce to the case of Zariski dense representations.
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As a consequence of Theorem 7, the information on the maximality of the repre-
sentation p, combined with bounded cohomology, allows to deduce information on
the boundary maps:

Theorem 8 ([BIW10]). A representation p : I' — Sp(4,R) is maxmal if and only
if there exists a p-equivariant map ¢ : IH> — £ (R*) which is monotone, namely
such that for almost every positively (resp. negatively) oriented triple (xo,x1,%2) in
OH? the quadratic form Qo (x0).0(x1),0 (x2) IS POSsitive (resp. negative) definite.

It is possible to show that since ¢ is monotone, if X is compact, then ¢ is necessarily
continuous and uniquely defined. If instead X has cusps, ¢ might not be continuous
in the cusp points, but can be chosen to be right or left continuous [BIW10].

7 Application

We finish this note discussing some consequences of the existence of monotone
boundary maps:

Theorem 9 ([BIW10]). Let p be a maximal representation, then it is discrete and
injective. If moreover X is compact then it is Anosov.

Proof. We will only sketch a proof of how injectivity can be deduced from the
fact that the equivariant boundary map ¢ is monotone. Let us first assume by con-
tradiction that the representation p is not injective. We chose an infinite order el-
ement ¥ in ker(p) and an interval  C JH? small enough so that ,y- 1,7 -I are
disjoint and positively oriented. Chose x,y,z in I so that the triple (x,y,z) is pos-
itively oriented. We get that (y*-x,Y-y,z) is negatively oriented. The contradic-
tion arises from the fact that, since 7 is in the kernel of p, and ¢ is p-equivariant,
(O(Y*-x),0(7-y),0(2)) = (¢(x),0(y),d(z)) but monotonicity would imply that the
quadratic form associated to the first triple is negative definite and the one associated
to the second one is positive definite.

The fact that the boundary map ¢ associated with a maximal representation is
positive, in the sense that the quadratic form associated to any maximal triple is
positively definite, allows to generalize the Collar Lemma valid for hyperbolizations
to all maximal representations:

Theorem 10 ([BP15, Theorem 6]). Lez p : I — Sp(4,R) be maximal. For each y,m

in I" whose axis intersect we have:

(M)A (p) =1 (A(p(m)r(p(n))|-1) > 1 (28)

where for an element g in Sp(4,R) we denote by Ai(g),A2(g) its eigenvalues of
absolute value greater than or equal to 1.

We refer the reader to [BP15] for a proof. A fundamental ingredient in this case is
a matrix valued crossration associated to each positively oriented 4-tuple (x,y,z,w)
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in dH?. This is a complete invariant of the 4-tuple (¢ (x), ¢ (y), ¢(z),$(w)) up to the
symplectic imagegroup action, and allows to read informations on the translation
lengths of the images p(7) of elements in the fundamental group from the values of
the boundary map.
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