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Chapter 1

Abstract

This thesis will study the dynamics of once punctured torus groups. These
groups are discrete subgroups of PSL2(C) and act on the Riemann’s sphere via
Möbius transformations.
The thesis is divided into two parts. In the first part, we construct the once
punctured torus groups in PSL2(R) and classify them. The classification is
made on the basis of the behavior of the limit set. We will prove that each
group belongs to exactly one of the two classes: complete or incomplete.
In the second part, we want to deform the complete once punctured torus groups
in PSL2(C) by two different types of deformations. They correspond to very dif-
ferent behaviors. The main goal here is to examine which properties of the once
punctured torus groups are lost and which are preserved under which type of
deformation. Consequently, we will study these deformed groups experimentally
and qualitatively.

In dieser Thesis wird die Dynamik von einmal punktierten Torusgruppen un-
tersucht. Diese Gruppen sind diskrete Untergruppen von PSL2(R) und wirken
auf die Riemannsche Zahlenkugel durch Möbius Transformationen.
Die Arbeit ist in zwei Abschnitte eingeteilt. Im ersten konstruieren wir die
einmal punktierten Torusgruppen und klassifizieren sie. Die Klassifizierung er-
folgt auf der Grundlage des Verhaltens der Grenzwertmenge. Wir werden be-
weisen, dass jede Gruppe zu genau einer der beiden Klassen, vollständig oder
unvollständig, gehört.
Im zweiten Teil wollen wir die vollständigen einmal punktierten Torusgruppen
in PSL2(C) durch zwei verschiedene Arten von Verformungen deformieren. Sie
entsprechen sehr unterschiedlichen Verhaltensweisen. Das Hauptziel ist es zu
untersuchen, welche Eigenschaften der einmal punktierten Torusgruppen bei
den verschiedenen Deformationen verloren gehen und welche erhalten bleiben.
Daher werden wir diese deformierten Gruppen experimentell und qualitativ un-
tersuchen.
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Chapter 2

Introduction

The problem we want to study in this thesis is strongly linked with 1-dimensional
complex dynamics, that is, the study of iteration of holomorphic functions on
the Riemann sphere C ∪ {∞} (see Milnor [Mil06]). We will iteratively apply
holomorphic functions and examine the behavior of orbits of points as the num-
ber of iterations tends to infinity. However, the functions we will use, which are
Möbius transformations, namely

z 7→ az + b

cz + d
, with

(
a b
c d

)
∈ PSL2(C),

would not produce particularly exciting results if we restricted ourselves to only
one function, which is the norm in complex dynamics.
This stems from the fact that Möbius transformations can be reduced to three
basic operations: rotations, translations, and homotheties. Therefore, by it-
erating them, the results would be fairly predictable. Nevertheless, allowing
ourselves to use two Möbius transformations A and B, or rather four transfor-
mations, since it is now reasonable to incorporate the inverse functions A−1 and
B−1 as well, produces rich dynamics and a variety of interesting phenomena.
Now that we have discussed how we want to employ these functions, the ques-
tion arises as to which of these Möbius transformations to choose. Our choice
has a geometric nature. We consider hyperbolic once punctured torus groups,
which we now briefly introduce: In the Euclidean setting, one can construct a
flat torus by identifying the opposite sides of a given rectangle using a pair of
isometries. The shape of the torus changes geometrically as we vary the shape
of the rectangle.
We can do something similar in a hyperbolic setting. One can construct a hy-
perbolic once punctured torus, which is a torus from which one point has been
removed, by isometrically gluing the opposite sides of an ideal quadrilateral in
the hyperbolic plane H2. As the isometries of H2 are naturally Möbius trans-
formations, the identifications of the opposite sides generate a group of Möbius
transformations. We call such a group a once punctured torus group.
In the course of the thesis, we will realize that these ideal quadrilaterals can be
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characterized by one value d ∈ R. Due to the fact that the edges of an ideal
quadrilateral have infinite length, we have one additional degree of freedom in
each identification of opposite sides, which can be expressed with two additional
parameters s, t ∈ R.
Fixing these three variables, we are able to create a pair of Möbius transfor-
mations Ad,t and Bd,s with the geometric properties described above. We will
generate a group G with these two functions whose elements are all finite com-
positions of the two Möbius transformations and their inverses. These groups
have additional properties: They are discrete and isomorphic to a free group on
2-generators, which is the statement of the following proposition.

Proposition (Discreteness). For every d, t, s ∈ R, the group G generated by
Ad,t and Bd,s is discrete and isomorphic to a free group on 2-generators.

A discrete group of Möbius transformations of PSL2(C) is called a Kleinian
group. The theory of Kleinian groups has several connections with hyperbolic
geometry in dimensions 2 and 3 (see Marden [Mar07]).
The iterations we described at the beginning can be represented by G as a se-
quence of group elements for which we can reasonably introduce a limit. Eval-
uating such a limit function at any point produces a limit point, which is an
element of the Riemann sphere. The collection of all possible limit points for a
given group is called the limit set Λ.
The main theorem of this thesis, which is stated below, shows a dichotomy for
Λ in terms of a linear expression involving the three parameters d, t and s: The
limit sets are either circles or Cantor sets.

Theorem (Classification). Given a quadrilateral Q by the parameter d ∈ R and
parameters s, t ∈ R, consider the once punctured torus group G < PSL2(R),
which is generated by Ad,t and Bd,s. For the limit set Λ we have the following
dichotomy:

1. If d+ t+ s 6= 0 then Λ is a Cantor set.

2. If d+ t+ s = 0 then Λ is a circle.

Groups of the first class are called incomplete, and groups of the second
class complete. The graphic below shows a visualization of the limit set for one
example from each of the two classes.
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Figure 2.1: Complete and incomplete limit sets.

(a) Incomplete with parameters:
d ≈ 0.11, t ≈ −6.16, s ≈ 3.3.

(b) Complete with parameters:
d ≈ 0.11, t ≈ −6.16, s ≈ 6.05.

By visualizing the limit set for several parameter combinations, we will re-
alize that there is a correlation between |d + t + s| and the size of the holes in
the Cantor set, which will conclude our study of the first class.
In the second part of the thesis, we qualitatively and experimentally study sev-
eral bending deformations of complete once punctured torus groupsG < PSL2(R)
in PSL2(C). While doing so, we will introduce three additional parameters
θ, α, β ∈ [−π, π), which describe two different types of deformations. Through
experiments, we will discover that there are deformations where discreteness
or being isomorphic to a free group on 2-generators is lost and others which
systematically produce quasi-circles.
The following is a version of a classical theorem in Kleinian groups (as discussed
for example in Chapter 5 of Outer circles [Mar07]) stated in a way that makes it
convenient for us to use and is adapted to our elementary setting. The theorem
provides us with a good basis to start our analysis from and gives a reason why
we are excluding incomplete groups in this part of the thesis.

Theorem (Stability). For every d, t, s ∈ R, the group G = 〈Ad,t, Bd,s〉 < PSL2(R)
has one of the following properties:

1. If G is incomplete: Any small deformation Ĝ = 〈Âd,t, B̂d,s〉 < PSL2(C)
is discrete and isomorphic to a free group on 2-generators.

2. If G is complete: Any small deformation Ĝ = 〈Âd,t, B̂d,s〉 < PSL2(C)

with [Âd,t, B̂d,s] := Âd,tB̂d,sÂ
−1
d,t B̂

−1
d,s parabolic is discrete and isomorphic

to a free group on 2-generators.

The theorem implies that incomplete groups are stable under sufficiently
small deformations, whereas the complete groups are stable only under certain
small deformations and can be highly unstable under other deformations. What
we mean by unstable is that small changes in the parameter space lead to
completely different behaviors of the limit sets, which range from nice fractals
to complete chaos. The figure below shows an example of such a highly critical
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scenario. In this example the limit set of the group G is a fractal, but with a
slight perturbation in the parameters the limit set becomes chaotic.

Figure 2.2: Fractals and chaos.

(a) Fractal with parameters:
d = t = s = 0 and θ = π/2.

(b) Chaos with parameters:
d = t = s = 0 and θ = 1.6.

This property is again reminiscent of complex dynamics, where small alter-
ations of the iterating function can lead to completely different Julia sets and
slight changes of the starting parameter can turn a bounded orbit to an un-
bounded orbit or vice versa.
The book Indra’s pearls [MSW15], in particular Chapters 6 and 8, explores sim-
ilar phenomena as this thesis. They also iterate Möbius transformations and
analyze the patterns this creates. However, their approach to this topic is more
algebraic while ours focuses more on hyperbolic geometry.
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Chapter 3

Preliminaries

This chapter provides a preliminary background on hyperbolic spaces, discrete
groups, and free groups. The first section will introduce two models of the
hyperbolic space and a description of its isometries. The second will describe
discrete groups, limit sets, and their properties. The last will explain free groups,
words, and word length.

3.1 Hyperbolic Space

Hyperbolic space and its geometry is a very broad topic, so we will only be able
to scratch the surface with this introduction. For further reading, we recommend
An Introduction to Geometric Topology by Bruno Martelli [Mar16], on which
this section is also based.
There are several models used to describe hyperbolic space, for example the
hyperboloid model, the Klein model, the half-space model and, the Poincaré
disk model. We will focus on the last two, but before we introduce them, we
want to briefly talk about hyperbolic space in general.
Hyperbolic space, from now on denoted by Hn, where n is the dimension, is
an example of non-Euclidian geometry. It admits a well-defined notion of lines,
k-dimensional planes, lengths, and angles. However, it has the property, that
given an n− 1 dimensional plane and a point, which is not part of the plane,
there exist infinitely many n − 1 dimensional planes which contain this point
and are disjoint from the given plane. Nevertheless, some standard Euclidean
constructions are still valid, for example, two points form a unique line and that
given a line and a point there exists a unique line through the point, which is
perpendicular to the given line. This concludes our general discussion, and we
can move on to our first model of Hn.
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3.1. HYPERBOLIC SPACE

3.1.1 Poincaré Disk Model

The Poincaré disk model of Hn is the space

Dn := {x ∈ Rn| ‖x‖ < 1},

endowed with lines, which are either circular arcs perpendicular to ∂Dn or
straight lines through the center (see Proposition 2.1.17 in Chapter 2 [Mar16]),
segments, which are parts of the unique line defined by two points, a metric,
and angles.
The angles in this model are equivalent to the Euclidean ones, so we measure
them as we measure the angle of intersection between two elements in Euclidean
space. A model with this property is called conformal.
If n is greater than 2, then there exist infinitely many copies of D2 inside Dn

that are either disks, which are perpendicular to ∂Dn and contain the origin or
S2 spheres, which are perpendicular to ∂Dn.
Additionally, this model can be easily visualized, at least for dimensions 2 and
3, where Dn is given by the unit disk.
As we can see in Figure 3.1, we can draw hyperbolic triangles and quadrilaterals
in D2. Differently from the Euclidean case, the sum of their interior angles is
smaller than 180o and 360o respectively.

Figure 3.1: Hyperbolic shapes.

(a) Hyperbolic triangle. (b) Hyperbolic quadrilateral.

We can even go as far as creating a quadrilateral with an interior angle sum
of zero. A quadrilateral with this property is called ideal, and an example can
be seen in Figure 3.2. Notice the vertices of such a quadrilateral are on ∂D2.
We will assume that every quadrilateral we talk about from now on is ideal.
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3.1. HYPERBOLIC SPACE

Figure 3.2: Ideal quadrilateral.

3.1.2 Half-Space Model

The second model we use, the half-space model

Hn := {(x1, ..., xn) ∈ Rn |xn > 0},

is endowed with a metric, which is again conformal to the Euclidean one. The
boundary of Hn is Rn−1 × {0} ∪ {∞}. By Proposition 2.1.21 in Chapter 2
[Mar16], lines in this model are either half circles, with their centers on ∂Hn,
or vertical lines. Therefore, segments exist in this model as well.
Just like in the Poincaré disk model, if n is greater than 2, there are infinitely
many copies of H2 in Hn, which are either vertical half planes or half spheres
centered at a point in ∂Hn. In Figure 3.3 we can see the two ways an ideal
quadrilateral can be drawn in H2.

Figure 3.3: Quadrilaterals in the half-space model.

(a) Quadrilateral with vertices in R. (b) Quadrilateral with vertex equal to ∞.

Before we talk about isometries we want to make one remark about distances
in Hn. Obviously, distances are different in hyperbolic space compared to Eu-
clidean space. Nevertheless, it is possible to calculate the distance between two
given points in any given model with a simple formula. For our purposes, it is
enough to know how to calculate the distance between two points x, y ∈ H2,
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3.1. HYPERBOLIC SPACE

which lie on a vertical line. For these two points the distance is given by

dH2(x, y) =

∣∣∣∣log

(
Im(x)

Im(y)

)∣∣∣∣.
If we want a signed distance, we need an orientated line. The orientation we
chose is upwards, so if x is above y, then the distance is positive, else the distance
is negative. Hence, the signed distance is given by

δH2(x, y) = log

(
Im(x)

Im(y)

)
.

3.1.3 Isometries of H2

The isometry group of H2 is PSL2(R) (see Proposition 2.3.8 in Chapter 2
[Mar16]) and its elements are the projective class of 2 x 2 matrices with real
entries and determinant 1, so they are invertible. PSL2(R) acts on H2 through
Möbius transformations, which we will now define.

Definition 3.1.1. The matrix
(
a b
c d

)
∈ PSL2(R) defines the following Möbius

transformation (
a b
c d

)
(z) :=

az + b

cz + d
.

These transformations are bijective, orientation-preserving, and holomor-
phic. We now want to classify these transformations into three distinct types.

Proposition 3.1.1. Let φ ∈ PSL2(R) be a non-trivial isometry, then exactly
one of the following holds:

1. The isometry φ has at least one fixed point in H2. We call such an isom-
etry elliptic.

2. The isometry φ has no fixed points in H2 and has exactly one in ∂H2.
We call such an isometry parabolic.

3. The isometry φ has no fixed points in H2 and has exactly two in ∂H2.
We call such an isometry hyperbolic.

Proof. See Proposition 2.2.5 in Chapter 2 of the book An Introduction to Geo-
metric Topology [Mar16].

There is an easy way to check for a given isometry, whether it’s elliptic,
parabolic, or hyperbolic, by only looking at its trace.
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3.1. HYPERBOLIC SPACE

Proposition 3.1.2. Let φ ∈ PSL2(R) be a non-trivial isometry, then

1. elliptic ⇐⇒ |tr(φ)| < 2,

2. parabolic ⇐⇒ |tr(φ)| = 2,

3. hyperbolic ⇐⇒ |tr(φ)| > 2.

Proof. See Proposition 2.3.9 in Chapter 2 of the book An Introduction to Geo-
metric Topology [Mar16].

Every element of a given class is conjugate to the normal form of their class,
which are defined as follows:

1. Elliptic transformations are conjugate to z 7→ cos(λ)z−sin(λ)
sin(λ)z+cos(λ) , with λ ∈

[−π, π).

2. Parabolic transformations are conjugate to z 7→ z + a, with a ∈ R \ {0}.

3. Hyperbolic transformations are conjugate to z 7→ λz, with λ ∈ R+ \ {1}.

As a consequence, every Möbius transformation is reducible to a rotation, trans-
lation, or homothety.

3.1.4 Isometries of H3

Before we look at the isometries, we want to introduce a representation of H3.
We can identify H3 with C×R+ and ∂H3 with C∪{∞}. So, an element of H3

can be written as a vector (z, t), with z ∈ C and t ∈ R+, whereas an element of
∂H3 is just a complex number or infinity.
The isometry group of H3 is PSL2(C) (see Proposition 2.3.10 in Chapter 2
[Mar16]), which acts nicely on the boundary of H3 via Möbius transformation
and in a more complex way on the interior.
However, if we limit ourselves to rotations R around vertical lines, the action is
quite simple and given by,

(z, t) 7→ (R(z), t), for every (z, t) ∈ H3.

Hence, t is preserved and we can focus on the actions on the boundary. A
rotation Rpθ with angle θ ∈ [−π, π) around the point p ∈ C can be written as

Rpθ(z) = (z − p)eiθ + p =
z · eiθ + p(1− eiθ)

z · 0 + 1
,

for every point z ∈ C. This can then be transformed into a Möbius transforma-
tion given by the matrix (

eiθ p(1− eiθ)
0 1

)
.
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3.2. DISCRETE GROUPS

If we now multiply the matrix by e−
iθ
2 we can change its determinant to 1. The

result of this multiplication is the following matrix,

Rpθ :=

(
e
iθ
2 p(e−

iθ
2 − e iθ2 )

0 e−
iθ
2

)
.

There is an analog to Proposition 3.1.2 for the elements of PSL2(C), which is
as follows:

Proposition 3.1.3. Let φ ∈ PSL2(C) be a non-trivial isometry, then

1. elliptic ⇐⇒ tr(φ) ∈ (−2, 2),

2. parabolic ⇐⇒ tr(φ) = ±2,

3. hyperbolic ⇐⇒ tr(φ) 6∈ [−2, 2].

For the elements in PSL2(C), there is also a normal form to which they are
conjugated. These normal forms are listed below:

1. Elliptic transformations are conjugate to z 7→ eiλz, with λ ∈ [−π, π).

2. Parabolic transformations are conjugate to z 7→ z + a, with a ∈ C \ {0}.

3. Hyperbolic transformations are conjugate to z 7→ λz, with λ ∈ C× \ {1}
and |λ| 6= 1.

3.2 Discrete Groups

In this section, which draws inspiration from Chapter 2 of the book Outer cir-
cles by Albert Marden [Mar07], we want to have a closer look at groups of
Möbius transformations, precisely the ones generated by two elements. There-
fore, we want to introduce a notation: First, if A and B are Möbius transfor-
mations, then we denote by 〈A,B〉 the group they generate, it contains every
finite composition of the four elements A,A−1, B and B−1. Second, we will use
[A,B] := ABA−1B−1, to denote the commutator of A and B.
Now we can formally define discreteness and the limit set for such a group.

Definition 3.2.1. A group of Möbius transformations is discrete if there is no
infinite sequence of distinct elements in the group that converge to the identity.

Definition 3.2.2. For n ∈ {2, 3}, a point ζ ∈ ∂Hn is a limit point of the discrete
group G if there exist ξ ∈ Hn∪∂Hn and a sequence of distinct elements {Tk} ∈ G
such that limk→∞ Tk(ξ) = ζ. The set Λ := {ζ ∈ ∂Hn|ζ is a limit point} is called
the limit set of G.

Remark. The limit set Λ is, by construction invariant under G.

A discrete group is elementary if Λ contains less than three elements. Even
though the limit set can be very complicated, it always has some general prop-
erties which we will heavily use throughout the thesis.
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3.3. FREE GROUPS

Lemma 3.2.1 (Properties of the limit set). Suppose G is non-elementary and
n ∈ {2, 3}.

1. The G-orbit of any ζ ∈ Λ is dense in Λ.

2. Λ is a closed set.

3. The G-orbit of any point x ∈ Hn ∪ ∂Hn accumulates onto Λ.

4. Λ is a perfect set.

5. Either Λ = ∂Hn or its interior is empty.

Proof. See Lemma 2.4.1 in Chapter 2 of the book Outer circles [Mar07].

Lastly, we will define Cantor spaces and relate them to the standard Cantor
set.

Definition 3.2.3. A space Λ is a Cantor space if it is compact, metrizable,
perfect, and totally disconnected.

The following lemma will be stated without a proof, because it is a known
topological fact.

Lemma 3.2.2. Every Cantor space is homeomorphic to the standard Cantor
set.

3.3 Free Groups

For later chapters it will be of occasional use to be familiar with free groups,
words, and reduced word length. But these definitions will come up mainly in
remarks or sidenotes, so this introduction will only be superficial. For more
details, refer to Office Hours with a Geometric Group Theorist [CM17].
We will start by defining a word on a set of letters. In our case, this set will
only contain A and B, but even an infinite set would be possible. A word is
then given as a finite string consisting of these letters and the inverses of these
letters, for example:

AB, A−1BBBAA−1, BAA−1BB−1B−1A.

The empty word, which is a string containing no letters, is also a legal word.
In contrast to a word, a reduced word is one where the letter A is never next
to A−1 and B is never next to B−1. As the name suggests, we can always take
a word and reduce it. This is achieved by eliminating every instance of such
an occurrence. If we take the last word from our previous example, it can be
reduced as follows:

BAA−1BB−1B−1A 7→ BBB−1B−1A 7→ BB−1A 7→ A.
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3.3. FREE GROUPS

We have done the reduction from left to right, but the sequence actually does
not matter, the result is always the same.
The (reduced) word length is given as the number of letters in the reduced
representation of a word, so the word from our last example has a word length
of 1.
With this, we are able to formally define a free group on 2-generators and link
it to the groups of Möbius transformations.

Definition 3.3.1. The free group of 2-generators is the group

F2 := {reduced words in A and B}

with the multiplication: concatenate, then reduce. We can create the inverse
of a group element by swapping each letter with its inverse and arranging the
word in reverse order.

Remark. For a given group G and every gA, gB ∈ G, there exists a unique group
homomorphism φ between F2 and G, such that φ(A) = gA and φ(B) = gA.

We can show, via the following lemma, that a given group is isomorphic to
a free group of 2-generators.

Lemma 3.3.1 (Ping-Pong). Suppose A and B generate a group G that acts on
a set X. If

1. XA, XB ⊂ X are disjoint nonempty subsets, and

2. Ak(XB) ⊂ XA and Bk(XA) ⊂ XB for all non-zero powers k,

then G is isomorphic to a free group of 2-generators.

Proof. See Lemma 5.1 in Chapter 5 of Office Hours with a Geometric Group
Theorist [CM17].

If a group G = 〈A,B〉 < PSL2(C) is isomorphic to a free group of 2-
generator, G is a free group and in context of our groups of Möbius transforma-
tions this means that no reduced word (composition of Möbius transformations)
except the empty word is equal to the identity. In addition, this provides us
with a nice way to represent our group as a graph, the so-called Cayley graph.
An example of such a graph can be seen in Figure 3.4 .
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3.3. FREE GROUPS

Figure 3.4: Cayley graph of word length 3.
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Chapter 4

Dimension 2: Classification
of Once Punctured Torus
Limit Sets

Introduction

In this chapter we introduce the once punctured torus groups G < PSL2(R)
and classify them in terms of the behavior of their limit sets.
Our torus groups G = 〈A,B〉 are generated by a pair of isometries A,B of H2

that identify the opposite sides of an ideal quadrilateral Q. Because the ver-
tices of our quadrilaterals are not elements of the hyperbolic space, the quotient
Q/A ∪B is a punctured torus. This motivates the terminology once punctured
torus groups.
These groups G will be discrete. Hence, they have well-defined limit sets. The
main result of this chapter is a classification theorem that relates the behavior
of the limit sets to the quadrilateral parameter d ∈ R and the two gluing pa-
rameters t, s ∈ R.
The qualitative behavior of the limit sets will only depend on a linear expres-
sion of these three parameters, which will be introduced at the beginning of this
chapter.
Having proven the theorem, we will visualize the limit sets for specific parame-
ters, verifying our findings and examining the qualitative features in regard to
a number of geometric quantities.
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4.1. CREATING A ONCE PUNCTURED TORUS GROUP

4.1 Creating a Once Punctured Torus Group

The three parameters mentioned in the introduction of this chapter consist of
one quadrilateral parameter d ∈ R and two gluing parameters t, s ∈ R.
To get our quadrilateral parameter, we first want to reduce the set of quadrilater-
als we have to consider. To achieve this, we recall that two quadrilaterals Q and
Q̃ are congruent if there exists an isometry φ ∈ PSL2(R) such that φ(Q) = Q̃.
Congruent quadrilaterals form equivalence classes. For our purposes, we only
need one quadrilateral for every equivalence class. We have:

Lemma 4.1.1. Given a quadrilateral Q, there exists an isometry φ ∈ PSL2(R)
such that the vertices of φ(Q) are −1, 0, ed, ∞, with d ∈ R.

Proof. We denote that an element of PSL2(R) will always allow us to send three
points to three other points of our choosing, hence we can send three vertices
of any given quadrilateral to the points −1, 0 and ∞ in such a way that the
remaining vertex has to be between 0 and ∞. Therefore, we can write the
remaining vertex as ed with d ∈ R.

Remark. The parameter d ∈ R has a geometric meaning, it is the signed distance
δH2(ied, i) between the orthogonal projections of the vertices −1 and ed onto
the diagonal of 0 and ∞ (see Figure 4.1). Since distances are preserved under
isometries we can check whether this property holds for the other diagonal by
sending the vertices −1 and ed through an isometry to 0 and ∞ respectively.
To preserve the orientations of the lines we need to send 0 to −1 and by a
simple calculation, we can show that ∞ must be mapped to ed. Therefore, the
signed distances for both diagonals coincide, making d an intrinsic quantity of
the quadrilateral Q.

Figure 4.1: Geometric meaning of d.

From now on, we will assume that a quadrilateral is in the form of the
previous lemma.
We will now discuss the gluing parameters. Notice that given two opposite
oriented sides l, l′ of Q there are infinitely many isometries φ ∈ PSL2(R) such
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4.1. CREATING A ONCE PUNCTURED TORUS GROUP

that φ(l) = l′. In order to parametrize them, we introduce a gluing parameter:
We use perpendicular lines from the vertices of 0 and ∞ through the opposite
edges. We can see in Figure 4.2 that this gives us the points −1/2 + 1/2i and
ed + ied for the first identification and the points −1 + i and 1/2ed + 1/2ied for
the second identification, which serve as the base points.

Figure 4.2: Orthogonal projection.

If we had determined that these points had to be identified with each other,
we would have had a single pair of isometries, but we want to permit all possible
identifications. Thus, we allow the points on the vertical lines to shift and keep
track of their position via the signed distances t, s ∈ R from the base positions.
The distance on vertical lines is logarithmic, hence the new points are precisely
−1 + ie−s and ed + ied+t. The two numbers t, s serve as our gluing parameters
and with them, we can finally construct our matrices.

Proposition 4.1.2. Given d, t, s ∈ R the isometries Ad,t, Bd,s ∈ PSL2(R) with
the following properties

Ad,t(0) = ed, Ad,t(−1) =∞, Ad,t(−1/2 + 1/2i) = ed + ied+t,

Bd,s(0) = −1, Bd,s(e
d) =∞, Bd,s(1/2ed + 1/2ied) = −1 + ie−s,

are given by the matrices

Ad,t =

(
−e t+d2 − e d−t2 −e d−t2

−e− t+d2 −e− t+d2

)
, Bd,s =

(
e−

s+d
2 + e

s−d
2 −e s+d2

−e s−d2 e
s+d
2

)
.

Proof. This can be proven by simple computations.

To end this section, we will have a first look at the groups created by our iden-
tifications Ad,t, Bd,s and prove that for any given triple of parameters d, t, s ∈ R
the group G generated by the two matrices is isomorphic to a free group on
2-generators and discrete. This proof of discreteness is necessary to talk about
their limit sets.
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4.1. CREATING A ONCE PUNCTURED TORUS GROUP

Proposition 4.1.3. For every d, t, s ∈ R, the group G generated by A := Ad,t
and B := Bd,s is discrete and isomorphic to a free group on 2-generators.

Proof. Suppose there exists a sequence of distinct elements Tn ∈ G for every
n ∈ N, such that Tn converges to the identity. In this case, for any given ε > 0
and x ∈ H2 there exists a Nε,x ∈ N, such that the distance between Tn(x) and
x is smaller or equal to ε.
Let o be a point in the interior of the quadrilateral Q given by the parameter
d ∈ R. This point has a positive distance from every edge of the quadrilateral,
let δ be the smallest of such distances. Thus, the distance between o and any
other point in the complement of Q is bigger than δ. Choose ε smaller than δ
and n ∈ N bigger than the corresponding Nε,o ∈ N. To finish the proof, it is
now sufficient to prove that Tn(o) ∈ Qc.
The complement of Q will be split into the four open disjoint sets SA, S−A, SB
and S−B , as in Figure 4.3.

Figure 4.3: Disjoint sets.

These open sets and the interior of Q have the following interactions with
our identifications,

A(Qo) ⊂ SA, A−1(Qo) ⊂ S−A, B(Qo) ⊂ SB , B−1(Qo) ⊂ S−B , (4.1)

A(SA ∪ SB ∪ S−B) ⊂ SA, A−1(S−A ∩ SB ∩ S−B) ⊂ S−A, (4.2)

B(SB ∪ SA ∪ S−A) ⊂ SB , B−1(S−B ∪ SA ∪ S−A) ⊂ S−B . (4.3)

This is a direct result of our definitions and the fact that Möbius transforma-
tions are bijective, holomorphic, and orientation preserving functions.
We will now show via mathematical induction that Tn(o) ∈ Qc. We can write
Tn = wnwn−1...w2w1 with wi ∈ {A,A−1, B,B−1} for every i ≤ n. The base
case follows by Equation (4.1).
For the induction step, we assume that our statement holds for a given k < n,
and, hence Tk(o) ∈ Qc. Without loss of generality, Tk(o) ∈ SA, because of
the symmetries in Equations (4.2) and (4.3). As a consequence, we know that
wk = A and wk+1 6= A−1.
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4.2. THE CLASSIFICATION THEOREM

From Equation (4.2), Equation (4.3), and wk+1 6= A−1 now follows that Tk+1(o) ∈
Qc. This concludes the proof of discreteness.
The proof of the second statement follows directly from Equations (4.2) and (4.3)
and Lemma 3.3.1.

4.2 The Classification Theorem

The following section will consist mainly of the proof of the main theorem:

Theorem 4.2.1 (Classification). Given a quadrilateral Q by the parameter
d ∈ R and gluing parameters s, t ∈ R, consider the once punctured torus group
G = 〈A,B〉 < PSL2(R), where A := Ad,t and B := Bd,s. For the limit set Λ we
have the following dichotomy:

1. If d+ t+ s 6= 0 then Λ ( ∂H2 is homeomorphic to the Cantor set.

2. If d+ t+ s = 0 then Λ = ∂H2.

Proof. Before going into the details about the proof, we will briefly outline the
strategy taken within it. To prove this theorem, we will consider the two cases
separately. Both use the properties of the polygonlike set P :=

⋃
w∈G w(Q) and

the commutator [A,B], which will be discussed later in the proof.
According to the lemma below, it will be sufficient to find a single element in Λc

to prove the first case of the theorem. We will achieve this by the construction
of a line, which is invariant under [A,B] and disjoint from P . This will give us
an open interval of ∂H2 that has to be contained in Λc concluding this case.

Lemma 4.2.2. If Λ is a proper subset of ∂H2, then it is homeomorphic to the
Cantor set.

Proof. By Lemma 3.2.1, Λ is a closed, perfect set with empty interior. As a
subset of a compact metrizable set, it is compact and metrizable. Because it
has an empty interior and is closed its complement is an open set which is dense
in ∂H2. Hence, between every two points from Λ exists an open interval in Λc,
making Λ totally disconnected.

To prove the second case, we will start by showing that P has to cover H2.
Using that, we will deduce that there cannot exist an open interval of ∂H2 in
Λc. By the properties of the limit set (Lemma 3.2.1), this will be sufficient to
conclude the proof of the second case.
As mentioned before, preceding the proof of the first case, we will make some
observations, mostly about P and the commutator [A,B].

Obs. 1. If w1, w2 ∈ G, w1 6= w2 then w1(Qo) ∩ w2(Qo) = ∅, otherwise
w(Qo) ∩Qo 6= ∅, where w = w−12 w1 6= Id and we have shown in Proposi-
tion 4.1.3 that this is not possible.

Obs. 2. For every w ∈ G, w(P ) = P and w(Λ) = Λ. This is a direct consequence
of the definitions.
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4.2. THE CLASSIFICATION THEOREM

Obs. 3. P is convex. To show this, we simply need to prove that adding a quadri-
lateral to a convex polygon maintains the convexity. The starting quadrilateral
Q and every quadrilateral we add are convex. So if we add a new quadrilateral
Q̂ to a convex polygon P̂ , by our convention, and choose one point p in our
polygon and one point q from Q̂, the line l through p and q has to cross the
common edge at a point c. This point c is part of both figures, so the segments
s[p,c] and s[c,q] have to be contained in their respected figures, because of their

internal convexity. Therefore, the segment s[p,q] is contained in P̂ ∪ Q̂.

Obs. 4. The commutator [A,B] is given by the matrix(
−et+d+s −(e−s + e−s−t + ed+t + ed + ed+t+s + 1)

0 −e−t−d−s
)
,

with |tr([A,B])| = et+d+s + e−t−d−s and Im([A,B](x+ iy)) = e2(t+d+s)y.

Obs. 5. The commutator [A,B] has exactly one fixed point, which is ∞, if and
only if d+ t+ s = 0. In that case, it is a parabolic transformation.
As a consequence, if d+ t+ s 6= 0 the commutator [A,B] is a hyperbolic trans-
formation. It has two distinct fixed points in ∂H2 and one of those two points
has to be ∞. This is a direct result from Obs. 4.

Proof of case 1 (Λ is a Cantor set). By Obs. 5, we know that the commutator
[A,B] is a hyperbolic isometry that fixes ∞ and p 6=∞. Consequently, the line
l[p,∞] is the invariant axis of [A,B].
The line l[p,∞] is either disjoint from P or it intersects it. Suppose there exists
a w ∈ G such that w(Q) and l[p,∞] intersect. There are two ways how they
could intersect, the quadrilateral w(Q) and l[p,∞] could either have a common
boundary point at ∞, as seen in Figure 4.4 or not, like in Figure 4.5.

Figure 4.4: l[p,∞] and w(Q) meet at ∞

Suppose l[p,∞] and w(Q) meet at∞. By Obs. 4, we know that points of l[p,∞]

can only be shifted upwards or downwards by a fixed factor by the commutator
[A,B]. Hence, [A,B]w(Qo) ∩ w(Qo) 6= ∅ which is a contradiction to Obs. 1.
Therefore, this is not possible.
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4.2. THE CLASSIFICATION THEOREM

Figure 4.5: l[p,∞] and w(Q) cross.

Suppose l[p,∞] and w(Q) cross. By Obs. 5, we know that p and ∞ are the
only fixed points of [A,B]. Consequently, for large n ∈ N either the vertices of
[A,B]nw(Q) or the vertices of [A,B]−nw(Q) will tend to ∞. However, l[p,∞]

has to cross the quadrilaterals for every n. Therefore, at least one vertex will
tend to ∞ through the positive numbers and at least one through the negative
numbers. Hence, there exists a z ∈ Z such that [A,B]zw(Qo)∩Qo 6= ∅ which is
again a contradiction with Obs. 1.
As a consequence, l[p,∞] is disjoint from P , (p,∞) ∩ Λ = ∅, and p,∞ ∈ Λ.
By Lemma 4.2.2, it follows that Λ is homeomorphic to the Cantor set. This
concludes the first case.

Proof of case 2 (Λ = ∂H2). We will start this case with some further obser-
vations, which stem from the convexity of P (Obs. 3) and Obs. 5, which says
that the commutator is a parabolic transformation if d+ t+ s = 0.

Obs. 6. The rectangle

R := {z = x+ iy ∈ H2 | y ≥ 2ed+t + ed + 1

2
},

is contained in P , this can be easily verified by realizing that the commutator
acts as a horizontal translation, so the nearest vertices of two adjacent quadri-
laterals always have the same distance, 2ed+t + ed + 1. The line between these
vertices is a half circle, with radius 1/2(2ed+t + ed + 1), and every point on or
above it has to be contained in P because of convexity. The claim now follows.
As P is invariant under G (Obs. 2),

RG :=
⋃
w∈G

w(R) ⊂ P.

The set RG contains the rectangle R for the vertex of infinity and a disk for
every other vertex. By our definition, the vertices are not part of this set. With
this observation, we want to prove the following claim:

P = H2. (4.4)
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4.2. THE CLASSIFICATION THEOREM

To do so, it is enough to show that P can be extended by ε > 0 and still be
contained in P , which means that for every point x ∈ P the open ball with
radius ε is contained in P .
By the definition of P , there must exist an element w ∈ G for every x ∈ P , such
that w(x) ∈ Q. Therefore, it is sufficient to show that an ε-neighborhood of Q
is contained in P .
With the set RG and the convexity of P (Obs. 3) we see in Figure 4.6 that we
can easily find such an ε for points in Q \RG.

Figure 4.6: ε-extension of Q.

Without loss of generality, we only have to check one vertex, in this case ∞,
because we can send all vertices to infinity using G.
We can shift the lower edge of the rectangle R upwards by ε, this may lead to
a new smaller ε̃, but with the convexity argument there still has to exist one
ε̃ bigger than zero, for every point in (Q ∩ R) \ Rε. This new rectangle Rε is
contained in R and every point in Rε has at least a distance of ε to the boundary
of R. Therefore, for every point in Rε exists an open ball of radius which is
contained in P .
In conclusion, we found an ε-neighborhood Q that is contained in P , which
proves our claim.
Now suppose Λ 6= ∂H2. Then Λ has to be a closed set with empty interior
(Lemma 3.2.1), thus its complement has to be an open set which is dense in ∂H2.
Hence, there has to exist an open interval in Λc, with endpoints ζ1, ζ2 ∈ ∂H2.
This open interval corresponds to an open half plane, which has to intersect P
(Equation (4.4)). Because P is convex, the open interval has to contain a vertex
of P . However, the vertices of P are a subset of Λ. Hence, Λ∩ (ζ1, ζ2) 6= ∅, this
contradicts with (ζ1, ζ2) ⊂ Λc. Therefore, Λ = ∂H2, which concludes the second
case and the proof.

24
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Now that we are done with the construction and classification of our torus
groups, we will have a brief geometrical look at the quotient Q/A ∪ B, which
is a hyperbolic once punctured torus (see Figure 4.7). There are two ways a
torus can be punctured: It can either miss a circle, which corresponds to the
first case of our theorem, or miss a single point at infinity, which corresponds to
the second. We will call tori of the first class incomplete and tori of the second
class complete.

Figure 4.7: Once punctured tori.

(a) Incomplete structure. (b) Complete structure.

4.3 Visualization of Limit Sets

The visualization will be done using a Python script. We can simplify the
programming by recalling a fact from Lemma 3.2.1, which states that the G-
orbit of any ζ ∈ Λ is dense in Λ. By Obs. 5, ∞ is always a fixed point of the
commutator and thus ∞ ∈ Λ for every group. Therefore, it is enough to start
with ∞ or any other vertex of our quadrilateral Q.
There is still one problem to solve, namely, that the computational time and the
required memory grow exponentially in relation to the word length. However,
this is more of an inconvenience than a problem, because a comparatively small
length of 14, which a normal computer is capable of handling, is enough to
produce a good approximation.
Nevertheless, this is not the approach we used to create the following pictures,
but it would be beyond the scope of this section to explain in detail the method
we used.
One last remark before we proceed with the first example: The calculations
were done in the half plane model, but we will look at them in the Poincaré disk
model. This gives us the advantage of being able to see the complete boundary,
so we don’t miss a phenomenon that may only occur for large numbers.
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Example 4.3.1. For the first set of examples we choose the parameters d, t, s at
random in the parameter space (d, t, s) ∈ [−10, 10]3. We can see in Figure 4.8,
that we got two Cantor sets, which is exactly what we expected, because the
sum of three random numbers is almost surely different from zero.

Figure 4.8: Random parameters.

(a) d ≈ 0.11, t ≈ −6.16, s ≈ 3.3. (b) d ≈ 0.43, t ≈ 0.25, s ≈ 0.11.

Example 4.3.2. In this example, we want to verify that we actually get a
complete structure if we choose our parameters so that they add up to zero.
The first one is the trivial example, where d = t = s = 0. Even though this set
of parameters may seem uninteresting, they form the basis of the next chapter.
The second example used d and t from Figure 4.8a and changed s to satisfy the
equation.

Figure 4.9: Complete structures.

(a) d = t = s = 0. (b) d ≈ 0.11, t ≈ −6.16, s ≈ 6.05.
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Example 4.3.3. In the last example, we want to have a closer look at incom-
plete structures. We want to see if there is a link between the parameters we
choose and how large the gaps in Λ are. As a reference, we use Figure 4.8b and
define a new parameter l := d+ t+ s, which is approximately 0.79 in this case.
The following figures are obtained by rescaling d, t and s by 1,−1, 1/3, 3.
On the one hand, Figure 4.10b indicates, that changing the sign does not change
the size of the gaps, it only flips the picture horizontally. On the other hand,
Figures 4.10c and 4.10d suggest that the size of the gaps correlates with the size
of l. With these two observations, we conclude that the gap size depends on the
absolute value of l.

Figure 4.10: Incomplete structures.

(a) l. (b) −l.

(c) 1/3 l. (d) 3l.
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Chapter 5

Dimension 3: Bending
Deformation Experiments
on Complete Structures
and Quasi Circles

Introduction

In this chapter, the once punctured torus groups G, which are subgroups of
PSL2(R), will be deformed in PSL2(C). In order to do so, we embed Q in H3

and add rotations to the gluing maps.
For these rotations, we will introduce three additional parameters θ, α, β ∈ [−π, π),
which describe two types of deformations, that correspond to very different be-
haviors. The first angle θ defines a bending of the quadrilateral Q along its
diagonal of 0 and ∞. When G corresponds to d = t = s = 0 the groups gener-
ated with this parameter will almost always be non-discrete, the consequences
of which will be discussed and experimentally explored in the first section.
The remaining two angles α and β are used as gluing angles, which apply ro-
tations to the quadrilaterals Ad,t(Q) and Bd,s(Q) in respect to Q. For these
parameters, we will only focus on tuples where β = −α, the resulting groups
will be discrete up to a certain angle. When visualizing the limit sets for such
groups, we will observe that the circles will be deformed into fractal curves.
Additionally, we will search the specific angle, where the groups stop being dis-
crete, and explore the properties of the corresponding group.
There are obviously many possibilities left, which we unfortunately cannot study
in this chapter. We could, for example, loosen our constraint on α and β or uti-
lize all three parameter simultaneously, both of these options yield fascinating
results.
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5.1. BENT QUADRILATERALS

5.1 Bent Quadrilaterals

In this section we study subgroups of PSL2(C) which are deformations of com-
plete groups G = 〈Ad,t, Bd,s〉 generated by certain isometric identifications of
opposite sides of bent quadrilaterals. These deformations provide examples
where the property of discreteness or the property of being isomorphic to a free
group on 2-generators is lost.
A bent quadrilateral Qd,θ is an object as the one shown in Figure 5.1: It is ob-
tained by bending the standard quadrilateral Qd ⊂ H2 ⊂ H3 with the vertices
−1, 0, ed and ∞ along the diagonal l[0,∞] by an angle θ.

Figure 5.1: Bending parameter θ.

We now discuss the identifications Aθ,d,t and Bθ,d,s that we are considering:
We only adjust the isometries Ad,t and Bd,s that identify the opposite sides of
the standard quadrilateral Qd ⊂ H3 so they account for the bending. The best
way for this is to apply the rotations and the identifications independently. So
if we want to create Aθ,d,t, we start with Ad,t and then rotate with R0

θ. The
creation of Bθ,d,s proceeds anti symmetrically, so we start with the rotation R0

9θ
and then apply Bd,s. We combine these constructions in the following definition:

Definition 5.1.1. Given the parameters d, t, s ∈ R and θ ∈ [−π, π), the isome-
tries Aθ,d,t, Bθ,d,s ∈ PSL2(C), that identify the opposite edges of a bent quadri-
lateral are given by the matrices

Aθ,d,t =

(
ei
θ
2 0

0 e−i
θ
2

)
Ad,t, Bθ,d,s = Bd,s

(
e−i

θ
2 0

0 ei
θ
2

)

Before we head to the visualization, we want to examine, which properties
from the previous chapter are lost in this setting. For this investigation we will
set the parameters d, t and s to 0, which motivates the following notations:

Aθ := Aθ,0,0, Bθ := Bθ,0,0.
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We will start with some observations on the commutator, which is given by the
matrix

[Aθ, Bθ] =

(
−eiθ −3− 3eiθ

0 −e−iθ
)
.

If we exclude 0 and −π, which correspond to the angles that preserve the real
line, the commutator is always elliptic and can be rewritten as a rotation matrix

Rpθ2θ , that describes a rotation by 2θ around the point pθ = 3eiθ

eiθ−1 .
We explore the consequences of this in the subsequent lemma.

Lemma 5.1.1. Given θ ∈ (−π, π) \ {0}, the commutator [Aθ, Bθ] has the fol-
lowing properties:

1. If θ ∈ Qπ, there exists a k ∈ N, such that [Aθ, Bθ]
k = Id.

2. If θ 6∈ Qπ, there exists a sequence kn ∈ N for every n ∈ N, such that
[Aθ, Bθ]

kn → Id.

Proof. If θ ∈ Qπ, then 2θ ∈ Qπ. Hence, there exist h, k ∈ N, such that
2θ = 2πh/k, which is equivalent to 2θk = 2πh. Therefore, the following equation
holds:

[Aθ, Bθ]
k = (Rpθ2θ)

k = Rpθ2θk = Rpθ2πh = Rpθ0 = Id.

This concludes the proof of the first statement.
If θ 6∈ Qπ, then 2θk 6= 2πh for every k, h ∈ N, by the preceding equation follows,
[Aθ, Bθ]

k 6= Id for every k ∈ N. Therefore, the set

{ζ ∈ [0, 2π) | ζ = 2θkmod(2π), k ∈ N},

is dense in [0, 2π). So, there exists a sequence kn ∈ N for every n ∈ N, such that
2θknmod(2π)→ 0. Hence, the following equation holds:

[Aθ, Bθ]
kn = (Rpθ2θ)

kn = Rpθ2θkn → Rpθ0 = Id.

This lemma implies that the properties of the complete groups G < PSL2(R)
which we constructed in the previous chapter are not stable under small per-
turbations. If we recall the group homomorphism φ from F2 to G, with the
requirement φ(A) = Aθ and φ(B) = Bθ, then it follows that the mapping is
non-injective for the first case and non-discrete for the second.
Our definition of the limit set relied on the discreteness of the group, with this
property lost for almost all θ, we need to further study these groups.
It would be possible to prove, that if θ 6∈ Qπ, the group G generated by Aθ and
Bθ is dense in PSL2(C). However, we will skip the proof of this statement, since
it relies heavily on Lie groups, which we have not introduced and would be of
no further use to us. Furthermore, we mainly intend to give a sense of what we
expect in the following experiments.
The consequence of this statement is, that the closure of the orbit of any point
under a group G, which is generated by Aθ and Bθ, is almost always equal to
the boundary of H3. So in comparison to the last chapter, we are expecting to
see vastly different figures, they should be significantly more chaotic.
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Before we start with the visualization, we will briefly talk about the methods
used and justify them. Foremost, we notice that we can take over a large part
of the old script, we only have to change the used matrices as it is described in
Definition 5.1.1. Now we can calculate the orbit of any point in ∂H3 up to a
certain word length.
In the last chapter, in order to visualize the orbit, we used the following inver-
sion,

z 7→ z̄ + i

iz̄ + 1
,

that mapped ∂H2 onto ∂D2 or more generally R∪{∞} onto S1. This inversion is
a so-called Möbius anti-transformation, which just like Möbius transformations
preserves the Riemann sphere. The orbit of a point is a subset of the boundary
of H3 and the boundary of H3 corresponds exactly to the Riemann sphere.
Hence, the inversion above is also well-defined for orbits of points under the
deformed groups Ĝ.
We end this discussion with the following observation: For small perturbations,
the orbit of a point under Ĝ is still close to R ∪ {∞} if we work with a limited
word length. Therefore, the inversion continues to map the orbit approximately
onto S1, thus it is useful to maintain this inversion to study the effect of the
deformations.

Experiment 5.1.1. In our first experiment (see Figure 5.2) we have chosen
values near zero. The result of this is still nearly a circle only the vertices of our
starting quadrilateral seem to separate themselves from the rest of the circle.
This is the opposite of what we were expecting, so we need to go troubleshooting.
Some possible errors are computer inaccuracy or the limited word length. If this
behavior persists for increased values of θ, we can rule out the first case, which
we will attempt in our second experiment.

Figure 5.2: Values near zero.

(a) θ = 0.1. (b) θ = −0.1.
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Experiment 5.1.2. The second experiment (see Figure 5.3), shows that the
deformations and quantity of seemingly separated points increase monotonically
in |θ|. We can also observe a qualitative difference between the signs, whereas
the structure contracts for positive values, it expands for negative values.
This is a strong indicator, that the reason for our counterintuitive results is
the limited word length. The Möbius transformations we are using change
continuous as we change θ, hence we are transforming the circle we were starting
with continuously.

Figure 5.3: Values near zero.

(a) θ = 0.5. (b) θ = −0.5.

(c) θ = 0.7. (d) θ = −0.7.
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We should further investigate these seemingly separated points. As we zoom
in on −1 + 0i, we can see in Figure 5.4, that it is actually a cluster of points.
This agrees with our previous theory and is an additional sign, that the limit
set should fill the plane.

Figure 5.4: Zoom of −1 + 0i, with θ = 0.5.

Experiment 5.1.3. In the third experiment, we only focused on positive values,
but the results can be transferred analogously to the negative values. We will
increase θ even further, to examine where this continuous change leads us.
We can observe in Figure 5.5, that for large enough θ the result is actually as
chaotic as we thought it would be at the beginning.

Figure 5.5: Qualitative change.

(a) θ = 1.5. (b) θ = 1.6.
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Experiment 5.1.4. For our last experiment, we have chosen θ = ±π/2, which
corresponds to a quarter rotation. These values result in nice fractal structures,
reminiscent of the Mandelbrot set or more in general terms Julia sets.

Figure 5.6: Discrete examples.

(a) θ = π/2. (b) θ = −π/2.

The reason for this nice behavior is that the two generated groups G+ and
G− are discrete, which can be shown as follows. The set,

Z[i] := {a+ bi ∈ C | a, b ∈ Z},

is a discrete subset of C and forms a ring, if equipped with the standard addition
and multiplication of complex numbers. Hence, GL2(Z[i]) is discrete in GL2(C).

The matrices A′θ := ei
θ
2Aθ and B′θ := ei

θ
2Bθ have coefficients in Z[i] and their

determinant is an element of {±1,±i}, which can be shown by simple compu-
tations. Therefore, A′θ, B

′
θ are both elements of GL2(Z[i]) and G′ := 〈A′θ, B′θ〉

is a subgroup of GL2(Z[i]). As a subgroup of a discrete group G′ must be dis-
crete in {A ∈ GL2C | det(A) ∈ {±1,±i}}. In PGL2(C) G′ and 〈Aθ, Bθ〉 are
the same group, hence 〈Aθ, Bθ〉 is discrete in PGL2(C), since discreteness in
{A ∈ GL2C | det(A) ∈ {±1,±i}} implies discreteness in PSL2(C), the groups
G+ and G− are discrete.
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5.2 Gluing Angles

This section will introduce the gluing angles α, β ∈ [−π, π), which allow us to
add a rotation to our identifications Ad,t and Bd,s. Figure 5.7 shows how we
want to implement this for the identification Ad,t and the parameter α. We
want it to be a rotation around the shared edge of the two quadrilaterals Q and
Ad,t(Q).
The parameter β will then describe a rotation around the shared edge of Q and
Bd,s(Q). We chose this rotation to be clockwise, so the signs of β and the sign
of the imaginary part of Bd,s(Q) agree.

Figure 5.7: Gluing angle α.

It is easily verifiable that we can realize every gluing angle with our chosen
parameters. We can now create our new isometries similarly to the identifi-
cations of the bent quadrilaterals, by combining Ad,t and Bd,s with rotations.
Which leads to the following definition:

Definition 5.2.1. Given the parameters d, t, s ∈ R and α, β ∈ [−π, π), the
isometries Aα,d,t, Bβ,d,s ∈ PSL2(C), that identify the opposite sides of a quadri-
lateral as described above are given by the matrices

Aα,d,t =

(
e
iα
2 ed(e−

iα
2 − e iα2 )

0 e−
iα
2

)
Ad,t, Bβ,d,s =

(
e−

iβ
2 e−

iβ
2 − e

iβ
2

0 e
iβ
2

)
Bd,s.

Because we already discussed the visualization process in H3 in the last
section, we go directly to the experiments. We will vary α and set β = −α. Due
to the symmetry of this choice, it is sufficient to focus on positive values for α.
In addition, we will again set d = t = s = 0, this has the consequence that the
commutator [Aα,d,t, Bβ,d,s] is parabolic and has a fixed point at ∞. Therefore,
∞ ∈ Λ if the deformed group is discrete.
We will proceed similarly to the previous experiment, starting with values near
zero, increasing the value till we get a qualitative change and then trying to find
values which create special patterns.
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Experiment 5.2.1. The first experiment (see Figure 5.8) shows, that for values
near zero the structure is still similar to a circle. In comparison to our bent
quadrilateral experiments, the deformations are earlier noticeable. Additionally,
we can see that there are no separated points. This suggests that the groups
are still discrete when α is small, which is consistent with our expectations.

Figure 5.8: α = 0.05 and β = −0.05.

Experiment 5.2.2. In the second experiment, we can see the increasing defor-
mations. The structures only vaguely resemble circles, but again there are no
separated points. Even though the structures in Figure 5.9 look very different to
the structure from the first experiment, we can not observe a qualitative change
yet.

Figure 5.9: Increasing deformations.

(a) α = 0.4096 and β = −0.4096. (b) α = 0.8192 and β = −0.8192.

As we can see in Figure 5.10, this is preserved even if we further increase α
to 1.5. However, the deformations become so large that the structure no longer
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resembles a circle at all, but it is now very clear, that the limit sets are fractal
curves.
The holes we can see in these curves are just a product of our physical limita-
tions, if we could have words of infinite length or at least hundreds of letters,
they would be filled.

Figure 5.10: Fractal curve.

(a) α = 1.2 and β = −1.2. (b) α = 1.5 and β = −1.5.

Experiment 5.2.3. By increasing α even further, we can finally provoke a
qualitative change, the limit sets start to accumulate everywhere. This change
takes place between 2 and 2.1, while the limit set for α = 2 is still a very
deformed circle, for α = 2.1 it will correspond to the complete boundary of
H3. The described property of the limit sets might not be completely clear
in Figure 5.11, but this is again just a consequence of our limitations in word
length.

Figure 5.11: Qualitative change.

(a) α = 2.0 and β = −2.0. (b) α = 2.1 and β = −2.1.

When α = 2.1, we can still identify some patterns in the limit set, similar
to our experiments with small θ values. If we increase α even further, the limit
sets also become chaotic (see Figure 5.12).
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Figure 5.12: Chaotic space filling sets.

(a) α = 2.3 and β = −2.3. (b) α = 2.5 and β = −2.5.

Experiment 5.2.4. The special value we want to investigate in the last exper-
iment is 2/3π, the limit set (see Figure 5.13) seems similar to Figure 5.11b and
indeed both are equal to ∂H3.
So, there is no difference between their limit sets, but there is a distinction in
the generated groups. The group with α = 2/3π is discrete, whereas the groups
with α > 2/3π are most likely not.
We can show the discreteness, similar to the last experiment of the previous
section. First, we define ω := 1/2 + i

√
3/2 and note that Z[ω] is a discrete subset

of C. Since Z[ω] forms a ring, PSL2(Z[ω]) is a discrete subgroup of PSL2(C).
By simple computations we can prove, that A2/3π,0,0 and B−2/3π,0,0 are elements
of PSL2(Z[ω]), which implies the discreteness of the generated group.

Figure 5.13: α = 2/3π and β = −2/3π
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