Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 |
28 | 29 | 30 | 31 | 1 | 2 |
Informationen für
„Rigid cohomology and the p-adic L-function of a modular form“
Herr Maximilian Niklas, Universität Regensburg
The p-adic L-function of a modular form provides interesting arithmetic information. In order to access this information, it is necessary to link the L-function to certain p-adic cohomology groups. Apart from p-adic étale cohomology there is also Berthelot's rigid cohomology which like crystalline cohomology is of p-adic differential nature. The speaker wants to show how one can use rigid cohomology and p-adic modular forms in order to study special values of the L-function, in particular at the mysterious "noncritical" integers.
Freitag, den 21. Januar 2011 um 14:15 Uhr, in INF 288, HS 3 Freitag, den 21. Januar 2011 at 14:15, in INF 288, HS 3