Ruprecht-Karls-Universität Heidelberg
Mai
MoDiMiDoFrSaSo
28 29 30 1 2 3
4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Informationen für
„Geodesic and conformally Reeb vector fields on flat 3-manifolds“
Tilman Becker

A vector field of unit length on a Riemannian manifold is called geodesic if all of its integral curves are geodesics. In this talk, I will start by giving an overview of some relevant recent results on geodesic vector fields on space forms and related contact structures. Then, I will show that geodesic vector fields on flat 3-manifolds not equal to E3 are of a simple "1-parametric" type. Using this result, I will derive a (necessary and sufficient) criterion for such a vector field to be the Reeb vector field of a contact form (up to rescaling).

Mittwoch, den 30. November 2022 um 11:15 Uhr, in INF 205, SR 4 Mittwoch, den 30. November 2022 at 11:15, in INF 205, SR 4

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Peter Albers