Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
30 | 1 | 2 | 3 | 4 | 5 | 6 |
7 | 8 | 9 | 10 | 11 | 12 | 13 |
14 | 15 |
16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 |
28 | 29 | 30 | 31 | 1 | 2 | 3 |
We present the formulation of a new Main Conjecture in the non-commutative Iwasawa theory of number fields. Specifically, a relation is predicted between leading coefficients at 0 of Artin L-functions and the refined Euler characteristic of a certain arithmetic complex of Iwasawa modules over the Galois group of a rank-one p-adic Lie extension L∞/K. As opposed to existing conjectures, this is done without assuming L∞ and K to be totally real and, crucially, under no requirement that Gal(L∞/K) be abelian. This new conjecture partially generalises work of Ritter and Weiss and recent work of Burns, Kurihara and Sano.
Freitag, den 11. Februar 2022 um 13:30 - 15:00 Uhr, in INF205, SR A Freitag, den 11. Februar 2022 at 13:30 - 15:00, in INF205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. O. Venjakob