Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17
18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Informationen für
„Rigidity of diagonally embedded triangle groups“
Jean-Philippe Burelle, IHES; Université Paris-Saclay

Differential Geometry Seminar "Rigidity of diagonally embedded triangle groups" Dr. Jean-Philippe Burelle, IHES, Université Paris-Saclay Abstract: Recently, work of Long and Thistlethwaite, Weir, and Alessandrini-Lee-Schaffhauser generalized some of the theory of higher Teichmüller spaces to the setting of orbifold surfaces. In particular, they compute the dimension of Hitchin components for triangle groups, and find that this dimension is 0 only for a finite number of low-dimensional examples. In contrast with these results and with the torsion-free surface group case, we show that the composition of the geometric representation of a hyperbolic triangle group with the diagonal embedding in PGL(2n,R) or PSp(2n,R) is always locally rigid. Donnerstag, den 23. Mai 2019 um 11.15 Uhr, SR3, 3.OG, INF 205

Donnerstag, den 23. Mai 2019 um 11:15 Uhr, in INF 205, SR 3 Donnerstag, den 23. Mai 2019 at 11:15, in INF 205, SR 3

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Anna Wienhard