Mo | Di | Mi | Do | Fr | Sa | So |
---|---|---|---|---|---|---|
27 | 28 | 1 | 2 | 3 | 4 | 5 |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 | 1 | 2 |
Let F be a number field, and let f be a normalized eigenform of weight 2 and level N for GL(2,F). It is conjectured that attached to f there is an abelian variety A_f. This abelian variety should have dimension equal to the degree of the field of Hecke eigenvalues, and should have good reduction outside N. In those instances where the Eichler-Shimura construction is not available (for example when F is not totally-real) little is known about how to find A_f. In joint work with Xavier Guitart, we present a p-adic conjectural construction (subject to several restrictions, in particular p should divide N) of A_f, and illustrate how in favourable situations it can be used to find equations for abelian surfaces A_f as jacobians of hyperelliptic curves.
Freitag, den 12. Mai 2017 um 13:30 Uhr, in INF205, SR A Freitag, den 12. Mai 2017 at 13:30, in INF205, SR A
Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Dr. Gebhard Böckle