Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20
21
22 23 24 25 26 27 28
29 30 31 1 2 3 4
Informationen für
„Fermat Quotients in 3D: Divisibility, Distribution and Dynamics“
Prof. Igor Shparlinski, UNSW Sydney, Australien

We give a survey of various arithmetic properties of Fermat Quotients q_p(a)= (a^{p-1} -1)/p such as p-divisibility, distribution in residue classes modulo p, and properties of the dynamical system x \mapsto q_p(x) \pmod p. These results are related to the classical questions about Wieferich primes, yet their study requires a combination of several modern techniques coming from additive combinatorics, sieve methods the distribution of smooth numbers and bounds of Heilbronn exponential sums.

Donnerstag, den 31. Oktober 2013 um 17 Uhr c.t. Uhr, in INF 288, HS 2 Donnerstag, den 31. Oktober 2013 at 17 Uhr c.t., in INF 288, HS 2

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Kohnen