Ruprecht-Karls-Universität Heidelberg
MoDiMiDoFrSaSo
30 31 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20
21 22 23 24 25 26
27 28 29 30 31 1 2
Informationen für
„Quotient stacks and mod $\ell$ étale equivariant cohomology algebras : Quillen's theory revisited“
Abstract:
Prof. Luc Illusie, Université Paris-Sud

This is joint work with W. Zheng, which grew out of questions of Serre on finite group actions and associated traces in cohomology. Around 1970 Quillen studied the structure of equivariant cohomology algebras $H^*_G(X,\mathbf F_{\ell})$ for a compact Lie group $G$ acting on a space $X$. We establish analogues and variants of his results for the mod $\ell$ étale cohomology of certain Artin stacks over an algebraically closed field $k$ and $\ell$ a prime invertible in $k$, especially Artin stacks of the form $[X/G]$ for a $k$-scheme $X$ separated and of finite type acted on by an algebraic $k$-group $G$.

Donnerstag, den 14. Juni 2012 um 17 c.t. Uhr, in INF 288, HS2 Donnerstag, den 14. Juni 2012 at 17 c.t., in INF 288, HS2

Der Vortrag folgt der Einladung von The lecture takes place at invitation by Prof. Venjakob