
Part I

Lecture 1: Teichmüller Theory

1 Bordered Surfaces

We begin with a classic geometric problem: Given a surface S describe all hyperbolic structures on the
surface. For more details see [Pen06] and [FST08,FT18]

Question 1.1. What kinds of surfaces are we considering?

We will focus on bordered surfaces with marked points. Such a surface is classified by its genus g
and number of boundary components b. We divide the marked points into two classes depending on if the
marked points are in the interior or boundary of S. Marked points on the interior of S are punctures. Let
p be the number of punctures and c be the number of marked points on the boundary. We require that at
least one marked point be chosen on each boundary component.

Question 1.2. What is a hyperbolic structure?

Definition 1.3. A finite area hyperbolic structure on S will be a choice of constant curvature −1 metric
on S with geodesic boundary arcs and every marked point (puncture or boundary) taken to a cusp.

We consider such structures up to diffeomorphisms fixing the marked points homotopic to the identity
to obtain Teichmüller space.

Question 1.4. For what values of g, b, p, c is this space nontrivial?

One version of the answer comes from Gauss-Bonnet:∫
S

KdA+

∫
∂S

kgds = 2πχ(S) (1)

When each boundary segment is geodesic
∫
∂S
kgds reduces to the sum of “turning angles” along the boundary.

We are taking each marked point on the boundary to a cusp, so the “turning angle” is π. Thus
∫
∂S
kgds = πc.

Rearranging Equation 1 we obtain∫
S

KdA = 2πχ(S)− πc = 2π

(
2− 2g − b− p− 1

2
c

)
(2)

Definition 1.5. The total curvature of a bordered surface with marked points is 2− 2g − b− p− 1
2c.

We write χ(S) for total curvature of a bordered surface as a slight abuse of notation so the following
theorem matches the closed surface case.

Theorem 1.6. A surface S admits a hyperbolic structure iff χ(S) < 0.

For a closed surface (p = 0,b = 0 c = 0) this implies g ≥ 2 as usual. For g = 1 we need p ≥ 1 or b, c ≥ 1.
Similarly for g = 0 we obtain the following table:

Corollary 1.7. The number of triangles in an ideal triangulation of S is −2χ(S) = 4g − 4 + 2b+ 2p+ c

Proof. This follows as the total curvature of an ideal triangle is − 1
2 (all ideal hyperbolic triangles have area

π).

We will focus on non-closed surfaces. Both the triangle and punctured monogon have exactly one hy-
perbolic structure (there is only one ideal hyperbolic triangle up to isometry). This leads the four smallest
nontrivial examples are the square (disk with 4 marked points), the punctured digon, the annulus with 2
marked points, and the once punctured torus. See Figure 2
If we want to take the next step beyond existence we will need another view of a hyperbolic structure.
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g b p c χ(S) Name

0 0 3 0 −1 Thrice-punctured sphere
0 1 0 3 − 1

2 Triangle
0 1 1 1 − 1

2 Punctured monogon
0 2 0 2 −1 Annulus with 2 marked points
1 0 1 0 −1 Once punctured Torus
1 1 0 1 − 3

2 Torus with boundary
2 0 0 0 −2 Two holed torus

Figure 1: Minimal possible negatively curved bordered surfaces with marked points

(a) Disk With 4 MP (b) Punctured Digon (c) Annulus With 2 MP (d) Punctured Torus

Figure 2: The smallest surfaces with a nontrivial amount of hyperbolic structures

1.1 Developing Map

Definition 1.8. An alternate definition of a hyperbolic structure on a surface S is the existence of the
following pair of maps dev : S̃ → H2 and hol : π1(S)→ PSL(2,R). We call such a pair a developing pair.

The functions are related by the following equation for any γ ∈ π1(S) and p ∈ S̃

dev(γ.p) = hol(γ) · dev(p)

For our bordered surfaces we require that each puncture and marked point is sent to an ideal point on ∂H2.

Note that developing pairs are usually considered up the action of PSL(2,R) by g(dev,hol) 7→ (g ◦
dev, g hol g−1).

Remark 1.9. When the image of the developing map is all of H2 we recover S as H2/ hol(π1(S)) and say
the hyperbolic structure is complete.

Remark 1.10. In general the notion of a developing pair works for any target geometry X and G a group
of isometries by replacing H2 with X and PSL(2,R) with G.

Remark 1.11. The essential data of the developing map is the choice of boundary images of the marked
points. We can define a framed representation to be a representation ρ : π1(S)→ H2 with a ρ equivariant
choice of ideal points for each marked point of S.

Example 1.12. First we consider the disk with 4 marked points (Figure 3a). Here π1(S) is trivial and the
holonomy representation is trivial, so all data is in configuration of ideal points.

Recall that up to the action of PSL(2,R) we can send 3 points to 0, 1,∞. The last point is sent to x
which we call the cross ratio of the four points.
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Example 1.13. Now consider the annulus with two marked points (Figure 3c).

Here π1(S) = Z[γ] where γ is the loop around the puncture. If we fix an ideal triangulation of the annulus
we can develop one triangle at a time. After two triangles we return to the same edges “up to the action of
γ”. As such we see that actually choice of one ideal point is forced by the representation. The next triangle
has one new endpoint again determined by γ. From the last example we saw that one square “corresponded”
to one parameter of data. In this case we have two distinct squares and remark that our triangulation has
two interior edges.

Example 1.14. Finally we look at the punctured torus (Figure 3d).

Here π1(S) = Z[γ] ∗ Z[η]. If we develop triangle by triangle we observe that ρ determines the value of
flags. Starting from a flag x we see the flag the other flags on the triangle should be γ.x, η.x respectively.
When we had the next triangle we have a potential problem, as this flag should both be γη.x and ηγ.x. This
condition is equivalent to η−1γ−1ηγ.x = x. The path η−1γ−1ηγ is the path around the puncture and so we
see that part of the data of a framed representation is that the paths around punctures must fix the flag
there.
We can count distinct squares here as well and see there are 3 choices (each square has 2 of the 3 arcs in the
triangulation). Once again note this is the number of non-boundary edges of the triangulation.
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(a) Disk With 4 MP

(b) Punctured Digon (c) Annulus With 2 MP (d) Punctured Torus

Figure 3: Developing Images Of Basic Examples
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2 Coordinate System

The first coordinate system we consider is the “X-space”. To our surface with an ideal triangulation we can
assign a set of cross ratios to each quadrilateral.

2.1 Cross Ratios

Recall that ∂H2 can be identified with the projective line S1. So given 4 points x, y, z, w ∈ ∂H2 we define

cr(x1, x2, x3, x4) =
(x2 − x1)(x4 − x3)

(x3 − x2)(x4 − x1)
(3)

Remark 2.1. The usual cross ratio in projective geometry is cr(x1, x3, x2, x4) = 1− cr(x1, x2, x3, x4). One
reason for this change is our choice behaves especially nicely under cyclic rotation of the points:

cr(x1, x2, x3, x4) =
1

cr(x2, x3, x4, x1)
= cr(x3, x4, x1, x2) =

1

cr(x4, x1, x2, x3)

Consider a square in an ideal triangulation. If we read the vertices clockwise starting from either end of
the diagonal we obtain the same cross ratio cr(x1, x2, x3, x4). As such we associate this cross ratio to the
diagonal of the square.

Lemma 2.2. The cross ratio is invariant under isometries of H2.

Proof. One can check that Möbius transformations fix the cross ratio (suffices to check translation x 7→ x+a,
homothety x 7→ bx and inversion x 7→ −1/x).

This is leads to an alternate phrasing of the cross ratio. Given four points (x1, x2, x3, x4) chose an
isometry f sending (x2, x3, x4) to (0, 1,∞). Such an f is unique as PSL(2,R) acts simply transitively on
triples (there is only one ideal triangle!). Then

cr(x1, x2, x3, x4) = cr(f(x1), 0, 1,∞) =
(0− f(x1))(∞− 1)

(1− 0)(∞− x1)
= −f(x1).

Remark 2.3. As the action of PSL(2,R) preserves orientation, from this description we see that f(x1) < 0
and so the cross ratio is positive.

Theorem 2.4. An ideal triangulation on a surface determines a list of 6g − 6 + 3p + 3b + c cross ratios.
The values of these cross ratios for a particular hyperbolic structure, uniquely identify the structure.

Proof. Recall the developing pair assigns points on the boundary of hyperbolic space to each marked point
on S. As described above there is a well defined cross ratio associated to each square with diagonal. The
number of these squares correspond to the number of interior arcs in the triangulation. We recall from
Corollary 1.7 that the triangulation contains 4g − 4 + 2p + 2b + c triangles. Note that each interior edge
belongs to 2 triangles and each boundary edge belong to one triangle. We note that the number of boundary
edges is c. So if e is the number of interior edges we have

3t =2e+ c

12g − 12 + 6p+ 6b+ 3c =2e+ c

6g − 6 + 3p+ 3b+ c =e

We postpone the proof of reconstructing a representation given a list of positive real numbers associated to
each interior edge to a future lecture.
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2.2 Changing Triangulation

One natural question is how the X coordinates change if we chose a new triangulation. Analyzing the change
between two arbitrary triangulations is difficult. However there is a theorem that any two triangulations are
connected by sequence of “geometric flips”.

Definition 2.5. A geometric flip at an interior edge e of a triangulation T produces a new triangulation
µe(T ) given by removing e and replacing it with the other diagonal of the square containing e.

Theorem 2.6. Any two triangulations of a bordered surface can be reached by a sequence of geometric flips.

Proof. See [FT18] Proposition 3.8 for sources of a proof.

Thus to understand how coordinates change we only need to understand a single geometric flip.

Lemma 2.7. If the edge e is replaced with the edge f in a geometric flip then the new cross ratio Xf = X−1e .

Proof. This follows from the analysis of the cyclic rotation of a cross ratio in Remark 2.1.

However we see that this geometric flip changes what squares appear in the triangulation. Analyzing the
way these neighboring cross ratios change is difficult. Instead we will add some information to the hyperbolic
structure. This will allow us to define a related coordinate system which we can use to understand the X
coordinates.

3 Decorated Teichmüller Space

Definition 3.1. A decoration of a hyperbolic structure on a bordered surface S is a choice of horocycle for
each marked point of S.

Recall that informally a horocycle is the set points “equidistant” from an ideal point called the center
of the horocycle. Formally a horocycle is a curve whose normal directions all limit to the same ideal point.
In the Poincare Disk model horocycles correspond to circles tangent to the boundary at the ideal point.
Similarly in the upper half plane model horocycles are circles tangent to the x-axis or horizontal lines for
horocycles centered at infinity.
It is instructive to think about horocycles in the hyperboloid model as well. Here ideal points correspond
to lines in the asymptotic cone. Given such an ideal point λ(x, y,

√
x2 + y2) a horocycle is the intersection

the hyperboloid with a plane whose normal vector is λ(x, y,
√
x2 + y2. Note that the family of horocycles

centered at a given point can be parameterized by the magnitude of the translation from the plane through
the origin. Through this lens a choice of ideal point corresponds to a choice of line through the origin in R2

and the horocycle corresponds to a choice of point on this line (specifying the plane translation).

Remark 3.2. Isometries of hyperbolic space act on horocycles so choosing one horocycle for each marked
point of S gives a well defined choice of horocycle at every developed lift by the action of the holonomy
representation. See Figure 4

Definition 3.3. The decorated Teichmüller space T ′(S) associated to a surface S is the space of decorated
hyperbolic structures on S up to diffeomorphisms homotopic to the idendity fixing the marked points.

There is a natural map from decorated Teichmüller space to Teichmüller space (T ′(S)→ T (S)) given by
forgetting the decoration. Each fiber of this map is Rc+p+ .
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3.1 Lambda Lengths

The decoration allows us to assign a value to each edge of triangulation independently from the other choices.
This means when we perform a geometric flip only one of these values would change.

Definition 3.4. The lambda length between two ideal points with chosen horocycles is ed/2 where d is the
length of the geodesic between the horocycles. We take d to be negative if the two horocycles intersect.

This definition is a little odd at first with two glaring questions: “why exponentiate?” and “why divide
by 2?”. One small justification for exponentiating is that the lambda length is always positive. As we will
see positivity will be an important theme going forward.
A stronger reason for these operations is that mutation and the relation to the cross ratio are much cleaner
this way. To begin we will prove the “magic formula” for computing the length of the piece of a horocycle
inside a triangle.

Definition 3.5. The lambda angle at vertex v1 of a decorated ideal triangle is T 23
1 = λ23

λ12λ23
.

Remark 3.6. It is clear that T 32
1 = T 23

1 as lambda lengths are symmetric.

Theorem 3.7. Given a decorated ideal triangle v1, v2, v3 the length of the horocycle centered at v1 between
the geodesics connecting to v2 and v3 is T 23

1

Proof. This is easiest to see in the upper half plane where without loss of generality we can take (v1, v2, v3)
to be (∞, 0, 1) (Figure 5a). Then the length we are computing is the length of the horizontal line at height

(a) Disk With 4 MP (b) Punctured Digon (c) Annulus With 2 MP
(d) Punctured Torus

Figure 4: Decorated Developing Images Of Basic Examples

(a) Generic (b) Tangent Horocycles

Figure 5: Ideal Decorated Triangle In Upper Half Plane Model
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h between 0 and 1. This is a simple computation∫
γ

ds

y
=

∫ 1

0

dt
1

h
=

1

h
(1− 0)

We then check how this length and the ratio of lambda lengths change as we change the size of the horocycles.
We see that changing a horocycles at one end of the curve so the distance increases by ε changes the associated
lambda length by eε/2.

λ′12 = e(d(v1,v2)+ε)/2 = λ12e
ε/2

Changing the horocycle at v2 = 0 sends λ12 7→ λ12e
ε/2 and λ23 7→ λ23e

ε/2. The eε/2 cancels in T 23
1 which

matches the fact the horocycle length we are measuring hasn’t changed. Similarly changing the horocycle
at v3 = 1 fixes both sides.
It remains to see what happens when we move the horocycle at v1 = ∞ from h to heε. This is a shift by
hyperbolic distance ε so λ12 7→ λ12e

ε/2 and λ13 7→ eε/2. Thus T 23
1 = λ23

λ12λ13
is transformed by a factor of

e−ε. Similarly 1
h 7→

1
heε = 1

he
−ε.

Finally we check that these functions agree for some choice of horocycle. Take the horocycles that all meet
at a single point (See Figure 5b). Then λ12 = λ23 = λ13 = 1 and T 23

1 is also 1. In this configuration the
horocycle centered at infinity is at height 1 and so the length of the horocyclic arc is also 1.

Remark 3.8. The 1
2 in the definition of lambda length was necessary for the ratio to transform correctly as

the horocycle we were measuring varied.

Claim 3.9. The lengths of adjacent horocyclic arcs is additive. Symbolically T 23
1 + T 34

1 = T 24
1

We will use this additivity to derive a mutation rule for the geometric flip.

Corollary 3.10. The lambda lengths corresponding to four decorated ideal points v1, v2, v3, v4 satisfy the
relation λ13λ24 = λ12λ34 + λ14λ23

Proof. We start with the additivity formula around v1:

T 24
1 = T 23

1 + T 34
1

λ24
λ12λ14

=
λ23

λ12λ13
+

λ34
λ13λ14

λ24λ13 = λ23λλ14 + λ34λ12

Explicitly this means that performing the geometric flip replacing the edge γ13 with γ24 correspond to
replacing the coordinate λ13 with λ24 = λ12λ34+λ14λ23

λ13
. In the next lecture we will see this mutation relation

will generalize to the A type cluster mutation rule.

Claim 3.11. Given a triangulation the set of lambda lengths corresponding to the edges uniquely specifies
the hyperbolic structure up the action of PSL(2,R).

Proof. We give an informal sketch here. Later we will discuss explicit formulas to reconstruct a decorated
representation ρ : π1(S) → PSL(2,R). After picking one triangle to send to (0, 1,∞) the lambda lengths
associated to these edges fix the horocycles centered on the vertices of the triangles. As we saw the lambda
lengths in the next triangle specify the horocyclic length between the new geodesics which fixes the new
ideal point and horocycle centered there.
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3.2 Relationship Between Lambda Lengths and Cross Ratios

Recall that the cross ratio was an invariant we associated to the diagonal edge of a square in the triangulation.
If we label the vertices of the square v1, . . . , v4 so the diagonal goes from v1 to v3 we have the following
theorem:

Theorem 3.12. The cross ratio X = cr(v1, v2, v3, v4) is equal to λ12λ34

λ14λ23
.

Figure 6: Decorated Ideal Square In The Upper Half Plane Model

Proof. Using PSL(2,R) we can send (v1, v2, v3, v4) to (−X, 0, 1,∞). Again we compute in the upper half
space model (Figure 6). The horocycle centered at infinity is the horizontal line y = h. Then the length of
this horocycle between −x and 0 is 1

hX. From our magic formula (Theorem 3.7) we know this length is also
1
hX = T 12

4 . Similarly the length between 0 and 1 is 1
h = T 23

4 . Therefore

X = T 12
4 (T 23

4 )−1 =
λ12

λ14λ24

λ24λ34
λ23

=
λ12λ34
λ14λ23

Corollary 3.13. We can also write 1 +X and 1 +X−1 as ratios of lambda lengths. Explicitly:

1 +X =
λ13λ24
λ14λ23

1 +X−1 =
λ13λ24
λ12λ34

Using this relationship we can derive the mutation rule for cross ratios. We focus on a pentagon with
initial triangulation γ13 and γ14. Here we have two cross ratios which we can write in lambda lengths as

X13 =
λ12λ34
λ14λ23

X14 =
λ13λ45
λ15λ34

If we perform geometric exchange inside the square 1234 we replace γ13 with γ24. Writing the new cross
ratios here we obtain

X24 =
λ14λ23
λ12λ34

X14 =
λ12λ45
λ15λ24

By comparing with the old formulas we see the cross ratio at the mutated edge changed by inversion. However
the neighboring cross ratio X14 changes by a factor of λ12λ34

λ13λ24
= (1 +X−113 )−1.

We can perform a similar computation performing the exchange in the square 1345 replacing the arc γ14
with γ35. The new cross ratios are

X13 =
λ12λ35
λ23λ15

X35 =
λ15λ34
λ13λ45
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Now the adjacent cross ratio X13 changes by a factor of λ14λ35

λ15λ34
= 1 +X14.

Which rule to chose for the neighbor depends on if the neighbor comes before or after the exchanged arc in
the clockwise orientation of the shared triangle. We will see in the next lecture that this generalizes into the
X type cluster mutation rule.
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Part II

Lecture II: Cluster Algebra Combinatorics
Last lecture we gave coordinates for decorated and undecorated Teichmüller space. In both cases the co-
ordinates depended on some underlying combinatorial data, an ideal triangulation of the surface. Different
triangulations are related by sequences of local operations, “geometric exchange”. In the decorated case we
had a function associated to each edge, the lambda length and in the undecorated case we had a function for
each interior arc. We remark that the interior arcs are the only edges that can exchanged. We now introduce
a purely combinatorial generalization of the situation.

4 Definition of a Cluster Structure

4.1 Quiver Mutation

Definition 4.1. A quiver Q is a directed graph without self loops or two cycles. We divide the nodes into
two sets which call unfrozen and frozen.

Remark 4.2. The unfrozen set is also called the mutable set.

Remark 4.3. In a triangulation of a surface each arc of the triangulation corresponds to a node of the
quiver. The interior arcs are unfrozen or mutable as they can be exchanged. Correspondingly the boundary
arcs are frozen nodes.

We now define a mutation rule for quivers.

Definition 4.4. We mutate Q at a node i to obtain a new quiver Q′ = µi(Q) in the following three step
process:

1. For each path of arrows through i, j → i→ k add an arrow j → k.

2. Reverse all arrows incident to i.

3. Remove any two cycles formed by the previous steps.

Claim 4.5. Quiver mutation is an involution.

Claim 4.6. Quiver mutation at two nonadjacent nodes commute.

Proof. Since mutation at i only adds arrows between nodes adjacent to i it cannot change any paths of
arrows through a nonadjacent node.

Example 4.7. We mutate the following quiver at 1.

2 3

1

5 4

µ1−→

2 3

1

5 4

We now have enough to define a quiver associated to a triangulation of a surface so that geometric flips
correspond to mutation of the quiver.
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Definition 4.8. The quiver Q associated to a triangulation T has a node for each arc of T . For each triangle
of T add a clockwise cycle of arrows between the nodes. If any two cycles appear cancel them. As described
all interior arcs are unfrozen/mutable and all boundary arcs are frozen.

Remark 4.9. The quiver in Example 4.7 comes from the triangulation of a square.

(a) Disk With 4 MP (b) Punctured Digon (c) Annulus With 2 MP (d) Punctured Torus

Figure 7: Quivers associated to basic surfaces

Example 4.10. In Figure 7 we see the quivers associated to our basic surfaces: disk with 4 marked points,
punctured digon, annulus with two marked points, and punctured digon. We use square nodes to represent the
frozen nodes which correspond to the boundary arcs. Note how in Figure 7b the arrows between the mutable
node canceled while in Figure 7c the arrows added to form a double arrow.

4.2 A Coordinate Mutation

Definition 4.11. An A coordinate is a variable associated to a node of a quiver. To build an abstract
cluster algebra, these coordinates are invertible elements of Z(a±11 , . . . , a±m). When building a cluster structure
on a ring, the A coordinates are distinguished choices of elements of the ring.

Example 4.12. For the cluster structure on decorated Teichmüller space the A coordinates are the lambda
lengths of arcs.

Definition 4.13. A seed of a cluster algebra is the pair of a quiver and choice of A-coordinate for each
node. The set of a coordinates in a seed is called a cluster. The size of the unfrozen set is the rank of the
seed and the corresponding cluster algebra.

We can extend quiver mutation to a mutation of seeds by defining the following mutation rule on A
coordinates:

µi(ai) =
1

ai

∏
j→i

aj +
∏
i→k

ak

 (4)

Remark 4.14. For the surface quiver this is exactly the relation of lambda lengths when performing geometric
exchange.

Example 4.15. Consider the quiver 1→ 2 with starting coordinates a1, a2.
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Here the quiver mutation is very simple, we reverse the orientation of the unique arrow. If we mutate at
the source we see the new variable will satisfy the relation anan+2 = 1 + an+1. Note the empty product of
arrows into the source is taken to be 1. Iterating this procedure we see:

a3 =
1 + a2
a1

a4 =
1 + a3
a2

=
1 + 1+a2

a1

a2
=

1 + a1 + a2
a1a2

a5 =
1 + a4
a3

=
1 + 1+a2+a2

a1a2
1+a2
a1

=
a1a2 + a1 + 1 + a2

(1 + a2)a2
=

(1 + a1)(1 + a2)

(1 + a2)a2
=

1 + a1
a2

a6 =
1 + a5
a4

=
1 + 1+a1

a2
1+a1+a2

a1

=
(1 + a1 + a2)a1

1 + a1 + a2
= a1

a7 =
1 + a6
a5

=
1 + a1
1+a1
a2

= a2

Remarkably this pattern repeats after finitely many steps ai+5 = ai.

Remark 4.16. Every cluster variable is a Laurent polynomial in a1, a2 with a unique denominator.

Definition 4.17. The exchange graph of a cluster algebra is a graph with vertices for each seed and an
edge connecting two seeds related by a single mutation.

Figure 8: Exchange graph for the A2 cluster algebra

The exchange graph for the abstract A2 quiver is a pentagon (Figure 8). We now consider the cluster
algebra structure for decorated hyperbolic structures on a pentagon. Here we start with a triangulation with
edges e12 and e13. The associated quiver has two mutable nodes with functions λ12 and λ13. Performing all
possible geometric exchanges/cluster mutations results in the same exchange graph as the abstract A2. This
is an example of the following theorem:

Theorem 4.18. The exchange graph of a cluster algebra is independent of the frozen nodes.
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Example 4.19. We now consider the case of the annulus with 2 marked points.

In order to compute the geometric exchange we need to index arcs of the triangulation. Here every
interior arc connects the two unique marked points on each boundary. The difference between arcs is the
winding number i. Two arcs ei and ej are non-crossing if and only if |i − j| = 1. So there is a unique seed
Si with interior arcs ei, ei+1. Mutation at ei results in ei+2 and so send Si to Si+1.
The quiver associated to each triangulation is the same. The mutable portion is a double edge connecting the
two mutable nodes. Each boundary arc corresponds to a frozen node attached in a oriented cycle (Figure 7c).
We observe that mutation returns this quiver to itself. We can start an equivalent abstract cluster algebra
by starting with mutable A coordinate a1, a2 and no frozen variables. Then we have ai+2ai = 1 + a2i+1.

a3 =
1 + a22
a1

a4 =
1 + a23
a2

=
a21 + 1 + 2a22 + a42

a21a2

a5 =
1 + a24
a3

=
a41 + 2a21 + 1 + 2a21a

2
2 + 3a22 + 3a42 + a62

a31a
2
2

We see that the “minimal” degree of the polynomial in a1, a2 changes with each mutation so this mutation
never repeats. We can formalize this by tropicalizing the mutation rule. As the A coordinate mutation
only involves addition, multiplication and division we can use any semiring for the coordinates. In this way
we can track the minimal degree of a Laurent polynomial by taking “multiplication” to be sum of the degrees
and “addition” to be take the minimal degree. We write the minimal degree as a vector (d1, d2) representing
the minimal term ad11 a

d2
2 . So the minimal degree of ai+2 is min{1, 2mdeg(ai+1} −mdeg(ai):

a1 =(1, 0)

a2 =(0, 1)

a3 = min{(0, 0), 2(0, 1)} − (1, 0) = (−1, 0)

a4 = min{(0, 0), 2(−1, 0)} − (0, 1) = (−2,−1)

a5 = min{(0, 0), 2(−2,−1)} − (−1, 0) = (−3,−2)

Remark 4.20. Another reason that this cluster structure is infinite is because the surface has nontrivial
mapping class group. This is because the mapping class group acts on triangulations of a surface while
preserving “adjacency” of the triangles. Thus the mapping class group gives a subset of the symmetry of the
exchange graph.

Example 4.21. We now look at the punctured digon.

Here the mapping class group is trivial so we expect a finite cluster algebra. In fact the quiver associated
to the standard triangulation is two disconnected nodes (due to canceling the two cycle). The corresponding
cluster complex is a square as the two mutations commute. However if we look at the surface, mutating
either of the initial edges results in a self folded triangle. As such geometric exchange doesn’t make sense
at the inner arc. However a slight modification to the combinatorics of triangulations of punctured surfaces
can make these two methods agree. For more details see [FST08].

5 Laurent Phenomenon

Theorem 5.1. Every A coordinate in any seed obtained from an initial seed (Q,a) are Laurent polynomials
in a.

Proof. The proof is fairly technical, see [FWZ21b]
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Conjecture 5.2. The coefficients of these polynomials are positive. In particular if the initial cluster vari-
ables are positive then all variables are positive.

Remark 5.3. This can be subtle as 1+x3

1+x = 1− x+ x2.

5.1 X Coordinate Mutation

We have seen how cluster A coordinates generalizes Lambda lengths on hyperbolic surfaces. We now define
a set of coordinates and mutation rule that will correspond to the transformation of cross ratios.

Definition 5.4. An X seed for a cluster algebra is the pair of a quiver Q and a choice of variables x1 to
xn for each mutable node of Q.

We then describe a seed mutation at i by giving a mutation rule for X coordinates. To is convenient to
recall that each quiver corresponds to a skew symmetric matrix ε where εij is the number of arrows from i
to j. Then define:

µi(xk) =


1
xi

i = k

xk(1 + xi)
εik εik > 0

xk(1 + x−1i )εik εik < 0

(5)

Remark 5.5. X mutation changes every coordinate incident to i not just i.

Remark 5.6. The X mutation doesn’t use the frozen variables of the quiver. As such if we relate the A and
X exchange complexes we see the exchange complex is independent of the frozen nodes.

Last time we saw that the cross ratio of a square can be written as a ratio of lambda lengths λ12λ34

λ14λ34
. We

can define a map ρ from the X cluster algebra to the A cluster algebra generalizing this situation.

ρ(Xi) =
∏

a
εij
j =

∏
i→k

ak∏
j→i

aj
(6)

Theorem 5.7. Let (Q,a) and (Q,x) be A and X seeds associated to the same quiver Q. After performing
mutation at i to obtain (Q′,a′) and (Q′,x′) the two seeds are still related by ρ.

Proof. We observe that under ρ, 1 + xi is also mapped

ρ(1 + xi) = 1 + ρ(xk) = 1 +

∏
i→k

ak∏
j→i

aj
=

∏
i→k

ak +
∏
j→i

aj∏
j→i

aj
=

aia
′
i∏

j→i
aj

Figure 9: Cluster complex for punctured digon
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Similarly ρ(1 + x−1i ) =
aia
′
i∏

i→k ak
. It is then a small calculation to compute ρ(x′k) when i

w−→ k (εik = w for

positive w).

ρ(x′k) =

∏
k→s

as∏
t→k

at

 aia
′
i∏

j→i
aj


w

As i
w−→ k the awi in the numerator will cancel with corresponding denominator term in the first fraction.

In Q′ the arrows incident to i are reversed so the a′wi should be in the numerator. Similarly for any path
j → i→ k we added j → k and so aj should appear in the denominator.
A similar computation shows that the x coordinates along “in edges” also transform in the same way.

Remark 5.8. It is useful to write X coordinates using their image under ρ. However the ratio of A
coordinates might not uniquely identify X coordinates. This can be fixed by adding more frozen A coordinates.
For example consider the quiver 1 → 2 ← 3. Here ρ(x1) = a2 and ρ(x3) = a2. However adding different
frozen variables f1 and f3 attached in to 1 and 3 respectively fixes the problem.

6 Finite Type Classification

We observed in Example 4.19 that the cluster structure associated to a double edge is infinite. Clearly any
cluster algebra with a seed containing a double edge is also infinite. Surprisingly this is the only obstruction
to finiteness.

(a) An

(b) Dn
(c) E6 (d) E7 (e) E8

Figure 10: Simply Laced Finite Dynkin Diagrams

(a) An Affine
(b) Dn Affine (c) E6 Affine

(d) E7 Affine (e) E8 Affine

Figure 11: Simply Laced Affine Dynkin Diagrams

Theorem 6.1. If every quiver mutation equivalent to Q has only single weight edges then the exchange
complex associated to Q is finite. Moreover such a quiver is mutation equivalent to an orientation of a
simply laced finite type Dynkin diagram (Figure 10).

Proof. We give a sketch of the proof. For full detail see [FWZ21c].
First we claim that any quiver mutation equivalent to an orientation of an acyclic graph is mutation equivalent
to all orientations of the graph. This can be checked inductively after noting that mutation at a source or
sink preserves the underlying graph. Then one can show that if Q is mutation equivalent to an orientation
of affine Dynkin diagram (Figure 11) then Q is mutation equivalent to a quiver with a double edge. There
is a small exception, because the affine An diagram is a cycle. It turns out that there is an invariant of
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the mutation class of a cycle which is the number of clockwise/counterclockwise arrows. A fully oriented
cycle is actually finite as it can be obtained a triangulation of a punctured n-gon. However a cycle with
p clockwise and q counterclockwise arrows is obtained by triangulating an annulus with p marked points
on one boundary and q on the other. Similarly the affine Dn diagram can be obtained by triangulation an
n-gon with two punctures. Both of these surfaces have infinite mapping class group and thus are infinite. It
remains to explicitly verify that the affine E6, E7 and E8 are mutation equivalent to a quiver with double
edge.
It then suffices to show the quivers mutation equivalent to finite Dynkin diagrams are finite. There are two
infinite families of finite Dynkin diagrams An and Dn. We can observe that these correspond to triangulations
of n+ 3-gons (An) and punctured n-gons (Dn). As the mapping class group of both these surfaces are finite
we observe there are finitely many possible arcs and thus finitely many possible triangulations. The final
cases E6, E7, E8 can be computed explicitly. Here a computer is useful as E8 has 25080 seeds. In Figure 12
we see the full exchange graph for E6, E7 and E8

Figure 12: Exchange Graphs For E6, E7, E8

Theorem 6.2. In every finite cluster algebra starting from a seed (Q,a) the denominator of each Laurent
polynomial uniquely identifies the polynomial. In fact if Q is an orientation of a finite Dynkin diagram
such that every node is a source or a sink we get an easy injective map from cluster variables to roots of
the corresponding root system. If we label the roots α1, . . . , an and the A coordinates at the corresponding
locations on the Dynkin diagram a1, . . . , an the map is

pd(a)

ad11 . . . adnn
7→
∑

diαi

Proof. The proof is fairly technical but amounts to translating the “tropical mutation rule for denominator
vectors” into an operation of root systems. See [FZ03] for full detail. The image of this map is the positive
roots plus negative the simple roots (for the starting cluster).

Corollary 6.3. A consequence of the proof of the previous theorem is that every A coordinate appears on a
quiver isomorphic to Q.

Claim 6.4. For any quiver Q which is a orientation of a acyclic graph such that every node is a source
or a sink the mutation sequence mutate at every source then mutate at every sink returns to an isomorphic
quiver.
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We note this operation is well defined as sources/sinks cannot be adjacent and mutation at nonadjacent
nodes commutes. We call this the sources-sinks mutation sequence.
In the cluster algebras of finite type the order of the sources sinks mutation is finite and is related to the
Coxeter number h of the associated Dynkin diagram.

Claim 6.5. The order of the sources sink mutation for a finite type cluster algebra is h+1
2 .

6.1 Cluster Subalgebras

Definition 6.6. A cluster subalgebra of cluster algebra is obtained by “freezing” some of the mutatable
nodes in a seed (Q,a). In other words the subcluster algebra structure is obtained by choosing a set of A
coordinates that will appear in every seed of the subalgebra.

Definition 6.7. We can upgrade the exchange graph to the exchange complex which has a k cell for each
rank k subalgebra. The boundary of each cell is all corank 1 subalgebras.

We note that a rank 0 subalgebra consists of a single seed as every node of the quiver is frozen. Similarly
a rank 1 subalgebra is an edge corresponding to a single mutation as there is one mutatable node and the
boundary is the two seeds obtained by mutating at that node.

Theorem 6.8. The type of every subalgebra of a cluster algebra of finite type is obtained by removing nodes
of the corresponding Dynkin diagram.

Proof. From Corollary 6.3 we know every A coordinate appears on a quiver corresponding to a sources-sinks
orientation of a Dynkin diagram. Thus every codimension 1 subalgebra has type given by removing one node
from the Dynkin diagram. Inductively this is true for all subalgebras.

Example 6.9. The codimension 1 subalgebras of an A3 cluster algebra are of type A2 or A1 × A1. In fact
there are twice as many A2 subalgebras as A1 × A2. For an exact count we know that the sources-sinks
mutation has order 3 and so the A3 cluster algebra has 6 A2 subalgebras and 3, A1×A1 subalgebras (Figure
13)

Figure 13: Exchange Complex of type A3
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Part III

Grassmannians

7 Grassmannian Basics

In this lecture we will define and explore the cluster structure on the Grassmannian. What follows is modeled
on [FWZ21a] and [Sco06]. First we need to recall what the Grassmannian is.

Definition 7.1. The Grassmannian Gr(k, n) is the set of k dimensional linear subspaces of Rn.

In algebraic geometry one often uses the notation Gr(p, q) to mean Gr(p, p+ q) in our notation. People
often consider the complex Grassmannian. Most of what follows will work over C as well, except for the
discussion of positivity.
A natural question is to give coordinates to this space. Our first attempt is to represent each k dimensional
subspace by a set of k vectors in Rn, i.e. an k × n matrix. However the same point is represented by many
different matrices/ has many different bases. The solution to this is the Plücker embedding.

Definition 7.2. For each I ⊆ {1, . . . , n} of size k the Plücker coordinate pI : Gr(k, n) → R is given by
taking the determinant of the submatrix with columns i ∈ I of a matrix representing a point in Gr(k, n).
The Plücker embedding is the combined map Gr(k, n)→ PNR for N =

(
n
k

)
− 1 given by all possible Plücker

coordinates.

The Plücker embedding is well defined as the representative matrix is well defined up to left multiplication
by m ∈ GL(k). This simultaneously changes all Plücker coordinates by det(m) and thus gives a well defined
point in projective space.

Remark 7.3. We extend the definition of Plücker coordinates to ordered tuples by setting

pi1,...,ik = (−1)σpiσ(1),...,iσ(k)

where (−1)σ is the sign of the permutation σ. Similarly if any index repeats we take the corresponding
Plücker coordinate to be zero. This follows naturally from viewing the Plücker coordinate as a determinant.

The set of Plücker coordinates is not algebraically independent. In fact for each sequence i1 < · · · < ik−1
and j1 < · · · < jk+1 there is a relation

0 =

k+1∑
`=1

(−1)`pi1,...,ik−1,j`pj1,...,ĵ`,...,jk+1

When the two chosen sets share k − 2 indices the relation simplifies dramatically. If I is the set of common
indices and i < j < k < ` is a disjoint choice of indices we have:

0 = pijIpk`I − pikIpj`I + pi`IpjkI (7)

pikIpj`I =pijIpk`I + pi`IpjkI (8)

This relation has the form of a cluster A mutation! In fact when k = 2 the set I is empty and the relation
is exactly the same as the relation of the lambda lengths in a square cyclicly labeled i, j, k, `.

pikpj` = pijpk` + pi`pjk

These relations give the Grassmannian the structure of a projective variety. In other words the image of the
Plücker embedding is exactly the variety cut out by the Plücker relations. So studying the Grassmannian is
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related to studying its coordinate ring R[Gr(k, n)], the ring of polynomials in Plücker coordinates up to the

Plücker relations. In what follows we actually consider the affine cone over the Grassmannian Ĝr(k, n) and

the corresponding coordinate ring R[Ĝr(k, n)]. This is mostly a technicality and so in the remainder of the
lecture we will write Gr(k, n) for the affine cone.

8 Cluster Structure on the Grassmannian

To construct a cluster structure on the (coordinate ring) of the Grassmannian we need to describe a starting
seed, quiver and set of functions so that

1. Every element of the coordinate ring is in the algebra spanned by the A coordinates.

2. Every A coordinate generated by mutation is in the coordinate ring.

The first condition is satisfiable by choosing the initial functions to be a generating set for the ring. We also
want the set to be algebraically independent so that all relations come from the cluster structure. The second
condition is harder to guarantee as the mutation rule involves division, and so the new A coordinates might
not be regular. Fortunately we have a lemma which restricts our testing to a single seed and its neighbors
rather than the whole cluster structure.

Lemma 8.1 (Starfish Lemma). Let R be a finitely generated C algebra with unique factorization. Let F be
the corresponding fraction field. If (Q,a) is the seed a cluster algebra such that

1. Every coordinate of the seed is in R.

2. The elements of a are pairwise coprime.

3. Every mutation at ak resulting in a new coordinate a′k also in R such that ak and a′k are coprime.

then the cluster algebra generated by the seed is contained in R.

Proof. For full details of the proof see [FWZ21a]. Informally it suffices to check regularity outside a variety
of codimension 2 (Hartog’s continuation principle). We define Y the variety of points where two variables
vanish between our initial seed and its neighbors.

Y =
⋃

1≤i≤j≤n

{ai = aj = 0} ∪
⋃

1≤k≤n

{ak = a′k = 0}

The variables being coprime ensures that at least two equations are needed to define any of these subsets.
Furthermore on the complement only a single variable in the original seed ak can be zero. Then either ak or
a′k is nonzero. As any cluster coordinate is a Laurent polynomial either in the original seed or this neighbor
it must be regular.

In Gr(2, n) we have a simple construction for a seed given by a triangulation of an n−gon. Each edge
of the triangulation connecting boundary points i and j corresponds to the Plücker coordinate pij . This
set of coordinates is independent as no edge “crosses” and every Plücker relation requires a crossing edge.
Moreover the relation given by a geometric flip corresponds exactly to a Plücker relation and so mutation in
every direction satisfies the starfish lemma. It is difficult to check any seed generates the ring directly, but
as every Plücker coordinate is realized as the edge of some triangulation we know we get all the generators.
Thus we would like a construction of a similar “maximal non crossing” set for Gr(k, n) generalizing Gr(2, n).
Recall that for each 1 ≤ i ≤ n we have an inclusion Gr(k, n) ↪→ Gr(k + 1, n+ 1) given by pI 7→ pi∪I . Under
ρ5 two non crossing coordinates p12 and p34 map to p125 and p345. This motivates the following definition.
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Figure 14: Constructing Seeds in Gr(3, 5) and Gr(3, 6) from Gr(3, 4)

Definition 8.2. Two subsets I and J of {1, . . . , n} of size k are non crossing or compatible if every arc
between points I \ J doesn’t cross any arcs between points in J \ I.

Example 8.3. The sets {1, 2, 3}, {2, 3, 5} and {2, 4, 5} are pairwise compatible.

Example 8.4. The sets {1, 2, 5} and {3, 4, 6} are crossing. So is {1, 3, 5} and {2, 4, 5}.

Lemma 8.5. A set of k adjacent indices under the cyclic order is compatible with any other k subset of
{1, . . . , n}.

Proof. Without loss of generality consider the set 1, . . . , k. Then the only remaining indices in J \ I are
between k + 1 and n which don’t cross 1k.

For this reason the adjacent subsets will appear in every seed in Gr(k, n) and will be our frozen nodes.

Claim 8.6. The maximum size of a set of pairwise non crossing coordinates in Gr(k, n) is k(n− k) + 1.

Proof. This is technical so we omit it here (see [LZ98])

This result gives a recipe to construct maximal families of non crossing subsets in Gr(k, n+ 1) from such
a family in Gr(k, n). We start with Gr(k, n+ 1). There are k adjacent subsets in Gr(k, n+ 1) that contain
n+ 1. These sets are non crossing with every other set, so can be added to a family of size k(n− k) + 1 to
obtain k(n+ 1− k) + 1 subsets which is the maximal number.
Furthermore we note that in Gr(k, k+1) the maximum size is k+1 which is the number of adjacent subsets.
We now need to describe how to build a seed inductively from this construction. In Gr(k, k + 1) connect
the adjacent set starting with i to i + 1 in an oriented cycle. Then to get a seed in Gr(k, n + 1) from one
in Gr(k, n) we add the k new frozen vertices (connected fi to fi+1). These attach to the old frozen vertices
which are no longer adjacent in oriented 3 cycles. See example in Figure ??.
We remark that the nodes of this quiver can arranged in a k× n− k grid (with the exception of one frozen

node). This is our candidate seed for Gr(k, n). We must show that these coordinates generate the ring and
satisfy the starfish lemma.

Remark 8.7. Any mutation of this quiver at a “2 in 2 out” location produces a new Plücker coordinate.

Proof. If we inspect the construction it is true for the initial quiver. A full proof requires the notion of an
alternating strand diagram [Sco06].

Claim 8.8. By starting with the top right node and mutating in successive diagonals we obtain a quiver
that is a grid with no diagonals. There is a minor technicality that mutating diagonal i removes edges along
diagonal i+ 1 and adds the diagonals behind at diagonal i− 1. This is fixed by mutating recursively at i− 2
to “push these edges off the quiver.

The quiver in the previous claim is good because every mutable node is “2 in 2 out” and so checking the
starfish condition is easy.

Lemma 8.9. Every Plücker coordinate appears in some seed connected to our initial seed.

Proof. This is true inductively using our embedding of Gr(k, n) in Gr(k, n+ 1) and Gr(k + 1, n+ 1).
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9 Analysis of Cluster Structure of Grassmannian

9.1 Positivity

One consequence of the cluster structure is identifying a minimal test for positivity.

Definition 9.1. The positive Grassmannian is the subset of Gr(k, n) such that every Plücker coordinates
are nonnegative.

Remark 9.2. This subset has many applications to theoretical physics including the calculation of scattering
amplitudes in Yang Mills Theory.

Each seed gives a minimal set of checks for every Plücker coordinates to be positive. This follows directly
from the (positive) Laurent Phenomena. As k(n−k)+1 is asymptotically smaller than

(
n
k

)
this is a significant

computational improvement.

9.2 Non Plücker Coordinates

We can also use our general cluster theory to analyze the cluster structure of Grassmannians. Recall that
the only finite cluster algebras are those mutation equivalent to an An, Dn or E6, E7, E8 Dynkin diagram.

Theorem 9.3. The cluster structure on Gr(k, n) is finite iff (k − 2)(n − k − 2) < 4. When k ≤ n
2 these

Gr(2, n), Gr(3, 6), Gr(3, 7), and Gr(3, 8).

Proof. We can check that the seed we construct for Gr(2, n) is type An−3. Alternately Gr(2, n) corresponds
to triangulations of an n-gon which is finite. The remaining are of type D4, E6 and E8 respectively. We
check that if (k− 2)(n− k− 2) ≥ 4 then the cluster algebra is mutation equivalent to a quiver containing an
(k − 1)(n− k − 1) grid. Such a grid contains an affine Dynkin diagram. In particular in either a 3× 3 grid
(Gr(4, 8)) or a 2× 5 grid (Gr(3, 9)) we find a D6 affine.

We also saw that in the finite cases the number of mutable cluster variables is the number of almost
positive roots n(h2 + 1) where h is the Coxeter number of the rank n diagram. Thus the total number of
cluster variable in Gr(k, n) adds n frozen variables. For Gr(2, n) which is type An−3 this is

(n− 3)

(
n− 3

2
+ 1

)
+ n =

n(n− 3)

2
+ n =

n2 − 3n+ 2n

2
=
n(n− 1

2
=

(
n

2

)
Thus every cluster variable is a Plücker coordinate. However for Gr(3, 6) which is type D4 the Coxeter
number is 2 · 4 − 2 = 6. So the number of A coordinates is 4

(
6
2 + 1

)
+ 6 = 22 and

(
6
3

)
= 20. This leaves 2

“exotic” coordinates. In Scott he calls them X and Y . We can find Laurent expressions for one them using
cluster mutation from our constructed diagram.

Y · p145 =p125p134p456 + p156p124p345

= (p124p135 − p123p145) p456 + p124(p135p456 − p145p356)

=p145 (−p123p456 + p124p356)

We can also write Y as det(v1×v6, v2×v3, v4×v5). The other coordinate is X = det(v1×v2, v3×v4, v5×v6).
In this way the cluster structure reveals an additional symmetry of Gr(3, 6) called the “parity transforma-
tion”.
Similarly Gr(3, 7) is type E6 which has Coxeter number 12. Thus it has 6 · 7 + 7 = 49 A coordinates which is
14 more than the

(
7
3

)
= 35 expected. These “exotic” A coordinates corresponding to the 7 possible inclusions

of Gr(3, 6) in Gr(3, 7).
Finally Gr(3, 8) is type E8 and has Coxeter number 30. There are 8 · 16 + 8 = 136 A coordinates compared
to
(
8
3

)
= 56 Plücker coordinates. There are

(
8
2

)
= 28 embeddings of Gr(3, 6) in Gr(3, 8) corresponding to 56

images of X and Y . This leaves 24 coordinates. They are degree 3 polynomials in Plücker variables and
come in two orbits under the standard dihedral action. For further details see Scott.

22



9.3 Finite Mutation Type

The two Grassmannians on the border between finite and infinite have a special classification. Both Gr(3, 9)
and Gr(4, 8) are finite mutation type. In other words they have finitely many quivers despite having
infinitely many cluster variables. This makes them more tractable then the higher Grassmannians but still
difficult. See [?DoublyExtended] for computations of the symmetry groups of “doubly extended cluster
algebras” of which Gr(4, 8) and Gr(3, 9) are two important examples.
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Part IV

Cluster Modular Groups
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Part V

Cluster Structure on Double Bruhat Cell
In this lecture we explore the cluster structure on a new geometric object. When G is a simply connected
semisimple Lie Group we have an explicit cluster structure for each double Bruhat cell. This explicit
recipe gives us a concrete understanding of the ring of regular functions. What follows is loosely based on
[BFZ05].

10 Notation and Definitions

First we fix our notation. We let G be a semisimple Lie Group. The key example is type An−1 or G =
SL(n,C). What follows generalizes nicely to the other simply laced Lie Groups (Dn, E6, E7, E8) although the
computations are more complicated. The non simply laced examples (Bn = SO(n, n+ 1), Cn = SP(2n,R))
require a slight generalization of cluster algebras but otherwise look more like the SL(n,C) case.

Definition 10.1. We say that an algebraic subgroup P is parabolic if G/P is a complete variety. Then a
Borel subgroup is a parabolic subgroup with the “largest” possible quotient G/B. In SL(n,C) we take B = B+

to be the subgroup of upper triangular matrices (with diagonal arbitrary and nonzero). Each Borel subgroup
is paired with an opposite Borel. In SL(n,C) this is the group of lower triangular matrices and we denote
it B−.

The varieties G/P for P parabolic are called flag varieties and are of special interest when studying
representations of surface groups and symmetric spaces. When P = B is Borel this variety is the full flag
variety.

Definition 10.2. The maximal torus is the intersection of B+ and B−. In our SL(n,C) setup this is the
set of diagonal matrices and denoted H.

Definition 10.3. The unipotent radical of a parabolic subgroup P is denoted U . In our running example
the unipotent radical of B+ is upper triangular matrices with all diagonal elements 1. Similarly U− is the
group of lower triangular matrices with diagonal 1. We have that P = H o U .

A decorated flag variety is the quotient space G/U for some U .

10.1 Roots and Weights

Recall that each semisimple Lie group G has an associated Lie algebra g. The Lie algebra associated to the
maximal torus H is h. This has a root system and Weyl group W .

Definition 10.4. Abstractly root is a function h → R such that there is an X 6= 0 in the Lie algebra so
[H,X] = α(H)X.

Definition 10.5. A coroot is a dual element to a root α written α∨. It is defined by how it pairs with X
using the Killing form on the Lie algebra.

Definition 10.6. The fundamental weights is again a function h→ R dual to a coroot under the “stan-
dard” dual basis construction. In otherwords the weight wj dual to a coroot α∨i is one such that α∨i (wj) = δij.

We can extend the action of weight to H via wj(e
h) = ewj(h). This then extends to the entire group as

generic elements can be decomposed B−HB+.
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The correct choices of roots make the actual computations much simpler. For example in SL(n,C) the
root system (and associated Dynkin diagram) is of type An−1. For our choice of simple root spaces we take
the upper off diagonal. We write ei(a) for the matrix with a in position (i, i+ 1) and all other entries 0. In
this way the root space associated to root αi is {ei(a)|a ∈ C}. The negative simple root spaces are fi = eTi .
We write Xi(a) = exp(ei(a)) = I+e(i)(a) for the corresponding element of the Lie Group SL(n,C). Similarly
Yi = exp(fi(a)). Not that under this convention the positive unipotent radical is generated by {Xi} and the
negative unipotent radical is generated by {Yi}.
In this scenario the fundamental weights wi = α1+· · ·+αi. As a function on SL(n,C) this is the determinant
of the first i rows and columns.

10.2 Weyl Group

Definition 10.7. The Weyl Group of a root system is the subgroup of the isometries of the root system
generated. Concretely the Weyl group is given by an order two generator si for each node of the correspdond-
ing Dynkin diagram. The generators satisfy braid relations depending on the connection in the diagram. If
i and j are not adjacent then sisj = sjsi. However when i is adjacent to j we have sisjsi = sjsisj.

The Weyl group can also be realized “in” the Lie group as NormG(H)/H. In particular we can define
lifts si using our notation so far. We set si = Xi(−1)Yi(1)Xi(−1). For example in SL(n,C) we can compute

s1 =

0 −1 0
1 0 0
0 0 1

 s2 =

1 0 0
0 0 −1
0 1 0


Note that s2i is a diagonal matrix which is equal to the identity up to multiplication by H, but isn’t exactly
the identity. When a clean inverse is required we write si = s−1i . Most contructions will abstractly depend
on the word and not the lift.

Definition 10.8. The longest word in the Weyl Group ω0 is the word in W with the longest reduced
expression.

The longest word has a well defined lift to the group ω0 and in our setup is antidiagonal alternating −1
and 1 from the top right.

ω0 =


−1

1
−1

1
−1


We note this matrix (and the longest word) is independent of the particular reduced expression in si repre-
senting it.

Remark 10.9. In SL(n,C) the Weyl group is isomorphic to the symmetric group on n elements. Here si
is the transpostion exchanging i and i+ 1 and w0 is the order reversing permuation.

10.3 Generalized Minors

We can extend the fundamental wieghts to a generalized minor by pre/postcomposing with elements of
the Weyl group.

Definition 10.10. The generalized minor ∆
(u,v)
i is the function defined on an element g by ∆u,v

i (g) =
wi(u

−1gv) for each u, v in the Weyl group and each i.

We note this function is independent of the choice of lifts of u and v.
In SL(n,C) we identified the weights with determinants of minors and the Weyl group with permutations.
In this case ∆u,v

i is the determinant of the minor with rows u[1, . . . , i] and columns v[1, . . . i]. We write
∆u[1,...,i],v[1,...,i] for the actual minor.
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11 Bruhat Cell

We now have enough notation to define the Bruhat decomposotion of a group.

Definition 11.1. For each element w ∈W the Bruhat cell is the double coset BwB

Recall that left/right multiplying by upper triangular matrices corresponds to row/column operations.
Under this interpretation each Bruhat cell correspond to the permutation matrix that remains after row
reducing a matrix of full rank. In SL(n,C) there is a simple list of conditions for an elment to belong to the
Bruhat cell indexed by w.

Theorem 11.2. An element g ∈ SL(n,C) belongs to the Bruhat cell BuB if

1. For i = 1, . . . , n− 1, ∆u[1,...,i],[1,··· ,i](g) 6= 0

2. For 1 ≤ i < j ≤ n, if u(i) < u(j) then ∆u[1,...,i]∪{j},[1,...,j] = 0

For the following examples we specialize to SL(3,C) which is type A2.

Example 11.3. Consider the Bruaht cell corresponding to the longest word s1s2s1. This correspond to the
order reversing permuation (in one line notation 321).

The first conditions on nonzero minors are then on g3,1 the bottom left entry and

[
g21 g22
g31 g22

]
.

There are no minors that are forced to vanish as the permutation never preserves the ordering on i < j.

Example 11.4. Now consider the Bruhat cell corresponding to the empty word. As a permutation this is
the identity (in one line notation 123).

The nonvanishing minors are g11 the top left entry and

[
g11 g12
g21 g22

]
.

Now for each 1 ≤ i < j ≤ 3 the permutation preserves the order. So for i = 1 j = 2, 3 and i = 2 j = 3
the minor must vanish. When i = 1 the corresponding minor is gj,1. So we know g2,1 = g3,1 = 0. The final
vanishing minor is

det

[
g11 g12
g31 g32

]
= g11g32 − g12g31 = g11gg32 − g120 = g11g32

For this minor to vanish and have g11 6= 0 we must have g32 = 0. In other words g is an upper triangular
matrix with all diagonal entries nonzero as expected (the Bruhat cell corresponding to the empty word is
B).

Remark 11.5. As B− is the transpose of B we can get analogous conditions for a matrix to belong to a
Bruhat cell defined using B− by swapping the row and column data.

Definition 11.6. A double Bruhat cell depends on the choice of two words u, v ∈W and is the intersection
Gu,v = B+uB+ ∩B−vB−.

There are a few choices of word that are of special interest to us.

• The largest Bruhat cell is Gω0,ω0 . This is the “generic” cell in the group.

• The cell Ge,ω0 is important in the study of full flag varieties. If we fix two flags as the standard and
opposite flag τ+ = B, τ− = B−, this cell consists of group elements g so that gτ− is a flag transverse
to both τ+ and τ−. In fact every flag transverse to both τ+ and τ− is represented by such an element.

It is also convenient to look at the reduced Double Bruhat Cell Lu,v = N+uN+ ∩B−vB−. This can be
obtained from the full cell by an action of H and thus separates out the influence of H on the cell.
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11.1 Parameterization of Double Bruaht Cells

Luzstig gave a parameterization of an open dense subset of Lu,v on a reduced expression for the word (u, v).
This is a map x : C`(u)+`(v) → Lu,v given by

x(t1, . . . , tm) = X̃i1(t1) · · · X̃in+m
(tn+m)

Here X̃i(t) =



Xi(t) i ∈ v
I

t−1 0

1 t

I

 i ∈ u
.

Example 11.7. We return to G = SL(3,C) and the cell Ge,ω0 . As a reduced word we take s1s2s1. Then
the map x is

x121(t1, t2, t3) =

1 t1 0
0 1 0
0 0 1

1 0 0
0 1 t2
0 0 1

1 t3 0
0 1 0
0 0 1

 =

1 t1 + t3 t1t2
0 1 t2
0 0 1


However is we use the reduced expression s2s1s2 we obtain the map

x212(t1, t2, t3) =

1 t2 t2t3
0 1 t1 + t3
0 0 1


12 Cluster Structure

Recall that to describe a cluster structure it suffices to give a recipe for an initial seed (a quiver and associated
functions). In this case the functions should be regular functions on the given double Bruhat cell Gu,v. The
following recipe is from [BFZ05] and depends on a choice of reduced expression for the word (u, v) denoted
i = i1 · · · , in+m.
Let r be the rank of our Lie Group. The quiver will live in an r × (n + m + r) grid with one node in each
column. We index the columns −r,−(r− 1), . . .− 1, 1, 2, . . . ,m+n. The height of the node in column k > 0
is index of the corresponding reflection ik. The heights of the nodes in columns −k is k.
There are 3 classes of arrows we add to the quiver. To describe the classes we introduce the notation k+

which denotes the next index in i such that |ik| = |ik+ |. If no such index exists take k+ = m+ n+ 1 (larger
than any possible index).
We also write ε(ik) to denote the sign of ik (whether the reflection belongs to u or to v). We caution that u
uses the negative values as we our most often interested in the e, ω0 case. Consider two indices k and ` with
k < `.

1. There is a horizontal arrow from k to ` = k+ when ε(ik+) = 1. When ε(ik+) = −1 the arrow is
oriented from k+ to k.

2. There is an inclined arrow from ` to k when ` < k+ < `+ and ε(i`) = ε(ik+) = 1 and ik is adjacent
to i` in the Dynkin diagram. When ε(i`) = ε(ik+) = −1 the arrow is oriented from k to `.

3. There is an inclined arrow from ` to k when ` < `+ < k+ and ε(i`) = −ε(i`+) = 1 and |ik| = |i`| in
the Dynkin diagram. Similarly when ε(i`) = −1 we reverse the orientation of the arrow in this case.

We take the first and last node at each “height” as frozen nodes.
While this definition is very technical an example can make everything clearer.
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Example 12.1. We continue looking at G = SL(3,C) and consider the largest cell Gω0,ω0 . As reduced
expression we take i = (1, 2, 1,−1,−2,−1).

−2 −1 1 2 3 4 5 6

2 � • �

1 � • • • �

Remark 12.2. This quiver is very similar to the quiver for Gr(3, 6), it is only missing two frozen nodes.
This is due to the fact that a matrix in A ∈ SL(3,C) determines a 3 plane in C6 via I|A. This plane has
two Plücker coordinates equal to zero corresponding to the empty and full minors of A.

It now remains to describe the functions associated to each node. These will be generalized minors where
the Weyl group elements are given by subwords of i. We require a little more notation:

u≤k(i) =
∏

`=1···k,ε(i`)=−1

s|i`| v>k =
∏

`=m+n···k+1,ε(i`)=1

s|i`|

In words u≤k is the product of generators of u (ε = −1) in the first k symbols and v>k is the reversed
product of generators of v (ε = 1) after the first k symbols.

The function associated to node k of the quiver ∆(k, i) = ∆
|ik|
u≤k,v>k .

Example 12.3. We continue our top Bruhat cell in SL(3,C) with i = (1, 2, 1,−1,−2,−1). We recall that
under the isomorphism of the Weyl group with the symmetric group s1s2s1 7→ 321, s1s2 7→ 231, and s1 7→ 213.

−2 −1 1 2 3 4 5 6

2 � • �

1 � • • • �

u≤k <> <> <> <> <> s1 s1s2 s1s2s1

v>k s1s2s1 s1s2s1 s1s2 s1 <> <> <> <>

∆(k, i) ∆[12],[23] ∆[1],[3] ∆[1],[2] ∆[12],[12] ∆[1],[1] ∆[2],[1] ∆[23],[12] ∆[3],[1]

Note that the frozen variables are exactly the nonvanishing conditions to be in Gω0,ω0 .

Example 12.4. We now consider a smaller example of Ge,ω0 in SL(3,C). We take i = 121.

Our parameterization of Le,ω0 gave us a map whose image is1 t1 + t3 t1t2
1 t2

1
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To obtain a full parameterization ofGe,ω0 we can left multiply by a generic element of the torus

λ1 λ2
λ−11 λ−12


to obtain: λ1 λ1(t1 + t3) λ1t1t2

λ2 λ2t2
λ−11 λ−12


The recipe then gives

−2 −1 1 2 3

2 � �

1 � • �

v>k s1s2s1 s1s2s1 s1s2 s1 <>

∆(k, i) λ1λ2t2t3 λ1t1t2 λ1(t1 + t3) λ1λ2 λ1

Example 12.5. We now compute a seed for the same double Bruhat cell with a new word i = s2s1s2.

−2 −1 1 2 3

2 � • �

1 � �

v>k s2s1s2 s2s1s2 s2s1 s2 <>

∆(k, i) λ1λ2t2t3 λ1t1t2 λ1λ2t2 λ1 λ1λ2

Note that the previous two examples are related by cluster mutation! In fact every reduced expression is
connected by a series of mutations. We can confirm this by realizing the “local” moves on words as mutations.

• Two moves inside words of the same sign correspond to the same quiver.

• Three moves correspond to quiver mutation at the initial index of the 3 move.

To fully verify this gives a cluster structure on the coordinate ring we must verify the preconditions of
the Starfish Lemma (Theorem 8.1). The first to check is that every mutation produces a regular function.
By the analysis above every mutation that corresponds to a 3 move is fine. The other mutations require a
computation similar to the confirmation that the “exotic” coordinate in Gr(3, 6) is regular.
Next we must check that the space of “double zeros” has codimension at least 2. This is true as all of the
minors are irreducible elements and one can confirm the mutated minors from a given word maintain this
property.
Finally we must confirm that we cover the entire ring. This can be seen as every matrix entry is obtained
by some choice of reduced expression of the longest word.
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Part VI

Higher Teichmuller Theory
In this lecture our goal will be to study representations π1S → G for S a bordered surface and G a split
semisimple Lie Group. While the techniques described will apply in this generality we will focus on G simple
and give explicit definitions for G = SL(n,R).
The cluster structure we build will be in analogy to our discussion of the cluster structure on the space of
hyperbolic structures on a surface in Lecture I.

13 Framed Representations

In Lecture I we described hyperbolic structures on a surface via the developing/holonomy maps into H2. A
key ingredient was that the points on the boundary of hyperbolic space controlled the representation of the
fundamental group and the image of the surface.
In order to generalize this picture we recall that points in boundary of hyperbolic space correspond to points
in P1R. These can be interpreted as lines in R2 which are the same as flags in SL(2,R).

Fix a Lie group G with B a Borel subgroup and N its unipotent radical.

Definition 13.1. A framed representation from a bordered surface S into G is a representation ρ :
π1(S)→ G and a choice of flag Fp ∈ G/B for each marked point and puncture of S such that ρ(γ).Fp = Fp
for any curve γ homotopic to a puncture p.

Definition 13.2. A decorated representation is a framed representation where the flags are chosen in
the set of decorated flags G/N .

When S is hyperbolic we will be able to describe a cluster structure on the space of decorated represen-
tations of S. As in the hyperbolic case we build this cluster structure out of ideal triangles. As such we
must focus on the representations of triangle/disk with 3 marked points into G. As π1 of a disk is trivial, all
of the data of a decorated representation is in the choice of flags. In the hyperbolic case it sufficed to chose
distinct points on H. In other groups we need not just distinct flags, but for the flags to be pairwise transverse.

13.1 Transverse Flags

To continue we need to describe several ways to think about flags, each of which has an equivalent definition
of transversality. The first way is to describe a flag as an equivalence class of matrices. This is the notation
G/B or G/N we have been using. The other common definition of a flag is as a nested sequence of subspaces.
From a matrix representative with columns v1, . . . , vn the corresponding subspaces are

〈v1〉 ⊆ 〈v1, v2〉 ⊆ 〈v1, v2, v3〉 ⊆ · · · ⊆ 〈v1, . . . vn〉

In this case decorations correspond to a choice of basis vector in each new subspace V i+1/Vi.

On a flag manifold we fix two special flags, the standard flag τ+ = [B] and the opposite flag τ− = [B−].

Example 13.3. In SL(n,R), τ+ is represented by identity matrix. As a series of nested subspaces

τ+ = 〈e1〉 ⊆ 〈e1, e2〉 ⊆ · · · ⊆ 〈e1, e2, . . . , en〉.

The opposite flag τ− is represented by reversed identity matrix. As a series of nested subspaces

τ− = 〈en〉 ⊆ 〈en, en−1〉 ⊆ · · · ⊆ 〈en, . . . , e1〉.
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The diagonal action by left multiplication of G on pairs of flags splits into a number of orbits. There is
a unique open orbit of this action.

Definition 13.4. Two flags are transverse if they belong to this open orbit.

With a little more work one can show that each orbit is indexed by an element w of the Weyl group. In
other words there is a g taking any pair of flags (F1, F2) to (τ+, wτ+). The open orbit corresponds to ω0 the
longest word in the Weyl group.

Definition 13.5. The w-distance between two flags (F1, F2) is the w identifying the orbit. Two flags are
transverse when the w distance is ω0.

Note that w(F1, F2) = w(F2, F1)−1 and so depends on the order of flags in general. However ω0 is its
own inverse and so transversality is a symmetric condition.
Finally if we view our flags as a series of nested subspaces (generated by columns of our matrix representa-
tives) transversality correpsonds to disjointness of subspaces.

Definition 13.6. Let F1 = F
(1)
1 ⊆ F

(2)
1 ⊆ · · · ⊆ F

(n)
1 and F2 = F

(1)
2 ⊆ F

(2)
2 ⊆ · · · ⊆ F

(n)
2 . Then F1 and F2

are transverse if whenever i+ j = n, F
(i)
1 ⊕ F

(j)
2 = V .

Remark 13.7. The standard and opposite flags are always transverse.

We now consider a triple of transverse flags. In the last lecture we looked at the double Bruhat cell Ge,ω0 .
In SL(n,R) we saw this correpsonds to upper triangular matrices whose antiprinciple minors are nonzero.

Claim 13.8. Every flag transverse to τ+ and τ− is represented by gτ− for g ∈ Ge,ω0 .

Proof. In SL(n,R) we can perform an explicit computation. A simple test for subspaces to combine to the
whole space is to take the wedge product of basis for each space and check this doesn’t vanish. Thus testing
if a flag represented by a matrix g is transverse to the standard flag is equivalent to the nonvanishing of
minors of the form ∆[1,k],[n−k+1,n]. Each matrix gτ− is “reverse upper triangular” and thus all these minors
are products of the antidiagonal. This is the product of the diagonal in B which is always nonzero.
Similarly the conditions to be transverse to the opposite flag correspond to the nonvanishing of ∆[1,k],[1,k].
This corresponds to the antiprinciple minors of g ∈ Ge,ω0 which are assumed not to vanish.

Remark 13.9. The element g ∈ Ge,ω0 representing the flag is not unique. If fact if g = nh for n ∈ N and
h ∈ H we have nhτ− = nhω0B = nω0h

−1B = nω0B.

So as undecorated flags each triple corresponds to a unique element n ∈ Le,ω0 the reduced double Bruaht
cell.
However to get the nicest cluster structure we want to look at decorated flags (in analogy with SL(2,R)).
In this case the orbits of pairs of flags split further based on the relative scaling of the flags. In other words
(F1, F2) 7→ (τ+, hτ−) for some h ∈ H.

Definition 13.10. The h-distance between a pair of transverse decorated flags (F1, F2) is the unique h ∈ H
such that there is a g ∈ G such that g(F1, F2) = (τ+, hτ−).

This is the information we need to obtain a cluster structure on configurations of transverse triples of
decorated flags. First we pick an element of g that sends 3 arbitrary flags (F1, F2, F3) to (τ+, hτ−, bτ−)
where we know b ∈ Ge,ω0 . The cluster structure on Ge,ω0 parameterizes the element b but doesn’t take into
account the first h or the choice of which flags to send to the standard/opposite flags. As such we need to
“symmetrize” the double Bruhat cell recipe by adding rank(G) many frozen vertices to account for h. For
full details of the recipe for arbitrary groups see [GS22].

Example 13.11. The seed for SL(3,R) with ω0 = s1s2s1 is
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13.2 Counting Components of Triples of Transverse Flags

The cluster structure can help us understand the topology of the space of triples of transverse flags, T . At
least it provides a nice tool for counting/identifying components. Each seed of the cluster algebra provides
a continuous invertible map from (R \ {0})N → T . Thus counting components of T amounts to deciding
which components of (R \ {0})N are glued together.

Definition 13.12. A (generalized) orthant is a component of (R \ {0})N . Each orthant is indexed by a
list of signs for each node of the quiver.

Since the image of the set where multiple cluster variables in a seed and it neighbors are zero is codimen-
sion 2, this set cannot change connectivity in the image. Thus it suffices to consider the where exactly one
cluster variable is zero to determine which components glue together.
We now define a linear group acting on the space of signs. We will show the orbits of this group correspond
to components in the image. Further the orbits of the group are easy to compute, thus the components are
easily identified.
For each mutable node i define the “transvection”, τi : FN2 → FN2

τi(ξ)j =

ξj j 6= i

ξi +
∑
k→i

ξk +
∑
i→k

ξk j = i

Let Γ be the group generated by τi for each mutable node i.

Theorem 13.13. The orbits of Γ correspond exactly to the components of T .

Proof. The key idea is that the mutable variables being zero in one seed doesn’t imply that all the variables
in another seed are zero. Thus we should glue together orthants which are connected in neighboring seeds.
It suffices to look at two orthants that differ by a single sign at position i for some mutable node. If these
two orthants glue together that means that ai = 0 while its mutated variables a′i 6= 0. However the mutation
relation is

aia
′
i =

∏
j→i

aj +
∏
i→k

ak

Thus for ai to be 0, the left hand side of the mutation relation is zero. This implies
∏
j→i

aj and
∏
i→k

ak must

have opposite signs. In F2 this corresponds to
∑
j→i

aj +
∑
i→k

ak = 1 and so τi(a) changes the sign at i. Thus

two orthants that are glued together in the image belong to the same orbit.

Conversely if τi changes the sign at i this implies that
∏
j→i

aj and
∏
k→i

ak have opposite signs. Using the

seed obtained by mutating at i we find an element in the image so the right hand side of the mutation
relation vanishes. By wiggling this element slightly we find neighbors with ai > 0 and ai < 0 and so the
corresponding orthants are in the same component.
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Remark 13.14. There was a coincidence here that the frozen variables of the cluster structure are exactly
the conditions for the flags to be transverse. In a general cluster algebra this method counts components where
the frozen variables are nonzero. However this is only meaningful geometrically when the nonvanishing of
the frozen variables is a natural condition on the space in interest.

Example 13.15. We will count the components of triples of transverse flags in SL(3,R). In order to get a
cluster structure we can chose decorations so that the flags are (τ+, τ−, uτ−) for u ∈ Le,ω0 the reduced double
Bruhat cell. This means we take the frozen variables on the far right of the double Bruhat cell construction
to be 1. What remains is

�

� •

We now need to compute orbits under the group action. Label the vertices from left to right v1, v2, v3.
As we have one mutable vertex v3 our group is generated by τ3(a1, a2, a3) = (a1, a2, a3 + a1 + a2). Thus τ3
acts nontrivially only when a1 and a2 have different signs. So the six orbits are:

(0, 0, 0) (0, 0, 1) (1, 1, 0) (1, 1, 1) (1, 0, 0)− (1, 0, 1) (0, 1, 0)− (0, 1, 1)

One can perform a similar analysis to find the number of components in SL(4,R) is 20 and in SL(5,R) is 52.
For very large n computing via the group action becomes infeasible. Recall that the cluster structure for
triples of flags in SL(n,R) has the same number of mutable nodes as the length of the longest word

(
n
2

)
.

Thus the number of orthants is O(2(n2)) which is very large.
Fortunately there is theorem that classifies orbits for large enough quivers.

Theorem 13.16. If the mutable portion of the quiver contains an E6 as an induced subgraph then the number
of orbits of the group action is 2 · 2r + d where r is the number of frozen variables and d is the number of
singleton orbits.

For full proof see [Zel00]. As a brief sketch, we know that the sign of each frozen variable is invariant
under group action. We then can analyze each “slice” of orthants over a fixed list of frozen signs. The orbits
come in two flavors, singleton and nonsingleton. When the quiver contains this E6 we can show that each
slice has exactly 2 nonsingleton orbits which are distinguished by the value of a function Q. We can compute
Q as the F2 form given by Q(a) =

∑
ai +

∑
i→j

aiaj . It is a simple computation to verify that Q is invariant

under the group action. As τi can only change the sign at i it suffices to look at the portion of Q(a) that
depends on ai

ai +
∑
j→i

aiaj +
∑
i→k

aiak

7→

ai +
∑
j→i

aj +
∑
i→k

ak

+
∑
j→i

ai +
∑
j→i

aj +
∑
i→k

ak

 aj +
∑
i→k

ai +
∑
j→i

aj +
∑
i→k

ak

 ak

=ai +
∑
j→i

aj +
∑
i→k

ak +

(∑
i→k

ak

)2

+
∑
i→k

ak +

∑
j→i

aj

2

+
∑
j→i

aj +
∑
j→i

∑
i→k

ajak +
∑
i→k

∑
j→i

ajak

=ai +
∑
j→i

aj +
∑
i→k

ak

The analysis of singleton orbits is slightly trickier. The key fact is that when a slice has singleton orbits it
has the same number of singleton orbits as the slice with all frozen variables positive. Thus it suffices to
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count how many slices can possibly have a singleton orbit.
In the specific case of full flag manifolds, the count of singleton orbits is easier. Each singleton component
corresponds to a choice of “positive” in each root space. There is one frozen variable for each root space and
thus 2r possible singleton components.

13.3 Alternate Recipe For SL(n,R)
For SL(n,R) there is an alternate description for a seed of triples of transverse decorated flags. This is
equivalent to the seed given by the word 12 · · ·n12 · · · (n − 1) · · · 121. This nodes of this seed naturally lie
inside a triangle. For each side of the triangle draw n − 1 lines parallel to it through the interior of the
triangle. These should be chosen to such that the lines meet at triple intersections. Each node is placed on
a triple intersection and is indexed by the number of lines from each base. These are three numbers (i, j, k)
such that the sum i+ j + k = n and each index is between 0 and n− 1. Note that triples with a single zero
belong to the outer edge of triangle and we have no points with two zeros.
The quiver has edge connecting (i, j, k) out to (i−1, j, k+1), (i, j+1, k−1), (i+1, j−1, k) and correspondingly
in from (i + 1, j, k − 1), (i, j − 1, k + 1), (i − 1, j + 1, k). Under this construction each induced cycle is an
oriented 3 cycle. Moreover the arrows parallel to each side of the triangle are oriented from left to right
when looking into the triangle from that edge.

Let the three flags associated to the triangle have basis given F1 = (u1, . . . , un), F2 = (v1, . . . , vn) and
F3 = (w1, . . . , wn). We then define the function pijk = (u1 ∧ · · · ∧ ui)∧ (v1 ∧ · · · ∧ vj)∧ (w1 ∧ · · · ∧wk). This
is an n wedge in n dimensional space which isomorphic to R after having fixed a standard basis of Rn once
and for all.
We define the frozen nodes to be the nodes on the border of the triangle. As mentioned these are the nodes
with one index 0. It will be helpful later to take the arrows between frozen nodes on the same edge of the
triangle as half weight (represented by a dashed edge).

Remark 13.17. For SL(2,R) this construction places an oriented clockwise cycle in the triangle agreeing
with construction for hyperbolic structures on a surface.

Example 13.18. The quiver for SL(4,R) is given below.

(1, 4, 0) (4, 1, 0)

(2, 3, 0) (1, 3, 1) (0, 3, 2)

(3, 2, 0) (2, 2, 1) (1, 2, 2) (0, 2, 3)

(4, 1, 0) (3, 1, 1) (2, 1, 2) (1, 1, 3) (0, 1, 4)

(4, 0, 1) (3, 0, 2) (2, 0, 3) (1, 0, 4)

Remark 13.19. Note that the cluster functions on the edges of the triangle only depend on the two flags
on that edge. This remains true for the other simple Lie groups as under the other recipe these functions
describe the h distance between the two flags.

14 Amalgamating

We now describe the cluster structure for decorated representations of a bordered surface. First we take an
ideal triangulation of the surface. To each triangle we attach a seed as described for a triple of transverse
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flags (using the transverse flags from the framing on the representation). These seeds are then glued together
by a amalgamation.

Definition 14.1. The amalgamation of two seeds is given by identifying frozen nodes with identical func-
tions. Any edges between these identified frozen variables are added. Then the newly glued frozen variables
are treated as unfrozen in the new seed.

Remark 14.2. Half edges between the frozen nodes will either become full edges or cancel after amalgamating.

As the functions on the edges of each triangle only depend on the flags assigned to the endpoints each
seed will amalgamate together to form a seed on the entire surface with frozen nodes on the boundary of
the surface. It remains to show this construction is independent of the chosen triangulation. As before
we can relate triangulations by a sequence of local moves, (flipping the interior diagonal of a square). To
verify the cluster structure is the same under either triangulation we must provide a sequence of mutations.
Such sequences are computed explicitly in [Gil21]. However for SL(3,R) the sequence is short enough to
demonstrate explicitly.

Example 14.3. For SL(3,R) the mutation sequence corresponding to retriangulation with the explicit seed
described in Section 13.3 is to first mutate at both nodes on the interior edge, then to mutate both the
remaining two nodes. See Figure 15. To see we obtain the correct functions we will explicitly compute one
mutation. Label the basis for the four flags u,w, z,v reading clockwise around the square. Mutation at the
node closest to w is given by

w1 ∧ w2 ∧ v1·?? = w1 ∧ w2 ∧ u1 · v1 ∧ w1 ∧ z1 + u1 ∧ v1 ∧ w1 · w1 ∧ w2 ∧ z1

Note that each of these forms contains w1. If we quotient R3 by 〈w1〉 what remains is 4 vectors in R2 which
is the setting of the short Plucker relation. Thus the mystery function is w1 ∧ u1 ∧ z1 as expected for the
horizontal triangulation.

Figure 15: The mutation sequence flipping an edge in SL(3,R).

Remark 14.4. We are lucky in the SL(n,R) that the seed described is rotationally symmetric and the
functions clearly only depend on the cyclic order of the quiver. However the general construction involves
choosing two of the flags to send to (τ+, hτ−). As such in the other cases one also needs to provide a mutation
sequence connecting the seeds obtained by “breaking the symmetry” along a different edge.

14.1 Reconstructing Representations

For each triangle make hexagon graph (oriented so edges along angles go counter clockwise).
Deform any loop on the surface onto this graph. Follow the loop picking up factor of a matrix for each edge.
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Factors come in two varieties, angles and edges.
Angle moves correspond to the matrix that moves τ− to uτ− and keeps τ+ fixed. In other words u.

In PSL(2,R) this depends on the length of the horocycle trapped inside the triangle.[
1 b

ac
1

]
The edge moves correspond to trading the roles of τ+ and hτ−. In PSL(2,R) this is:[

h
−h−1

]
Note that the image is the result of multiplying these matrices in order left to right as we traverse the path.
This is because in order to apply the next element we first have to move back to the standard triple which
has the effect of conjugating by the element so far.

p · (τ+, h1τ−, uh2t−) 7→ pfkp
−1 · p · (τ+, h1τ−, uh2τ+) = pfk · (τ+, h1τ−, uh2τ+)

One can check that the trivial loop inside a triangle maps to a trivial element as does moving back and
forth along an edge gluing two triangles together.
Furthermore when the cluster coordinates are positive, each u mapping the flags is “positive” as well. This
“positive” boundary map is key to proving that the image representation is discrete. Intuitively each ele-
ment moves at least a positive amount and the composition moves can’t double back on themselves without
literally being trivial.
We can also show that such elements are faithful, only trivial loops are mapped to the identity.

Example 14.5. We can look at the punctured torus with representations into PSL(2,R) as an example. The
horizontal loop is given by

H = (G23
1 )−1S−1b G41

3 S
−1
a =

[
− c2

ab −
a
b

c
a2

c − b
a

]

15 Coordinates on Undecorated Representations

In many geometric applications, decorated flags are not as natural as decorated flags. We saw this with
hyperbolic structures where decorated flags involved choosing a horocycle in addition to a point on the
boundary. We also had some natural coordinates in this case which are cross ratios.

15.1 Recall Cross Ratio as ratio of lambda lengths

We are able to realize the cross ratio as a product of two horocycle lengths. See Section 3.2 for details. In
this way each cross ratio is written as a ratio of four lambda lengths (there is cancellation of the lambda
length in the center).

15.2 Recall Generalized X Coordinate Definition

Key fact: Can always write X coordinate as a ratio of A-coordinates. This ratio is invariant under changing
decoration.
Mutation changes neighbors as well.

Example 15.1. Look at seed for PSL(3,R) on a square. On glued edge get cross ratios. Also get a function
in the center of each triangle. This is a ratio of 3 coordinates over 3 coordinate called the triple ratio.
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15.3 Poisson Structure on X space

There is a natural Poisson structure on the X coordinates.

Definition 15.2. A Poisson bracket on an algebra V is an alternating bilinear map {−,−} : V ×V → V
such that

Leibniz’s Rule: {fg, h} = {f, h}g + f{g, h}

Jacobi identity: {f, {g, h}}+ {g, {h, f}+ {h, {f, g}}} = 0

Remark 15.3. The Leibniz rule implies that {fn, g} = n{f, g}fn−1 when n 6= 1. In particular {f−1, g} =
−{f, g}f−2.

These brackets occur naturally in Symplectic geometry. In this case the Poisson bracket of functions
corresponds to the Lie bracket of the corresponding Hamiltonian vector fields.
Given a seed (Q,x) for a X type cluster algebra we let εij be the adjacency matrix associated to Q. We then
define a bracket on X-coordinates as follows:

{xi, xj} = εijxixj

The key fact to check is that this definition is mutation invariant and thus makes sense on the whole space
of X coordinates. This amounts to a computation one case of which we show here. Let (Q′,x′) be the seed
obtained by mutating at i. Let j be an index so i→ j in Q. In other words εij = 1 and ε′ij = −1.
In Q′ we compute {x′i, x′j} = −x′ix′j .
If we write x′ in terms of x we see x′i = x−1i and x′j = xj(1 + xi). Thus

{x′i, x′j} ={x−1i , xj(1 + xi)}
= − {xi, xj(1 + xi)}x−2i
= − {xi, xj}x−2i − {xi, xjxi}x

−2
i

= − {xi, xj}x−2i − {xi, xi}xjx
−2
i − {xi, xj}x

−1
i

= − x−1i xj − xj
= − xj(1 + xi)

= − x′jx′i
A similar computation shows the bracket is preserved between edges going into i as well.

Remark 15.4. This bracket is very similar to the form used to distinguish components in Section 13.2.

Definition 15.5. A Casimir element is an element that has trivial bracket with every other element.

Lemma 15.6. If v is a null vector of the adjacency matrix of Q then the element
∏
xvii is a Casimir

element.

Proof. This is again a small computation. If we take any basis function xj the bracket is

{xj ,
∏

xvii } =
∑
i

{xj , xvii }
∏
k 6=i

xvkk =
∑
i

vi{xj , xi}xvi−1i

∏
k 6=i

xvkk =
∑
i

viεjixj
∏
k

xvkk =

(∑
i

viεji

)
xj
∏

xvik

The coefficient is the inner product of a row of the adjacency matrix with v which is assumed to be 0 as
needed.

Example 15.7. For Q a directed path in A3 1→ 2→ 3 there is a unique generator for the Casimir element
x1x3.

Example 15.8. There are no Casimir elements in A2.

In general there is a unique generator for the Casimir elements in A2n−1 consisting of the product of n
commuting X coordinates. In fact the X coordinates themselves can be considered the Casimir elements for
A1.
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