ReadMe for the program to Section 6.2

The program DHO_search is a simplified but functional version of the program used to show the claim of Section 6.2 of the paper [1]. The code that avoids, to a certain extend, that isomorphic DHO are generated and tested was removed for better readability. As the goal is to show that all generated DHO are of symmetric Type H or Type D, this simplification has no impact on the functionality. The program however is considerably slower (it takes about 15 minutes instead of some seconds in the case $\operatorname{dim}(\mathcal{S})=9$.)
We will use the notation as in Section 6.2 of the paper [1].
The files vec2.h, vs2.h and DHO.h provide the infrastructure for binary vectors, vector spaces and DHOs as far as needed in DHO_search. cpp. The names of the functions are speaking, it might be possible to read the search program without looking in the .h files. The file H3Data.txt contains the Huybrechts DHO \mathcal{T}_{1} of rank 3 .
The search in DHO_search.cpp is launched by SearchHindSupDHO<4,6,9>... for $\operatorname{dim}(\mathcal{S})=9$ respectively SearchHindSupDHO<4,6,10> \ldots for $\operatorname{dim}(\mathcal{S})=$ 10. Only one of these lines should be uncommented in the main program of DHO_search. cpp.

The program is written such that SearchHindSupDHO<r,k,n>... can search for any rank-r DHO with $\operatorname{dim}(U)=n$ with a give hyperplane induced subDHO with ambient space of dimension k. It consist of several chained recursive search procedures.

Step 1

rec_search_W() search for subspaces $W=Z \cap \mathcal{C} \subseteq\left\langle e_{0}, \ldots e_{k-1}\right\rangle$ of dimension $r-(n-k)$. For the search for Section 6.2 we will have $W=\emptyset$ for $\operatorname{dim}(\mathcal{S})=10$ and $W=\langle w\rangle$ in case of $\operatorname{dim}(\mathcal{S})=9$ as detailed in Section 6.2. $Z_{0}=W \oplus\left\langle e_{k}, \ldots e_{n-2}\right\rangle, Z=Z_{0} \oplus\left\langle e_{n-1}\right\rangle$. The indices range form 0 to $n-1$ as in the program.
rec_search_Pi searches for the permutations π. The there tested condition, $X_{i}^{\pi}+X_{j}^{\pi} \notin\left\langle T_{i}, T_{j}\right\rangle, T_{i} \neq T_{j} \in \mathcal{T}_{1}$, is, in the current situation, equivalent to the DHO conditions given in Section 6.2.

Step 2

genE() and rec_search_V() generates spaces V for \mathcal{E}_{i}. I.e. the spaces V of rank r with $V \curlywedge X_{0}=x_{i}$ such that $\operatorname{dim}(V \cap X)=1$ for all $X \in S_{0} . \mathcal{E}_{i}$. DHO condition (iii) is automatically fulfilled.
genS1() tries to combine the elements of \mathcal{E}_{i} to the set S_{1}, such that $X \curlywedge X^{\prime}$ $X \in S_{0} \backslash Z, X^{\prime} \in S_{1}$ are disjoint, and the elements of S_{1} and fulfill conditions (ii) and (iii) in Section 6.2.

References

[1] U. Dempwolff and Y. Edel. The Radical of Binary Dimensional Dual Hyperovals. (http://www.mathi.uni-heidelberg.de/~yves/Papers/radical. html).

