Bilinear DHOs with hyperplane induced subDHOs: an algorithm

Background for this text is the article [1]. We describe a simple algorithm which finds for a given bilinear DHO \mathcal{T} of rank *n* the bilinear DHOs \mathcal{S} , such that \mathcal{S} possesses a hyperplane which induces a subDHO isomorphic to \mathcal{T} .

Suppose dim $U(\mathcal{T}) = n + m$. Then by [1, Thm. 4.7] a bilinear DHO \mathcal{S} of the desired type has an ambient space of rank n + 1 + M with $m \leq M \leq n$. We can assume that $U(\mathcal{S}) = X \oplus Y$ with $X = \langle e_0, e_1, \ldots, e_n \rangle$, $Y = \langle e_{n+1}, \ldots, e_M \rangle$, and that the hyperplane is $H = \langle e_1, \ldots, e_M \rangle$. Wlog. we can assume $U(\mathcal{T}) = X_0 \oplus Y_0$ with $X_0 = \langle e_1, \ldots, e_n \rangle$, $Y_0 = \langle e_{n+1}, \ldots, e_m \rangle$. We write (a, x) for an element of the form $ae_0 + \sum_{i=1}^n \in X$, $x = (x_1, \ldots, x_n) \in \mathbb{F}_2^n$ and (y, z) for an element of the form $\sum_{i=n+1}^m y_i e_i + \sum_{j=m+1}^M z_j e_j \in Y$ with $y = (y_{n+1}, \ldots, y_m) \in \mathbb{F}_2^m$ and $z = (z_{m+1}, \ldots, z_M) \in \mathbb{F}_2^{M-m}$.

Let $\beta_0 : X_0 \to \operatorname{Hom}(X_0, Y_0)$ be a monomorphism defining \mathcal{T} as \mathcal{S}_{β_0} and let a monomorphism $\beta : X \to \operatorname{Hom}(X, Y)$ be a monomorphism which describes $\mathcal{S} = \mathcal{S}_{\beta}$ with respect to the given basis. We may assume that ker $\beta(1, 0) = \langle e_0 \rangle$. Then $\beta(a, e) \in \mathbb{F}_2^{(n+1) \times m \times (M-m)}$, and

$$\beta(1,0) = \begin{pmatrix} 0 & 0\\ A_1 & A_2 \end{pmatrix}, \quad A_1 \in \mathbb{F}_2^{n \times m}, \quad A_2 \in \mathbb{F}_2^{n \times (M-m)}$$
(1)

and

$$\beta(0,e) = \begin{pmatrix} \delta(e) & \gamma(e) \\ \beta_0(e) & 0_{n \times (M-m)} \end{pmatrix}, \quad \delta(e) \in \mathbb{F}_2^m, \quad \gamma(e) \in \mathbb{F}_2^{M-m}.$$
(2)

As β_0 is given it remains to determine the matrix (A_1, A_2) and the linear mappings δ and γ . This sets up the following simple procedure:

Input: An additively closed DHO-set $\mathcal{D}_0 \in \mathbb{F}_2^{n \times m}$ (which is $\beta_0(\mathbb{F}_2^n)$) and a number $M, m \leq M \leq m + n$.

Qutput: The additively closed DHO-sets $\mathcal{D} \in \mathbb{F}_2^{(n+1) \times M}$ such that the associated DHOs have a hyperplane inducing the subDHO \mathcal{T} .

STEP 1. Let \mathcal{D}_0^* be the \mathbb{F}_2 -space of matrices $D^* = (D, 0_{n \times (M-m)}) \in \mathbb{F}_2^{n \times M}$, $D \in \mathcal{D}_0$. Determine the set of \mathcal{A}^* of matrices $A = (A_1, A_2) \in \mathbb{F}_2^{n \times M}$ such that $A + D^*$ has rank n + 1 for $D^* \in \mathcal{D}_0^*$.

STEP 2. Take \mathcal{A} as a set of representatives for the cosets $A + \mathcal{D}_0^*, A \in \mathcal{A}^*$.

STEP 3. Let $\{D_1^*, \ldots, D_n^*\}$ be a basis of the \mathbb{F}_2 -space \mathcal{D}_0^* and $A \in \mathcal{A}$. Set $\overline{A} = {0 \choose A} \in \mathbb{F}_2^{(n+1) \times M}$. Set $\mathcal{I}_j = \operatorname{Im}(D_j^* + A), 1 \leq j \leq n$. For each *n*-tuple $(v_1, \ldots, v_n) \in \mathcal{I}_1 \times \cdots \times \mathcal{I}_n$ set $\overline{D}_j = {v_j \choose D^*}, 1 \leq j \leq n$. If the \mathbb{F}_2 -space

$$\mathcal{D} = \langle \overline{A}, \overline{D_1}, \dots, \overline{D_n} \rangle$$

is a DHO-set return \mathcal{D} .

Remark. (a) If M = m + n it is easy to see that the DHO \mathcal{T} is isomorphic to a symmetric DHO and up to isomorphism there is a unique DHO \mathcal{S} , namely the DHO from the extension construction [1, Ex.4.9]. If m = n - 1, the linear mapping γ in (2) must be injective. This forces M = m + n. So in this case too our search only produces the DHO from the extension construction.

(b) The search was limited to the cases n=4 , m=M=4,5,6 and n=4, $m=4,\,M=5.$

(c) These computations show that that for $M \neq n + m$ a bilinear DHO \mathcal{T} of rank *n* may not occur in a bilinear DHO \mathcal{S} of rank n + 1 as a hyperplane induced subDHO. There also may be more than one pairwise non-isomorphic, bilinear DHOs of rank n + 1 containing \mathcal{T} as a hyperplane induced subDHO.

References

[1] U. Dempwolff, Y. Edel: The Radical of Binary Dimensional Dual Hyperovals, to be submitted.