Bilinear DHOs with hyperplane induced subDHOs: an algorithm

Background for this text is the article [1]. We describe a simple algorithm which finds for a given bilinear DHO \mathcal{T} of rank n the bilinear DHOs \mathcal{S}, such that \mathcal{S} possesses a hyperplane which induces a subDHO isomorphic to \mathcal{T}.

Suppose $\operatorname{dim} U(\mathcal{T})=n+m$. Then by [1, Thm. 4.7] a bilinear DHO \mathcal{S} of the desired type has an ambient space of rank $n+1+M$ with $m \leq M \leq n$. We can assume that $U(\mathcal{S})=X \oplus Y$ with $X=\left\langle e_{0}, e_{1}, \ldots, e_{n}\right\rangle, Y=\left\langle e_{n+1}, \ldots, e_{M}\right\rangle$, and that the hyperplane is $H=\left\langle e_{1}, \ldots, e_{M}\right\rangle$. Wlog. we can assume $U(\mathcal{T})=X_{0} \oplus Y_{0}$ with $X_{0}=\left\langle e_{1}, \ldots, e_{n}\right\rangle, Y_{0}=\left\langle e_{n+1}, \ldots, e_{m}\right\rangle$. We write (a, x) for an element of the form $a e_{0}+\sum_{i=1}^{n} \in X, x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{2}^{n}$ and (y, z) for an element of the form $\sum_{i=n+1}^{m} y_{i} e_{i}+\sum_{j=m+1}^{M} z_{j} e_{j} \in Y$ with $y=\left(y_{n+1}, \ldots, y_{m}\right) \in \mathbb{F}_{2}^{m}$ and $z=\left(z_{m+1}, \ldots, z_{M}\right) \in \mathbb{F}_{2}^{M-m}$.

Let $\beta_{0}: X_{0} \rightarrow \operatorname{Hom}\left(X_{0}, Y_{0}\right)$ be a monomorphism defining \mathcal{T} as $\mathcal{S}_{\beta_{0}}$ and let a monomorphism $\beta: X \rightarrow \operatorname{Hom}(X, Y)$ be a monomorphism which describes $\mathcal{S}=\mathcal{S}_{\beta}$ with respect to the given basis. We may assume that $\operatorname{ker} \beta(1,0)=\left\langle e_{0}\right\rangle$. Then $\beta(a, e) \in \mathbb{F}_{2}^{(n+1) \times m \times(M-m)}$, and

$$
\beta(1,0)=\left(\begin{array}{cc}
0 & 0 \tag{1}\\
A_{1} & A_{2}
\end{array}\right), \quad A_{1} \in \mathbb{F}_{2}^{n \times m}, \quad A_{2} \in \mathbb{F}_{2}^{n \times(M-m)}
$$

and

$$
\beta(0, e)=\left(\begin{array}{cc}
\delta(e) & \gamma(e) \tag{2}\\
\beta_{0}(e) & 0_{n \times(M-m)}
\end{array}\right), \quad \delta(e) \in \mathbb{F}_{2}^{m}, \quad \gamma(e) \in \mathbb{F}_{2}^{M-m}
$$

As β_{0} is given it remains to determine the matrix $\left(A_{1}, A_{2}\right)$ and the linear mappings δ and γ. This sets up the following simple procedure:

Input: An additively closed DHO-set $\mathcal{D}_{0} \in \mathbb{F}_{2}^{n \times m}$ (which is $\beta_{0}\left(\mathbb{F}_{2}^{n}\right)$) and a number $M, m \leq M \leq m+n$.
Qutput: The additively closed DHO-sets $\mathcal{D} \in \mathbb{F}_{2}^{(n+1) \times M}$ such that the associated DHOs have a hyperplane inducing the subDHO \mathcal{T}.
Step 1. Let \mathcal{D}_{0}^{*} be the \mathbb{F}_{2}-space of matrices $D^{*}=\left(D, 0_{n \times(M-m)}\right) \in \mathbb{F}_{2}^{n \times M}$, $D \in \mathcal{D}_{0}$. Determine the set of \mathcal{A}^{*} of matrices $A=\left(A_{1}, A_{2}\right) \in \mathbb{F}_{2}^{n \times M}$ such that $A+D^{*}$ has rank $n+1$ for $D^{*} \in \mathcal{D}_{0}^{*}$.
Step 2. Take \mathcal{A} as a set of representatives for the cosets $A+\mathcal{D}_{0}^{*}, A \in \mathcal{A}^{*}$.
Step 3. Let $\left\{D_{1}^{*}, \ldots, D_{n}^{*}\right\}$ be a basis of the \mathbb{F}_{2}-space \mathcal{D}_{0}^{*} and $A \in \mathcal{A}$. Set $\bar{A}=\binom{0}{A} \in \mathbb{F}_{2}^{(n+1) \times M}$. Set $\mathcal{I}_{j}=\operatorname{Im}\left(D_{j}^{*}+A\right), 1 \leq j \leq n$. For each n-tuple $\left(v_{1}, \ldots, v_{n}\right) \in \mathcal{I}_{1} \times \cdots \times \mathcal{I}_{n}$ set $\bar{D}_{j}=\binom{v_{j}}{D_{j}^{*}}, 1 \leq j \leq n$. If the \mathbb{F}_{2}-space

$$
\mathcal{D}=\left\langle\bar{A}, \overline{D_{1}}, \ldots, \overline{D_{n}}\right\rangle
$$

is a DHO-set return \mathcal{D}.

Remark. (a) If $M=m+n$ it is easy to see that the DHO \mathcal{T} is isomorphic to a symmetric DHO and up to isomorphism there is a unique $\mathrm{DHO} \mathcal{S}$, namely the DHO from the extension construction [1, Ex.4.9]. If $m=n-1$, the linear mapping γ in (2) must be injective. This forces $M=m+n$. So in this case too our search only produces the DHO from the extension construction.
(b) The search was limited to the cases $n=4, m=M=4,5,6$ and $n=4$, $m=4, M=5$.
(c) These computations show that that for $M \neq n+m$ a bilinear DHO \mathcal{T} of rank n may not occur in a bilinear DHO \mathcal{S} of rank $n+1$ as a hyperplane induced subDHO. There also may be more than one pairwise non-isomorphic, bilinear DHOs of rank $n+1$ containing \mathcal{T} as a hyperplane induced subDHO.

References

[1] U. Dempwolff, Y. Edel: The Radical of Binary Dimensional Dual Hyperovals, to be submitted.

