An M4(15,6,10,7)

100000*100000*000000*000000*000000*000000*000000*000000*000000*000000*100000*100000*100000*100000*100000
100000*000000*100000*001000*000000*000000*001000*001000*010000*001000*300000*200000*110000*300000*200000
100000*000000*000000*100000*001000*001000*010000*010000*000000*010000*310000*110000*200000*310000*110000
101000*001000*001000*000000*100000*010000*000000*010000*001000*030000*300000*310000*310000*200000*001000
101000*001000*003000*010000*010000*100000*012000*000000*020000*021000*230000*111000*321000*010000*300000
102100*010000*010000*000100*011000*012000*100000*012100*010100*023010*210100*312000*130000*031000*011000
102110*013010*032100*011000*001100*020010*011100*100000*032010*031100*211000*002010*003010*312100*300100
100321*010100*032010*010010*032210*033100*002010*000110*100000*011201*012010*323100*001100*231010*110101
101233*010231*011210*013301*013101*002201*020101*023221*003201*100000*001131*011101*323330*213321*333010
010000*013333*020231*023111*030111*013212*012211*032212*033331*030111*033233*012221*023211*003123*021112

'*' separates the blocks.

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some OOA | home |