The check matrix of a [93,81,6]4 (dual distance 49).

The first 43 columns are the generator matrix of a [43,12,19] 4 (dual distance 6).

100000000000233131020021132320122203230321011032212112002203303320223321333100213302301330030
010000000000101030112011232022303322203221132122310120201322132211020012300101211122231121331
001000000000301311021233330332003033130210131201112231023233312033013201331021303121313231212
000100000000321323132111120103033002003113031133232000101022230321021303022312030201230301231
000010000000032132313211112010303300200311303113323200010102223101011020233220011303313321300
000001000000121130221332230011321232100222103330203011000112020203323312302002211033003013332
000000100000012113022133223001132123210022210333020301100011202121333112300000033122320120200
000000010000310003332221131230320113031130203020021213113300021210201330201112011100300210213
000000001000202131313203021203110212133232031330210033313133301323133311101132102013112203023
000000000100213322111301230200233222023002212101233111333110033021321010312131112003030133013
000000000010103011201123202230332220322113212231012020132213201023022032120012112110330033330
000000000001223230100133212103111021202130330211313310011022023313313012121332020321312322100

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.