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CHAPTER 1

Introduction

In this work, we will prove various results concerning the non-commutative
main conjecture of Iwasawa theory both for function fields and for totally real
fields.

We build upon the framework introduced by Fukaya and Kato in their formu-
lation of the (-isomorphism conjecture. In particular, we consider representations
of the absolute Galois group of a global field F' over an adic Zs-algebra A. Adding
a bit more generality, we will use a formulation of the non-commutative main con-
jecture in terms of perfect complexes of A-adic sheaves over the Dedekind schemes
associated to F.

As a central new result in the number field case, we prove a unicity statement for
the f-adic L-functions appearing in the non-commutative Iwasawa main conjecture
over totally real fields under the assumption that the Iwasawa p-invariant vanishes,
improving on the work of Kakde. Using this unicity result, we show that there exists
a unique sensible definition of a non-commutative L-function for a perfect complex
F* of A-adic sheaves. However, we still need to assume that the representations
corresponding to the stalks of #° factor through a totally real extension of F.

For a function field of characteristic p, we formulate and prove an analogue
of the non-commutative Iwasawa main conjecture for complexes of A-adic sheaves
without further assumptions. We also prove a functional equation for the resulting
non-commutative L-functions.

As a corollary, we obtain non-commutative generalisations of the main conjec-
tures for Picard 1-motives and abstract 1-motives of Greither and Popescu. In the
case £ # p, another corollary is a main conjecture for abelian varieties over func-
tion fields in precise analogy to the Glo main conjecture of Coates, Fukaya, Kato,
Sujatha and Venjakob.

1.1. Relation to Previous Work

The mysterious connection between special values of L-functions and algebraic in-
variants of a global field — such as its group of units and its class group, more
generally the Galois cohomology of representations of its absolute Galois group
with restricted ramification — is one of the central topics of the current research in
number theory. With the Tamagawa number conjecture of Bloch and Kato [BK90]
and its equivariant refinements of Burns and Flach [BFO01], [BF03], Huber and
Kings [HKO02], and finally, Fukaya and Kato [FKO06], we have a very precise and
general conjectural description of this connection at our disposal. As a special case,
it includes the conjecture of Birch and Swinnerton-Dyer from the list of the Millen-
nium problems [CTWO06|. However, only a few special instances of the Tamagawa
number conjecture have been verified so far [HKO03], [BG03|, [BF06].
Non-commutative Iwasawa theory is concerned with the part of the Tamagawa
number conjecture that involves f-adic representations. The central aim is the
formulation and the proof of non-commutative analogues of the classical Iwasawa
main conjecture [CoaT7| for abelian and totally real number fields that were proved
in the works of Mazur und Wiles [MW86] and Wiles [Wil90]. The seminal work of
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2 1. INTRODUCTION

Coates, Fukaya, Kato, Sujatha and Venjakob [CFK*05| on the non-commutative
Gls main conjecture for elliptic curves created a blueprint for much of the current
work.

The interest in the non-commutative main conjecture is based on the funda-
mental insight, first described in [HKO02], that the f-adic part of the Tamagawa
number conjecture can be deduced from a sufficiently general version of the main
conjecture. In particular, this version should infer a strong interpolation property
of the corresponding non-commutative ¢-adic L-functions in the sense that they are
compatible under changes of the coefficient rings induced by appropriate bimod-
ules. The strong interpolation property (Huber and Kings talk of twist invariance)
permits the reduction of the existence of non-commutative ¢-adic L-functions of an
arbitrary motive to the case of the motive Z(1), which corresponds in turn to an
equivariant refinement of the class number formula.

This insight was fully accounted for in the formulation of the (-isomorphism
conjecture [FKOG6| of Fukaya and Kato by integrating the corresponding Iwasawa
main conjecture into the general formalism. Whereas Burns and Flach [BF01],
IBF03] formulate their equivariant Tamagawa number conjecture for motives with
coefficients in the group ring of a Galois extension of number fields, Fukaya and
Kato extend the point of view even further and consider representations of the
absolute Galois groups over a certain class of profinite rings, which we shall refer
to as adic rings.

Building upon unpublished ideas of Kato [Kat93|] and the seminal work of
Burns [Burl5|, Kakde proves in [Kak13] a non-commutative main conjecture for
admissible ¢-adic Lie extension Fo, /F of totally real number fields, formulated in the
style of [CFK*05]. In particular, he proves the existence of a non-commutative
(-adic (-function (r_;r in the first K-group of the localisation of the Iwasawa
algebra of Fi,/F' at Venjakob’s canonical Ore set, such that (p_;p verifies the
weaker interpolation property with respect to Artin representations. However, he
can prove uniqueness of the element (r_,r only modulo the first special K-group
SK1(Z¢[[Gal(Fw/F)]]). The strong interpolation property is not investigated.

Independently and slightly earlier, Ritter and Weiss also completed the proof
of their formulation of the main conjecture in this case [RW02], [RW04], [RW05],
[RW11]. Again, the uniqueness and the strong interpolation property remain open.
The two versions of the main conjecture differ in some details, but may be translated
into each other. Their precise connection is investigated in [Ven13|] and [Nic13].

An essential prerequisite of both approaches is the vanishing of the Iwasawa
p-invariant for the cyclotomic extension of the relevant number fields. According to
a conjecture that goes back to Iwasawa himself [Iwa71], [Twa73]|, this is always the
case. However, this conjecture is only known for pro-¢ Galois extensions of abelian
number fields [FWT9] and in a few other special cases. In [Mih16], Mihailescu
attempts to settle the conjecture in the case of CM fields, but so far, he has not
been able to convince the peers.

Fukaya and Kato also sketch in [FK06|] an analogue of their conjecture for
curves over a finite field F of characteristic p different from ¢. In his disser-
tation [Wit08], the author proves an extension of this analogue to separated
schemes of finite type over F. Different from the number field case, the relevant (-
isomorphism can be constructed explicitly and without detour via a corresponding
non-commutative main conjecture.

In the case p # £, the author proves in [Witl14] an analogue for separated
schemes over finite fields of the non-commutative main conjecture in the style of
ICFK*05]. This result already includes the strong interpolation property and
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the vanishing of the p-invariant. On this basis, Burns proves in [Burll] a non-
commutative main conjecture in the case ¢ = p, but only with the interpolation
property with respect to Artin representations; see [Wit13a] for a survey on both
articles. The strong interpolation property in this case is again proved by the author
[Wit16]. Note however, that the two latter works only give an interpolation of the
L-values at s = 0. So far, higher Tate twists can not be treated due to the lack of
an appropriate equivariant integral p-adic cohomology theory for varieties over [Fp,.

Another central tool in this context is the author’s article [Wit13b], which
generalises previous results of Schneider and Venjakob [SV10]. It is shown that the
localisation sequence of higher algebraic K-theory for the localisation of the Iwasawa
algebras with respect to Venjakob’s canonical Ore set splits into short split exact
sequences. In particular, this allows the general definition of a non-commutative
algebraic L-function in the sense of [Bur09]. This non-commutative algebraic L-
function satisfies a similar interpolation property as the true non-commutative L-
function, but it lacks the connection to the special values of classical L-functions. In
particular, the algebraic and the true non-commutative L-function differ in general.

Main conjectures for the Tate module of abelian varieties over function fields
in the case ¢ = p are considered among others in the articles [OT09], [LLTT16].
The lack of a suitable ¢-adic cohomology theory is compensated by the use of flat
cohomology. A proof of a analogue of the non-commutative Gl main conjecture
ICFK*05] in this case has been announced by Vauclair and Trihan [VT17]. The
results are summarised in [BT15]. Previous to the present work, there existed only
isolated partial results treating the case p # £ [Sec06], [BV15], [Pall4], although
it is much simpler than the case ¢ = p.

In the works [GP12] and [GP15], Greither and Popescu formulate and prove
a commutative equivariant main conjecture for the S-truncated, T-modified (-
function both in the case of function fields and in the case of CM extensions of
totally real number fields. The corresponding Iwasawa modules are constructed as
{-adic realisations of so-called Picard 1-motives in the function field case and ab-
stract 1-motives in the number field case. In the number field case, Nickel [Nic13]
has already formulated a non-commutative generalisation of the latter conjecture.
He also describes how to deduce it from the main conjecture of Ritter and Weiss.

1.2. The Non-Commutative Main Conjecture of Iwasawa Theory

Let Fio/F be an admissible f-adic Lie extension of a totally real field F in the sense
of [Kak13] that is unramified over an open dense subscheme U of the spectrum X
of the algebraic integers of F' and write G = Gal(Fw/F) for its Galois group. We
further assume that ¢ is invertible on U. The non-commutative main conjecture
of Iwasawa theory for Fi/F predicts the existence of a non-commutative ¢-adic
L-function Lp_;p(U,Z(1)) living in the first algebraic K-group Ki(Z[[G]]s) of
the localisation at Venjakob’s canonical Ore set S of the profinite group ring

Z[[G]] = lim Z[[G/H]]

H1G
open

This L-function is supposed to satisfy the following two properties:

(1) Tt is a characteristic element for the total complex RT (U, fif*Z¢(1)) of
étale cohomology with proper support with values in the sheaf fyf*Z,(1)
corresponding to the the first Tate twist of the Galois module Z,[[G]]*,
on which an element o of the absolute Galois group Galr acts by right
multiplication with o~*.

(2) Tt interpolates the values of the complex L-functions Lx_y(p,s) for all
Artin representations p factoring through G.
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Under the assumption that
(a) £#2,
(b) the Iwasawa p-invariant of any totally real field is zero,
the non-commutative main conjecture is now a theorem, first proved by Ritter and
Weiss [RW11]. Almost simultaneously, Kakde [Kak13|] published an alternative
proof, building upon unpublished work of Kato and the seminal article [Burl5|] by
Burns. We refer to Theorem for a more precise formulation of Kakde’s result.

It turns out that properties (1) and (2) are not sufficient to guarantee the
uniqueness of Lp_/p(U,Z¢(1)). It is only well-determined up to an element of a
subgroup

SK1(Ze[[G1])  Ki(Ze[[C]s)-
A first objective of this volume is to eradicate this indeterminacy. Under the as-
sumptions (a) and (b) we show in Theorem that if one lets F,, vary over all
admissible extensions of F' and requires a natural compatibility property for the
elements Lp_p(U,Z¢(1)), there is indeed a unique choice of such a family.

In the course of their formulation of a very general version of the equivariant
Tamagawa number conjecture, Fukaya and Kato introduced in [FKO06] a certain
class of coefficient rings which we call adic rings for short. Adic rings are precisely
those compact, semi-local rings whose Jacobson radical is finitely generated as left
or right ideal. In particular, for every adic Z,-algebra A, the compact group ring
A[[G]] of G with coeflicients in A will again be an adic Z,-algebra. Other examples
are finite rings and f-adic group rings of finite groups. Moreover, note that this
class also contains the coefficient rings of big Galois representations considered in
Hida theory.

Our second objective concerns continuous representations 7 of the absolute
Galois group Galp over an adic Zg-algebra A. Assume that 7 is smooth over U
and smooth at oo in the sense that it factors through the Galois group of some
(possibly infinite) totally real extension of F' unramified over U. As a consequence
of Theorem [4.2.2] we show in Theorem and Corollary that there exists
a unique sensible assignment of a non-commutative L-function

EFDO/F(U7 7(1)) e Ki(A[[G]]s)

to any such 7. In the sequel [Wit] to the present volume, we will use our result to
prove the existence of the (-isomorphism for such 7 as predicted by Fukaya’s and
Kato’s central conjecture [FKO06, Conj. 2.3.2].

In fact, Corollary applies more generally to perfect complexes F°* of A-
adic sheaves on U which are smooth at co. Moreover, we also consider the total
derived direct image Rk, F*® for the open immersion k:U — W into another dense
open subscheme W of X. The extension Fo,/F may be ramified over W — U,
but we do assume that ¢ is invertible on W. We also prove the existence of a
dual non-commutative L-function E}@;m/F(W/, kiF*) such that C‘?;N/F(W/, kyFe)tis
a characteristic element for the complex RT'(W, ki F°*) and satisfies the appropriate
interpolation property. If 7 is a continuous representation as above and 7~ the
dual representation over the opposite ring A°P, then E;’;m / F(U, T) is defined as the

image of Lp_;p(U, T*(1)) under the canonical isomorphism

®: K1 (A°P[[G]]s) 2 Ki(A[[G]]s)
induced by mapping an invertible matrix A to the inverse of its transpose. As we
explain in Corollary [£:3:3] all of this can be easily extended to the case that Fi is
a CM field.

If F is a function field of positive characteristic p and U c W are open, dense
subschemes of the associated smooth and proper curve X over the finite field of
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constants F c F'| the formulation of the non-commutative main conjecture is basi-
cally the same, with some extra twists if £ = p. However, the proof is much sim-
pler, as there exists an explicit construction of the non-commutative L-functions
Lp_/r(W,RE,F*®) for all perfect complexes F* of A-adic sheaves on U. Moreover,
this result is unconditional, as the vanishing of the Iwasawa p-invariant is known
in the function field case. We refer to Section [.4] for the details. If £ = p, there are
again some extra twists.

Write j:U — V for the open immersion into V = U u (X - W). In the function
field case, the dual non-commutative L-function LZ?N / (W, ki F°) is the same as the
inverse of the product of Lg_;r(V,R j.#*) with a global e-factor. For a continuous
representation 7 as above, we obtain in Theorem the functional equation

(Lr.p(W,RET*(1))® =e(V,Rj fif " T)  Lpp(V,RjT) .

The unusual appearance of the reciprocal on the right-hand side is explained by
the normalisation of ®.

Assume that F' is a global field. If one restricts to Galg-representations 7,
one can also allow F.,/F to have some ramification over U. In particular, one can
define extra Euler factors for the non-commutative L-function in ramified points.
If the ramification indexes of Fo/F in the closed point of U are prime to ¢, these
Euler factors are in most aspects well-behaved. If the inertia group of Foo/F in a
point x contains an element of infinite order, then the corresponding Euler factor
is trivial. In these cases, one does not obtain any extra information. Points of
finite ramification index divisible by ¢ cannot be dealt with. However, the con-
struction of these extra non-commutative Euler factors necessitates some technical
considerations. The main idea is to consider the constructible A-adic sheaf 1,7 for
1n:Spec F' — U the inclusion of the generic point, in the spirit of the intermediate
image of a perverse sheaf. The technical issues arise from the non-exactness of 7,.
We will deal with these issues in Chapter

As an application, we may choose T to be the /-adic Tate module of an abelian
variety over a function field F' of characteristic p # £. The corresponding non-
commutative main conjecture formulated in Corollary [5.6.1] is the direct analogue
of the non-commutative Gla main conjecture |[CFK*05|. Finally, we will show
in Chapter |§| that in the special cases 7 = Z;, and T = Z4(1), the complexes
RT(W,RE.T) are directly related to the f-adic realisations of Picard 1-motives
and abstract 1-motives considered by Greither and Popescu. In particular, we iden-
tify their versions of the Iwasawa main conjecture as special instances of the type
of main conjectures considered above.

1.3. Notational Conventions

All rings will be associative with identity; a module over a ring will always refer to
a left unitary module. If R is a ring, R°? will denote the opposite ring and R* its
group of units. We will sometimes write f C M for an endomorphism f of an object
M. The symbols N, Z, Q, R C have their usual meanings. For a prime number
¢, Zy denotes the ring of f-adic integers and Qy its fraction field. We write = do
denote the definition of a symbol, reserving the symbol = for expressing an identity.
Isomorphisms are denoted by ¥, weak equivalences and quasi-isomorphisms by ~.
Cofibrations and quotient maps in Waldhausen categories are denoted by » and
—. Graded objects are denoted by P*® or P,, with P" and P, referring to the
component in degree n, respectively. For any compact or discrete abelian group A
we let

AY = Homeont (A, R/Z)
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denote its Pontryagin dual. If G is a group and A is a G-module, then A% denotes
the invariants under G and A¢g the coinvariants.



CHAPTER 2

Algebraic Preliminaries

The main purpose of this chapter is to present some algebraic and K-theoretic
results that we will need for the formulation and the proof of the main conjecture.
A central input to the proof of the unicity of the non-commutative L-function is
Section in which we show that the inverse limit

SR (Ze[[Gal( Fao/F)]]) = lim SK1 (Zo[Gal(F'[F)])
u

of the first special K-groups of the group rings Z,[Gal(F’/F')] vanishes when F’
runs through the Galois subextensions of a sufficiently large extension F,,/F of a
global field F'. The results of this section are far more general than what is needed
for our later applications and might be useful in other contexts as well.

In Section we recall the essences of the K-theoretic machinery behind the
formulation of the main conjecture. We briefly recall that notion of a Waldhausen
category and how it may be used to compute the K-groups of a ring. We also recall
the construction by Muro and Tonks of the one-type of the K-theory spectrum that
gives an algebraic model for Deligne’s category of virtual objects.

In Section we explain how to identify the K-groups of a biWaldhausen
category with those of its opposite category and show that this identification is
compatible with localisation sequences. Then, we specialise to the case of rings and
construct the identification

Ki(R) 2K, (R)

of the first K-groups of a ring R and its opposite ring R°P on the level of Waldhausen
categories.

Next, we introduce in Section adic rings and discuss certain Waldhausen
categories associated with them. Examples are the profinite group rings A[[G]] over
any adic ring A, with G = H xT" a semi-direct product of I'  Z; and a topologically
finitely generated profinite group H which contains an open pro-f-subgroup.

We are particularly interested in perfect complexes of A[[G]]-modules which
are also perfect as complexes of A[[H]]-modules. If A[[H]] is noetherian, then
these complexes can be characterised as those perfect complexes of A[[G]]-modules
whose cohomology is S-torsion, where S denotes Venjakob’s canonical Ore set. The
K-groups of the corresponding Waldhausen category may be identified with the
relative K-groups K, (A[[G]],S) and we may consider the long exact localisation
sequence

- > Ki(A[[G]]s) S Ko(A[[G]],5) = Ko(A[[G]]) = Ko(A[[G]]s)-

These complexes will be studied in Section 2.5 and the succeeding sections of this
chapter. We investigate the behaviour of the complexes under base change with
complexes of bimodules in Section [2.6 and under duality in Section [2.7] Section [2.8
contains the proof of another presentation of the complexes that will turn out to
be useful.
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In Section we investigate the base change properties of certain splittings of

the boundary map
d: K1 (A[[G]]s) = Ko(A[[G]], 5),

extending results from [Bur09] and [Wit13b]. With the help of these splittings
we are able produce characteristic elements with good functorial properties, which
we call non-commutative algebraic L-functions.

The final Section deals with the K-theory of A[[G]] in the classical case
that the coefficient ring A is a commutative regular noetherian local ring and that
G is an f-adic Lie group without elements of order £.

2.1. On the First Special K-group of a Profinite Group Algebra

Let ¢ be a fixed prime number. For any profinite group G, we write M(G) for its
lattice of open normal subgroups and G, c G for subset of /-regular elements, i.e.
the union of all ¢g-Sylow-subgroups for all primes ¢ # £. Note that
G, = Lln (GJU),
Uen(G)
is closed subset of G. The group G acts continuously on G, by conjugation. For
any profinite G-set S we write Z,[[S]] for the compact G-module which is freely
generated by S as compact Zg-module.
We want to analyse the completed first special K-group
SK1(Z[[G]]) = lim SKi(Z[G/U])
UeN(GQ)
of the profinite group algebra
ZIGN = lim Z,(G/U)
UeN(G)

Note that SK;(Z.[[G]]) is a subgroup of the completed first K-group

Ri(Z[[G)) = lim Ki(Z[G/U)).
Uen(G)

If G has an open pro-¢-subgroup which is topologically finitely generated, then
Ky (Z[[G]]) = K1 (Ze[[GT])

by [FKO06l Prop. 1.5.3]. In the case that G is a pro-£ ¢-adic Lie group a thorough
analysis of SK;(Z¢[[G]]) has been carried out in [SV13]. Note in particular that
there are examples of torsion-free f-adic Lie groups with non-trivial first special
K-group. Some of the results of loc. cit. can certainly be extended to the case that
G admits elements of order prime to . We will not pursue this further. Instead,
we limit ourselves to the following results relevant to our application.

Recall from [Oli88] Thm. 10.12] that there is a canonical surjective homomor-
phism

Hy(G, Z[[G]]) ~ SKi(Z[[G]])-
where
Hy(G Ze[[G, 1) = lim Ha(GIU,Z[(GIU).])
UeN(G)

denotes the second continuous homology group of Z,[[G,]]. We write X(G,) =
Map(G,,Q¢/Z;) for the Pontryagin dual of Z,[[G.]], such that the Pontryagin dual
of Ho(G, Z[[G,]]) is H*(G, X (G,)).

LEMMA 2.1.1. Let G = HxI' be a semi-direct product of a finite normal subgroup
HcG and T = Zy. Then H*(G,X(G,)) and SK1(Z[[G]]) are finite.
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ProOOF. Note that X(G,) = X (H,) is of finite corank over Z,. The Hochschild-
Serre spectral sequence induces an exact sequence

0-H'(T,H'(H,X(H,))) - H*(G,X(H,)) > H(I'H*(H,X(H,))) -0

where both H'(H, X (H,)) and H*(H, X (H,)) are finite /-groups. The lemma is
an immediate consequence. O

We are interested in the following number theoretic situation. Assume that K
is a global field. This means, either K is a number field, i.e. a finite extension of
Q or K is a function field, i.e. a finite extension of the field of rational functions
F,(z) over the finite field F,, with p elements for some prime number p.

Assume further that K, is a Zg-extension of K. In particular, if K is a number
field, then K., /K is unramified in the places (including the archimedean places) of
K that do not lie over £. If K is a function field of characteristic p different from ¢,
then there exists only one Zy-extension of K, namely the cyclotomic field extension

Koo = Keye = | Fpm K,
neN
which is everywhere unramified. If £ = p, then KCyC/K is the unique Zy-extension
that is everywhere unramified, but there exist infinitely many Z,-extensions Ko, /K
which are unramified outside any given non-empty set of places. There also exist
Zy-extensions Ko, /K that ramify at infinitely many places [GK8S].
Let Lo be a finite extension of K., which is Galois over K. Write

G =Gal(L/K),

H:=Gal(Leo/Ko),

I'=Gal(K«/K)
for the corresponding Galois groups. We fix a splitting I' = G such that we may
write G as the semi-direct product of H and I' and let L be the fixed field of an
(-Sylow subgroup of G containing I'. Write L(©) for the maximal Galois /-extension
of L inside a fixed separable closure K of K. Note that L = LY is the subfield
of K fixed by the closed subgroup Gal; ) generated by all ¢-Sylow subgroups of
the absolute Galois group Galy, for all primes ¢ # £. Hence, Gal;«) c Galy_ is a

characteristic subgroup and therefore, L) /K is a Galois extension. The following
is an adaption of the proof of [FK06|, Prop. 2.3.7].

PROPOSITION 2.1.2. Set G = Gal(L)/K). Then
H*(G, X (G,)) = SKi1(Z[[G]]) = 0.
PRrROOF. Note that the projection G - G induces a canonical isomorphism
X(G,) = X(H,) and that X (H,) is of finite corank over Z,. We have
H*(Gal(L/L), X (H,)) = H*(Galg, X (H,))

for all s according to [NSWO0O0, Cor. 10.1.4, Cor. 10.4.8] applied to the class of
f-groups and the set of all places of L. Moreover, H?(Galy, X (H,)) = 0 as a
consequence of the fact that H?(Galp, Qg/Z¢) = 0 for any number field F [FKO06,
Prop. 2.3.7, Claim] and for any function field F' [WitQ9, Prop. 5.4].

Since [L : K] is prime to ¢, the restriction map

H*(G, X (H,)) > H*(Gal(L)/L), X (H,))

is split injective. In particular, H*(G, X (H,)) = 0 as claimed. O
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Note that if K is a number field, Lo /K is unramified in a real place of K,
and ¢ # 2, then L(Y/K is unramified in this real place as well. For the sake of
completeness we also deal with the case £ = 2 and consider for a set of real places X

of K such that L., /K is unramified over ¥ the maximal subfield L(ZQC) of L® which
is unramified over ¥. Note that L(;C)/ K is still Galois over K.

PROPOSITION 2.1.3. Assume that K is a number field. Set G = Gal(L(;C)/K),
Then H*(G, X (G,)) = SK1(Z[[G]]) = 0.

PROOF. Let L' be the subfield fixed by the intersection of the centre of G
with T" and let Y := Map(Gal(L'/K), X (H,)) be the induced module. We obtain a
canonical surjection Y — X (H,) with kernel Z. For any discrete G-module A we
have

H*(G, A) = @@ H*(Galg,, A)

veXg

where v runs through set X§ of real places of K not in ¥ and Galg, = Z/2Z denotes
the Galois group of the corresponding local field K, = R [NSWO00, Prop. 10.6.5].
By the proof of the (¢ = 2)-case in [FKO06, Prop. 2.3.7, Claim| we have

H?(Galg,, X(H,)) =0
such that

H(G,2) » H*(G.,Y)
is injective and hence,

H(Gal(L$? /L), X (H,)) =H*(G,Y) > H*(¢, X (H,))
is a surjection. Moreover, Galp, acts trivially on X (H,) such that it suffices to
show that
H2(Gal(LZ) /L"), Q4/Z,) = 0.
By the proof of [NSWO00, Thm. 10.6.1] we obtain an exact sequence
0 H(Gal(L2/L')) » H (Gal(LP /L)) -
@ HY(Galy,) - H3(Gal(LY) /L)) » H*(Gal(L?)/L"))
vene (L)

where we have omitted the coefficients Q2/Z2 and X§ (L") denotes the real places
of L' lying over X§. But

H(Gal(L®/L")) = H*(Galy) = 0
by [NSWO00, Cor. 10.4.8] and [Sch79, Satz 1.(ii)]. Moreover, L is dense in the
product of its real local fields such that for each real place v of L', we find an
element a in L’ which is negative with respect to v and positive with respect to
all other real places. The element of H'(Gal(L(®)/L")) corresponding via Kummer
theory to a square root of a maps to the non-trivial element of Hl(GalLfv ) =7Z[27
and to the trivial element for all other real places. This shows that
HY(Gal(LE)/L')) » @ H'(Galg,)

veXg (L)
must be surjective. O

COROLLARY 2.1.4. Let Koo /K be a Zg-extension of a global field K and Loo /Ko
be a finite extension such that Lo /K is Galois with Galois group G. Assume further
that Lo | K is unramified in a (possibly empty) set of real places X of K. Then there
exists a finite extension L. /Lo, such that

(1) [LY : Leo] is a power of ¢,
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(ii) L, /K is Galois with Galois group G,

(iii) L. /K is unramified over %,

(iv) The canonical homomorphism SKi(Ze[[G']]) = SK1(Z¢[[G]]) is the zero
map.

In particular, L., may be chosen to be totally real if Lo, is a totally real extension

field of Q.

PrOOF. With L as above, set G = Gal(L®)/K) if £ # 2 or K is a function field
and G = Gal(L(Ezc)/K) if £ =2 and K is a number field. Further, set H = kerG —
Gal(Ko/K). According to Lemma SK,(Z[[G]]) is finite and so, the image
of

SK1(Z[[G]]) = lim SKi(Z[[G/U nH]]) - SKu(Z[[G]])
UeN(G)
will be equal to the image of SKi(Z[[G/Uy nH]]) for some Uy € M(G). We let
L be the fixed field of Uy nH. Then L.  clearly satisfies (i), (ii), and (#ii).
Since SK;(Z¢[[G]]) = 0 by Proposition and Proposition it also satisfies
(iv). O

REMARK 2.1.5.

(1) If K is a number field, the extension L/ /K will be unramified outside
a finite set of primes, but we cannot prescribe the ramification locus.
However, assume Lo, /K is unramified outside the set S of places of K
and that the Leopoldt conjecture holds for every finite extension F' of K
inside the maximal ¢-extension Lg) which is unramified outside 5, i.e.
that

H2(Gal(LY /F),Qu/Z¢) = 0.
Then the same method of proof shows that we can additionally chose L’
to lie in Lg).

(2) Assume that K is a function field and L. /K is unramified outside a
non-empty set S of places of K. Then [NSWO00, Thm. 8.3.17] implies

H2(Gal(LY /F),Q/Z¢) = 0

for every finite extension F of K inside the maximal £-extension Lg) which

is unramified outside S such that we can always chose L. to lie in Lg).

2.2. Waldhausen K-Theory

Classically, the first K-group of a ring R may be described as the quotient of the
group
Gl (R) = 1£>nGld(R)
deN

by its commutator subgroup, but for the formulation of the main conjecture, it is
more convenient to follow the constructions of higher K-theory. Among the many
roads to higher K-theory, Waldhausen’s S-construction [Wal85| turns out to be
particularly well-suited for our purposes.

Recall that a Waldhausen category W is a category with a zero object 0 and
two distinguished classes of morphisms, called cofibrations and weak equivalences,
closed under composition and subject to the following set of axioms.

(1) Any isomorphism in W is both a cofibration and a weak equivalence.

(2) For every object A in W, the unique map 0 — A is a cofibration.

(3) If A —» B is a cofibration and A - C is a map in W, then the pushout
Buy C exists and the canonical map C — Buy C is a cofibration.
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(4) If in the commutative diagram
B/ - A/ 7_ Cl

the morphisms f and g are cofibrations and the downwards pointing ar-
rows are weak equivalences, then the natural map Buy C — B uy C' s
a weak equivalence.

We usually denote cofibrations from A to B by A » B and weak equivalences
by A5 B. If C 2 Buy 0 is a cokernel of the cofibration A » B, we denote the
natural quotient map from B to C' by B - C. The sequence

A>»B->»C

is called ezact sequence or cofibre sequence. A functor F:'W — W' between Wald-
hausen categories is called Waldhausen ezact if it preserves cofibrations, weak equiv-
alences and pushouts along cofibrations.

For example, every exact category E in the sense of Quillen may be equipped
with the structure of a Waldhausen category by choosing the cofibrations to be
the injections that may be completed to admissible exact sequences and the weak
equivalences to be the isomorphisms.

Waldhausen’s S-construction then assigns to each Waldhausen category W a
bisimplicial set N.wS.W. The n-th K-group K,, (W) of W is by definition the
n + 1-th homotopy group of the topological realisation of N.wS.W.

To construct the K-groups of R, one can simply apply the S-construction to
the exact category of finitely generated, projective modules over R, but the true
beauty of Waldhausen’s construction is that we can choose among a multitude of
different Waldhausen categories that all give rise to the same K-groups. Below, we
will study a number of different Waldhausen categories whose K-theory agrees with
that of R.

We recall that for any ring R, a complex M*® of R-modules is called DG-flat if
every module M™ is flat and for every acyclic complex N* of right R-modules, the
total complex (N ®p M)* is acyclic. In particular, any bounded above complex of
flat R-modules is DG-flat. The notion of DG-flatness can be used to define derived
tensor products without this boundedness condition. Unbounded complexes will
turn up naturally in our constructions. As usual, the complex M* is called strictly
perfect if M™ is finitely generated and projective for all n and M™ = 0 for almost
all n. A complex of R-modules is a perfect complex if it is quasi-isomorphic to a
strictly perfect complex.

DEFINITION 2.2.1. For any ring R, we write SP(R) for the Waldhausen cat-
egory of strictly perfect complexes, PDG(R) for the category of perfect DG-
flat complexes, and P(R) for the Waldhausen category of perfect complexes of
left R-modules. In both categories, the weak equivalences are given by quasi-
isomorphisms. The cofibrations in P(R) are all injections, the cofibrations in
SP(R) and PDG(R) are the injections with strictly perfect and DG-flat perfect
cokernel, respectively.

It is a standard consequence of the Waldhausen approximation theorem [T'T'90,
1.9.1] that the inclusion functors SP(R) -— PDG(R) — P(R) induces isomor-
phisms

K, (SP(R)) =2 K,,(PDG(R)) = K,,(P(R))
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between the Waldhausen K-groups of these categories. Moreover, they agree with
the Quillen K-groups K,,(R) of R by the Gillet-Waldhausen theorem [T'T90, Thm.
1.11.2, 1.11.7].

If S is another ring and M*® is a complex of S-R-bimodules which is strictly
perfect as complex of S-modules, then the tensor product with M*® is a Waldhausen
exact functor from SP(R) to SP(S) and from PDG(R) to PDG(S). Hence, it
induces homomorphisms K,,(R) - K, (5). Note, however, that the tensor product
with M*® does not give a Waldhausen exact functor from P(R) to P(S), as it
does not preserve weak equivalences nor cofibrations. In the context of homological
algebra, this problem can be solved by passing to the derived category, but there
is no general recipe how to construct the K-groups of R on the basis of the derived
category alone. As a consequence, in order to view certain homomorphisms between
K-groups as being induced from a Waldhausen exact functor, one has to make a
suitable choice of the underlying Waldhausen categories.

Thanks to a result of Muro and Tonks [MT08], the groups Ko(W) and K; (W)
of any Waldhausen category W can be described as the cokernel and kernel of a
homomorphism

(2.2.1) 9: D1 (W) > Do(W)

between two nil-2-groups (i.e. [a,[b,c]] = 1 for any three group elements a,b,c)
that are given by explicit generators and relations in terms of the structure of the
underlying Waldhausen category. As additional structure, there exists a pairing

Dy(W) xDo(W) > Di(W),  (A,B)+~(A,B)
satisfying

B 'A'BA,
—1

9(A,
(da, 0b

(A,B)(B,
(A, BC

b tatba,

7

{4,B)(4,C).

In other words, Do(W) is a stable quadratic module in the sense of [Bau91]. In
particular, X € Dyo(W) operates from the right on a € D1 (W) via

B)
)
A)
)

a® = a(X,da).

More explicitly, Do(W) is the free nil-2-group generated by the objects of W
different from the zero object, while D;(W) is generated by all weak equivalences
and exact sequences in W subject to the following list of relations:

(R1) 9[a] = [B]*[A] for a weak equivalence oz A = B,

(R2) 9[A]=[B]'[C][A] for an exact sequence A: A > B — C.

(R3) ([A],[B])=[B~» A® B - A]"'[A» A® B - B] for any pair of objects
A, B.

(R4) [0>0—>0]=1p,,
[Ba] = [B][a] for weak equivalences a: A = B, 5: B = C,
[A']

[a][v]H) = [B][A] for any commutative diagram

A A B——(C

A Al B — = ('
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(R7) [T1][A1] = [A2][T2]M] for any commutative diagram
Iy s

Ay A0>—> B ——(C

| ]

Ay Ao0——s> D —> F

S

IMTO07, Def. 1.2].
In particular, Ko(W) is the abelian group generated by the symbols [P] with
P in W modulo the relations

[P]=[Q] if P and @ are weakly equivalent,
[P]=[Pi]+[P5] if Py » P, - Ps is an exact sequence.

If f:P 5 P is an endomorphism which is a weak equivalence in W, we can assign
to it a class [f] in K;(W). The relations that are satisfied by these classes can be
read off from the above relations for Dy W. By the classical definition of the first
K-group as factor group of the general linear group it is clear that these classes
generate K1 (W) in the case that W is one of SP(R), PDG(R) and P(R) for a
ring R.

REMARK 2.2.2. Some authors prefer the theory of determinant functors and
Deligne’s category of virtual objects [Del87] as an alternative model for the 1-type
of the K-theory spectrum. We refer to [MTW15] for the precise connection of the
two approaches.

2.3. Duality on the Level of K-Groups

Assume that W is a biWaldhausen category in the sense of [T'T90, Def. 1.2.4]:
W is a Waldhausen category, the class of quotient maps is closed under composi-
tion, the opposite category WP is a Waldhausen category with the same class of
weak equivalences and with the classes of quotient maps and cofibrations mutually
exchanged, and product and coproduct of any two objects in W are canonically
isomorphic.

In particular, the opposite category W°P is a biWaldhausen category as well
and there are natural isomorphisms

(2.3.1) LK (W) 2 K, (W),

simply because the topological realisations of the bisimplicial sets N.wS.W and
N.wS. WP resulting from Waldhausen’s S-construction agree [T'T90], §1.5.5]. How-
ever, the obvious identifications

NpwS, W = N,,wS, W°P

respect the boundary and degeneracy maps only up to reordering, so that we do
not obtain an isomorphism of the bisimplicial sets themselves.

In order to understand the isomorphism in terms of the presentation of
K1 (W) given by (2.2.I)), we will construct a canonical isomorphism

I:Dy(W) > Dy (WP).

For any morphism a: A — B in W, write a®®: B — A for the corresponding mor-
phism in the opposite category W°P. Further, note that by the definition of bi-
Waldhausen categories, if A » B — C is an exact sequence in W, then the dual
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sequence C' »> B - A is exact in W°P., We then set
I([A]) = [4] for objects A in W,
I([f:AS B)) =[f*:B> A for weak equivalences f,
I([A» B> C])=[C» B —» A]{[A],[C]) for exact sequences A =» B - C.

ProprosSITION 2.3.1. For any biWaldhausen category W, the above assignment
defines an isomorphism of stable quadratic modules

[:D.(W) - D.(W°P).
PRrROOF. It is sufficient to check that I respects the relations (R1)—(R7) in the
definition of Dy(W). This is a straight-forward, but tedious exercise. d

Next, we investigate in how far I respects the boundary homomorphism of
localisation sequences. For this, we consider the same situation as in [Wit14] Ap-
pendix], but with all Waldhausen categories replaced by biWaldhausen categories.
Assume that wW is a biWaldhausen category with weak equivalences w that is
saturated and extensional in the sense of [T'T90, Def. 1.2.5, 1.2.6]. Let vW be a
the same category with the same notion of fibrations and cofibrations, but with a
coarser notion of weak equivalences v ¢ w and let vWWY denote the full biWald-
hausen subcategory of vW consisting of those objects which are weakly equivalent
to the zero object in wW. We assume that Cyl is a cylinder functor in the sense of
[Wit14, Def. A.1] for both wW and vW and that it satisfies the cylinder axiom
for wW. We will write Cone and X for the associated cone and shift functors, i.e.

Cone(a) = Cyl(a)/A for any morphism «: A - B,
¥ A= Cone(A - 0) for any object A.
Further, we assume that CoCyl is a cocylinder functor for both wW and vW in
the sense that the opposite functor CoCyl°? is a cylinder functor for wW*°P and
vWP, Again, we assume that CoCyl°? satisfies the cylinder axiom for wW°P. We
will write CoCone and CoX for the associated cocone and coshift functors.
Recall from [Wit14l Thm. A.5] that the assignment

(2.3.2)
d(A)=0 for every exact sequence A in wW,

d(a) = —[Cone(a)] + [Cone(id4)] for every weak equivalence a: A — A’ in wW
defines a homomorphism d: D; (wW) - Ko(vW™) such that the sequence
K (VW) > K1 (WW) 3 Ko(vWY) = Ko (VW) > Ko (wW) = 0
is exact.
LEMMA 2.3.2. For every weak equivalence a: A - B in wW,
d(a) = -[CoCone(idg)] + [CoCone(c)]
in Ko(vVWW).
PrOOF. We first assume that A and B are objects of vVW™. Then
B > Cone(a) » X A,
A > Cone(ida) » X A,
are exact sequences in vW W . Hence,
(2.3.3) d(a)=-[B]-[ZA]+[XZA]+[A] =-[B] +[A4]
in Ko(vWW).
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For a general weak equivalence a: A — B in wW, the natural morphism
Cone(a) - 0
is a weak equivalence in wW by the cylinder axiom. The commutative square
A=——=A
| )
A——=B
induces by the functoriality of the cone and shift functor a commutative diagram

with exact rows
A>——> Cone(idy) —>= 3 A

B Cone(a) —= 3 A

where all downward pointing arrows are weak equivalences in wW. Dually, we also
obtain a commutative diagram

CoxX B CoCone(a) —= A

N

Co¥ B>— CoCone(idg) — B

where all downward pointing arrows are weak equivalences in wW.

From (R6) and we conclude
—[Cone(a)] + [Cone(id4)] = d(a.) = d(a)
=d(a”) = -[CoCone(idg)] + [CoCone(a)]
as desired. O

REMARK 2.3.3. By basically the same argument, one also sees that d is inde-
pendent of the choice of the particular cylinder functor.

ProproSITION 2.3.4. With the notation as above, the diagram

Dy (wW) Dy (wWoP)

ld ;

Ko(vIW™) — Ko ((vW®)°P)

commutes.
PROOF. Thisis a direct consequence of the definition of I and Lemma/2.3.2l [

If R is any ring and P* is a strictly perfect complex of left R-modules, then
(P*)*® :=Hompg(P™*,R)
is a strictly perfect complex of left modules over the opposite ring R°P and
SP(R)°® - SP(R°P) Pt (P*)*"
is a Waldhausen exact equivalence of categories. We omit the R from =g if it

is clear from the context. By composing with the homomorphisms I, we obtain
isomorphisms

K, (R) 2 K, (R°P).
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Note that the isomorphism Kj(R) — K;(R°P) corresponds to the isomorphism
induced by the group isomorphism

Glo (R) - Gloo (R°P), A (ADT

that maps a matrix A to the inverse of its transposed matrix.

If S is a second ring and M*® a complex of R-S-bimodules which is strictly
perfect as complex of R-modules, then (M*®)*% is a complex of R°P-S°P-bimodules
which is strictly perfect as complex of R°P-modules and there exists for any complex
P* in SP(S) a canonical isomorphism

(2.3.4) (M*® @gon P™5)" = (M ®5 P)")"".
Hence, we obtain a commutative diagram

K (S) —=> K, (S°)

M.l l(MW

K, (R) = K, (RP)

2.4. K-Theory of Adic Rings

We are mainly interested in the first K-group of a certain class of rings introduced
by Fukaya and Kato in [FK06|. It consists of those rings A such that for each n > 1
the n-th power of the Jacobson radical Jac(A)™ is of finite index in A and
A =1lim A/ Jac(A)"™.
n>1

In extension of the definition for commutative rings [Gro60, Ch. 0, Def. 7.1.9],
these rings should be called compact adic rings. We will call these rings adic rings
for short, as in [Wit14]. We do not intend to insinuate any relation to Huber’s
more recent concept of adic spaces with this denomination. By definition, an adic
ring A carries a natural profinite topology. We will write J5 for the set of open
two-sided ideals of A, partially ordered by inclusion.

We mainly work with the following Waldhausen category taken from [Wit14].
Its main advantage is that it works well with our later definition of adic sheaves
in Section [B.1] and that it allows a direct construction of most of the relevant
Waldhausen exact functors.

DEFINITION 2.4.1. Let A be an adic ring. We denote by PDG“™(A) the
following Waldhausen category. The objects of PDG®™(A) are inverse system
(P})1e7, satisfying the following conditions:

(1) for each I €Ja, P; is a DG-flat perfect complex of A/I-modules,
(2) for each I c J €Ty, the transition morphism of the system
gQIJ Z}j; d l?;
induces an isomorphism of complexes
A/J ®njr PT 2 PS.

A morphism of inverse systems (fr: P} — Q%) 1e3, in PDG™(A) is a weak equiv-
alence if every fr is a quasi-isomorphism. It is a cofibration if every f; is injective
and the system (coker f7) is in PDG®™(A).

DEFINITION 2.4.2. Let A’ be another adic ring and M*® a complex of A’-A-
bimodules which is strictly perfect as complex of A’-modules. We define ¥ e to be
the following Waldhausen exact functor

e PDG™(A) - PDG(A), P* — (lim A'/T®r (M ®a Pr)*)ies,,-
JEJA
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If P°® is a strictly perfect complex of A-modules, we may identify it with the

system
(A/I ®A P.)[EjA
in PDG®“™(A). By [Witi4, Prop. 3.7], the corresponding Waldhausen exact
functor
SP(A) - PDG " (A)
induces isomorphisms
K, (SP(A)) 2 K, (PDG™(A))

between the K-groups of the Waldhausen categories. Hence, K,,(PDG“"(A)) also
coincide with the Quillen K-groups of the adic ring A and the homomorphism

Uare: Ky (A) = K (A)
induced by the Waldhausen exact functor ¥,se coincides with the homomorphism
induced by
SP(A) - SP(A"), P (M ®y P)°.
The essential point in this observation is that J, is a countable set and that all the
transition maps @y s are surjective such that passing to the projective limit
lim P;
«—
IEjA
is a Waldhausen exact functor from PDG“™(A) to the Waldhausen category P(A)
of perfect complexes of A-modules. We write
H*((P7)1es,) = H*(lim P7)
IEjA
for its cohomology groups and note that
H*((P})1ca,) = lim HY(P})
Tedp
[Wit08| Prop. 5.2.3].

2.5. S-Torsion Complexes

Note that for any adic Z,-algebra A and any profinite group G such that G has an
open pro-{-subgroup which is topologically finitely generated, the profinite group
algebra A[[G]] is again an adic ring [Witl14, Prop. 3.2]. Assume further that
G = H « T is the semi-direct product of a closed normal subgroup H which is itself
topologically finitely generated and a subgroup I' which is isomorphic to Z,. We
set

(2.5.1) S = SA[[G]] =

{f e A[[G]]| Al[G]] 9, A[[G]] is perfect as complex of A[[H]]-modules}

and call it Venjakob’s canonical Ore set. We may generalise the results of [CFK*05),
§2] as follows.

LEMMA 2.5.1. Let
pe.p1 2 po
be a complex of length 2 in SP(A[[G]]). Then the following are equivalent:
(1) P* is perfect as a complex of A[[H]]-modules.
(2) P and P° are isomorphic as A[[G]]-modules and H°(P®) is finitely
generated as A[[H]]-module.
(3) HY(P*) =0 and H*(P*) is finitely generated as A[[H]]-module.
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(4) HY(P*) = 0 and HY(P*) is finitely generated and projective as A[[H]]-
module.

PRrROOF. Clearly, implies .

We prove that () implies (2). Assume that P* is perfect as complex of A[[H]]-
modules. Then the class of P* is trivial in Ko(A[[G]]) by [Wit13bl Cor. 3.3]. As
A[[G]] is compact and semi-local, Ko(A[[G]]) is the free abelian group over the
isomorphism classes of indecomposable, projective A[[G]]-submodules of A[[G]].
Hence, P~' and PY must be isomorphic. Moreover, as P*® is quasi-isomorphic to a
strictly perfect complex of A[[H]]-modules, the highest non-vanishing cohomology
group of P* is a finitely presented A[[H ]]-module.

We prove that implies . It is sufficient to show that

H (A/I[[G/U]] ®afray P*) =0
for every open two-sided ideal I of A and every open subgroup U of H that is normal
in G. Hence, we may assume that A and H are finite. Then 0 is a homomorphism
of the torsion Z,[[I']]-modules P~! and PY. As the two modules are isomorphic
over Z¢[[T']] and coker 9 is finite, @ must be a pseudo-isomorphism. Hence, ker 9
ist finite, as well. But P! is finitely generated and projective as A[[I']]-module

and therefore, it has no finite A[[I']]-submodules. We conclude that 9 is injective.
We prove that implies . Note that
AJITTHJUY] @aray HY(P*) 2 AI[[G/U]] @rayy HY(P*)
= H(A/I[[G/U]] ®nrgey P*) 2 HO(A/I[[H/U]] @aqiay P*)
for any I € J5 and any open subgroup U ¢ H which is normal in G. We conclude
that HY(P*) is finitely generated and projective as A[[H]]-module if and only if
HO(A/I[[H/U]] ®rra]) P*) is finitely generated and projective as A/I[[H/U]]-
module for every I and U. Hence, one may reduce to the case that A and H are
finite. By replacing G by an appropriate open subgroup of G containing H, we may
assume that I' is central in G, such that we may identify A[[G]] with the power
series ring A[[H]][[t]] over A[[H]] in one indeterminate ¢t. For any finite right
A[[H]]-module N, the Z[[t]]-module N ®,(gy) P! cannot contain non-trivial
finite Z,[[t]]-submodules. Moreover, P! and P° are flat A[[H]]-modules such
that P* is a flat resolution of H’(P*) as A[[H]]-module. Hence, we have

Tor M (N, HO(P*)) = 0

for > 1 and
TOI‘IIX[[H]] (N, HO(P.)) cN ®A[[H]] p°

is a finite Z,[[¢]]-submodule. Therefore,

Tor (N HO(P*)) =0
and H°(P*) is finite and projective. O

LEMMA 2.5.2. If A and H are finite and v € T is a topological generator of T,
then
T {(v-1)" |neny

is a left and right denominator set in A[[G]] consisting of left and right non-zero
divisors in the sense of [GWO04, Ch. 10] such that the left and right localisation

Al[G]]z

exists. Moreover, S is equal to the set of elements of A[[G]] that become units in
A[[G]]lr. In particular, S is also a left and right denominator set and

Al[G]]s = A[[G]]r
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PROOF. Set t =+v—1. Viewing A[[G]] as a skew power series ring over A[[H]]
in ¢, it is clear that left and right multiplication with ¢" on A[[G]] is injective with
finite cokernel.

According to Lemmal[2.5.1] we have s € S if and only if A[[G]]/A[[G]]s is finite.
In particular, we have T c S. Considering A[[G]]/A[[G]]s as a finite Z[[t]]-
module we see that it is annihilated by a power of . We conclude that there exists
an integer n > 0 such that for any a € A[[G]] there exists a b€ A[[G]] such that

t"a = bs.

Applying this to elements of T' c S, we see that T" and S are left denominator set
consisting of left and right non-zero divisors such that all elements of S are units
in A[[G]]r = A[[G]]s.

Applying the same arguments to s € A[[G]] with A[[G]]/sA[[G]] finite, we see
that T is also a right denominator set.

Assume that s € A[[G]] becomes a unit in A[[G]]r. Then kernel and cokernel
of

A[[GT] = A[[G]]

are annihilated by powers of t. Considering A[[G]] as a finitely generated Z,[[t]]-
module annihilated by a power of £, we conclude that the cokernel is finite, which
implies that s € .S. Since T is a right denominator set, the same is then true for

S = A[[G]]n A[[G]]7-

LEMMA 2.5.3. Assume that A[[H]] is noetherian. Then:
(1) S={f e A[[G]]|A[[G]]/ALIG]]S is a f.g. left A[[H]]-module}.
(2) S={feA[[G]]|A[[G]]/fAIIG]] is a f. g. right A[[H]]-module}.
(3) S is a left and right denominator set consisting of left and right non-zero
divisors.
(4) A perfect complex of left A[[G]]-modules is perfect as complex of A[[H]]-
modules if and only its cohomology groups are S-torsion.

PROOF. Lemma implies that the elements of S are right non-zero divisors
and that holds. Under the assumption that A[[H]] is noetherian, we know by
[Wit13bl Cor. 2.21] that S is a left denominator set. Assertion follows from
[Wit13bl Thm. 2.18]. Write (A[[G]])°P and A°P for the opposite rings of A[[G]]
and A, respectively. Consider the ring isomorphism

§: (A[[G]))*P - A°P[[G]]
that maps g € G to g~!. To prove the remaining assertions, it is sufficient to show
that ff maps Safay) € (A[[G]])°P to Sper(raq-

If A and H are finite and v € I" is a topological generator, then | maps ¢ =y -1
to t' == v71 = 1 and hence, it maps T = {t" |n € N} to 7" = {t"" | n € N}. Using
Lemma @l for T and T", we conclude that §(Saiay)) = Saer[[a]]-

In the general case, write

AP[[G]] = lim AP/I[[G/H n U]
U,I

where the limit runs over all open two-sided ideals I of A and all open normal
st
subgroups U of G and note that A°P[[G]] — A°P[[G]] is perfect over A°P[[H]] if

X
and only if (A/T)°P[[G/H nU]] — (A/I)°°[[G/H nU]] is perfect over the finite
ring (A/T)°P[[H/H nU]] for all I and U. O
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For general A and H, the set S is no longer a left or right denominator set, as
the following example shows.

EXAMPLE 2.5.4. Assume that either A = [F, is the finite field with £ elements
and H is the free pro-f group on two topological generators with trivial action of I"
or A =TFy((x,y)) is the power series ring in two non-commuting indeterminates z,y
and H is trivial. In both cases, A[[G]] = Fe{{z,y))[[¢]] is the power series ring over
Fo({z,y)) with ¢ commuting with = and y and the set S is the set of those power
series f(x,y,t) with f(0,0,t) #0. Set s:==x—t € S. If S were a left denominator
set, we could find

a =

aitt e Folla,y)([1]], b= bt S

=0

M

I
(e}

?

such that as = by, i.e.
apx = boy, a;x—a;—1 =byy fori>0.

The only solution for this equation is a@ = b = 0, which contradicts the assumption
beS.

Nevertheless, using Waldhausen K-theory, we can still give a sensible definition
of K1 (A[[G]]s) even if A[[G]]s does not exist.

DEFINITION 2.5.5. We write SP“# (A[[G]]) for the full Waldhausen subcat-
egory of SP(A[[G]]) of strictly perfect complexes of A[[G]]-modules which are
perfect as complexes of A[[H]]-modules.

We write wy SP(A[[G]]) for the Waldhausen category with the same objects,
morphisms and cofibrations as SP(A[[G]]), but with a new set of weak equivalences
given by those morphisms whose cones are objects of the category SP“7 (A[[G]]).

The same construction also works for PDG“™ (A[[G]]):

DEFINITION 2.5.6. We write PDG""# (A[[G]]) for the full Waldhausen
subcategory of PDG™ (A[[G]]) of objects (P7) jeapqey Such that

lim P}
Jm
JeTarren

is a perfect complex of A[[H]]-modules.

We write wyPDG ™ (A[[G]]) for the Waldhausen category with the same
objects, morphisms and cofibrations as PDG*™(A[[G]]), but with a new set of
weak equivalences given by those morphisms whose cones are objects of the category
PDG"" 4 (A[[G]]).

From the Waldhausen approximation theorem [T'T90, 1.9.1] and from [Wit14|
Prop. 3.7] we conclude that

K, (SP"" (A[[G]))) =
Kn (wiSP(A[[G]])) =

R(PDG7 (A[[G])),
w(wrPDG" (A[[G]]))
We may then set for all n >0
K, (A[[G]],5) = Ko (PDG" " (A[[G]])),
K1 (A[[G]]s) = Kns1 (wgPDG" (A[[G]])).

If A[[H]] is noetherian, these groups agree with their usual definition [Wit14l § 4].
A closely related variant of SP“7 (A[[G]]) is the following Waldhausen cate-

gory.
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DEFINITION 2.5.7. Let SP(A[[H]],G) be the Waldhausen category of com-
plexes of A[[G]]-modules which are strictly perfect as complexes of A[[ H]]-modules.
Cofibrations are the injective morphisms with cokernel in SP(A[[H ], G); the weak
equivalences are given by the quasi-isomorphisms.

In other words, SP(A[[H]],G) is the Waldhausen category of bounded com-
plexes over the exact category of A[[G]]-modules which are finitely generated and
projective as A[[H]]-modules and hence, the groups K, (SP(A[[H]],G)) agree
with the Quillen K-groups of this exact category. Unfortunately, we cannot prove
in general that K,,(SP(A[[H]],G)) agrees with K,,(A[[G]],S). However, we shall
see below that we always have a surjection

Ko(SP(A[[H]], G)) = Ko(A[[G]], 9).
This is sufficient for our applications.

LEMMA 2.5.8. Let P* be a complex of projective compact A[[G]]-modules that
is bounded above. Assume that there exists a bounded above complexr K* of finitely
generated, projective A[[H]]-modules that is quasi-isomorphic to P* as complex of
A[[H]]-modules. Then there exists in the category of complezes of A[[G]]-modules
an injective endomorphism

V:A[[G]] ®arrayy K* = A[[G]] ®@apra) K°
and a quasi-isomorphism
f:P*® — coker .

such that cokert) is a bounded above complex of A[[G]]-modules which are finitely
generated and projective as A[[H]]-modules.

In particular, if P* is perfect as complex of A[[H]]-modules, then P* is perfect
as complex of A[[G]]-modules and coker is in SP(A[[H]],G).

PrROOF. Since K* is a bounded above complex of finitely generated projec-
tive A[[H]]-modules, there exists a quasi-isomorphism a: K* — P*® of complexes
of A[[H]]-modules, which is automatically continuous for the compact topologies
on K* and P*. Every projective compact A[[G]]-module is also projective in
the category of compact A[[H]]-modules. Hence, there exists a weak equivalence
B: P* — K* in the category of complexes of compact A[[H]]-modules such that
ao 8 and foa are homotopic to the identity. Fix a topological generator v € I' and
set

gK* =K e~ f(ya(r)),
V:A[[Gll@agay K° = Al[Gll @agap K°. A®@zmAez-Ay ' ®g(x).

Then ¢ is a A[[G]]-linear complex morphism. Moreover, coker is finitely gener-
ated over A[[H]] in each degree. Indeed, if we set t = y—1 and let (eq, ..., e, ) denote
a generating system of the A[[H]]-module K™ in degree n, then (¢* ®€; ) keNo,i=1,...,m
is a topological generating system of A[[G]] ®[a7) K™ over A[[H]]. But

theouv=t""1e (g(v) -v)+ (1" )

for all v € K™, such that coker 1 is already generated by the images of 1®eq,...,1®
Em.-

From Lemma we conclude that 1 is injective and that coker) is finitely
generated and projective over A[[H]] in each degree. Set Q° := cokert. Since P*
is a bounded above complex of projective compact A[[G]]-modules, there exists a
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quasi-isomorphism f completing the homotopy-commutative diagram

N ARz ART-AY L@z ~ LA
0 —= A[[G]]éaa P* 2 A[[Gl)@ gy P 22 PP — 0
Niidéﬂ "‘lid@ﬁ ~if
\
(] w d ®
0—>A[[G]] ®A[[H]] K A[[G]] ®A[[H]]K Q 0

in the category of complexes of compact A[[G]]-modules. Here, A[[G]]®[p7P°
denotes the completed tensor product. The exactness of the first row follows from
[Wit13bl Prop. 2.4]. If we can choose K* to be a strictly perfect complex of A[[H]]-
modules, then P* is also quasi-isomorphic to the cone of ¢, which is strictly perfect
as complex of A[[G]]-modules. Moreover, coker 1) is a bounded complex and hence,
an object of SP(A[[H]],G). O
ProOPOSITION 2.5.9. Let v €T be a topological generator. The functor

Cy:SP(A[[H]], &) - SP* (A[[G]]),

. . \®PHARP-AYT'® .
P* > Cone(A[[G]] @appayy P* 222220 200 A[[G]] @y P°)
is well defined and Waldhausen ezxact. It induces a surjection
Cy:Ko(SP(A[[H]], G)) » Ko(SP™* (A[[G]]))
which is independent of the choice of .

PrOOF. From [Witl13bl Prop. 2.4] we conclude that

id-(-y tey-) A®p—Ap
B

0 > A[[G]] ®aqmyy P* Al[G]] ®amy P* P* =0

is an exact sequence of complexes of A[[G]]-modules for any P* in SP(A[[H]],G).
In particular, the strictly perfect complex of A[[G]]-modules C,(P*) is quasi-
isomorphic to P* in the category of complexes of A[[G]]-modules and therefore per-
fect as complex of A[[H]]-modules. Thus, C,(P*) is an object of SP“" (A[[G]]).
The Waldhausen exactness of the functor C follows easily from the Waldhausen
exactness of the cone construction.

Consider the Waldhausen category P“# (A[[G]]) of those perfect complexes
of A[[G]]-modules which are also perfect as complexes of A[[H]]-modules. The
Waldhausen approximation theorem [T'T90, 1.9.1] implies that the inclusion

1SPYH (A[[G]]) - PY# (A[[G]])

induces isomorphisms

K (SPY" (A[[G]])) = Kn (P (A[[G]]))
for all n. The functorial quasi-isomorphism C,(P*) = P* in P¥# (A[[G]]) im-
plies that the homomorphism of K-groups induced by ¢ o C, agrees with the ho-
momorphism induced by the inclusion ": SP(A[[H]],G) — PY#(A[[G]]). Since

Ko(P*7 (A[[G]])) is generated by the quasi-isomorphism classes of complexes in
P (A[[G]]), we deduce from Lemma that ¢ induces a surjection

Ko(SP(A[[H]], G)) = Ko (P (A[[G]]))-
O

REMARK 2.5.10. In order to deduce from the Waldhausen approximation the-
orem (applied to the opposite categories) that C., induces isomorphisms

K. (SP(A[[H]], G)) = K, (SP*7 (A[[G]]))

for all n, it would suffice to verify that for every complex P*® in SP(A[[H]],G) and
every morphism f: K* — P*® in P*# (A[[G]]), there exists a morphism f":Q* — P*
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in SP(A[[H]],G) and a quasi-isomorphism w: K* = Q* in P*“# (A[[G]]) such that
f=fow.
REMARK 2.5.11.
(1) In the light of Proposition we will write
[P*]=[Cy(P*)] e Ko(A[[G]],5)
for any P* in SP(A[[H]],G).
(2) More generally, let M be a A[[G]]-module which has a resolution by a

strictly perfect complex of A[[H]]-modules Q°. By Lemma|2.5.8] M then
also has a resolution by a complex P* in SP(A[[H]],G). We set

[M]:=[P*] e Ko(A[[G]], 5).

Note that [ M] does not depend on the particular choice of the resolutions
P* or Q°.

2.6. Base Change with Bimodules

Let A and A’ be two adic Zg-algebras and G = HxI', G = H'xI" be profinite groups,
such that H and H' contain open, topologically finitely generated pro-f subgroups
and I' 2 Z, = I'. Suppose that K* is a complex of A'[[G']]-A[[G]]-bimodules,
strictly perfect as complex of A’[[G']]-modules and assume that there exists a
complex L*® of A’'[[H']]-A[[H]]-bimodules, strictly perfect as complex of A'[[H']]-
modules, and a quasi-isomorphism of complexes of A’'[[H']]-A[[G]]-bimodules

L@z Al[G]] = K*.
Here,
LrozapAl[Gl] = lim  lim  L/TL" @xqmy A[[G]]/7
Ie3pieryy J€9A161

denotes the completed tensor product.
In the above situation, the Waldhausen exact functor

(2.6.1) Uo: PDG™(A[[G]]) - PDG™(A'[[G']])

takes objects of the category PDG®™ " (A[[G]]) to objects of the category
PDG#" (A'[[G']]) and weak equivalences of wyPDG ™ (A[[G]]) to weak
equivalences of wyPDG ™ (A'[[G']]) [Wit14, Prop. 4.6]. Hence, it also induces
homomorphisms between the corresponding K-groups. In particular, this applies
to the following examples:

EXAMPLE 2.6.1. [Wit14] Prop. 4.7]
(1) Assume G = G', H = H'. For any complex P* of A’-A[[G]]-bimodules,
strictly perfect as complex of A’-modules, let K* be the complex

P[[G])"" = N'[[G]] @ P*

of A'[[G]]-A[[G]]-bimodules with the right G-operation given by the diag-
onal action on both factors. This applies in particular for any complex P*®
of A’-A-bimodules, strictly perfect as complex of A’-modules and equipped
with the trivial G-operation.

(2) Assume A =A’. Let a:G - G’ be a continuous homomorphism such that
a maps H to H' and induces a bijection of G/H and G'/H'. Let K*® be
the A[[G']]-A[[G]]-bimodule A[[G']].

(3) Assume that G’ is an open subgroup of G and set H' = Hn G'. Let
A = A" and let K* be the complex concentrated in degree 0 given by the
A[[G']]-A[[G]]-bimodule A[[G]].
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EXAMPLE 2.6.2. The assumptions in Example M(2) are in fact stronger
than necessary. We may combine it with the following result. Assume that G is
an open subgroup of G’ such that H = H'nG = H and I = (I")"". Let A = A’
and let K* be the A[[G']]-A[[G]]-bimodule A[[G']]. Fix a topological generator
~" eI and let L*® be the A[[H]]-A[[H]]-sub-bimodule of A[[G’]] generated as left
A[[H]]-module by 1,7, (v)?,...,(7')""~*. Then L* is a strictly perfect complex
of A[[H]]-modules concentrated in degree 0 and the canonical map

L*®&auAl[G]] > K®, (@A X

is an isomorphism of A’[[H']]-A[[G]]-bimodules such that [Wit14, Prop. 4.6] ap-
plies. In combination with ExampleM@) this implies that any continuous group
homomorphism a: G - G’ such that a(G) ¢ H' induces Waldhausen exact functors
between all three variants of the above Waldhausen categories.

EXAMPLE 2.6.3. As a special case of Example (1), assume that A = Zy and
that p is some continuous representation of G on a finitely generated and projective
A’-module. Let p! be the A’-Z;[[G]]-bimodule which agrees with p as A’-module,
but on which g € G acts from the right by the left operation of g~ on p. We thus
obtain Waldhausen exact functors

(2.6.2) P, = Wargry o Yorgrap

from all three variants of the Waldhausen category PDG"(Z,[[G]]) to the cor-
responding variant of PDG™ (A’[[T']]). If A’ is a commutative adic Z-algebra,
then the image of

(201611 % Z([G)]] e Ka (Ze[[G]]), g€,
under the composition of ®, with
det: Ky (A'[[T']]) = A'[[T]]"

is gdet(p(g))~!, where g denotes the image of g under the projection G — I'. Note
that this differs from [CFK* 05, (22)] by a sign. So, our evaluation at p corresponds
to the evaluation at the representation dual to p in terms of the cited article.

2.7. Duality for S-Torsion Complexes

As before, A is an adic ring and G = H xT" is a profinite group such that H contains
an open, topologically finitely generated pro-£ subgroup and I' = Z,.
We define

fA[[GIP > AP[[G]],  awd,
to be the ring homomorphism that is the identity on the coefficients and maps
g € G to g7' and write A°P[[G]]" for A°P[[G]] considered as A°P[[G]]-A[[G]]°P-

bimodule via . If P*® is a bounded above complex of finitely generated, projective
A[[G]]-modules, we set

ﬁ(P.)*A[[G']] = AOp[[G]]” ®A[[]]or (P*)*aten,

i.e. the complex (P*)*slten of finitely generated, projective A[[G]]°P-modules is
turned into a complex of finitely generated, projective A°P[[G]]-modules by letting
geG act as g7 L.

In particular, we obtain Waldhausen exact equivalence of categories

SP(A[[GI) - SP(AP[[G]]),  P*wX(P*)*auey,
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DEFINITION 2.7.1. We write
©: K, (A[[G]]) - Kn (A[[G]])
for the homomorphisms obtained by composing I with the homomorphism
K (SP(A[[G]])®?) = Kn(SP(A™[[G]]))
induced by the Waldhausen exact functor P* ~ {(P*)*aten,

REMARK 2.7.2. The author does not know wether it is possible to produce an
extension of P* — {(P*)*Al6) to a Waldhausen exact functor

PDGcont(A[[G]])Op — PDGcont(AOp[[G]])

inducing the same homomorphisms on K-theory. This would avoid some technical-
ities that we need to deal with later on.

LEMMA 2.7.3. Assume that K* is in SP(A[[G]]).

(1) Let A’ be another adic Zg-algebra. For any complex P* of AN'-A[[G]]-
bimodules, strictly perfect as complex of A'-modules, set

(P*) b= (P*)™ @upraper (A[[G]])F

such that (P*)*»* is a complex of A'°P-A°P[[G]]-bimodules, with g € G
acting by (g7Y)*. With P[[G]]°" as in Ezample

n(‘I’P[[G]]ﬁ‘ (K.))*A[[G” = ‘I’(P-)*A>u[[G]]5 (H(K.)*A[[GH )

(2) Let G' = H' xI be another profinite group such that H' contains an open,
topologically finitely generated pro-€ subgroup and I 2 Z,. Let a: G - G’
be a continuous homomorphism such that o(G) ¢ H'. Consider A[[G']]
as a A[[G']]-A[[G]]-bimodule. Then

N(‘I’A[[G']] (K.))*A[[G]] ~ WAOP[[G’]] (n(K.)*A[[G]] )

(3) Assume that G’ is an open subgroup of G and set H' := HnG'. Consider
A[[G]] as a A[[G']]-A[[G]]-bimodule. Then

WGy (7)) MO = Wpop gy ((K) AI6M).
PRrROOF. Using the canonical isomorphism (2.3.4]), it remains to notice that
API[GT) @arqraper (PILG]]°7)*wtten = (P*)H[[G])° @perfay AP [[G]]'

as complexes of AP[[G]]-A[[G]]°P-bimodules to prove (1). The other two parts
are straightforward. O

PROPOSITION 2.7.4. The functor P* w {(P*)*Ate) extends to Waldhausen ex-
act equivalences

(waSP(A[[G]])? - waSP(A°P[[G]]),
(SPH(A[[G]]))*? = SPU#(A*P[[G]])

and hence, it induces a commutative diagram

Ky (A[[G]]) K1 (A[[G]s) Ko(A[[G]],5) ——0

0 —= K (AP[[G]]) — K1 (A[[G]]s) — Ko (AP[[G]], §) —0

0 d

with exact rows.
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PROOF. The exactness of the rows follows from [Wit13bl Cor. 3.3]. To extend
®, it suffices to show that for any strictly perfect complex P*® of A[[G]]-modules
which is also perfect as complex of A[[H]]-modules, the complex !(P*)*atcn is
perfect as complex of A°P[[H]]-modules. By [Wit14, Prop. 4.8] we may check
this after tensoring with (A/Jac(A))°P[[G/V]] with V ¢ G a closed normal pro-¢-
subgroup which is open in H. Using Lemma we may therefore assume that
A and H are finite.

By Lemma S = Sarraq € AL[G]] is a left and right denominator set and
f maps Saqray) to the set Spep[g)) € A°P[[G]]. Moreover H(P*)*aucn is perfect as
complex of A°P[[H]]-modules if and only if its cohomology is Spor[[c3-torsion.

As P*® has Sj[g)-torsion cohomology and as

(A[[G]]5)° ®afrayer (P*) 20N = (A[[G]]s ®afray) P7) AU,
we conclude that {(P*)*atc1 is indeed perfect as complex of A°P[[H]]-modules. [

We may extend ® to the Waldhausen category SP(A[[H]],G) from Defini-
tion More generally, we can also explicitly describe the class [M]® for any
A[[G]]-module M that has a strictly perfect resolution as a A[[H]]-module.

Assume that P is a A[[G]]-module that is finitely generated and projective as
A[[H]]-module. We may let g € G act on ¢ € P*Al#] by setting

9¢:P > A[[H]],  prgd(g'p)g
We write "P*atm) for the resulting A°P[[G]]-module.

LEMMA 2.7.5. Let v € T' be a topological generator. Then for any bounded
above complex P* of A[[G]]-modules which are finitely generated and projective as
A[[H]]-modules, we have a commutative diagram

id—y'®y

AP[[G]] @ oy H(P®) At A°P[[G]] @ porppryy {(P*)*Mitrm

o\ % id-(® 714)* o\ *
HAL[GT] ®aggay P*)*Auen — HAILGT] ®argay P*) ey

of complezes of A[[G]]-modules.

PRrROOF. For any degree n and any f € (P™)*All#)] | we write

PG @aray P" =~ ALIGY,  Aepe Af(p).

We then set
API[GT] @pow(pay) ((P™)*a05] e f
HAL[GY] @z P™)*aten Af
It is then straightforward to check that the above diagram commutes. O

COROLLARY 2.7.6. Assume that P* is in SP(A[[H]],G) and let v be a topo-
logical generator of I'. Then there exists a canonical isomorphism

Oy (Pryraen = €, ((P) ) 1],
In particular, we have
[P*]® = ~[(P*)*aum]
in Ko(A°P[[G]],S).
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PrOOF. Consider the diagram of Lemma [2.7.5] The cone of the first row is
C’A,(u(P’)*A[[HN ), the cone of the second row is the A[[G]]-dual of the cocone of

o id=(®7 ) .

AllG1 @ P* ——— A[[Gl] ®arpmy P

in SP“" (A[[G]]), which is in turn the same as C,-1(P*)[-1]. Finally, recall from
Proposition that the class of C(P*) in Ko(A[[G]],S) is independent of the
choice of the topological generator . Hence,

[P*1® = [1C (P*) 6] = [1C, - (PP ] = (O ((P*) o] = ~[{(P*)*attsm],
O
The following lemma is a minor improvement on [NSWO0O, Prop. 5.4.17].

LEMMA 2.7.7. Let H' ¢ H be an open subgroup and assume M is a A[[H]]-
module which has a resolution by finitely generated, free A[[H']]-modules. Then
there exist an isomorphism

o: R Hom () (M, A[[H']]) = R Hom (g7 (M, A[[H]])
in the derived category of complezes of A[[H']]°P-modules.

PRrOOF. Choose a system gy, ..., gq of right coset representatives of H'\H. For
any finitely generated, free A[[ H]]-module P,

o Homp(pzr7) (P, A[[H']]) - Homaprsy (P A[[H]]),

d
a(e)(p) = ;Qifﬁ(g;lp) for p € P, ¢ e Homapr (P, A[[H']]),

is an isomorphism of A[[H']]°P-modules and does not depend on the choice of
g1s---,94- By Lemmal[2.7.8 below, M also has a resolution P* by finitely generated,
free A[[H]]-modules. Moreover, any finitely generated, free A[[ H]]-module is also
finitely generated and free as A[[H']]-module, so that we can use the same P* to
compute the total derived functor of Homargy (M, A[[H]]) in the categories of
complexes of A[[H]]-modules or of A[[H']]-modules. O

LEMMA 2.7.8. Let A be a subring of a ring B and assume that B has a resolution
by finitely generated, free A-modules as a left A-module. Then a B-module M has
a resolution by finitely generated, free B-modules if and only if it has a resolution
by finitely generated, free A-modules.

PROOF. If M has a resolution P°® by finitely generated, free B-modules, then
we may find a resolution of P~" by finitely generated, free A-modules for each n > 0.
We obtain a resolution of M by finitely generated, free A-modules by taking the
total complex of the resulting double complex.

To prove the converse, we proceed by induction. For any ring R and any
R-module N, recall that a finite free presentation of length p is an exact sequence

PHFplr, L PYS NSO
with finitely generated, free R-modules P*. Set Ar(N) := -1 if N is not finitely

generated and

Ar(N) = sup{p | there exists a finite free presentation of length p}

else. Clearly, for all B-modules N, if A4(N) > 0, then also Ag(N) > 0. Assume
that we know for some n > 0 that A4(N) > n implies Ag(N) > n for B-modules N.
Let N’ be a B-module with A4 (N') >n + 1. Then there exists an exact sequence

0-Q—-P->N -0
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of B-modules with P finitely generated and free. By [Bou89. §11.2, Ex. 6.(d)],
Aa(Q) >inf{Aa(P), a(N") -1} > n.
Hence, Ap(Q) > n by the induction assumption. By [Bou89| §I1.2, Ex. 6.(c)],
A(N') 2inf{A\g(P),A\g(Q) +1} 2n+1

In particular, we conclude that A4 (M) = oo implies Ag(M) = oo. O

The following Lemma is a variant of [SV06], Prop. 3.1].

LEMMA 2.7.9. Assume that M is a A[[G]]-module that has a resolution by
finitely generated, projective A[[H]]-modules. Then M also has a resolution by
finitely generated, projective A[[G]]-modules and there exists an isomorphism

5: RHOIHA[[H]] (M, A[[H]]) 5 RHOIHA[[G]] (M, A[[G]])[l]
in the derived category of complexes of A[[H]]°P-modules.

PROOF. By Lemmal[2.5.8) we may find a resolution K* of M by A[[G]]-modules
which are finitely generated and projective as A[[H]]-modules. Choose a topolog-
ical generator v € I'. We then obtain an exact sequence of complexes of A[[G]]-
modules

o id-(v'®7) . .
0= A[[G]] ®array K* ————— A[[G]] ®aqa K* > K* =0

from [Wit13b, Prop. 2.4]. The cone of id - (-+y"! ® 7) is a resolution of M by
finitely generated, projective A[[G]]-modules. One then uses Lemma [2.7.5 O

Assume that M is a A[[G]]-module that has a resolution by finitely generated,
projective A[[H']]-modules for some open subgroup H' of H and that

Extiy 777 (M, A[[H']]) = Ext}[[qy (M, A[[G]]) =0
for all n # 0. By Lemma and Lemma [2.7.9
Extii (M, A[[H"]]) = Ext}{{ay (M, A[[G]]) = 0

for all open subgroups H” of H and all n # 0. We may then extend the notation in-
troduced above as follows: Let uExt}x[[G]](M7 A[[G]]) denote the A[[G]]°P-module
Ext}\[[G]](M,A[[G]]) considered as A°P[[G]]-module.

DEFINITION 2.7.10. We write 'M*Atan for Hom 1) (M, A[[H']]) consid-
ered as A°P[[G]]-module via the isomorphism

a2 0 reaneEn i uEXt}x[[G]](M7A[[G:|:|)'

112

If H" is normal in G, g € G acts on ¢ € 'M*At="1 via

g M~ A[[H"]],  mw gp(g'm)g™.

In the case that H" is not normal in G, it is more difficult to give an explicit
description of the G-operation.

We conclude that if M has a resolution by a strictly perfect complex of A[[H]]-
modules, then

(2.7.1) [M]® - _[ﬁM*A[[H/]]]
in Ko(A[[G]],S) for every open subgroup H’ of H.
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2.8. Another Property of S-Torsion Complexes

In this section, we prove Proposition [2.8:1 which is an abstract generalisation of
[Wit13al Prop. 2.1]. We will apply this proposition later in Section

With the notation of the previous section, fix a topological generator v € I' and
set t =~ — 1. Assume for the moment that A is a finite Z,-algebra and that H is a
finite group. By Lemma [2.5.2] we have

— 1 -n
A[[G]]s = lim A[[G]]¢
n>0

as A[[G]]-modules.

Assume that /! =0 in A. Then

€n+i
=0
(+)

i nti - A €n+i o
AT =) —1 =t Z( )tf (k1)
o \kln

in A whenever ¢ + k. Hence,

n+i n+i n+i & gnti g n(pi_
O L C R DD 3 () [CLE A G Vit
k=1

+1

(1 5 RAGED) e
=07 =D 2 )1 >
k=1 v=0

and therefore,
AI[GT]s = lim AT[GT) (7" ~ 1),
n>0
Since H was assumed to be finite, the same is true for the automorphism group
of H. We conclude that v*" is a central element of G and T*" c G a central subgroup
for all n > ng and ng large enough. Set

The homomorphism
AIGTG! =D = ALGT L, AG =17 = A+ ALIGT( - 1)

induces an isomorphism A[[G]](7*" -=1)"'/A[[G]] 2 A[[G/T*"]] such that the dia-
gram

[""’1

ALGIG - D)7YAIGT ——= ALIGIIO - 1)7HAIGT]

| |-

n Ny, n+1
Al[G/T ] A[[G/T ]
commutes. Hence, we obtain an isomorphism of (left and right) A[[G]]-modules

A[[G]s/AL[G]] = Lim A[[G/T* ],

n

We note that this isomorphism may depend on the choice of the topological gener-
ator .

For any strictly perfect complex P* of A[[G]]-modules, we thus obtain an exact
sequence

0 P* = A[[G]]s ®qey P* — lim A[[G/T ] @41y P* — 0.

n
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If P* is also perfect as a complex of A[[H]]-modules such that the cohomology of
P* is S-torsion by Lemma then we conclude that there exists an isomorphism

P*[1] 2 lim A[[G/T*" )] @afray P

in the derived category of complexes of A[[G]]-modules. In particular, the right-
hand complex is perfect as complex of A[[G]]-modules and of A[[H ]]-modules.
This signifies that its cohomology modules
S(1: o o\ o 1: s o o\ . s+l .
H*(lim A[[G/T" ]] ®a(ey) P*) = im H*(A[[G/T" ]] ®qey P*) = H™(P?)
are finite as abelian groups.
We now drop the assumption that A and H are finite. Let I c J be two open

ideals of A and U c V be the intersections of two open normal subgroups of G with
H. Then the diagram

0 —— A/I[[G/U]] —— A/I[[G[U]]s — Lim A/I[[G/UT*" ]] —0
0 —— A/J[[G/V]] —= A[J[[G/V]]s — lim A/J[[G/VT*]] —0

n

commutes and the downward pointing arrows are surjections. Tensoring with P*®
and passing to the inverse limit we obtain the exact sequence
° . . : . o .
0 P* > limA/I[[G/U]]s ®a[(cy P° = imlim A/I[[G/UT" ]] ®4q16y) P* — 0.
LU LU n
If P* is also perfect as a complex of A[[H]]-modules, then complex in the middle
is acyclic and we obtain again an isomorphism
° T . o °
P[] = %@A/I[[G/Ur 1I®aren P

in the derived category of complexes of A[[G]]-modules and hence, isomorphisms
of A[[G]]-modules

s+1 o\ o 1: . s o .
H™(P*) = l%lh_ﬂgH (AT[G/UTT J] @aren P*)-
Here, we use that the modules in the projective system on the righthand side are
finite and thus ligl—acyclic.

Finally, assume that (Q%) ey, oy 18 @ complex in PDG""# (A[[G]]). Then
we can find a strictly perfect complex of A[[G]]-modules P* and a weak equivalence

f(A[IGTN] T BA[[G]] P.)JejA[[G]] - (Q.J)JE:TA[[G]]

in PDG""# (A) [Wit08| Cor. 5.2.6]. Moreover, this complex P* will also be
perfect as a complex of A[[H]]-modules. For I € 35, U the intersection of an open

normal subgroup of G with H and a positive integer n such that " is central in
G/U we set

Jrum =ker A[[G]] -~ AJI[[G/UT*"]],
such that the J;y, form a final subsystem in J,[;g);- We conclude:

PROPOSITION 2.8.1. For (QY) jer,ay PDG "4 (A[[G]]) there exists an
isomorphism

Rlim Q5[1]=Rlmlm @3, ,
JeTaqren reon
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in the derived category of A[[G]]-modules and isomorphisms of A[[G]]-modules

. 1 INETINRT
lim  H™(QY) 2 limlim H*(Q7, ,, )-
JGjA[[G]] LU n

REMARK 2.8.2. For any (Q%)ses,qe) in PDG™(A[[G]]) we obtain in the
same way a distinguished triangle

Rlim Qj - R@(A/I[[G/U]]S ® X /1116/01] RELHQ}I,U,") - Rlimlim Q3,

JeTAran I,U n LU n

in the derived category of complexes of A[[G]]-modules.

2.9. Non-Commutative Algebraic L-Functions
Let G = H xT as before. Recall the split exact sequence

0 - K, (A[[G]]) ~ K1 (A[[G]]s) > Ko(A[[G]],5) - 0.

[Wit13bl Cor. 3.4], which is central for the formulation of the non-commutative
main conjecture: The map K;i(A[[G]]) - Ki(A[[G]]s) is the obvious one; the
boundary map

d: K1 (A[[G]]s) = Ko(A[[G]], 5)

on the class [f] of an endomorphism f which is a weak equivalence in the Wald-
hausen category wgPDG ™ (A[[G]]) is given by

d[f] = =[Cone(f)°]

where Cone(f)® denotes the cone of f [Wit14, Thm. A.5]. (Note that other authors
use —d instead.) For a fixed choice of a topological generator v € I, a splitting s
of d is given by

. T®Y—T®Y-zv &Yy

(2.9.1) sy ([P°]) = [A[[GlI®A[r)) P A[[Gl®ayun PT™
for any P* in PDG*"""# (A[[G]]), where the precise definition of A[[G]]®[z71P*
as an object of the Waldhausen category wyPDG ™ (A[[G]]) is

Al[GN@ammP" = ( lm  A[[G])/T ®arruy) P7)1eanon
JéjA[[G]]

[Wit13bl Def. 2.12]. A short inspection of the definition shows that s, only depends
on the image of v in G/H. Following [Bur09], we may call s,(-A) the non-
commutative algebraic L-function of A € Ko(A[[G]],S).

PROPOSITION 2.9.1. Consider an element A € Ko(A[[G]],S5).
(1) Let A’ be another adic Ze-algebra. For any complex P* of A'-A[[G]]-
bimodules which is strictly perfect as complex of A'-modules we have
Vprranee (54(4)) = 55 (Y priayyee (4))

in Ky (A'[[G]]s).

(2) Let G'= H' xT" such that H' has an open, topologically finitely generated
pro-£-subgroup and T’ = Zy. Assume that a: G - G’ is a continuous ho-
momorphism such that a(G) ¢ H'. Set r:=[G': «(G)H']. Let v €T’ be
a topological generator such that a(y) = (v')" in G'/H'. Then

Vaian)(8+(A4)) = 55 (¥aren (4))
in K1 (A[[G']]s)-
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(3) Assume that G’ is an open subgroup of G and set H = HnG', r =
[G : G'H]. Consider A[[G]] as a A[[G']]-A[[G]]-bimodule. Then ~"
generates G'[H' ¢ G/H and

Vare11(s+(A4)) = sy (Yaran(A))
in K1 (A[[G]]s).

PrOOF. For (1), we first note that by applying the Waldhausen additivity
theorem [Wal85| Prop. 1.3.2] to the short exact sequences resulting from stupid
truncation, we have ‘

Ve = 2 (1) Upias
i€Z
as homomorphisms between the K-groups. Hence we may assume that P = P® is
concentrated in degree 0. We now apply [Wit13bl Prop 2.14.1] to the A'[[G]]-
A[[G]]-bimodule M = P[[G]]° and its A’[[H]]-A[[H]]-sub-bimodule
N =AN[[H]]® P
(with the diagonal right action of H) and t1 =ta=vy—-1, 11 =72 :=1.

For (2), we first assume that « induces an isomorphism G/H = G/H' and that
~v" = a(y). We then apply [Wit13b, Prop 2.14.1] to M = A[[G']], N = A[[H']],
and ty =7 -1, ta=a(y) -1, m1 =7, 72= a(y).

Next, we assume that G ¢ G', H = H', and v = (7')". This case is not covered
by [Witl13bl Prop 2.14] and therefore, we will give more details. Consider the
isomorphism of A[[G']]-A[[G]]-bimodules

w A[[G @A ALLG]]" = A[[G' @Ay ALLG ],
>\0 r—1
) (/\5 ) > ZO n(y)7'®(Y) (Ni).

Then the map u®\ = u®X — 1(7')"1®7'X on the righthand side corresponds to left
multiplication with the matrix

id 0 - 0 —(Hely)
—id id . 0
A=lo0 -~ - 0 :
Do id 0
0 - 0 -id id

on the left-hand side. Let P* be a complex in PDG""# (A[[G]]). Then &
induces an isomorphism
kU are) (ALLGTI®A[a) (P*)") = A[[G ][] W arrer) (P°)
in wg PDG " (A[[G']]) while A C W[y (A[[G]®army (P*)7) is a weak equiv-
alence. Hence,
[A]™ = 55 ([Paren (P)])
in K1 (A[[G']]s). Moreover,

id 0 - 0 id 0~ 0 —(vH8(y)
id id : 0 id (v He(r)
: id 0 : woid o =(yhHe(y)
id - o id id 0 « - 0 id-(yH&(y)

The relations (R1)-(R7) in the definition of Ds(W) imply that the class of a trian-
gular matrix is the product of the classes of its diagonal entries in K (A[[G']]s).
Hence, [A]™" = W1 (sy[P*]), as desired.
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In the general case, we note that the image of « is contained in the subgroup
G" of G’ topologically generated by (7)" and H' and recall that s, only depends
on the image of v in G/H. We are then reduced to the two cases already treated
above.

For (3), we first treat the case r = 1, i.e. G’ - G/H is a surjection. Hence,
we may assume v € G'. We then apply [Witl3b, Prop 2.14.1] to M = A[[G]],
N :=A[[H]], and t; =t =7y -1, 1 =72 =y as above. If > 1 we can thus reduce
to the case that G’ is topologically generated by H and 4" and apply [Wit13bl
Prop 2.14.2].

In [Wit13b], we use a slightly different Waldhausen category for the construc-
tion of the K-theory of A[[G]], but the proof of [Wit13bl Prop 2.14] goes through
without changes. O

EXAMPLE 2.9.2.
(1) Assume that M is a A[[G]]-module which is finitely generated and pro-
jective as a A[[ H]]-module. Then the complex

id-(v"ey)
—_—

Cy(M): A[[G]] ®arayy M A[[G]] ®afayy M

degree —1 degree 0

is an object of PDG™*# (A[[G]]) whose cohomology is M in degree 0
and zero otherwise. Moreover,

sy ([M]) = 5,([C,(M)]) = [id = (77" ® 7)) O A[[G]] ®@aqam M]™
in K1 (A[[G]]s)- If A[[G]] is commutative, then the image of the element
s,([M])~" under

det: Ky (A[[G]]s) » A[[G]]s
is precisely the reverse characteristic polynomial
detarap (id = (1 @) C A[[H]][t] @array M)

evaluated at t =y~ € I'. In fact, one may extend this to non-commutative
A[[H]] and G = H xT" as well, using the results of the appendix.
(2) 1t M = A[[G]}/A[[G]]f with

n-1
f=t"+ > Nt e A[[G]]

i=0
a polynomial of degree n in t =y -1 with A; € Jac(A[[H]]), then M is
finitely generated and free as A[[H]]-module. A A[[H]]-basis is given by
the residue classes of 1,t,...,t"! € A[[G]]. If we use this basis to identify
A[[G]] ®array M with A[[G]]", then the A[[G]]-linear endomorphism
id - (-y~! ® v-) is given by right multiplication with the matrix

vy o0 0
0 vt :
A= : 0
0 0 vt 7t
Y AL v A TN+ M)
By right multiplication with
1 0 0
t 1 - :
E=| t? R :
0
1 2t 1
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one can transform A into

0 -yt 0 0
A, = : . 0
0 0 0 _,y—l
YU T e SN e T R+ Apsat + Asa) v+ Annr)
By left multiplication with
0 0 - 01
o1 - + 0
P=: -~ =~ 0 :
o - 0 10
10 0 0

one can exchange the first and last row of A’ to obtain a triangular matrix.
In Ky (A[[G]]), we have

[-ECA[[G]]"]=1,
[-P CA[[GI]"]=[-1 CA[[GII]"".
We conclude

sy ([M])™" =[-A C A[[G]]" ]

[-A" G A[[G]]"]

[-P CAG" T -(—+"") CALGH " [~ C Al[G]]]

[~ CA[GI ]

The section s,:Ko(A[[G]],S) = Ki(A[[G]]s) also commutes with the ho-

momorphisms @: Ko (A[[G]]) - Ko(AP[[G]]), @:Ki(A[[G]]s) - Ko(AP[[G]]s)
from Definition [2.7.1]in the following sense.

PROPOSITION 2.9.3. For any element A € Ko(A[[G]],5),
54-1(A)® =5, (A®)

in Ky (A°P[[G]]s)-

PRrOOF. Since Ko(SP(A[[H]],G)) surjects onto Ko(A[[G]],S) by Proposi-
tion it suffices to prove the formula for C,(M) with M a A[[G]]-module
that is finitely generated and projective over A[[H]]. The equality is then a direct
consequence of the diagram in Lemma [2.7.5 O

REMARK 2.9.4. Note that

sy([Cy(M)]) = 5,1 ([CL (M) [-(7 ® 1) C Al[G]] @aray M]
for any topological generator v of I' and any A[[G]]-module M that is finitely
generated and projective over A[[H]].

2.10. Regular Coefficient Rings

Assume that R is a commutative, local, and regular adic Z-algebra. By the Cohen
structure theorem [Bou89, Ch. VIII, §5, Thm. 2], we have

R= Ro[[Xl, Ce ,Xn]]

where Ry is either a finite field of characteristic ¢ or the valuation ring of a finite
field extension of Q and Xi,...,X,, are indeterminates. In particular, we may
identify R with the profinite group algebra of Zj with coeflicients in Ry.

If G=H =T is an f-adic Lie group without elements of order ¢, then the rings
R[[G]] and R[[H]] are both noetherian and of finite global dimension [Bru66
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Thm. 4.1]. Let Ny (R[[G]]) denote the abelian category of finitely generated
R[[G]]-modules which are also finitely generated as R[[H ]]-modules. Note that

Ko(SP*(R[[G]])) = Ko(Nu (R[[G]])),

[P*]e S (1) [E(P7)]

is an isomorphism. The inverse is given by the construction in Remark The
same argument also shows that
Ko(SP(R[[H]],G)) = Ko(Nu (R[[G]])),

providing some evidence to the conjectured isomorphism in Remark

If the quotient field of R is of characteristic 0, one may also consider the abelian
category My (R[[G]]) of finitely generated R[[G]]-modules whose ¢-torsionfree
part is finitely generated as R[[H]]-module and the left denominator set

§* = J S ¢ R[[G]].

(2.10.1)

Still assuming that G has no element of order ¢ it is known that the natural maps
Ki(R[[G]]s) =~ Ki(R[[G]]s+),  Ko(Nu(R[[G]])) - Ko(Mu (R[[G]]))

are split injective [BV11] Prop. 3.4] and fit into a commutative diagram

0 — Ki(R[[G]]) — K1 (R[[G]]s) —L= Ko(Ng (R[[G]])) —=0

S |
0 — K1 (R[[G]]) — K1 (R[[G]]s+) —2= Ko(My(R[[G]])) — 0

In particular, an identity of the type f = dg in Ko(Ng(R[[G]])) will imply a cor-
responding identity in Ko(Mg (R[[G]])). It is Mg (R[[G]]) which plays a central
role in the original formulation of the non-commutative Iwasawa Main Conjecture
ICFK*05]. However, we will not make use of My (R[[G]]) in the following.

Assume that T is a R[[G]]-module that is finitely generated as R-module.
Quite often, the class [T] is zero in Ko(R[[G]],S) if H is infinite. However, this is
not always the case. Since the forgetful functor from Ny (R[[G]]) to the category
of finitely generated R[[H]]-modules induces a homomorphism Ko(R[[G]],S) —
Ko(R[[H]]), a necessary condition is that [T'] is zero in Ko(R[[H]]). For this
condition, we can formulate the following useful criterion, which is essentially due
to Serre (see also [AWOS| §1.3]). In particular, we see that this condition is not
satisfied by the group H = Z? x pg—1 with the group of £—1-th roots of units acting
by multiplication on Zg if £>2.

Recall that an ¢-adic Lie group H is called wvirtually solvable if its Lie algebra
L(H) is solvable.

LEMMA 2.10.1. Let H be a compact £-adic Lie group without any element of
order £ and R a commutative, local, regular adic Z¢-algebra. The class [T] of every
R[[H]]-module T which is finitely generated as R-module is zero in Ko(R[[H]])
precisely if the centraliser of every element of finite order in H has infinitely many
elements. This condition is satisfied if H is a pro-€-group or if H is not virtually
solvable.

PROOF. By the Cohen structure theorem [Bou89, Ch. VIII, §5, Thm. 2], we
have
Rz Ro[[X1,..., X0]]
where Ry is either a finite field of characteristic ¢ or the valuation ring of a finite
field extension of Q, and X, ..., X, are indeterminates. We do induction on n.
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Assume that n = 0 and that Ry is a finite field. By [Ser98, Cor. to Thm. C] the
Euler characteristic of every Rg[[H]]-module T" which is of finite dimension over
Ry is trivial precisely if the centraliser of every element of H has infinitely many
elements. For any element of infinite order this is clearly an empty condition. Now
the proof of [AWO06l, Thm. 8.2, (a) = (b)] shows that the vanishing of the Euler
characteristics is equivalent with the vanishing of the classes [T'].

If H is a pro-¢-group without any element of order ¢, then there are no elements
of finite order at all. If H is not virtually solvable, then its Lie algebra L(H) is not
solvable. Since any element h € H of finite order has order prime to ¢, the image
of h in the automorphism group of L(H) must be semi-simple. By an old result of
Borel and Mostow [BM55, Thm. 4.5] (the author thanks S. Wadsley for pointing
out this reference to him), h fixes a non-trivial subspace of L(H), which implies
that the centraliser of h in H must be infinite.

Now assume that Ry is the valuation ring of a finite field extension of Q.
Let m € Ry be a uniformiser and k the residue field of Ry. By Quillen’s dévissage
theorem [Qui73, Thm. 4], we may identify Ko(k[[H]]) with the K-group of the
abelian category of finitely generated Ro[[H ]]-modules that are annihilated by a
power of 7. Under this identification, classes of those Ry[[H ]]-modules which are
additionally finitely generated over Ry are mapped to the subgroup of Ko(k[[H]])
generated by the classes of those k[[H]]-modules that are finitely generated over
k. By Quillen’s localisation theorem [Qui73| Thm. 5] we thus obtain an exact
sequence

Ko(k[[H]]) = Ko(Ro[[H]]) > Ko(Ro[[H]][%D -0,
noting that all rings in this sequence are of finite global dimension. For any
Ro[[H]]-module T which is finitely generated over Ry, there exists an exact se-
quence of Ry[[H]]-modules, finitely generated over Ry,

0T >T—>T" -0

where T" is annihilated by a power of = and 7 is a non-zero divisor on T".

Assume that the centraliser of every element of finite order in H has infinitely
many elements. We already know that [T'] = 0. Hence, we may assume that 7 is a
non-zero divisor on 7T'. In particular,

E[[H]] ®poay T =k ®r, T

agrees with the derived tensor product with k[[H]] over Ro[[H]] and is finitely
generated over k. Hence, [k ®g, T] =0 in Ko(k[[H]]). Since 7 is in the Jacobson
radical of Ro[[H]], the derived tensor product with k[[H]] induces an isomorphism

Ko(Ro[[H]]) = Ko(k[[H]])-

Hence [T] =0 in Ko(Ro[[H]]).

Conversely, if H does not satisfy the above property, we may find a k[[H]]-
module T which is finitely generated over k and which has non-trivial class [T'] in
Ko(E[[H]]). The image of H in the automorphism group of T is a finite group A.
By [Ser77, Thm. 33], [T'] has a preimage in Ko(Ro[[H]]) consisting of a linear
combination of classes of finitely generated Ro[A]-modules which are free as Ry-
modules. Hence, there exist Ro[[H ]]-modules which are finitely generated and free
over Ry and have non-trivial class in Ko(Ro[[H]]).

The same argumentation still works for Ry replaced by R, k replaced by R’ =
Ro[[X1,...,Xn-1]] and 7 replaced by X,,. The lifting argument in the last step
becomes a bit easier. If T is a R'[[H]]-module which is finitely generated and free
over R', then T" = R@p/ T is a R[[H]]-module which is finitely generated and free
over R and satisfies R' ® g 7" 2 T. This completes the induction step. (I
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However, the vanishing in Ko(R[[H]]) is not sufficient. Here is an example.
Assume that G =< 7,7 >= Zy x Z; with v~ '7y = 71*¢, Set H =< 7 > and consider
the constant Zy[[G]]-module Z,. Clearly, [Z¢] = 0 in Ko(Z¢[[H]]) according to
Lemma [2.10.1} However, [Z] # 0 in Ko(Z[[G]],S). Indeed, the complex

L

e L SR

Z[[G]] [[G]]

is a projective resolution of Z,. Hence, the image of [Z;] in

Ko(Ze[[T']],5) = Ze[[T]]5/Z[[T]]"

under the natural projection map is given by the class of

Z[[G]]

1-(l+1)y N
L iy,
-
which is not in Z[[T']]*.
A sufficient criterion for the vanishing of the class [T'] in Ko(R[[G]], S) is given
in [FKO6, Prop. 4.3.17]. Here is another one, inspired by [Zab10], Prop. 4.2].

PropPOSITION 2.10.2. Let G = H xT' be an (-adic Lie group without elements
of order £. Assume that there exists a closed normal subgroup N c G such that

(1) G/N has no elements of order £ and the centraliser of every element in
G/N of finite order has infinitely many elements,
(2) the image of H in G/N is open.
Let further R be a commutative, local, reqular adic Z¢-algebra. Then the class of ev-
ery R[[G]]-module which is finitely generated as R-module is zero in Ko(R[[G]], ).

PROOF. By assumption (1) and Lemma [2.10.1] the constant R[[G/N]]-module
R has trivial class in Ko(R[[G/N]]). Set G' = G/N x G/H. Every R[[G/N]]-
module may be considered as R[[G']]-module by letting G/H act trivially. Thus,
we see that [R] = 0 in Ko(Ng/n(R[[G']])), as well. By assumption (2) every
finitely generated R[[G']]-module which is finitely generated as R[[G/N]]-module
may be considered via

G-G', g~ (9N, gH)

as a finitely generated R[[G]]-module which is also finitely generated as R[[H]]-
module. This induces an exact functor Ng/n(R[[G']]) = Nz (R[[G]]) and hence,
a homomorphism between the corresponding K-groups. We conclude that [R] = 0
also in Ko(Ng(R[[G]]))-

If T is a R[[G]]-module which is finitely generated and free as R-module and
M is any module in Ny (R[[G]]), we let Tor:(T, M) denote the i-th left derived
functor of the tensor product T'®r M with the diagonal action of G. Since R is
noetherian, any finitely generated, projective R[[H ]]-module is flat as R-module
and the same is true for R[[G]]. In particular, it does not matter if we com-
pute Tor(T, M) in the category of finitely generated R[[G]]-modules or R[[H]]-
modules or R-modules. Hence, Tor!'(T, M) is again in Ny (R[[G]]) and it is
finitely generated over R if M is a finitely generated R-module. We thus obtain an
endomorphism

Ko(Ng(RI[G]]) = Ko(Nu(R[[GT)),  [M]e 2(—1)i[Torf<T,M>],

which maps [R] to [T']. In particular, [T] = 0. O

COROLLARY 2.10.3. Let G=H =T be an l-adic Lie group. Assume that

(1) H is not virtually solvable and has no elements of order £,
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(2) the Lie algebra L(G) of G decomposes as
L(G)=L(H) oV
with L(H) the Lie algebra of H and some ideal V of L(G),
(3) £-1>2dimg, L(H).
Let further R be a commutative, local, reqular adic Z¢-algebra. Then the class of ev-
ery R[[G]]-module which is finitely generated as R-module is zero in Ko(R[[G]],5).

PROOF. By assumption (2) there exist a characteristic open subgroup H' ¢ H
and a closed subgroup I'" = Z, of the centraliser Zg(H') of H' in G such that
H' nT" =1 and H'T' is open in G. We may also assume that H' is a uniformly
powerful pro-£-group in the sense of [DASMS99| Def. 4.1]. Set d = dimg, L(H).
By [DASMS99], Cor. 4.18] the automorphism group of H' is isomorphic to a closed
subgroup of Gl;(Z,), which does not have elements of order ¢ by assumption (3).
In particular, this is also true for G/Zg(H'), as this group acts faithfully on H’
by conjugation. Since IV ¢ Zg(H'), the image of H' must be open in G/Zg(H').
This image is just the quotient of H' by its centre Z(H'). Since H' is not virtually
solvable, the same must be true for H'/Z(H") and therefore, also for G/Zg(H').
We may thus apply Proposition with N = Zg(H'). O

REMARK 2.10.4. In fact, one can replace condition (1) in Proposition
by

(1) [R]=0in Go(R[[G/N]]).
where Go(R[[G/N]]) is the Grothendieck group of all finitely generated R[[G/N]]-
modules, dropping the assumption that G/N has no elements of order £. Presum-
ably, (1) is satisfied for all G/N which are not virtually solvable. If this is true,
then one can drop assumption (3) in Corollary






CHAPTER 3

Perfect Complexes of Adic Sheaves

We will use étale cohomology instead of Galois cohomology to formulate the main
conjecture. The main advantage is that we have a little bit more flexibility in choos-
ing our coefficient systems. Instead of being restricted to locally constant sheaves
corresponding to Galois modules, we can work with constructible sheaves. An al-
ternative would be the use of cohomology for Galois modules with local conditions,
in the style of [Nek06].

As Waldhausen models for the derived categories of complexes of constructible
sheaves, we will use the Waldhausen categories of complexes of A-adic sheaves
introduced in [Wit08|, § 5.4-5.5] for separated schemes of finite type over a finite
field. We will need them in the case of subschemes U of a smooth and proper
curve X with function field F. The same constructions still work with some minor
changes if we consider subschemes U of the spectrum X of the ring of integers of
a number field F. We will give the definition in Section Moreover, we will
define derived direct images, exceptional direct images, inverse images, exceptional
inverse images as well as derived tensor products as Waldhausen exact functors.
In Section we consider local and global duality theorems for smooth A-adic
sheaves.

We then recall in Section [3.3| the notion of an admissible extension Fo[F of a
global field F'. By definition, Fo, contains the cyclotomic Z,-extension Fey. of F,
such that the Galois group G of Fo/F may be written as the semi-direct product of
the Galois group H of Foo/Feye and a subgroup I' @ Z,. If U is an open subscheme
of X such that Fi/F is unramified over U, then we may associate to each perfect
complex of A-adic sheaves F* on U a compactly induced complex of A[[G]]-adic
sheaves fif*F°* on U.

Section [3:4] contains the proof of a key assertion of the main conjecture. We
prove that the total complex of cohomology with proper support of fif*#* is not
only perfect as complex of A[[G]]-modules, but also as complex of A[[ H]]-modules.
If A[[H]] is noetherian, this signifies that the cohomology groups with proper
support are S-torsion if S denotes Venjakob’s canonical Ore set. In the number
field case, we have to restrict to totally real fields and assume the vanishing of
Iwasawa’s p-invariant. We also consider a local variant of this S-torsion property.

This local variant permits us to introduce the notion of non-commutative
Euler factors by producing canonical characteristic elements for the complexes
RI(z,i* Rk.F*(1)) for the embedding k:U — W and a closed point i:x — W
of W. Comparing Euler factors with the non-commutative algebraic L-functions
of these complexes, we obtain certain elements in K; (A[[G]]), which we call lo-
cal modification factors. In the same way, we also introduce the notion of dual
non-commutative Euler factors by producing canonical characteristic elements for
the complexes RT'(x,i'ki#*) and the corresponding dual local modification fac-
tors. The investigation of the Euler factors and local modification factors is carried
out in Section and Section [3.6] first in general, then in the special case of the
cyclotomic extension.

41
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3.1. Adic Sheaves

Let F be a global field with ring of integers Op. We also fix a separable closure
F of F. If F is a number field, we set X := SpecOp. If F is a function field of
characteristic p, we let X = Xz denote the smooth and proper curve associated to
F. Further, we write F and F for the algebraic closure of the prime field F,in F
and F, respectively. For any open or closed subscheme U of X, we then write

U=U XSpecF SpecF

for the base change to the algebraic closure. In particular, U is connected if U is
an open dense subscheme of X.

Assume that U is an open or closed subscheme of X. Recall that for a finite
ring R, a complex F° of étale sheaves of left R-modules on U is called strictly
perfect if it is strictly bounded and each F"™ is constructible and flat. It is perfect
if it is quasi-isomorphic to a strictly perfect complex. We call it DG-flat if for each
geometric point of U, the complex of stalks is DG-flat.

Fix a prime £. Let A be an adic Z-algebra.

DEFINITION 3.1.1. The category PDG™ (U, A) of perfect complexes of adic
sheaves on U is the following Waldhausen category. The objects of PDG™ (U, A)
are inverse systems (7;")re, such that:

(1) for each I € Jx, 77 is DG-flat perfect complex of étale sheaves of A/I-
modules on U,
(2) for each I c J €Ty, the transition morphism

YrJ: .{F[. - TJ.
of the system induces an isomorphism
ANJ @y 7= F).
Weak equivalences and cofibrations are defined as in Definition

DEFINITION 3.1.2. Any system ¥ = (%7)7e5, in PDG®™ (U, A) consisting of
flat, constructible sheaves #; of A/I-modules on U, regarded as complexes concen-
trated in degree 0, will be called a A-adic sheaf on U. If in addition, the #; are
locally constant, we call F a smooth A-adic sheaf. We write S(U, A) and S*™ (U, A)
for the full Waldhausen categories of PDG™ (U, A) consisting of A-adic sheaves
and smooth A-adic sheaves, respectively.

Note that if U is a closed subscheme of X, then every A-adic sheaf on U is
automatically smooth.

DEFINITION 3.1.3. Assume that ¢ # 2 and that F' is a number field. If U
is an open dense subscheme of X = Spec Op, we will call a complex (¥ )re3, in
PDG (U, A) to be smooth at oo if for each I € J,, the stalk of 7 in Spec F is
quasi-isomorphic to a strictly perfect complex of A/I-modules with trivial action
of any complex conjugation o € Galp. The full subcategory of PDG®“™ (U, A) of
complexes smooth at oo will be denoted by

P]DC_}COnt,oc(U7 A)
Since we assume £ # 2, it is immediate that if in an exact sequence
O—)f]—"—>g'—>,‘7-['—>0

in PDG®™(U, A), the complexes F°* and #* are smooth at oo, then so is G*. It
then follows from [Wit08, Prop. 3.1.1] that PDG®“""* (U, A) is a Waldhausen
subcategory of PDG™ (U, A).
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We will write Ay for the smooth A-adic sheaf on U given by the system of
constant sheaves (A/I)re, on U. Further, if £ is invertible on U, we will write pign
for the sheaf of ¢"-th roots of unity on U, and

(F )13, (1) = (tm pen ®2, 7)1,
for the Tate twist of a complex in PDG“" (U, A).

We will consider Godement resolutions of the complexes in PDG®™ (U, A).
To be explicit, we will fix for each place z of F' an embedding F c F, into a
fixed separable closure of the local field F,, in xz. In particular, we also obtain an
embedding of the residue field k(x) of z into the separably closed residue field k()
of F, for each closed point x of U. We write & for the corresponding geometric

point 4:Speck(x) - U over x and let U® denote the set of closed points of U.
For each étale sheaf # on U we set
(GuF)' =[] asa* - J] au0* F

uelU0 ueU0

n+1

and turn (Gy #)* into a complex by taking as differentials
8”3(GU ’,T)n N (GU ’,T)n-#l
the alternating sums of the maps induced by the natural transformation
F - [] t.a*F.
ueUo
The Godement resolution of a complex of étale sheaves is given by the total complex
of the corresponding double complex as in [Wit08)| Def. 4.2.1]. The Godement reso-
lution of a complex (7;)se3, in PDG® ™ (U, A) is given by applying the Godement
resolution to each of the complexes 7, individually.
If :U - V is an open immersion, we set

(I ) 1ean = (31 F7 ) 1ean
Rj*(f]’)[gjj\ = (j* GU :}—I.)IEGA'

for any (#;)1e3, € PDG™ (U, A). While the extension by zero ji always gives us
a Waldhausen exact functor

71:PDG™ (U, A) - PDG ™ (V, A),
the total direct image
Rj.:PDG*(U,A) - PDG ™ (V,A)

is only a well-defined Waldhausen exact functor if ¢ is invertible on V - U. If ¢ is
not invertible on V' — U, then R j.(F)res, is still a system of DG-flat complexes
compatible in the sense of Definition (2)7 but for I € J5 the cohomology of
the complex of stalks of the complexes R j. ¥, in the geometric points of V - U is
in general not finite, such that R j.#; fails to be a perfect complex. In any case,
we may consider R j, as a Waldhausen exact functor from PDG®™ (U, A) to the
Waldhausen category of complexes over the abelian category of inverse systems of
étale sheaves of A-modules, indexed by Jx.

The inverse image f* of a morphism of schemes f and the direct image f,
of a finite morphism of schemes are also defined as Waldhausen exact functors by
degreewise application. No Godement resolution is needed, since these functors are
exact on all étale sheaves.

Assume one of the following conditions:

(C1) F is a number field, without real places if £ = 2,
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(C2) F is a function field of characteristic different from ¢,
(C3) F is a function field of characteristic £ and U = X,
(C4) U is a finite subscheme of X,

Then we may define the total derived section functor
RI(U,.):PDG“"(U,A) - PDG“™(A)

by the formula

RF(U7 (—‘}}.)IGSA) = (F(Uv Gu fl.))lejA'
This agrees with the usual construction if we consider (7] )res, as an object of
the ‘derived’ category of adic sheaves, e.g. as defined in [KWO01] for A = Zy. In
addition, however, we see that RT'(U,-) is a Waldhausen exact functor and hence,
induces homomorphisms

RIT(U,"):K,,(PDG“™(U,A)) - K, (A)

for all n [Wit08l Prop. 4.6.6, Def. 5.4.13]. Here, we use the finiteness and the
vanishing in large degrees of the étale cohomology groups H* (U, G) for constructible
sheaves G of abelian groups in order to assure that RT'(U, (%7 )13, ) is indeed an
object of PDG®"™(A). In particular, for each I € J5, RT(U, %) is a perfect
complex of A/I-modules. Note that we do not need to assume that ¢ is invertible
on U if F is a number field (see the remark after [Mil06, Thm. I11.3.1]). However,
if the characteristic of F' is equal to ¢, the complexes RT'(U, ) are no longer
perfect if U # X is an open dense subscheme. If F' is a number field with real places
and we had allowed ¢ = 2, then the complexes RI'(U, ;") would not need to be
cohomologically bounded.

Assume that F' has no real places in the case that £ = 2. Let j:U - X be an
open immersion into X. We set as a shorthand

RFC(U, (f[.)lej,\) = R(Xaj!(ffl.)lejlx)'

If £ # 2 or F has no real places, this agrees with the definition of cohomology with
proper support in [Mil06, §I1.2]. If F' is a totally real number field, ¢ # 2, and
(77 (1)) 1e3, is smooth at oo, then it also agrees with the definition in [FKO06,
§1.6.3], but in general, the three definitions differ by contributions coming from the
archimedean places.

If F' is a function field, we define in the same way Waldhausen exact functors

RI(U,-),RT.(U,-):PDG“™(U,A) - PDG " (A),
replacing U by U in the construction.

REMARK 3.1.4. Assume that j:V - X and k":W — X are two open dense
subschemes of X such that X = VU W. Set U =V nW and let j:U - V and
k:U — W denote the corresponding open immersions. If the characteristic of F' is
equal to £, we assume that V = X. If F' is a number field and ¢ = 2, we assume that
F has no real places. For any étale sheaf G on U, the canonical morphism

kikiGu G237.51Gu G- j. Gy iiG

is seen to be a quasi-isomorphism by checking on the stalks. Hence, for any #° in
PDG™ (U, A), there is a weak equivalence

RT(W,RE.F*) = RT(V,j1°).

We recall that the righthand complex is in PDG"(A). Therefore, the same is true
for the left-hand complex without any condition on U and W, even if Rk, fif*F*
fails to be a perfect complex if F' is a number field and £ is not invertible of W - U.
In particular, we may use the two complexes interchangeably in our results.
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Assume again that U c¢ X is an open or closed subscheme. If A’ is another
adic Zg-algebra and M*® a complex of A’-A-bimodules which is strictly perfect as
complex of A’-modules, we may extend ¥y to a Waldhausen exact functor

Ut PDG™ (U, A) - PDG™ (U, A),

(25) g3, = (Lim A'/T @y M* @5 25°)1ea,,

JeTp
such that
Upre RT(U, 2°) = RT(U, U ppe (2°))
is a weak equivalence in PDG®™(A’) [Wit08] Prop. 5.5.7] if one of the conditions
(C1)—(C4) is given. In the function field case, we may replace U by U.
For any closed point z of X and any complex #* in PDG™ (z, A), we set

RI(%,F°*) =T (Speck(x),z* G, F°)
and let §, € Gal(k(xz)/k(x)) denote the geometric Frobenius of k(x). We obtain
an exact sequence
0> RID(z, 7*) > RI(&, 7°*) 5% RI(&, £°) - 0
in PDG™(A) [Wit08| Prop. 6.1.2]. Note that if #’ is the geometric point corre-
sponding to another choice of an embedding F c F', and if §’, denotes the associated
geometric Frobenius, then there is a canonical isomorphism
o:RT(2, %) - RT(2', 7°)
such that
(3.1.1) oo (id-5,) = (id-5.) oo
At some point, we will also make use of the categories PDG" (Spec F,, A)
for the local fields F, together with the associated total derived section functors.
In this case, one can directly appeal to the constructions in [Wit08, Ch. 5]. We

write F;" for the maximal unramified extension field of F;, in F, and note that we
have a canonical identification Gal(F*/F,) = Gal(k(x)/k(x)).

LEMMA 3.1.5. Let j:U — V denote the open immersion of two open dense
subschemes of X and assume that i:x -V is a closed point in the complement of
U such that the characteristic of k(x) is different from €. Write n,:Spec F, - U
for the map to the generic point of U. Then there exists a canonical chain of weak
equivalences

(3.1.2)  RI(#,i*Rj.F*) = RT(Spec F",n Gy F*) < RT(Spec FI", 0t F*)

in PDG " (A) compatible with the operation of the Frobenius on each complex and
hence, a canonical chain of weak equivalences

(3.1.3) RI(z,i*Rj.F°*) = RT(Spec F,,n: Gy F°) < RT(Spec Fy, 0 F*)
in PDG " (A).
Proor. From [Mil80, Thm. III.1.15] we conclude that for each I € J,, the
complex 0y Gy #1° is a complex of flabby sheaves on Spec F, and that
RT(&,i* Rj.F) = T'(Spec F;",n: Gu F1°)

is an isomorphism. Write G, for the Godement resolution on Spec F), with respect
to Spec ', - Spec F,. Then

n. Gu 1 = Gp, n, Gu 97 < Gr, 0, 97

are quasi-isomorphisms of complexes of flabby sheaves on Spec F,. Hence, they
remain quasi-isomorphisms if we apply the section functor I'(Spec F*,-) in each
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degree. Since the Frobenius acts compatibly on Fi* and k(«), the induced operation
on the complexes is also compatible. The canonical exact sequence

0 - I'(Spec Fy,—) - I'(Spec ", -) N I'(Spec Fy)',—) =0

x x

on flabby sheaves on Spec F,, implies that the morphisms in the chain (3.1.3) are
also quasi-isomorphisms. O

REMARK 3.1.6. Note that if the characteristic of k(x) is equal to ¢, the proof
of the lemma remains still valid, except that the complexes in the chain (3.1.2)) do
not lie in PDG " (A).

It will be useful to introduce an explicit strictly perfect complex weakly equiv-
alent to RT'(Spec F,,n: F) in the case that ¥ is a A-adic sheaf on U. Assume that
the characteristic of k(x) is different from ¢. Let N be the compact Gal(F,/F)-
module corresponding to 1} ¥ and write Fy ™ for the maximal pro-/ extension of
F™ inside Fy, such that Gal(Fr"®/Frry = 7,.

We set N’ := NGal(Fe/Fi" ) Note that N is a direct summand of the finitely
generated, projective A-module N, because the ¢-Sylow subgroups of the Galois
group Gal(F,/F2 ) are trivial by our assumption on the characteristic of k().
In particular, N’ is itself finitely generated and projective over A.

Fix a topological generator 7 of Gal(F2") /Fr) and a lift ¢ € Gal(F2"®)/F,)
of the geometric Frobenius §,. Then 7 and ¢ are topological generators of the
profinite group Gal(F;"’(é)/Fz) and

-1

pro =1
with ¢ = g, the number of elements of k(z) [NSWO00, Thm. 7.5.3].

DEFINITION 3.1.7. We define a strictly perfect complex D3 (¥) of A-modules
with an action of §, as follows: For k # 0,1 we set DX¥(#) :=0. As A-modules we
have DY(#) = DL(#) = N’ and the differential is given by id — 7. The geometric
Frobenius §, acts on DI(F) via ¢ and on D}(¥) via

o)) e Attcaer Oy

LEMMA 3.1.8. Assume that the characteristic of k(x) is different from £. There
erists a weak equivalence

D3(F) = RI(Spec F*,ni F)

in PDG™(A) that is compatible with the operation of the geometric Frobenius
on both sides.

PrOOF. Clearly, we have
ATey D3(F) = Di(71)
for all I € 35. We may therefore reduce to the case that A is a finite Z,-algebra.

By construction, the perfect complex of A-modules RT'(F2*,n;F) may be
canonically identified with the homogenous cochain complex

X*(Gal(F,/F,), )G /P

(in the notation of [NSWOO, Ch. I, §2]) of the finite Gal(F,/F,)-module N. Recall
that the elements of X" (Gal(F./F,), N) are continuous maps

f:Gal(Fp/F,)"™ - N
and the operation of o € Gal(F,/F,) on f e X"(Gal(F,/F,),N) is defined by
of:Gal(F,/F,)"*"' - N, (00,...,00) = cf(c  o0,...,0  an).
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The inflation map provides a quasi-isomorphism
X*(Gal(Fpm O [ F,), NG CIED 2 X+ (Gal(Fy[Fy), N) ST/,

which is compatible with the operation of §, by a lift to Gal(F,/F,) on both sides.
We define a quasi-isomorphism
a:DY(F) 5> X*(Gal(Fr (O [F,), N') Gl O/
compatible with the §.-operation by
a(n):Gal(F™ O /F,) - N, 7% > 7 for n e D(F),
7€ _ 1@
1-7

a(n):Gal(Fr O F,)2 - N, (1%, 7°p%) n  for ne DL(F),

with a,c € Z; and b,d € Z. Note that

T¢ =T e fa—c el
- 1
1-71 ’ nz::l( n )(T )
is a well-defined element of A[[Gal(F2"“)/F,)]] for any a,c € Z. O

If i:3 - V is the embedding of a closed subscheme Y of X into an open
subscheme V' of X with complement j:U — V and ¥ is an étale sheaf of abelian
groups on V', then we may consider the sheaf

i F =ker(i*F > i) j* F)

on X. Its global sections ' F (X) are the global sections of  on V' with support on
Y. The right derived functor Ri' can also be defined via Godement resolution:

LEMMA 3.1.9. Assume that £ is invertible on X.
RiI:PDGCOHt(V, A) - PDGCO“t(E,A)7 (F)1ea, = (iI Gv(F7)) 134

is a Waldhausen ezact functor and for every F* in PDG™(V, A) there is an exact
sequence

0> i RI'F* > Gy (F*) > Rjj*F* -0

in PDG™(V,A). In particular, if i* F* is weakly equivalent to 0, then there exists
a chain of weak equivalences

iR F~RiF[1].

PROOF. Note that for any abelian étale sheaf F on V| we habe j* Gy (¥F) =
Gu(F). Moreover, by [AGV72b, XVII, Prop. 4.2.3], Gy(¥) is a complex of
flasque sheaves in the sense of [AGV72bl V, Def. 4.1]. In particular, Gy (F) —
J+J* Gy () is surjective in the category of presheaves by [AGV72al V, Prop. 4.7].
If #° is a complex of abelian sheaves, Gy (F*) is constructed as the total complex of
the double complex obtained by taking the Godement resolution of each individual
sheaf. In particular, Gy (F°*) is a complex of possibly infinite sums of flasque
sheaves. Note that infinite sums of flasque sheaves are not necessarily flasque. Still,
as étale cohomology of noetherian schemes commutes with filtered direct limits,
Gy (F*) — j.j Gy (F*) is always surjective in the category of presheaves. This
proves the exactness of the above sequence. Moreover, it implies that Gy (F°*)
is a i'-acyclic resolution of #* such that i' Gy preserves quasi-isomorphisms and
injections. If F° is a perfect complex of sheaves of A-modules on V for any finite
ring A, then 7' Gy (F°*) is perfect since this is true for i* Gy (7*) and i*j,j* Gy (F°*).
Similarly, we see that i' Gy commutes with tensor products with finitely generated
right A-modules. In particular, Ri' does indeed take values in PDG™ (X, A) for
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any adic ring A. Finally, if i* F° is weakly equivalent to 0, then we obtain the chain
of weak equivalences

i*Rj.j* F* < Cone(Ri'F* - i* Gy (F°")) = Ri' F°[1].

3.2. Duality for Smooth Adic Sheaves
For any scheme Z, any ring R and any two étale sheaves of R-modules ¥, G on Z,
let
Homp,z(F, G)
denote the sheaf of R-linear morphisms 7 — G on Z. As before, we fix an adic Z,-

algebra A. Let U c X be an open or closed subscheme. Unfortunately, we cannot
present a construction of a Waldhausen exact functor

*:PDGcont(U,A)Op N PDGcont(U, Aop)

that would give rise to the usual total derived Hom-functor ¥ — R Homp v (F,Av)
on the ‘derived’ category of A-adic sheaves. Instead, we will construct a Waldhausen
exact duality functor on the Waldhausen subcategory S™ (U, A) of smooth A-adic
sheaves.

For any smooth A-adic sheaf F,

F = (Hompyru (Fr, (A v)) 1y
= (Homz, v (Homz,u (A1), (Qe/Ze)v) ®asr F1,(Qe/Ze)U)) 163,

is a smooth A°P-adic sheaf on U. In this way, we obtain a Waldhausen exact
equivalence

*:SS(U, A)°P — S (U, A°P)
and, by composing with I: K,, (S (U, A)) = K, (S (U, A)°P), isomorphisms
+ K, (S(U,A)) - K, (S*™ (U, A°P))
for each n > 0.
Assume that U is an open dense subscheme of X such that ¢ is invertible on U

and that F' has no real places if £ =2. If ¥ is a smooth A-adic sheaf on U, we can
find a strictly perfect complex of A-modules P*® together with a weak equivalence

P* S RT(U, %)

in PDG"(A). As a consequence of Artin-Verdier duality [Mil06, Thm. I1.3.1],
we then also have a weak equivalence

(3.2.1) (P*)* S RI(U, 7% (1))[-3].

in PDG™(A°P). We refer to Corollary for a slightly more general statement.
We could proceed in the same way for local duality and duality over finite fields,
but instead, we prove the following finer results.

LEMMA 3.2.1. Assume that U is an open subscheme of X such that € is in-
vertible on U and that i:x - X is a closed point such that the characteristic of
k(x) is different from £. For any smooth A-adic sheaf F on U, there exists a weak
equivalence

Di(F)" = RI(Spec Fy", 1, F* (1)) [-1]

in PDG ™ (AP), compatible with the operation of F on the left and of F;* on
the right.
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PROOF. As in the proof of Lemmal[3.1.8] we can replace RI'(Spec F2*, 7, #* (1))
by the homogenous cochain complex X'(Gal(F;r’(Z)/Fz), (N')*(1))Gal(F;r‘(Z)/F;r).
By choosing a basis of the free Zy-module Z;(1), i.e. a compatible system of £"-th
roots of unity, we may identify the underlying A-modules of (N')* and (N')*(1).
The operation of o € Gal(Ffr’(é)/F;“) on f e (N')* is given by

of = folo) .
The operation of §% on f e DL(F)* = (N')* is then given by

() - ( - l)solf

1-1

and on g € DY(F)* = (N')* by
Si9) =g,

with ¢, 7 € Gal(Fy (6 /F.) denoting our fixed topological generators and q € A*
denoting the order of the residue field k(x). For b € Z set

T_l -1 nr,(£) nr X
e e A[[Gal(F " [F)]]

=0

and note that s satisfies the cocycle relation

-l ) o =g ps(b)p T s(1).

s(b+1) = ¢ ps(b) (T_l —

We define a weak equivalence
B:D(F)" 5 X (Gal(Fpm (O] F,), (N')* (1)) S0 IEDq
by
B(f):Gal(Fy O [F,) » (N')*(1), 7% = 1s(b)f
for f e DL(#)* and by

o) G OE )+ (V) (), (roghorty e (D),

for g e DY(F)*, a,ceZy and b,d € Z.
Using the cocycle relation for s, it is easily checked that

BoFi=F,"08,

as claimed. O

In particular, if Q® denotes the cocone of

D3(5) 2 Dy (y),

then Q° is a strictly perfect complex of A-modules and there exist weak equivalences
Q° > RI'(Spec Fy,nF),
(3.2.2) s~ ( 77* 3
(Q°)" — RI(Spec Fy,m; 7 *(1))[-2].

in PDG®"(A°P).
Let now G be a complex in S(x,A) = S (z,A) and let

Gz = lim (G1)z
IEjA
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be the stalk of G in the geometric point & over . Then G; is a finitely generated,
projective A-module, equipped with a natural operation of §,. Clearly, the natural
morphism

(3.2.3) Gs — RT(,G)
is a weak equivalence in PDG(A) that is compatible with the operation of F,
on both sides. In particular, the cocone C* of

id-Fo

Gi — Gz
is weakly equivalent to RI'(x, G).

LEMMA 3.2.2. With G as above, there exists an isomorphism

(Ga)" = (6")s
of finitely generated, projective A-modules, compatible with the operation of §. on
the left and of T,* on the right.

PROOF. Let R be any finite ring. Under the equivalence between the categories
of étale sheaves of R-modules on z and of discrete R[[Gal(k(x)/k(x))]]-modules,
given by F — F;, the dual sheaf F*# corresponds to the R°P-module (#;)*® with
o € Gal(k(x)/k(z)) acting on f: F; — R by fo (o*7)L. O

Consequently, we obtain a weak equivalence
(3.2.4) (C*)* S RI(z,6%)[-1]

in PDG™(A°P). If G = i*F with ¥ a smooth A-adic sheaf on U as above, then by
the exchange formula [Fulll Thm. 8.4.7], there exists a chain of weak equivalences

(" F)" = (RHomp 1 o (" Fr, (A 1)) 1e3,
~ (R Homp (7% F1, Ri' (A (1)[-2])) rea,
~ (Ri* Homp 1. (Fr, (A T)u(1))[-2]) 1ea,
=Ri' 7" (1)[-2]

(3.2.5)

in PDG ™ (z, A°P).

3.3. Admissible Extensions

As before, we fix a global field F and a prime ¢. Assume that F,/F is a possibly
infinite Galois extension unramified over an open or closed subscheme U = U of X.
Let G = Gal(F/F') be its Galois group. We also assume that G has a topologically
finitely generated, open pro-f-subgroup, such that for any adic Zg-algebra A, the
profinite group ring A[[G]] is again an adic ring [Wit14, Prop. 3.2]. For any
intermediate field K of F./F, we will write Uk for the base change with X and
fr:Uxg — U for the corresponding Galois covering of U, such that we obtain a
system of Galois coverings (fx:Uk — U)pckcr,, , which we denote by

fZ UF(,C - U.
As in [Wit14l Def. 6.1] we make the following construction.

DEFINITION 3.3.1. Let A be any adic Zs-algebra. For 7* e PDG™ (U, A) we
set

Aftgt=lim  lim A[[G]]/T @aray) i fic F1°) seangen
Iedp FcKcFo
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As in [Wit14, Prop. 6.2] one verifies that we thus obtain a Waldhausen exact

functor

AfF PDG ™ (U, A) - PDG™ (U, A[[G]]).

We recall how the functor fif* transforms under the change of the extension
Fs/F and under changes of the coefficient ring A.

ProprosSITION 3.3.2. Let f:Up_ — U be the system of Galois coverings of the
open or closed subscheme U of X associated to the extension Fuo|F with Galois
group G which is unramified over U. Let further A be an adic Zg¢-algebra and F*°
be a complex in PDG ™ (U, A).

(1)

Let A" be another adic Z¢-algebra and let P* be a complex of A'-A[[G]]-
bimodules, strictly perfect as complex of A'-modules. Then there exists a
natural isomorphism

Vpraee fif " F 2 hf Upe fif F°
Let F., c Fs be a subfield such that F. |F is a Galois extension with

Galois group G' and let f':Up; — U denote the corresponding system of
Galois coverings. Then there exists a natural isomorphism

Uareq fif F = () F°

in PDG ™ (U, A[[G']]).

Let F'|F be a finite extension inside Fo [F, let fr:Up — U denote the
associated étale covering of U and let g:Up, — Uy be the restriction of
the system of coverings [ to Upr. Write G' ¢ G for the corresponding
open subgroup and view A[[G]] as a A[[G']]-A[[G]]-bimodule. Then there
exists a natural tsomorphism

Ve hf 7 = fre (997) fi F°
in PDG ™ (U, A[[G']]).
With the notation of (3), let G* be a complex in PDG ™ (Up:, ) and
view A[[G]] as a A[[G]]-A[[G']]-bimodule. Then there exists a natural
1somorphism

Varrenfr.99° G = Aif* (fr.G*)
in PDG™ (U, A[[G]])-

PRrROOF. Part (1) — (3) are proved in [Wit14l Prop. 6.5, 6.7]. We prove (4).
First, note that for any finite Galois extension F"'/F with F' ¢ F” c F, and any
I € 3 the canonical map

grngpn (M Doy, = fefen fr(MDu

induces an isomorphism
AJT[Gal(F" [F)] ®ar1caien py) 97 Gren (M D), = fofen fen (AT

Hence,

Uaren(99™ Avy, ) 2 fi fif Au

in PDG*™(Up/, A[[G]]). We further recall that in the notation of [Wit14l
Prop. 6.3], there exists an isomorphism

N fr. G 2V e, fr . G°.

The projection formula then implies

Vs peno fr G 2 [ (Ypr ppony (G7))
; fF’*(\Ij\I/A[[G]](gzg*AUF,)(g.))
= fr(Yaren(99™G*))
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as desired. O

To understand Part (1) of this proposition, note that if p is a representation
of G on a finitely generated and projective A-module and p! is the corresponding
A-Z[[G]]-bimodule as in Example then
(3.3.1) n:(p) =V fif(Ze)u
is simply the smooth A-adic sheaf on U associated to p [Wit14l, Prop. 6.8]. In
general,

(3.3.2) Ve Foi=Upe fif F*

should be understood as the derived tensor product over A of the complex of sheaves
associated to P* and the complex F°.
Assume that ¥ is a smooth A-adic sheaf on U. As before, we write

—‘}'*A = (}[omA/I,U(-.}-IvA/I))IejA/I € PDGCOHt(Uv Aop)

for the A-dual of F and A°P[[G]]* for the A°P[[G]]-A[[G]]°P-bimodule with g € G
acting by ¢~! from the right. We then have a natural isomorphism

(3.3.3) Fif T F 2 W ponpeqp (fif ") Aen,

This can then be combined with the duality assertions (3.2.1)), (3.2.2)), and (3.2.4).
For example, we may find a strictly perfect complex of A°P[[G]]-modules P* and
weak equivalences

P* S RT(U, fif 74(1)),
H(peyaerien S RI(U, fif *F)[-3]
if £ is invertible on U and F has no real places in the case that £ = 2.
Let Foyo/F denote the cyclotomic Zg-extension of F', i.e.

Feye= JFpn F
neN

(3.3.4)

if F'is a function field of characteristic p and Fiyc/F is the unique Z¢-subextension

of
U F(Cen)

neN
with (g denoting an £-th root of unity if F' is a number field.

DEFINITION 3.3.3. Let F be a global field. An extension F,,/F inside F is
called admissible if

(1) F/F is Galois and unramified outside a finite set of places,
(2) Fo contains the cyclotomic Zs-extension Feye,
(3) Gal(Fw/Feyc) contains a topologically finitely generated, open pro-£ sub-
group.
An admissible extension Fi /F of a number field F is called really admissible if F,,
and F are totally real.

If Fo/F is an admissible extension, we let G = Gal(F/F) denote its Galois
group and set H = Gal(Fo/Foyc), I' = Gal(Feyc/F). We may then choose a con-
tinuous splitting I' - G to identify G with the corresponding semi-direct product
G=HxT.

Assume that F' is a totally real number field and that £ + 2. Let M be the
maximal abelian f-extension of Fy,. unramified outside the places over . By the
validity of the weak Leopoldt conjecture for Fiyc, the Galois group Gal(M/Fy.)
is a finitely generated torsion module of projective dimension less or equal 1 over
the classical Iwasawa algebra Z,[[Gal(Feyc/F)]] [NSWO0O0, Thm. 11.3.2]. Like in
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[Kak13], we will assume the vanishing of its Iwasawa p-invariant in the following
sense:

CONJECTURE 3.3.4. For every totally real field F, the Galois group over Fey.
of the mazimal abelian (-extension of Fey. unramified outside the places over £ is a
finitely generated Z¢-module.

In particular, for any totally real field F' and any finite set X of places of F
containing the places over ¢, the Galois group over Fiy. of the maximal abelian /-
extension of F¢y, unramified outside X is also a finitely generated Z,-module, noting
that no finite place is completely decomposed in Fey./F [NSWO00, Cor. 11.3.6]. We

also observe that the Galois group Gal(Fg)/FcyC) of the maximal ¢-extension of F
unramified outside X is then a free pro-¢-group topologically generated by finitely
many elements [NSWO00, Thm. 11.3.7].

REMARK 3.3.5. The notion of really admissible extensions is slightly weaker
than the notion of admissible extension used in [Kak13l Def. 2.1]: We do not need
to require Gal(Fw/F) to be an f-adic Lie group. For example, as a result of the
preceding discussion, we see that we could choose F, = Fg) for some finite set of
places ¥ of F containing the places above ¢, provided that Conjecture [3.3.4)is valid.

If a really admissible extension F,/F is unramified over the open dense sub-
scheme U =W of X, A=7Z; and F* = (Zs)y (1), then

LiLn RFC(U7f'f*(ZZ)U(]‘))|:_3]
A Le)

is by Artin-Verdier duality and comparison of étale and Galois cohomology quasi-
isomorphic to the complex C(Fs/F) featuring in the main conjecture [Kak13|
Thm. 2.11]. In particular,

RT(U, fif*(Ze)u(1))
is in fact an object of PDG""# (Z,[[G]]) under Conjecture We will
generalise this statement in the next section.

3.4. The S-Torsion Property

Let F be a global field. Assume that F./F is an admissible extension that is
unramified over the open dense subscheme U of X and that k:U — W is the open
immersion into another open dense subscheme of X. We also fix an adic Z-algebra
A. If F is a number field, we note that £ must be invertible on U, because the
cyclotomic extension Fiy./F is ramified in all places over .

Our purpose is to prove:

THEOREM 3.4.1. Assume that F is a function field of characteristic p. Let F*
be a complex in PDG ™ (U,A). If p # £, then the complezes

RI(W, Rk, fif*#°(1)), RI(W,kifif*F*)
are in PDG"" 4 (A[[G]]). If £ = p, then the complex
RL(U fif*F°)
is in PDG"" " (A[[G]]).

THEOREM 3.4.2. Assume that Fo[F is a really admissible extension and that
¢ # 2 is invertible on W. Let F°* be a complex in PDG®"*(U,A). If Conjec-
ture [3.3.]) is valid, then the complezes

RI(W, Rk fif*7°(1)), RL(W,kAf"F*)
are in PDG"" 4 (A[[G]]).
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In the course of the proof, we will also need to consider the following local
variant, whose validity is independent of Conjecture [3.3.4] in the number field case.

THEOREM 3.4.3. Assume that Fo[F is an admissible extension of a global
field F with k:U — W as above. Let i:3 — W denote a closed subscheme of W and
assume that F* is in PDG™ (U, A). If £ is invertible on ¥, the complexes

RI(Z,i* Rk if 7)), RS, Ri‘k fif* 7°)

are in PDG™"H (A[[G]]). If the characteristic of F is £ and % is a closed
subscheme of U, then

RI(Z, & fif* %)
is in PDG""# (A[[G]]).

Using [Wit14, Prop. 4.8] we may at once reduce to the case that A is a finite
simi-simple Z,-algebra and that Fi /FCyc is a finite extension. It then suffices to
show that the complexes appearing in the above theorems have finite cohomology
groups. We may then replace F°* by a quasi-isomorphic strictly perfect complex.
Using stupid truncation and induction on the length of the strictly perfect complex
we may assume that ¥ is in fact a flat and constructible sheaf (unramified in o).
Note further that the cohomology groups

HIW,RE.fif*F(1)) = lim  HI(Wi, Rk ficF (1)),
FcKcFo
W kAf*F) = lim H Wk, kfgf),
FcKcFo
H'(Z,i"REfif*F) = lm H(Zk,i"Rk.fiF)
FcKcFo
H (S, Rk fif*#) = lim H(Sk,Ri'kfi¥)
FcKcFo
do not change if we replace F' by a finite extension of F' inside F,,. So, we may
assume that Fo, = Foye and that no place in ¥ splits in Foo/F. Further, we may
reduce to the case that ¥ consists of a single place x. In particular, = does not split
or ramify in Fo/F.

We consider Theorem B.4.3] in the case that = € U and write i":2 — U for the
inclusion map. Under the above assumptions on x, there exists a chain of weak
equivalences

RI(z,i* Rk fif*F) < RIT(x, i fif*F) > RI(x, g% F)

where g:x. — x is the unique Zs-extension of . We can now refer directly to
[Wit14, Thm. 8.1] or identify

Hs(l‘,g!g*i/*f) = Hg(Galk(aj)alFf[[F”u ®F, M)

with Galy(,) the absolute Galois group of the residue field k(z) of 2, M the stalk of
# in a geometric point over x and F[[I']]* being the Galy(,)-module F¢[[T']] with
o € Galy(,) acting by right multiplication with the image of o lin T. It is then
clear that the only non-vanishing cohomology group is H' (Galy(,, F[[T]]}®F, M),
of order bounded by the order of M.

Assume that the characteristic of k(x) is different from ¢. Write U’ = U - {z}
and let j":U’ - U denote the inclusion morphism. Then there is an exact sequence

0-Ri'kyj' " ff F > Ri'kfif F > Ri'iyi™ ke F - 0.
Moreover, there exists a chain of weak equivalences

RSP RAF S R kAL



3.4. THE S-TORSION PROPERTY 55

Since we already know that the groups H*(z,i'" fif* F) are finite, it is sufficient to
prove that H*(z,R4'ki fif* F) is finite in the case that z € W - U.

Now we prove Theorem in the case that x € W — U, assuming that the
characteristic of F is different from £. First, note that the complex Ri' Rk, fif*F
is quasi-isomorphic to 0. Hence, there is a chain of weak equivalences

Rk fif *F ~Ri'kifif* F[1]
by Lemma[3.1.9] So, it suffices to consider the left-hand complex. By Lemma [3.1.5]
and the smooth base change theorem there exists a chain of weak equivalences
RI(z,i" Rk fif*F) ~ RI(Spec Fy, ih*n, F),
where F), is the local field in x with valuation ring Or,, ,: Spec F;; - U is the map

to the generic point of U, and h:Spec(Fy)cye = Spec Fy, is the unique Zg-extension
of F, inside F',. We may now identify

H®(2,i* Rk, fif*F) = H*(Galp, , Fo[[T]]} ®5, M)

with Galp, the absolute Galois group of the local field F, in x, M the finite Galg,-
module corresponding to 7 and Fy[[T']]! being the Galg,-module F,[[T']] with
o € Galg, acting by right multiplication with the image of o~! in T'. The finiteness
of the cohomology group on the righthand side is well-known: We can use local
duality to identify it with the Pontryagin dual of

H*™*(Gal(p,).,., M" (1))

where MV (1) is the first Tate twist of the Pontryagin dual of M.
Next, we prove Theorem and Theorem [3.4.2] By [Wit14, Thm. 8.1], we
know that the complex

RI(U, fif*F)

is in PDG"™" (A[[G]]) if F is a function field. This settles in particular the
case that the characteristic p of F' is equal to £. So, let us assume that ¢ is invertible
on W and ¢ + 2 if F is a totally real field.

We begin with the case of étale cohomology with proper support. Letting
i:Y - W denote the complement of U in W, we have the exact excision sequence

0 = RT(W, kik* R fif* (1)) » RTo(W, Rk fif* (1))
> REc(W,iui" Rk fif* 7 (1)) > 0
and chains of weak equivalences
R (W, kik* Rk fif* 7 (1)) ~ RTo(U, fif* (1)),
REc(W,ii" REfif"# (1)) ~RI(Z, 0" RE S F(1)).
By Theorem we may thus reduce to the case W = U. In particular, this
settles the function field case.

Furthermore, we may shrink U ad libitum. Hence, we may assume that Fo/F
is really admissible, ¥ is locally constant on U and smooth at co. Consequently,
there exists a finite Galois extension F’/F such that F' is totally real, gp:Up: — U
is étale and gy,  is constant. Then F, /F is an admissible extension and

p=9pF(Ur)

may be viewed as a continuous representation of G = Gal(F(,./F') on a finitely
generated, projective A-module. Write g: U, . > U for the corresponding system
of coverings of U and observe that there exists a weak equivalence

(I)p(RFC(Uv g!g*(Zl)U(l))) - RFC(U’ f'f*.’]:(l))
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with ®, being defined by [Wit14l Prop. 5.9, 6.3, 6.5, 6.7]. Since ®, takes
complexes in PDG""# (Z,[[G]]) to complexes in PDG™"*# (A[[T]]), it re-
mains to show that the cohomology groups H:(U, ¢1g*(Z¢)y (1)) are finitely gener-
ated as Zy-modules.

Let M denote the maximal abelian ¢-extension of F! . unramified over U. Then

cye
0 if s 2,3,

WU, 09" (Zo)u (1)) = { Gal(M/FY,) it s =2,
Zy if s=3

by [Kak13l p. 548]. At this point, we make use of Conjectureon the vanishing
of the p-invariant to finish the proof for the first complex.

We now turn to the complex RT'(W, ki fif*F*). We still assume that A is a
finite ring. Write X =W -U, V=Uu(X-W)and j:U -V, V> X i:X > X
for the natural immersions. As mentioned in Remark the exists a chain of
weak equivalences

RE(V,Rjfif*F) ~RTU(W, ki fif*F).

In the function field case, we are thus reduced to the case already treated above.
The proof of Theorem [3.4.1}is now complete.

So, let us again assume that F./F is really admissible. Using the exact se-
quence

0"\ RiFf*F >RG 0 ) fif F > isi* Rjsfif ' F -0

and Theorem [3.4.3| we may reduce to the case that V = X, W = U and ¥ locally
constant on U and smooth at oo.

Let P* be a strictly perfect complex of A°?[[G]]-modules quasi-isomorphic to
RIL(U, fif*F*2(1)). By what we have proved above, P* is also perfect as complex
of A°P[[H]]-modules. By we obtain a weak equivalence

pry*acruen 5 RI(U, fif* F).

We conclude that RT(U, fif* ) is in PDG"""# (U, A[[G]]) by applying Propo-
sition 2.7.4] This completes the proof of Theorem [3.4.2]

3.5. Non-Commutative Euler Factors

Assume as before that F../F is an admissible extension of a global field F' which
is unramified over a dense open subscheme U of X and write f:Up_ — U for the
system of Galois coverings of U corresponding to Fu/F. If the characteristic of F'
is different from ¢, we let W be another dense open subscheme of X containing U,
such that ¢ is invertible on W. If the characteristic of F' is equal to ¢, we choose
W =U. Write k:U — W for the corresponding open immersion. We consider a
complex 7* in PDG®" (U, A). As the complexes

RIO(z,i* Rk fif F°)
are in PDG""4 (A[[G]]) for i:x - W a closed point, we conclude that the
endomorphism

RD(2, i Rk fif* F°) 5% R4, i* Rk fif F°)

is in fact a weak equivalence in wyPDG ™ (A[[G]]). Hence, it gives rise to an
element in Ky (A[[G]]s).

DEFINITION 3.5.1. The non-commutative Euler factor Lp_;p(z,Rk.F*®) of
Rk, F* at z is the inverse of the class of the above weak equivalence in K; (A[[G]]s):

Lrr(2,RE.F*) =[id-F, CRI(@,i" Rk fif* 7°)]"
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Note that Lg_ (2, Rk, F*) is independent of our specific choice of a geometric
point above z. Indeed, by and relation (R5) in the definition of D (W), we
conclude that the classes [id — §.] and [id - F. ] agree in K;(A[[G]]s). Moreover,
Lp_r(x,RE,F*) does not change if we enlarge W by adding points with residue
field characteristic different from ¢ or shrink U by removing a finite set of points
different from =z.

PrOPOSITION 3.5.2. The non-commutative Euler factor is a characteristic el-
ement for RT(z,i* Rk.fif*F*):
dlp p(z,Rk. %) ==[RT(z,i" REfif 7°)]
in Ko(A[[G]],9).
PROOF. The complex RT(z,i* Rk, fif*F*) is weakly equivalent to the cone of
the endomorphism

RT(2,i" Rk fif* F°) 5% R4, i Rk fif F°)

shifted by one. Hence, the result follows from the explicit description of d given in
(12.3.2). O

DEFINITION 3.5.3. For a topological generator «y € I'; we define the local modi-
fication factor at x to be the element

M jpy(2, REF®) = Lp_p(x, REF)s, ([RT (2, 0" RE A F®)]).
in Ky (A[[G]])-
We obtain the following transformation properties.
ProPOSITION 3.5.4. With k:U — W as above, let A be any adic Zg-algebra and
let 7 be a complex in PDG ™ (U, A).
(1) Let A’ be another adic Z¢-algebra. For any complex P* of AN'-A[[G]]-
bimodules which is strictly perfect as complex of A'-modules we have
Ve (Lroyr(z, REF®)) = Lpjr(2, RE Ve (F°))
in K1 (A'[[G]]s) and
Vprranes Mrwry (2, REF®)) = Mpjpqy (2, REV 5. (F°))
in Ky (A'[[G]]).
(2) Let FLJF be an admissible subextension of Fo|F with Galois group G'.
Then
\IJA[[G']](CFM/F(vak*T.)) = ,CF(;/F((E,Rk*,’F.)
in K1 (A[[G']]s) and
Uarre i Meppy (2, RETF®)) = Mpr (2, REF°)
in Ky (A[[G']]).
(3) Let F'|F be a finite extension inside Foo |[F. Setr:=[F'nFgy: F|. Write
fr:Upr = U for the corresponding étale covering and xp: for the fibre in

Xpr above x. Let G' ¢ G be the Galois group of the admissible extension
Foo[F' and consider A[[G]] as a A[[G']]-A[[G]]-bimodule. Then

Uaren(Lrer(@ REF*)) = T[] Lroye (v, Rk fin F°)
YET por
in Ki(A[[G']]s) and
Uaien(Meeypny (@ REF)) = [T Me o (. Rk fio F°)
YET 1

in K1 (A[[G]])-
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(4) With the notation of (3), assume that G* is a complex in PDG™ (U, A)
and consider A[[G]] as a A[[G]]-A[[G']]-bimodule. Then

[T Yaren(Lr./r(yv.REeG*)) = Lrjr(2, Rk frr, G°)

YET pr

in K1 (A[[G]]s) and
[T Yaren(Mee A (4, REG®)) = Mp_pr (@, Rk frr, G*)

in Ky (A[[G]]).

ProOOF. Note that the functor ¥ commutes up to weak equivalences with RT,
i*, and Rk, [Wit08), 5.5.7] and apply Proposition [3.3.2and Proposition[2.9.1} Part
(1) and (2) are direct consequences.

For Part (3), we additionally need the same reasoning as in the proof of [Wit14!
Thm. 8.4.(3)] to verify that for any G* in PDG™(Up/, A)

(351) [ld_gz G RF(@/ Xz sE,Rk*ggg*g°)] = [ld_'gy O Rr(ngk*g'g*f;"g.)]
in Ky (A[[G']]s). Here, g:Up_ — Up: denotes the system of coverings induced by

f. This implies the formula for \DA[[G]](EFm/F(x,Rk,,?')). Moreover, we have a
weak equivalence

Uarie RT (2, Rk fif *F°) > RO(ap, Rkagug” f1 F°)
in PDG"(A[[G"]]). In particular,
sy ([Paran RO(2, REASF)]) = [T s (RT(y, Rkwgng™ f1 7))

YET por
from which the formula for \IIA[[G]](MFN/F7,Y(1', Rk;*ff’)) follows.
For Part (4) we use (3.5.1)) to show

[T Yagen(Lrom (v, REG*)) =

YEw o
= War67([id - 8o C RT(zp %o &, REgig*6*)] ™)
=[id -8 C RI(@ REAS fr 6]
=Lp_r(2, Rk fr . G*).
On the other hand, we also have a weak equivalence
Uarien R (@, REgig® ) = R (2, Rk fif* [, G,

thence the formula for the local modification factors. O

For the rest of this section, we assume that the characteristic of F' is different
from /. If G is a smooth A-adic sheaf on U and x is a point in U, it makes sense to
consider the element

Lrp(z,REG™(1))® e Ky (A[[G]],9)

as an alternative Euler factor, which does not agree with Lp_;p(z,Rk.G) in gen-
eral. We shall show below that

Lr.r(z, Rk, (1))® = [id-§,' O RIO(&,Ri'kfif*G)]
and take this as a definition for arbitrary complexes 7* in PDG“™ (U, A).

DEFINITION 3.5.5. The dual non-commutative Euler factor of ki F® at x €e W is
the element

L3 p(a,kF®) =[id-§;" O RI(ERi'kAf 7))
in K1 (A[[G]]s)-
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PROPOSITION 3.5.6. The inverse of the dual non-commutative Fuler factor is
a characteristic element for RT(x,Ri'k fif* F*):
ALy p(x, %) = [RT (2, Ri'k fif* 5°)]
in Ko(A[[G]],9).
PrOOF. The complex RT'(z,i* Rk, fi f*F°*) is weakly equivalent to the cone of
the endomorphism

RI(2,Ri'kifif F*) =, RT(2,Ri'kfifF°)

shifted by one. Hence, the result follows from the explicit description of d given in
[Wit14] Thm. A.5]. O

DEFINITION 3.5.7. For a topological generator 7y € I', the dual local modification
factor ki F* at x is the element

MG o (@ F) = L (i F )y ([RT(z, Ri'kifif* 7))~
We obtain the following transformation properties.
ProroSITION 3.5.8. With k:U — W as above, let A be any adic Zg-algebra and
let F* be a complex in PDG™ (U, A).
(1) Let A’ be another adic Zg-algebra. For any complex P* of AN'-A[[G]]-
bimodules which is strictly perfect as complex of A'-modules we have
VU priayee (E?;m/F(x, kF*)) = E?;m/F(a:, kU s (F°))
in K1 (A'[[G]]s) and
Upirayes (M (@, k0 F*)) = MG p (2,50 5 (F*))

in Ki (A'[[G]]).
(2) Let FL/F be an admissible subextension of Feo|F with Galois group G'.
Then
VA (L, yr (2, hF*)) = L3, (o ki F)
in K1 (A[[G']]s) and
Uarre (M jry (@ R F*)) = MG, (2,50 F)
in K1 (A[[G]]).
(3) Let F'[F be a finite extension inside Foo [F. Setr = [F'nFey.: F). Write
fr:Upr = U for the corresponding étale covering and xp: for the fibre in

Xpr above x. Let G' ¢ G be the Galois group of the admissible extension
Foo[F' and consider A[[G]] as a A[[G']]-A[[G]]-bimodule. Then

G]](E?;w/F(ka!T.)) = H L??m/F'(yak!f;'f.)

YEXT pr

in K1 (A[[G']]s) and

Varren(ME oy (@ k7)) = TT ME_ o (v K F°)

YET 1

in Ky (A[[G']])-

(4) With the notation of (3), assume that G* is a complex in PDG ™ (U, )
and consider A[[G]] as a A[[G]]-A[[G']]-bimodule. Then

H \DA[[G]](‘C%‘w/F’(y7k' g.)) = E?;w/F($7k!fF'*g.)

YET pr

in K1(A[[G]]s) and
I1 \I’A[[G]](M?;N/Frﬁr(yy kiG*)) = MGy (@ frr G®)

YET por
F
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in Ky (A[[G]]).
PROOF. The arguments are the same as in the proof of Proposition O

PROPOSITION 3.5.9.
(1) Let G be a smooth A-adic sheaf on U. Then

(Lryr(@,REeG™(1)))® = LG p(2,k0G) =
{[—sx G RT(&, i fif* G- Lo ez, G(-1)" ifzeU
[-8: C RI(2,i* RE A f*G)]Lp yp(2,RELG) ifxeW-U
in Ki(A[[G]],S) and
(M jrn (2, REG™(1)))® = ME_ e (2,1G)

in K1 (A[[G]])-
(2) Let G be a A-adic sheaf on x € U. Then

(Lroyr(m,icG™))® = ‘C?;N/F(x’i*G)
=[-8 C RI(&,i" fif 6.6)] " Linyp(w,inG) ™
in K1(A[[G]],S) and
(M (2,12 6")® = ME_ e (2,1,6)
in Ky (A[[G]])-

PROOF. We only need to prove the formulas for the non-commutative Euler
factors, the formulas for the local modification factors then follow from Proposi-

tlon\%gin by proving ID in the case that z ¢ W -U. By , combined with
Lemma [3.1.8 and Lemma [3.1.5] we have
Lp p(x,isREk.G™ (1)) =
= Uporg([id - o C RI(E, (" Rk, fif7G) 0 (1))]7)
= Uporpronp ([id - Fo C DE((Rk.fif*G) o0 (1))]7).
From the Definition of ®, Lemma and again Lemma |3.1.5] we conclude

(@ por g ([id = §o O DL((Rkafif* G) Aen (1))] 1)) 1D =

= [id _ FaALener ~ D2 (R, fif ¥ G) IS (1)) AleTer |
[id-3," CRI(&,i* Rk fif*6)]™
[-§.' C RI(2,¢" Rk fif *G)] 'L yr (2, RELG).

Finally,
[id-3," CRI(,i* REif 6)]" = LS p(2,k16)

by Lemma [3.1.9]

The validity of the first equality in follows similarly from Lemma and
the exchange formula (3.2.5):

(Lroyp(@,ing™))® = (id=Fo C (I Af7in6™)a] )
= Waggeqp ([ = §2000 G (07 fuf 710 6™ )g) "AIGI ])
= Uarioyr ([id - §," C RI(E, (4% fifFi.g*))*atenr])
=[id-§," C RI(&Ri' fif (i.G™))"]
= E?;w/F(x7i*G)
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Further, write j':U" — U for the complement of z in U. Then

Rj' G A G2 R f G =0
and hence,
Ri'fif*i.G =i fif*i.G,
from which the second equality in follows.
For the proof of in the case that x € U, we observe that

(Lryr(z, G (1)))® = (Lryr(e, RGN (1)) (Lpyp(z, i Ri'G™(1)))®
= (Lroyp(@,RG 576G (W)))(Lanr (e, in(i*G)™))®
= E?M/F(x,j'!j'*g)ﬁﬁmﬂ;(x,i*g)
= E??M/F(x, G)

by what we have proved above. For the second equality, we use that by absolute
purity [Mil06l Ch. IT, Cor. 1.6], there exists chain of weak equivalences

AT G(-1) ~Ri'fif* G[2].

3.6. Euler Factors for the Cyclotomic Extension

In the case Foo = Fiyc, we can give a different description of Lp_/p(z,Rk.F*). We
will undergo the effort to allow arbitrary adic Zs-algebras A as coefficient rings,
but in the end, we will use the results only in the case that A is the valuation
ring in a finite extension of Q. If one restricts to this case, some of the technical
constructions that follow may be skipped.

Let A[t] be the polynomial ring over A in the indeterminate ¢ that is assumed to
commute with the elements of A. In Appendix [A] we define a Waldhausen category
w:P(A[t]): The objects are perfect complexes of A[t]-modules and cofibrations
are injective morphism of complexes such that the cokernel is again perfect. A
weak equivalence is a morphism f: P®* — Q° of perfect complexes of A[t]-modules
such that A ®%[t] f is a quasi-isomorphism of complexes of A-modules. Here, A is

considered as a A-A[t]-bimodule via the augmentation map and A ®H1§[t] - denotes

the total derived tensor product as functor between the derived categories.
If A is noetherian, then the subset

Se={f(t) € A[t]| £(0) € A"} c At]

is a left and right denominator set, the localisation A[t]s, is semi-local and A[t] —
A[t]s, induces an isomorphism

Ky (wP(A[t])) = Ky (Alt]s,)
(Proposition [A.1). By [War93|, Cor. 36.35], commutative adic rings are always
noetherian . In this case, we may further identify

Ka(Alt]s,) = AT,

via the determinant map. In general, S; is not a left or right denominator set. We
then take

Ki(Aft]s,) = Ki(wP(A[]))
as a definition.

For any adic Zg-algebra A and any « € I' = Z,, the ring homomorphism

evyi A[t] = A[[T]], - f(2) = f(9).
induces a homomorphism
evy: Ky (At]s,) = Ki(A[[T]]s)
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(Proposition . In the noetherian case, the proof boils down to a verification
that ev,(S;) c S.

Assume as before that W = U if the characteristic p of I is equal to £ and that
¢ is an odd prime invertible on W if F' is a number field.

DEFINITION 3.6.1. For 7* = (%})1e3, € PDG ™ (U, A) we define
Z(z, Rk, F°,t) = [id - tF, G P°] e Ky (A[t]s,)
for
P* = A[t] @y lim RT(2,i" Rk, F*).
Tedp
If p+ 4, we set
Z®(z, ki F°,t) = [id-t§," C Q"] e K (Alt]s,)
where
Q"= Alt]®a lim RI(&,Ri'ki 7).
IGJA

For any 1 # v € ', we write Z(z, Rk, F*,7) and Z®(x,kF*,v) for the images of
Z(x,Rk.F*,t) and Z®(z,k F°,t) under

K1 (A[t]s,) —> K1 (A[[T]]s).

Since the endomorphism id — ¢§, is canonical, it follows easily from the rela-
tions in the definition of D(W) that Z(z, F°,t) does only depend on the weak
equivalence class of F° and is multiplicative on exact sequences. So, it defines a
homomorphism

Z(x, Rk (=), 1): Ko(PDG*" (U, A)) > Ki(A[t]s,)-
The same is also true for Z®(x, k F*,t).
PROPOSITION 3.6.2. Let 7, € I" be the image of §, in I'. Then
Lr,r(@,REF) = Z(x, RE T, ).

If p+ £, then
E%CyC/F(x’k!f.) = Z®(1'7k!7".7'7m).

PROOF. Since ¢ is invertible on W in the number field case, the extension
Feye/F is unramified over W. Assume p # £. By the smooth base change theorem
applied to the étale morphism fx:Wx — W for each finite subextension K/F of
Feye/F and the quasi-compact morphism k:U — W there exists a weak equivalence

A REF® > REfF
in PDG“" (W, A). By the proper base change theorem, there exists also an iso-
morphism
Hf RF 2k fif F°
Hence, we may assume x € U = W and drop the assumption p # /.

For any finite subextension K/F in Fy./F write x for the set of places of K
lying over z and g:zp, , — « for the corresponding system of Galois covers. (We
note that this system might not be admissible in the sense of [Wit14l Def. 2.6] for
any base field F c k(x): for example if F'=Q and z = (p) with p # £ splitting in the
cyclotomic Zg-extension of Q.) By the proper base change theorem there exists an
isomorphism

CHFT g9t FC
From Lemma we can then also infer the existence of a weak equivalence

Ri'fif ' F* S gg* Ri'F*
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if p#4.
We will now concentrate on the proof of the equality
ﬁFcyc/F(m7 T.) = Z(l’, }—.7’7;1)'
The proof of the equality for the dual Euler factors follows along the same lines,
with §, replaced by §' and ~;" replaced by 7.
By our choice of the embedding F c F';,, we have a compatible system of mor-

phisms Spec k(z) - zk for each K c Fy,. and hence, distinguished isomorphisms
a:Z[Gal(K/F)] ®z Mz - (9r 195 M)z
for the stalk & in Z of any étale sheaf M on x. The action of the Frobenius §, on

the righthand side corresponds to the operation of -y;! ® F, on the left-hand side.
By compatibility, we may extend « to an isomorphism

a: WAy RI(Z,7F*) 2 RT(&, qig" " F*)

in PDG ™ (A[[I']]). Hence,
Lroerr(@, 7%) = [id=7,' ®Fo O Uaqry RI(E,75°)]
in Ky(A[[T']]s). Furthermore, we may choose a strictly perfect complex of A-
modules P* with an endomorphism f and a quasi-isomorphism
B:P* > lim RT(2, G°)
TeTdp
under which f and §, are compatible up to chain homotopy [Wit08| Lem. 3.3.2].
The endomorphism
id-tf:Alt]®x P* - A[t] ®p P°*

is clearly a weak equivalence in w;P(A[t]). By [Wit08, Lem. 3.1.6], homotopic
weak auto-equivalences have the same class in the first K-group. Hence, we may
conclude

[id-tf G Alt]®r P = Z(z,Rk.F°, 1)
in K1(A[t]s,) and

Z(x, Rk F* ;") = Ly yr (2, REF®)

in Ky (A[[T]]s)- O
We will make this construction a little more explicit in the case that F is a
A-adic sheaf on U. If x € U, recall from that there is a weak equivalence
T2 — RI(&,i" RE.F)
in PDG®"™(A) compatible with the operation of the Frobenius §, on both sides.

Hence, we have

(3.6.1) Z(x, Rk, F, 1) = [A[t] @ T2 552 A[t] @a 73]

in K1 (A[t]s,) and

id-7,'®F s _
L. p(@, REF) = [A[[T]] @4 Fo —— A[[[]] @4 %]
in Ky (A[[T]]s). In particular, if A is commutative, then the isomorphism
det x
Ki(At]s,) — Alt]s,
sends Z(x,Rk.F,t) to the inverse of the reverse characteristic polynomial of the
geometric Frobenius operation on ¥;.
Assume now that p # £. If ¥ is smooth in z € U, then by absolute purity
IMil06, Ch. II, Cor. 1.6], there exists chain of weak equivalences

F(-1); ~RI(2,Ri'ki F)[2].
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Hence,

id-t3,"

(3.6.2) Z8(z, k1 F,t) = [A[t] ®r F(-1)z
in K1(A[t]s,) and

Alt]en F(-1)z]

£ @) = (AT 84 #(-1)s 25 A[[T]] @4 7 (1]

in K1 (A[[T]]s). If ¥ =4, G for some G in PDG“""(x, A), then there exists a weak
equivalence
Gy — RI(2,Ri'kyF).

Hence,
(3.6.3) Z8(x, k1 F,t) = [A[t] ®A G2 ﬂ A[t] ®a Gz]
in Ky (A[t]s,) and

id—v,®3"

Ly r(@ k) =[A[[T]] @ Gz —— A[[I]] @1 Gs]

in K1 (A[[]]s).
If £ € W - U, there exists by Lemma Lemma and Lemma [3.1.9 a
chain of weak equivalences

D3(F) ~RI(&,i* Rk fif *F) ~RD(&, Ri‘'ky fif* F)[1]

compatible with the Frobenius operation.
We conclude that for x e W - U,

Z(2, Rk, F,t) = [id =15, O A[t]®a DA(F)] 7 [id - t3. C Alt] ®a DE(F)],
Z®(x,k F,t) = [id - t§," C Alt]ox DI(F)] id-t5," C A[t]®a Di(F)]
in K1(A[t]s,) and
Lp,r(z,REF) =[id -~ ®F, C A[[T]]@r DI(F)]™
[id-~;' ® 3. C A[[T]]@a Di(£)],
L3 e k) =[id-7 3, G A[[l]] e DI(F)]™
[id-v, ®3," C A[[l]]es D;(F)].

Let N be the stalk of # in the geometric point Spec F, viewed as Gal(F,/F,)-
module. If the image of Gal(F,/FL") in the automorphism group of N has trivial

(-Sylow subgroups, then NGal(Fa/F") - DY(#) and the differential of D3(F) is
trivial. Our formula then simplifies to
Z(, Rk 7F,t) = [id - t§, O A[t] @y NOHIF/ET) 1
[id - tq,3. C Alt] @y NCIEF/F0T)
7%z, k1) = [id — 13,0 G A[t] @y NOHF/F) 71
[id - tq;'8," G Alt] @4 NI/,

where ¢, is the order of the residue field k(z). In particular, this is the case if N is
unramified in x.

Conversely, assume that the differential of D} () is an isomorphism. Since the
operation of §, commutes with the differential, we then have

Z(x,Rk.F,t) = 2%z, k1 F,t) = 1.

If A = Oc is the valuation ring of a finite field extension C of Qy, then we may
replace C' ®, N by its semi-simplification (C ®o, N)** as a Gal(F,/F,)-module

(3.6.4)
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and obtain a corresponding decomposition (C®o, D3 (F))* of the complex D3 (F).
Note that _
(C ®0c N)ss _ ((C ®0, N)SS)G&I(Fw/Fm ) oV

with VGaI(F=/F") = 0. In particular, on each simple part of (C®o, D3(F))%, the
differential is either trivial or an isomorphism. We conclude

det Z(z, Rk, F,t) = det(id - £, O ((C 80, N)*)GF=/F))-1
det(id - 1, 5. C ((C ®0, N)*)SHT/10),
det Z®(x, by F,t) = det(id - t§,* G ((C ®0, N)s=)Cal(Fa/ )y -1
det(id - t¢;'F. G ((C ®@p,, N)*)GNF=/F))
in the units (C[t]))* of the localisation of C[t] at the prime ideal (t).

(3.6.5)

REMARK 3.6.3. In the case that F' is a function field of characteristic £ and A
is any adic ring, we will use as a definition for Z(z, Rk, F,t) for z e W -U,
provided that N is at most tamely ramified in . If A = O¢, we can use (3.6.5))
instead, without any condition on N. In both cases, we set

L, r(z,REF) = Z(x, Rk F, 7, ").

We can also give more explicit formulas for the local modification factors. We
will not make use of the following calculations in any other part of the text.

Let M be one of the finitely generated and projective A-modules %z, F(-1)z,
DY(F), DL(F). Then M comes equipped with a continuous action of the Galois

group Gal(k(z)/k(x)). Let k(x)cyc denote the unique Zg-extension of k(x) and let
r be the index of the image of I == Gal(k(z)cyc/k(z)) in T’ = Gal(Fgy/F). Fix a
topological generator v eI'.

Clearly,

[id-7,' ®F. C A[[T]]®r M] = Upry([id -, © Fo G A[[I']] @4 M])
in K; (A[[T']]s), while

W a )y (84 ([coker(id -7 @ F. G A[[T']]oa M)])) =
sy (Warrry) ([eoker(id - 7' ® o G A[[T]] @4 M)]))
- s, ([coker(id ~7; @, O A[[TT] @ M)])

by Proposition Hence, it suffices to consider the case that x does not split in
Feye/F. So, we assume from now on that r = 1.

The image of Gal(k(x)/k(x)cyc) in the automorphism group of M is a finite
commutative group A of order d prime to £. Write

1
en = — )
S

for the corresponding idempotent in the endomorphism ring. We thus obtain a
canonical decomposition
M=MeaeM"
of M with M":=eaM and M" = (id-ea)M.
Since
(id-9)(id-ea)m = (id-d)m
for every id # § € A and every m € M, the action of A on M" is faithful. Since d is

prime to ¢, the action of A on M"/Jac(A)M" is still faithful. Indeed, the kernel K
of id-4& G M" is a direct summand of M" with K # M". The Nakayama lemma
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then implies K/Jac(A)K = M"[Jac(A)M" such that § G M"/Jac(A)M" cannot
be the identity.

Note that K is trivial if § is a generator of A. In this case,

id-6: M"]Jac(A)M" - M" | Jac(A)M"

must be an automorphism. We may apply this to a suitable £”-th power of §; to
infer that id-F, C M"/Jac(A)M" is an automorphism. By the Nakayama lemma
for A[[T']] we conclude that the endomorphism id — ;! ® §, of A[[[']] ® M" is
also an automorphism.

The A-module M’ can be seen as A[[T']]-module with v, acting as §, and by

Example we have
[id-7;' ®F. C A[[M]]®@a M"] = s, ([coker(id - 7;' ® F O A[[L]]@r M)])™
We conclude that
[id-7;' ®F. C Al[T]]@a M]s, ([coker(id -7 ®F. C A[[T]]@s M)]) =
[id-v;' ©F. G A[[T]] ®a M"]Si7 [coker(id =7, ® F» O A[[T]] ®x M")]).
’YT/
In particular, if z € U and H"(Spec k(x)oye, ") =0, then
Mg, ry (2, REF) = Lp, yr (2, REF).

c

If z € U, H°(Spec k(z)cye,t*F) = 2 and 7y =7, then
MFYC/FW(JZ,Rk‘*fT) =1.

The same considerations apply to the dual local modification factors.

REMARK 3.6.4. Write VO for the set of closed points of V. Note that the
infinite product
[ Meory (2, RETF)
zeV 0
does not converge in the compact topology of K;(A[[T']]). Indeed, by the Cheb-
otarev density theorem, we may find for each non-trivial finite subextensions F'/F
of Fgyc/F an infinite subset S c U of closed points such that the elements

Meoypq (2, REF) € Ky (A[[T]])

c

for « € S have a common non-trivial image in K;(A/Jac(A)[[Gal(F'/F)]]).



CHAPTER 4

Main Conjectures for Perfect Complexes of Adic
Sheaves

In this chapter, we will consider the non-commutative Iwasawa main conjecture for
perfect complexes of adic sheaves. We begin with a short reminder on L-functions
of Artin representations in Section [£.1]

Section [4.2] contains the main results in the case of really admissible extensions
F./F. Our objective is to show that Kakde’s proof of the main conjecture may be
refined in order to obtain a unique choice of a non-commutative L-function as an
element of the localised K-group K; (A[[G]]s).

We use Kakde’s non-commutative L-functions and the non-commutative alge-
braic L-function of the complex RTc(U, fif*Z¢(1)) to define global modification
factors. Changing the open dense subscheme U is reflected by adding or remov-
ing local modification factors. This compatibility allows us to pass to field ex-
tensions with arbitrarily large ramification. We can then use the results of Sec-
tion [2.1] to prove the uniqueness of the family of modification factors for all pairs
(U, Fs) with Fo/F admissible and unramified over U. The corresponding non-
commutative L-functions are the product of the global modification factors and
the non-commutative algebraic L-functions. We then extend in Theorem the
definition of global modification factors to A-adic sheaves smooth at co by requiring
a compatibility under twists with certain bimodules. In the same way, we construct
global dual modification factors in Theorem [£:2.5] In Theorem [£.2.7| we show that
the global modification factors are also compatible under changes of the base field
F. The non-commutative L-functions for the complexes F° are then defined as the
product of the algebraic L-function and the modification factors. Corollary
subsumes the transformation properties of the non-commutative L-functions.

In Section we extend our results to the case of CM-extensions of F. Sec-
tion [£.4] deals with the function field case.

4.1. Artin Representations

Let O¢ be the valuation ring of a finite extension field C' of Q, inside a fixed
algebraic closure Q, and assume as before that I'  Z,. The augmentation map
©:O0¢[[T']] = O¢ extends to a map

K1 (Oc([T]s) <> O[[T]]5 - PH(C),

Indeed, let ¢ € Oc[[I']]5. Since O¢[[I']] is a unique factorisation domain and the
augmentation ideal is a principal prime ideal, we may assume that not both a and
s are contained in the augmentation ideal. Hence, we obtain a well-defined element

o (%) = [e(@): ¢(5)] < P1(C) = Cu w0},

with [z : ] denoting the standard projective coordinates of P1(C). Note that this
map agrees with ¢’ in [Kak13| §2.4]. We further note that deta® = ((deta)!)™*

67
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for any a € K1 (Oc[[I']]s)- Since §: Oc[[T]]s = Oc[[I']]s maps v €I to v~ and is
given by the identity on O¢, we conclude that

(4.1.1) 0(a®) = p(a)™".
Finally, note that the diagram
K1 (Oc[t]s,) = (C[t]1))"
lm l;‘»[fu):g(l)]
K1 (Oc[[]s) — P'(C)

commutes for any choice of y € I' with «v # 1. On the right downward pointing map,
L denotes a reduced fraction.

Let F be a global field of characteristic p > 0. Consider an Artin representation
p:Galp - Glg(O¢) (i. e. with open kernel) over O¢. We will write

p*:Galp - Glg(O¢), g P(g_l)t

for the dual representation. Any Artin representation may also be considered as
a O¢-adic sheaf on Spec F' whose global sections over Spec F' is the module of
invariants of p under Galp for each field F' ¢ F. We will not distinguish between
the representation p and the corresponding Oc-adic sheaf.

Fix two open dense subschemes U c W c X. We set

Z:ZX—M/, T=W-U

and assume that £ is invertible on T. Since the image of Gal(F,/F,) in Glg(O¢)
is finite, the base change of p to C is automatically a simi-simple representation of
Gal(F,/F,). For any z € X, we let p, denote the representation of Gal(F2"/F,)
obtained from p by restricting to Gal(F,/F,) and then taking invariants under
Gal(F,/FM™).

For any open dense subscheme V of X, we write V? for the set of closed points
of V. Let «:Q, - C be an embedding of Q, into the complex numbers. We can
then associate to the complex Artin representation « o p the classical 3-truncated
T-modified Artin L-function with the product formula

el det(1-aop,(F.)al™)
L o p, = d t(1 - O Pgx x )Yz ! .
Z,T(a 1% S) Igo € ( aop (S )q ) J!;IT det(l _ aopm(gx)qa—cs)

for Res > 1. Note that we follow the geometric convention of using the geometric
Frobenius in the definition of the Artin L-function as in [CL73].

Write n:Spec F' — U for the generic point of U and assume for simplicity that
p is unramified over U, i.e. for each z € U, the restriction of p to Gal(F,/F™)
is trivial. Then p corresponds to the smooth Og-adic sheaf 7.(p) on U ¢ W
defined by and therefore, to an object in PDG™ (U, O¢). Analogously, p*
corresponds to 7. (p*) = (n«p)*°c.

Assume that £ # p. From , , and we conclude
P(Lryesr (T, REM(p) (1))
_ {[1 det(1 - p(3.)4:")] ifael,
[det(1 - po(Fa)az ™) + det(l - po(Fa)az")] ifweT,
P(LE,,. (@ kma(p)(n))

[[det(1 - p2(F)ar ) ¢ 1] ifoeU,
[det(1 - pi(Fa)ah™") - det(l - p}(Fe)qy)] ifweT,

(4.1.2)
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where ¢, denotes the number of elements of the residue field k(x). Note that
det(1-p,(Fz)g;"™) = 0if and only if n = 0 and p, contains the trivial representation
as a subrepresentation.

In particular, we have

Lyr(aopn) = [ a(e(Lryr(zREa.(p)(1))))
zeW?o

= T1 ale(£s, oo b ()0 =)

for all integers n > 1.
If £ =p and n = 0, then we still have

P(LEeyesr(@:m:(p))) = [1: det(1 = pu(Sz))]

if veU. If z € T, we use the definition of Lp,__/p(z,RE«n.(p)) from Remark
and obtain

P(LFeye/r (2, RE1(p))) = [det(1 = pa () qz)  det(l - pr(S2))]-

Assume that F' is a function field. As before, we let ¢ denote the number of
elements of the algebraic closure F of the prime field IF,, in F. It follows from the
work of Weil [Weid8] that there exists a unique element

Z(W.Rkun.(p),t) e Ki(Oclt]s,) = (Oc(t](t,0)* = Oc[[t]]* nC(t)"
such that
a(Z(W,Rk..(p),q ™)) = Ly w(ao p,n) e PH(C)

for all integers n.

DEFINITION 4.1.1. Let F' be a function field of characteristic p and n be an
integer. If £ = p, we assume n = 0. Write 4 for the image of the geometric Frobenius
automorphism §r of F in I' = Gal(Feye/F'). The f-adic L-function of R k.n.(p) is
given by

Ly p(W.R k. (p) () = Z(W, Rk (p), ¢ ") e Ki(A[[T]]s)-
From now on, we let F' denote a totally real number field and assume ¢ # 2.

By [CL73l Cor 1.4] there exists for each n € Z, n < 0 a well defined number
Ly, v(p,n) € C such that

a(Ls,v(p,n)) =Ly (o p,n)eC
Consequently,
LEI7T'(p7n) = LZ,T(pan) H QD(;CFCYC/F(;U’Rk*n*(p)(n)))fl
zeX/UT/-3uT

if ¥ ¢ ¥ and T ¢ T’ with disjoint subsets ¥’ and T’ of X such that p is unramified
over X - X' - T’ and /£ is invertible on T”.
Let kp:Galp — Zj denote the cyclotomic character such that

o(Q) = ¢

for every o € Galp and ( € pg~. Further, we write wp:Galp — pp_q for the Te-
ichmiiller character, i.e. the composition of xkr with the projection Z; — pe_.
Finally, we set ep = krpw! and note that e factors through I" = Gal(FcyC/F).
Assume that p factors through the Galois group of a totally real field extension
of F. Then 7n.(p) is smooth at co. Assume further that U = W, such that T is
empty. Under Conjectureit follows from |[Gre83| and from the validity of the
classical main conjecture that for every integer n there exist unique elements

Lp,op(Un(pwp)(1-n)) e Ki(Oc[[I']s)
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such that
Pen (L r(Un(pwp)(1-n))) = Li, . r(Un:(p)(1)),
O(LEyer(Uns(pwr)(1-n))) = Ly g(pwp, 1 =n) ifn>1.

with ®c» as defined in Example W Beware that Greenberg uses the arithmetic
convention for L-functions.

(4.1.3)

DEFINITION 4.1.2. Let v € I" be a topological generator. We define the global
modification factor for n.(pwi)(1) and f:Up,,. — U to be the element

cyc

M, 1p A (U (p)(1)) = L, r (U n(p) (1)) sy ([RT(U, f1f " 1:(p)(1))])
in K1 (Oc[[T]))-

If p has ramification over U, we will see later in Section that we can still
associate a O¢-adic sheaf 1. (p) on U to p. In general, this sheaf will not be smooth.
Still, all other results in this section can be extended in an obvious manner.

4.2. Non-Commutative L-Functions for Really Admissible Extensions

Let F be a totally real number field and ¢ # 2. Throughout this section, we make
use of Conjecture [3.3.4 We recall the main theorem of [Kak13].

THEOREM 4.2.1. Let U c X be a dense open subscheme with complement ¥ and
assume that ¢ is invertible on U. Assume that Fo [ F is a really admissible extension
which is unramified over U and that G = Gal(Fs/F) is an £-adic Lie group. Then
there exists unique elements £~FW/F(U7 (Zo)u (1)) € Ki(Ze[[G]]5)/SK1(Z[[G]])
such that

(1)
dLp. r(U,(Ze)u(1)) = =[RTe(U, fif " (Ze)u (1))],
(2) For any Artin representation p factoring through G

©,y(Lr./r (U (Z)u (1)) = Liyor (Ui (p)(1))

Proor. This is [Kak13l Thm. 2.11] translated into our notations. Recall that
our ¢ R corresponds to ® ;= in the notation of the cited article. Moreover, Kakde
uses the arithmetic convention in the definition of L-values. Further, note that
the (-adic L-function L, r(U,n.(p)(1)) is uniquely determined by the values
O(Pen (Lry./r(U,n:(p)(1)))) for n <0 and n = 0 mod £ - 1. Finally, Kakde’s
complex C(Fu [F) corresponds to R (U, fif*(Z)y (1)) shifted by 3 and therefore,
the images of the two complexes under d differ by a sign, but at the same time, his

definition of d differs by a sign from ours. O

We will improve this theorem as follows. Let E = Zr be the set of pairs (U, Fi)
such that U c X is a dense open subscheme with ¢ invertible on U and F/F is a
really admissible extension unramified over U.

THEOREM 4.2.2. Let v € I' = Gal(Feye/F) be a topological generator. There
erists a unique family of elements

(Mpm/F,'y(Uv (ZZ)U(U))(uFm)eE
such that

(1) Mpyry (U, (Ze)u (1)) € Ky (Z[[Gal(Foo /[ F)]]),
(2) if U cU" with complement ¥ and (U, F),(U', Fo) € 2, then

M (U (Ze)ur (1)) = Mg p (U, (Ze)u (1) [T M jpy (2, (Ze)u (1)),

ey
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(3) if (U, Fw), (U, FL) € 2 such that F., c F is a subfield, then
Uz, r1GairF /)] MeLpy (U, (Ze)u (1)) = My e (U, (Ze)u (1)),
(4) if (U, Fs) € 2 and p:Gal(Foo [ F) — G1,(O¢) is an Artin representation,
then
P, (M ry (U, (Ze)u(1))) = Mp, 1p (U 1. (p)(1))
with Mg, 7~ (U,n«(p)(1)) as in Definition .

PROOF. Uniqueness: Assume that my(U, Fs), k = 1,2 are two families with
the listed properties. Then

d(Fs) = ma(U, Foo) 'my (U, Fao)

does not depend on U as a consequence of (2).

Let (U, Fo) € 2 be any pair such that Fo/Feyc is finite and write f:Up, - U
for the system of coverings of U associated to Fo/F. Then (4) implies that the
elements

m;i(U, Foo)sy (=[RTc(U, fif " (Ze)u (1))])
both agree with ZFM/F(U, (Z¢)y (1)) modulo SK,(Z[[Gal(Fs/F)]]). Hence,
By Corollary we may find a pair (U’,F.) € E such that F. /F. is finite,
U' cU, and
(420) U ggaenm SR Zel[Gal(FL/F)]]) » Sy (Ze[[Gal (Fu/F)]])

is the zero map. We conclude from (3) that d(Fs) =1 for all (U, Fo ) With Foo/Foyec
finite. Now for any really admissible extension Fo,/F,

K1 (Ze[[Gal(Feo/F)]]) = im Ky (Z[[Gal(FL, /F)]])
FL,

where F[, runs through the really admissible subextensions of Fo,/F with F., [Fey.
finite [FKO06, Prop. 1.5.3]. We conclude that d(Fs) =1 in general.

Ezistence: It suffice to construct the elements for (U, Feo) € E with Foo/Fye
finite. Choose (U’, F.,) as above such that the map in (4.2.1)) becomes trivial. Pick
any m € K1(Z,[[Gal(FL/F)]]) such that

ms,(=[RT(U, fif " (Ze)u(1))]) =
Lro e (U, (Z)n (1)) mod SRy (Ze[[Gal(FL/F)]])
Define

M 1py (U (Ze)u (1)) = Uy, 1cairmyp(m) [T Mejpq (@, (Ze)u(1)).
xeU-U’

By Proposition and Proposition [3.5.4] we conclude that
M pa (U, (Ze)u (1)) sy (<[RTe(U, fif*(Ze)u (1)) = Lp e (U, (Ze)u (1))
mod SK; (Z[[Gal(Fu /F)]])
and that Mp_ g~ (U, (Ze)y (1)) satisfies
Dp(Mr./ry (U, (Ze)u(1))) = Mp.y. 7y (U (p) (1))
for any Artin representation p: Gal(Fs/F') - Glg(Oc¢). In particular, the system
Mpeypy (U (Ze)u(1))) (o U)ez

satisfies (1) and (4). By construction and again by Proposition it is inde-
pendent of the choices of (U’, F.,) and m and satisfies (2) and (3). O
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COROLLARY 4.2.3. There exists a unique family of elements

(ﬁFm/F(Ua (ZK)U(I)))(U,FN)eE
such that

(1) Lryr(U,(Ze)u (1)) € Ki(Zo[[Gal(Foo /F)]]5),
(2) if (U, Fs) € Z and f:Up, - U denotes the associated system of coverings,
then

dLp 1r(U,(Ze)u (1)) = =[RT(U, fif (Ze)u(1))]
(3) f U' c U with complement ¥ and (U', Fw), (U, F) € 2, then

Lrp(U,(Ze)u(1)) = Lpyr (U (Ze)u: (1)) ] Lreyr(z, (Ze)u (1)),
red

(4) if (U, Fe),(U,FL) € E such that F., c Fy is a subfield, then
Yz, (1calrL /P (Lr/r (U, (Ze)u (1)) = Lrr 7 (U, (Ze)u(1)),
(5) if (U,Fw) € E and p:Gal(Fo/F) - Gly(O¢) is an Artin representation,
then
@, (Lpp(U,(Ze)u(1))) = L, /r(U;n<(p)(1)).

Proor. Fix a topological generator v € I' and set
Lpp(U,(Z)u(1)) = Mp_jpy (U, (Ze)u (1)) sy (= [RTe(U, fif* (Ze)u (1)) ])-

If (L(U, Feo))(U,F..)ez 1s a second family with the listed properties, then

L(U, Fuo )5 ([RTe(U, f1f*(Ze)u (1))]) = My (U (Ze)u (1))
by the uniqueness of Mpg_ (U, (Z¢)u(1)). O
Let © = O be the set of triples (U, Fo,A) such that U c X is a dense open

subscheme with ¢ invertible on U, F /F is a really admissible extension unramified
over U and A is an adic Zy-algebra.

THEOREM 4.2.4. Let v € T' = Gal(Feyc/F) be a topological generator. There
ezists a unique family of homomorphisms
(M jrn (U, (-)(1)): Ko (PDG™™ ™ (U, A)) ~ Ki (A[[Gal(Fuwe /F)]]))
such that

(1) for any (U, Foo,Zy¢) € ©, Mp_p~(U, (Z¢)y (1)) is the element constructed

in Theorem [{.2.3,
(2) if j:U" = U is an open immersion and (U', Fo,A), (U, Foo,\) € ©, then

M jpy (U, F2 (1) = My e (U 57 F(1) T[] Mesey(z,7°(1)),
xeU-U"’

(U,Fe,\)e®

for any F* in PDG®""> (U, A).
(3) if (U, Foo, A), (U, FL,A) € © such that F., c Fu is a subfield, then

Uz, r1Gair /)] (Megpy (U, F2(1))) = Mg e (U, 72(1)),

for any F* in PDG®""> (U, A).
(4) if (U,Fo,N), (U, Foo,A") € © and P* is a complex of N'-A[[Gal(Fw/F)]]-
bimodules, strictly perfect as complex of A'-modules, then
Y prical(Fu/m)])5* (ML A (U, F2(1))) = MipAy (U, W p (F°)(1))

for any F* in PDG""* (U, A).
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PrOOF. Applying (4) to the A/I-A[[G]]-bimodule A/I[[G]] for any open two-
sided ideal I of A and using

Ky (A[[G]]) = lim Ky (A/I[[G]D),

Tedp

we conclude that it is sufficient to consider triples (U, Foo,A) € © with A a finite
ring. So, let A be finite. Since Mp_;p~(U, °(1)) depends only on the class of

F* in Ko(PDG®""> (U, A)), we may assume that 7* is a bounded complex of flat
constructible étale sheaves of A-modules. Using (2) we may shrink U until F° is a
complex of locally constant étale sheaves. Hence, there exists a (U, F. ,A) € © such
that Fo,/F is a subextension of F. /F and such that the restriction of ¥°* to Uk for
some finite subextension K/F of F. /F is a complex of constant sheaves. By (3),
we may replace Fo, by F.,. We may then find a complex of A-Z[[Gal(Fw/F)]]-
bimodules P*, strictly perfect as complex of A modules and a weak equivalence

Upe fif (Ze)u(1) = #°(1)
[Wit14| Prop. 6.8]. By (4), the only possible definition of Mp_/r (U, #°(1)) is
MFm/F,v(Uv T.(l)) = \IJP[[Gal(Foo/F)]]‘;'(MFDQ/F,’Y(Uv (ZZ)U(]-)))

It is then clear that this construction satisfies the given properties. O

THEOREM 4.2.5. Let v € I' = Gal(Feyc/F) be a topological generator. There
erists a unique family of homomorphisms

(M1 (U3 Ko(PDG= (U, A)) > Ky (A[Gal(Ewe /ID)

such that
(1) for any (U, Fo,Zy) € O,
M?;m/F,'y(Uv (Ze)v) = (Mp_ypy (U, (Ze)u(1)))®
(2) if j:U" = U is an open immersion and (U', Fo,A), (U, Foo,\) € ©, then

M?‘x/F,v(U’-{F.) = M?;N/F,W(U,7j*f.) H M?‘M/F,»y(m7}—'),
zeU-U'

for any F* in PDG""> (U, A).
(3) if (U, Feo,\),(U,FL,A) € © such that F., c Fy is a subfield, then

Vg, t1Gai(r o)) (M e (U, F5(1))) = MS, 0 (UL F°),

for any F* in PDG""> (U, A).
(4) if (U,Fo,N), (U, Foo,A") € © and P* is a complex of N'-A[[Gal(Fw/F)]]-
bimodules, strictly perfect as complex of A'-modules, then

U p(ical(Fu/m)])* (ME_ 5 (U, F*) = MG p (U, 5. (F°))

for any F* in PDG""> (U, A).
Moreover, for any (U, Fe,\) € © and any smooth A-adic sheaf F on U, we have

M?;w/Fﬁ(Ua F)=Mp (U, F2(1)))%.

PROOF. We proceed as in Theorem and use Lemma [2.7.3 O
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PROPOSITION 4.2.6. Assume that 7,' are two topological generators of T.
Then

M.,
T U (1) = ZH(RT(UAF (1))
Foo| Fy' Sy
MF F S(~)-1
T (U F) = S (RIUA 7))
Fuo/Fy' Syt
for any (U, Fs,\) € © and any F* in PDG""(U, A).
PROOF. By definition, these identities hold for the local modification factors
and by Corollary and Proposition they hold for F* = (Z;)y. Hence,

M iy (U, 7° (1) = ZX([RTC(U, if* 7 (D)) M (U, (1))

Sy

Mo, (U, F%) = " (R, fif* FODME_ i (U 5°)

by the uniqueness assertion in Theorem [.2.4 and Theorem O

THEOREM 4.2.7. Let F'|F be a finite extension of totally real fields. Set r =
[F' 0 Feye : F]| and let v € Gal(Feyo/F) be a topological generator. Assume that
(U, Fe,N) € O with F' ¢ Fo, and write fp:Up: - U for the associated covering.
Then

(1) for every F* in PDG"">(U,A),
M 1p e (U, [ 70 (1)) = VaGal(Fu /)N M Fa 77 (U, F° (1)),
MG o e Urr f10 F°) = Ua[Gal (e M 4 (U F )5
(2) for every G* in PDG">(Up:, A),
M jpy (U, fr. 6% (1)) = Yagcal(Fu/p) )M Ewpr A (Urr, 67 (1)),
MG 14U, f7.G°) = OarGal(Fa ) IM B 7 4 (U7, G-
PROOF. We prove the identities for the global modification factors; the proof
for the global dual modification factors is the same.
We first note that for any complex P*® of A’-A[[Gal(Fw/F)]]-bimodules, strictly

perfect as complex of A’-modules, there exists an obvious isomorphism of complexes
of N'[[Gal(Fs/F")]]-A[[Gal(Fs/F)]]-bimodules

N'[Gal(Fuoo/F)]] ® Ar{[Gal(Fo /)] P[[Gal(F [P =

P[[Gal(Fuoo /F)]T°" @ ((Cal(Fo/y) Al [Gal(Foo/F)]].
Hence,

(42.2)  Wpr[(cal(Fu/P)]] © Y P[[Gal(Foo/F)]15* = ¥ P[[Gal(Fo/F1)]15* © YA[[Gal(Fuo/ F)]]
as homomorphisms from K;(A[[Gal(Fw/F)]]) to Ki(A'[[Gal(Fw/F')]]). Like-
wise, for a complex Q°® of A’-A[[Gal(Fs/F')]]-bimodules, strictly perfect as com-
plex of A’-modules, we have an equality

(4.2.3) Varicai(ra/m © YercaFa/m)e = YoriGalra /e © YAlGal(Fu /)]
in Hom (KK (A[[Gal(Fao/F")]]), K (A'[[Gal (Fao/F)]])).
In particular, we may reduce to the case of finite Z,-algebras A by choosing
= A = Q° with the trivial action of Gal(Fs/F') and Gal(Fw/F"), respectively.
By Proposition (4) we may then shrink U until 7* and G* may be assumed to

be strictly perfect complexes of locally constant étale sheaves. Using the identities
(4.2.2) and (4.2.3) again, we may reduce to the case A = Zy and F°* = (Zy)y,
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G* = (Z¢)v,,. We may then further reduce to the case that Fu /I, is a finite
extension.
Setting

. M jpr A (Upr [ (Ze)uy, (1))
Y a[[Gal(Foo/ FYNM PPy (U, (Ze)u (1))

q = M py (U, fEr (Ze)u,, (1))
YariGal(Fu/P)IM F 77 3 (Uprs (Ze)u (1))

e K1 (A[[Gal(Fuo/F")]]),

e Ky (A[[Gal(Foo/F)]]),

it suffices to show that ¢ =1 and ¢’ = 1.
Let ¢:Ug,, - Ups denote the restriction of f:Up_ — U. Write

M = Z,[Gal(Fa /F')\ Gal(Fuo | F)]

for the Z-Z[[Gal(Fw/F)]]-bimodule freely generated as Z;-module by the right
cosets Gal(Fo/F)o for o € Gal(Fow/F) and on which 7 € Gal(F,/F) operates by
right multiplication. From Proposition [3.3.2] we conclude
Yz, tical(Fu/m)) RTc(U, fif *(Ze)u (1)) ~ RT(U, fr919" fi(Ze)u (1))
~RTc(Upr, 919" (Ze)v,. (1)),
Uz, 1cal(Fu/F)]] RT(Urr, 919" (Ze)v,., (1))
~ Vg, rcal(Fou/F)) RU U, fEro919" (Ze)u,., (1))
~RT(U, fif* fr . (Z¢)v,. (1))
~ U prtical(Fu/m)]1s RE(U, fif (Ze)u (1)).
Additionally, we note that

M 1p (U, frr(Ze)u (1)) = ¥ argrcai(pu /p)])s M Ewjy (U (Ze) (1))

by Theorem
From this and from Proposition we conclude

B Lpyr(Ur, (Ze)u,, (1))
= VGal(Fu /) £ P e (Us (Ze)u (1))
o YargealFam)) s L p (U, (Ze)u (1))
 Uagal (/P LFny (Upr, (Ze)u (1))
Let C'/Qq be a finite field extension and
p':Gal(Fo/F") - Gla(Oc)
p:Gal(Fo [ F') = Gla(Oc)

be Artin representations. Write

or:Oc[[Gal(Feye/F)]] = Oc
pr:Oc[[Gal(Fy./F")]] - Oc

for the augmentation maps. We denote by Indg, p and Resg p the induced and
restricted representations, respectively.
Then for every n € Z

Pr o ®pen, o Vg, [[Gal(Fu /)] = PF © Prnar, pren, = PF O Pen 1ndF, o
as maps from K;(Z[[Gal(Fx/F)]]s) to P*(C) and

PF © Loy © Vg, [[Gal(Fu/F)]] = PF O Pres pen = PF 0 Pen gesr
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as maps from K (Z¢[[Gal(Fw/F’)]]s) to P*(C). From (4.1.3) and the transfor-
mation properties of the complex Artin L-functions with respect to inflation and
restriction we conclude that for n < -1 and X=X -U

rr o Ppen (VariGal(Fu /P LFu 7 (U, (Ze)u(1))) =
= Ly g(wp" Indk, o', 1+ n)
=Ly, g(p'wp', 1+n)
=pp o Ppyen (Lrr(Urr, (Ze)u,, (1)),

©F © Ppen (Va[[Gal(Fo /)Py p (Urr, (Ze) v, (1)) =

=Ly, g(wg Res? p,1+n)
=Ly g(wr" Indgl Res? p,1+n)
=¢r o P e pesr ,(Lreyp (U (Ze)u(1))))
= ¢r 0 Ppen (V(Gar(Fu/m) )1 Lrnyp (Us (Ze)u (1))).

From [Burl5l Lem. 3.4] we conclude that ®,(¢) = 1 in K;(O¢[[T']]) and thus
0 (®,(q)) =1in C for every Artin representation p’ of Gal(Fo/F"). In particular,
with K running through the finite Galois extension fields of F' in Fi, the images
of ¢ in the groups K;(Q¢[Gal(K/F')]) are trivial. This implies

¢ € SK1(Ze[[Gal(Fuo/F)])).

Using Corollary we find a suitable admissible extension Lo, /F unramified over
U’ c U such that

Uz, ((Gal(Fu/F)]) SK1(Ze[[Gal(Leo /F")]]) = SK1(Ze[[Gal(Foo/F')]])

is the zero map. As

. ( M1 (U, i (Ze)ur, (1)) )

q= al(Foo /[ F’ )

ZeGAEIEMN W Gt M i (U7 (Ze) o (1))

we conclude ¢ = 1. The proof that ¢’ = 1 follows the same pattern. O
DEFINITION 4.2.8. Let F be a totally real field, k:U — W be an open immersion

of open dense subschemes of X = Spec O such that ¢ is invertible on W, and A

be an adic Zg-algebra. Fix a topological generator v € Gal(Feyc/F'). For any 7° in

PDG""*(U,A), and any really admissible extension F.,/F unramified over U,
we set

Mp jpy(W,REF(1)) = Mp_ (U, (1)) H M (2, RESfifF°(1)),

xeW-U

M p (W Rk F*) = MS,_ (U, f‘leg_l]/\/lj?ﬂm/pﬁ(x, kfif*7°)

in K (A[[Gal(Fw/F)]]) and

Lr r(W.REF*(1)) = Mp_jpy (W, REF* (1)) sy (- [RTc(W, RE. fif* F°(1))]),
L Wik F®) = MS_ o (W ki F®)s,a (RT(W, ki fif*7°)])

in Ky (A[[Gal(Fo/F)]]s)-

Note that we do not assume that F,,/F is unramified over W. If it is unramified
over W, then

RL(W, Rk fif* #°(1)) = RTe(W, fif* Rk, F°(1)),
RT(W,kifif*F*) = RD(W, fif "k F*)
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and the two possible definitions of Mp_/p(W,RE,F*(1)) and M?}w/FW(VV, kiF*)
agree. Moreover, by Proposition , Lp_r(W, Rk, 7°(1)) and E}@;w/F(T/V, kiF*)
do not depend on the choice of 7.

In the following corollary, we compile a list of the transformation properties of
Lp.p(W,REk.F°(1)) and E?;w/F(W kF*).

COROLLARY 4.2.9. Let F' be a totally real field, k:U — W be an open immersion
of open dense subschemes of X = Spec Op such that £ is invertible on W, and A be
an adic Zy-algebra. Fiz a F* in PDG®" (U, A), and a really admissible extension
Fo | F unramified over U.

(1) Write f:Up.,, - U for the system of coverings associated to Fo[F. Then
dLr  r(W,RE.F°(1)) = = [RT(W,RE. fif* #°(1))],
AL jp(W ki F*) = [RD(W, ki fif* F°)]
(2) If G* and F* are weakly equivalent in PDG"> (U, A), then
Lr r(W.REF*(1)) = Lr/r(W,RE.G*(1)),
Lo ppWokiF®) = L3 p (W, krG*).

(3) If 0 > F'° > F* - F"* > 0 is an ezact sequence in PDG** (U, A),
then

Lrrp(WREF (1)) = Lpp(W,RE.F' (1)L (W, Rk F"" (1)),
E?‘w/F(W kg,‘f.) = E?;w/F(VV, k!flo)c?;m/F(Wa klg'—".)-

(4) If W' is an open dense subscheme of X on which ¢ is invertible and
E':W — W’ is an open immersion, then

Lp ip(W R(EER)F°(1)) =L p(W,REF°(1))
H EFw/F(va(k,k)*fr.(l))a

zeW'-W
L8 (W (KEnF*) =LE_ (W, kyF*)

[T L% r( (KE)F®).
w

zeWi—
(5) Ifizx - U is a closed point, then
Lr.jrW Rk TF (1)) = Lpyr(z, 7°(1)),
LY Wk Ri'F*) = L o2, 7°).

(6) If FL,/F is a really admissible subextension of Fo [F, then

Varca(rr /o (Lrep(W,REF(1))) = Li (W, RELF(1)),

U arcai(r /o (Lo p (W ki F®)) = LT (W R F®).

(7) If P* is a complex of N'-A[[Gal(Fw/F)]]-bimodules, strictly perfect as

complez of A'-modules, for another adic Z¢-algebra A, then
U plical(Fu/m)]15* (Lrp (W, REF* (1)) = Lryp (W RE U 5. (F°)(1)),

U p(iGai(rum)))0* (Lo p (WK F)) = LT (W kW 5. (F7)).

(8) If F'|F is a finite extension inside Foo and fp:Upr — U the associated
covering, then

Uarcal(Fa/m)]) (Lrap (W, REF(1))) = Lp (W, REs [ F°(1)),
\IIA[[Gal(Fm/F)]]([f}O;w/F(VVa k) = ﬁ%*w/F/(WF’v kifr F*®).
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(9) With the notation of (8), if G* is in PDG“""* (U, \), then
Y A((Gal(Fo /PN (L P/ (WP, REG* (1)) = L jr (W, Rk frr,. G%(1)),
U arGal(Fu /)] (Lo o (WE k1G*)) = LT (W ki frr, G°).
(10) If ¥ is a smooth A-adic sheaf on U which is smooth at oo, then
LE Wk F) = (Lrop(WREF(1)))°.
(11) If C)Qy is a finite field extension and p:Gal(Fu/F) — Glg(O¢) is an
Artin representation, then
Ppern (Lrop(W, Rk (Ze)u (1)) = Ly, r (W, Rk (pwpp) (1 -n)),
Cpen (L3 jp (W REAZe)v)) = LE, /e (W, Rk (pwp") (1),

for any integer n.

(12) If C/Qy is a finite field extension and p:Galp - Glg(Oc¢) is an Artin
representation which factors through a totally real field and which is un-
ramified over U, then

O(Lp, r(W, Rk, (pwi)(1-n))) = Ly r(pwp, 1 - n),
e(LE,, . p (W ks (pwi") (n))) = Ly, (W, 1= n) ™!
with X=X -W, T=W -U and any integer n > 1.

PROOF. Properties (1)—(4) are clear by definition. For Property (5) we notice
that for y e W

Lpyr(z, (1)) ify=uz,

Lpp(y, Rk, F°(1)) = {1 else

Hence,
ﬁFw/F(VV,Rk'*i*Z.*,‘F.(l)) = ,CFDQ/F(UJ*Z.*T.(I)) = ‘CFm/F(x7 _'7’-.(1))

by (4) and by Theorem [£.2.4](2). The proof for the dual L-function is analogous.

Properties (6) and (7) follow from Theorem [4.2.4] or Theorem combined
with Proposition and either Proposition[3.5.4or Proposition[3.5.8] For Proper-
ties (8) and (9) one applies Theorem [4.2.7} Property (10) follows from the last part
of Theorem [4.2.5] combined with Proposition [2.9.3]and Proposition [3.5.9] Property
(11) is just a special case of (7) in a different notation.

It remains to prove (12). The first identity is simply the combination of
and . The second identity follows from , Property (10) and the first
identity. O

4.3. CM-Admissible Extensions

DEFINITION 4.3.1. Let F be a totally real number field and Fi,/F an admissible
extension. We call Fo /F CM-admissible if F,, is totally imaginary and there exists
an involution ¢ € Gal(Fw/F') such that the fixed field FY, of ¢ is totally real.

Let F be a totally real number field and ¢ # 2 throughout this section. Note
that for a CM-admissible extension F.,/F with Galois group
G = Gal(F/F),
the automorphism ¢ is uniquely determined and commutes with every other field
automorphism of F.,. As usual, we write
1-2 1+
= =—— e A[[G]].
et et eAlG]]
for the corresponding central idempotents.
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The extension F /F is Galois and a hence, a really admissible extension. We
set G* = Gal(FZ%/F). Moreover, we fix as before an immersion k:U — W of open
dense subschemes of X = Spec F' such that F,/F is unramified over U and £ # 2 is
invertible on W. Let

f+: UF:o — U
denote the restriction of the family of coverings f:Ur,_, — U to Ur:.

If Fs contains the ¢-th roots of unity and hence, the ¢"-th roots of unity for
all n > 1, the cyclotomic character

kp:Galp > 5, gC=("9 geGalp,( e pp

factors through G = Gal(F./F). We then obtain for every odd n € Z a ring
isomorphism

A[[GT] = A[[G < A[[GL]), Gage (97, mr(9)"97),

where g* denotes the image of g € G in G*. The projections onto the two compo-
nents corresponds to the decomposition of A[[G]] with respect to e, and e_.
We will construct the corresponding decomposition of A(A[[G]]), where

NG {PDGcont,wHPDGCOHt,PDGCOHt’wH}.

Write A(k%:)! for the A—A[[G]]—bimodule A with g € G acting by k"%(g™') from the
right and A(x7%)![[G]]° for the A[[G]]-A[[G]]-bimodule A[[G]] ®A A(k%)F with
the diagonal right action of G. According to Example [2.6.1] we obtain Waldhausen
exact functors

Yaepyrirens: AMIG]]) ~ AA[[G]D)-
Moreover, considering A[[G+]] as a A[[G*]]-A[[G]]-bimodule or as a A[[G]]-
A[[G*]]-bimodule, we obtain Waldhausen exact functors

Uapep AMIG]D) > AA[[GT]D,  ¥agep AA[IGT]]) — AA[[G]D).
Note there exists isomorphisms of A[[G]]-A[[G]]-bimodules
e+ A[[G]] 2 A[[GT]] ®aqiae AIGT]]
e A[[G]] 2 A(kp)MIGT]’ ®aren e ALLGT] @aray AsE)IG]T’
for every odd n € Z such that the composition
Yare+y © Yarer AA[[G]]) -~ AA[[G]])

is just the projection onto the e,-component, whereas the projection onto the e_-
component may be written as

YA I @arenAllc]] © YAl leagepatgmtiens AMIG]]) ~ AA[[G]]).
We further note that
Uagenysrens SFF0) 2 fif 70 (n).
If A’ is another adic Zg—algebra and P* is a complex of A’-A[[G]]-bimodules,
strictly perfect as complex of A’-modules, we set

(4.3.1) P! = P%e,, P*:=P%_
such that ¢ acts trivially on P and by —1 on P°. Both are again complex of A’-

A[[G]]-bimodules and strictly perfect as complex of A’-modules. In particular, we
have an isomorphism of complexes of A'[[G]]-A[[G]]-bimodules
P[[G]]*" 2 P.[[G]])" e P_[[G]]°
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Beware that P,[[G]]°" differs from P[[G]]°"e,. The element ¢ acts as :®id on the
first complex and trivially on the second. In fact, we have

PG er = e PG, P.[[G]]e- = e-P[[G]]",
P[], = - P[[G])", P[G])"e- = e, P[[G])""
Moreover, the Waldhausen exact functors
PDG“"(U,\) - PDG*™(U,A"), T Upe(F°),
PDG™(U,A) > PDG™(U,A"),  F*w U5+(F*)(1)
map complexes in PDG®" (U, A) to complexes in PDG""* (U, A").
Throughout the rest of this section, we make use of Conjecture

COROLLARY 4.3.2. Assume that Fo [F is any CM-admissible extension unram-
ified over U. For any F* in PDG "> (U, A), the complezes

ex RUc(W,REfif"F°(1)), e-RU(W,REASF®),
ex RT(W kifif*7°), e-RT(W ki fif*#°(1))
are in PDG"" 4 (A[[G]]).

PRrROOF. Without loss of generality, we may enlarge F., by adjoining the ¢-th
roots of unity. The claim of the corollary is then an immediate consequence of

Theorem applied to
Uare- ] (RT(W,RE. fif*F°(1))
Uara n(RTW, ki fif*F°)
Yarie oaenAtsmiicl)s RT(W. Rk fif* %)
YariG NearenAtghial (REW, ki f 72 (1))

~RTC(W,RE(f)(f*) F°(1)),
~RT(W, k(f () F®),
~RT(W, RE(f1(f7) F° (1)),
~RE(W, B(f" 0 () F7)

~— ~— — —

O

Assume that F/F is CM-admissible and that F, contains the ¢-th roots of
unity. For any 7* in PDG®"> (U, A), we set
Ly r(W,REF*(1)) = Upra)(Lryr (W, REF°(1))),
L3 pWokiF®) = Uara) (L5 p (W, ki F)),
Lpp(W.REF®) = Uy eyanengenalic)) (Lrep(W,REF(1))),
E?i;;/F(VK i F (1)) = U a(epyicengenalics ) (Lo p (W ki F*))

in K1 (A[[G]]s). We extend this definition to CM-admissible subextensions F_ /F
with F!, not containing the ¢-th roots of unity by taking the image of the elements
under

U ar(Gai(r /e K1 (A[[G]]s) > K (A[[Gal(FL,/F)]]s)-
Furthermore, for € € {+,-}, z ¢ W and 7* in PDG®™ (U, A) we set
T p (T REF) = o aqian(Lr (e, REF®)),
LE5 (@ ki) = Ve aqon (L3 jp (2. ki F*)).

We will write —¢ € {+, -} for the opposite sign.

Assume that C'//Qy is a finite field extension and p: Galp — Glg(O¢) is an Artin
representation unramified over U. If p(c) = —id for every complex conjugation
o € Galp, then p factors through a CM-extension of F. In particular, n.(pwz") is
smooth on U and at oo and we may define elements

(432)  Loyr(WREm. () (-n)), L2 (W ki () (1 - n))
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-1, n+l

by identifying 7. (pwi)(—n) with 7. (pwr wE)(1 - (n+1)). In particular,

(EFcyL/F(W REn.(pwi)(-n))) = L, 1(pwi, —n),
e(LE,, p (W ks (pwr") (1= n))) = Ly, (p W, —n) ™

with X = X -W, T =W - U and any integer n > 0. If p is any Artin representation
that factors through a CM-extension, then we can decompose it as in (4.3.1]) into
two subrepresentations p, and p_ such that

p+(0)=id,  p-(0)=-id
for all complex conjugations o € Galp.

COROLLARY 4.3.3. Let F' be a totally real field, k:U — W be an open immersion
of open dense subschemes of X = Spec Op such that ¢ is invertible on W, and A be
an adic Zg-algebra. Fiz a F°* in PDG™= (U, A), and a CM-admissible extension
Fo | F unramified over U. If € = +, we choose n to be an even integer. We choose
n to be odd if € = —.

(1) Write f:Up, — U for the system of coverings associated to Foo[F. Then
ALy ;p(W,REF*(1+n)) = —[e: RT(W, Rk fif F* (1 +n))],
ALy p (W ki F* () = [e: RD(W, ki fif* F°(n))]

(2) If G* and F* are weakly equivalent in PDG ™" (U, A), then

o p W REF* (14 0)) = L5 (W R KL G (1+ ),
£22 (W g () = £3°, (Wi kG* (n).

(3) If 0 - F'* - F* - F"* - 0 is an exact sequence in PDG™> (U, A),
then

Lo p(W Rk F (14+n)) = LT jp (W, REF"(1+1)) L% (W, REF"(1+n)),
L35 p Wk 7 (n)) = LT c (W k" () LTS (W ki 7 (n)).

(4) If W' is an open dense subscheme of X on which ¢ is invertible and
k"W — W' is an open immersion, then

o (W R(ER).F*(14n0)) =Lo (W, RE, (1 + 1))

VIV_,I L5 p(x, R(E'E). F*(1+n)),

Lo oW (K k0F* () =LES p (W, ki F* ()
[T LR (o (KR ().

ceW'-
(5) Ifizx - U is a closed point, then
Fop (W Rk F (L4 n)) = L yp(z, F°(L+n)),
ﬂ?;g/F(Wk:n*sz (n)) = L3S “p(@, 70 (n).
(6) If FL/F is a CM-admissible subextension of Fu|F, then
\IIA[[Gal(F’ 1 (Lo p (W REFH(L4n))) = Ly p (W, REF*(1+10)),
Varcair /o) (L35 (Woki F2(n))) = L3770 (W. ki (1))
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If F,|F is a really admissible subextension of Foo[F, then
\I/A[[Gal(F;o/F)]](ﬁ}:“w/F(VVaRk*-'T.(l +n))) =Lp jp(W,Rk.F°(1+n)),
\I/A[[Gal(F;O/F)]](L?;:/F(VVv kiF*(n))) = ‘C®éo/F(W7 kiF*(n)),
‘I’A[[Gal(F' P (Le p(W.REF (1+n))) =1

Uarcai(r /o1 (L p (W ki Fo (1)) = 1.

(7) If P* is a complex of N'-A[[Gal(Fw/F)]]-bimodules, strictly perfect as
complez of A'-modules, for another adic Z¢-algebra A, then

Vp,((Gal(Fu/ P11 (Lo yp (W, RE T (14 0))) = Ly p (W R E V5 (F7) (1 4+ 1)),
Up ((cal(Fu/m)))o (Lrn p (W REF (14 0))) = L5 p(W,RE V5= (F°)(1 + 1)),
Up, f(cai(F o)1 (L5 p (W kT (1)) = L35 (W kiU e (£°(n))),

Up ([Gai(ru/m )5 (LES (W ki F*(n))) = L3 7 (W, ki ¥ E'(T (1))

(8) If F'|F is a finite extension inside Fo such that F' is totally real and
fr:Up = U is the associated covering, then
VarGal(Fu /P (Lo p (W, REF (14 1)) = Lo (Wer REs f1 F2 (1 4 1)),
Waggoar o (E2 e Wb ) () = £27 1 (Wirs b i 7 ().

(9) With the notation of (8), if G* is in PDG™"*(Ugs, A), then
Yarcal(Fu /P (Lo yp (Wr, REGH (1 41))) = Ly p (W, RE frr . G°(1+ 1)),
Varai(pu ) (L3S o (W kiG* (n))) = L3 0 (W ki frr, G (n)).

(10) If ¥ is a smooth A-adic sheaf on U which is smooth at oo, then

LS p Wk F (n)) = (Lo p (W, REF™(1-0)))%.

(11) If C/Qy is a finite field extension and p:Gal(Feo/F) — Gly(O¢) is an
Artin representation, then
P, (Lo r(W.RE(Ze)u(1+1))) = L, yr(W,REuns(pe)(1+1)),
(L3S p(W. Rk (Ze)u(n))) = Ly r (W, Rk (p2) (1)),

PRrROOF. This is an easy consequence of the preceding remarks and Corol-

lary O

4.4. Admissible Extensions of Function Fields

Let F' be a function field of characteristic p. We write F for the algebraic closure
of F,, inside F' and [F the algebraic closure of F inside F. Further, let

q= p[]F:IFp]
denote the number of elements of F. For a fixed prime number ¢, we let Fey./F
denote the unique Zg-extension of F and write Fey. for the composite field Feyo F'.
As before, we write X for the smooth and proper curve over F whose closed points
are the places of F. For any subscheme Z of X, we write Z for the base change to
F. Further, we fix an immersion of two open dense subschemes

kU ->W

of X. If £ =p, we will assume W =U.
Let Fo/F be an admissible extension unramified over U and A an adic Z-
algebra. Different from the number field case, there exists an explicit construction of
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the non-commutative L-function. For this, recall that for any #* in PDG®™ (U, A),
we obtain a exact sequence

(4.41) 0 RT(W,RksF*) » RTo(W, Ry F*) 55 RO (W, Rk, F°) - 0

in PDG®™(A) [Wit08, Prop. 6.1.2]. Since the complex RT (W, Rk, fif*F*) is
in PDG"""# (A[[G]]) by Theorem the endomorphism
RT(W, Rk, fif F°) "S55 RU(W, Rk fif* F°)
is a weak equivalence in wyPDG“" (A[[G]]) and hence, we may consider its class
[id-§r C RT(W. Rk [ F*)] e Ky (A[[G]]s)-
If £ + p, we obtain in the same way a class
[id - 35" C RO(W, ki fif*7*)] e Ki(A[[G]]s).

DEFINITION 4.4.1. Assume that F../F is an admissible extension unramified
over U and £ # p. Let A be any adic Z-algebra. For any 7* in PDG“" (U, A), we

set .
Lrr(W,RE.F*)=[id-Fr C RL(W, Rk fif*7°)]"

£2_p(Woks*) = [id -5 G RI(W,kifif )]
If ¢ # p, the dual non-commutative L-function may be related to the non-
commutative L-function as follows. Set
V=Uu(X-W)
and let j:U — V denote the inclusion map. Recall from Remark [3.1.4] that
JRGF = RE ki
in PDG™(X,A) if 7:V - X, k"W - X denote the inclusion maps.

DEFINITION 4.4.2. Assume £ # p and let A be any adic Zs-algebra. If F° is in
PDG™(V,A), we define the global e-factor of ¥* on V to be

e(V,#°) = [-§= O RT(V, 7°)] e Ky (A).

REMARK 4.4.3. Tt is expected that the global e-factor may be expressed as a
finite product of local e-factors. For A = Z,, this is a theorem of Laumon [Lau87,
Thm. 3.2.1.1]. In [FKO06| §3.5.6], Fukaya and Kato sketch how to extend this result
to arbitrary adic Zy-algebras.

We then obtain
(4.4.2) LG p(WokiF*) L p (VR F®) =c(V.Rjfif F°).
If 7 is a smooth A-adic sheaf, we will show later in Theorem that
Lo r Wk F) = (Lpo e (W, REF(1)))°.

In the case that ¢ = p, the above elements do not have the right interpolation
property. However, we can associate to F° an element

QU F,t)e lim Ki(A[[G]]/1[t])
TeTarren
that measures the failure of the Grothendieck trace formula [Wit16, Thm. 4.1]. In
particular, we may consider its image Q(fif*F°*,1) under the homomomorphism
lim Ky (A[[GI]/I[t]) » lim Ki(A[[G]]/]) = Ki(A[[G]])
TeTaqren TeTarren

induced by the ring homomorphisms

AL[GI/ITE]) - ALIGI/L, -t 1



84 4. MAIN CONJECTURES FOR PERFECT COMPLEXES OF ADIC SHEAVES

DEFINITION 4.4.4. Assume that F../F is an admissible extension unramified
over U and that £ = p. Let A be any adic Zs-algebra. For any 7* in PDG®™ (U, A),
we set

Lrr(U,F°)=Q(fif*#°,1)[id-Fr C RI(U, fif F)]™"

It might be worthwhile to notice that the family of non-commutative L-functions
is already completely determined by the f-adic L-functions for Artin representa-
tions. Let © = ©f be the set of triples (U, Foo, A) such that U c X is a dense open
subscheme with £ invertible on U, F/F is an admissible extension unramified over
U and A is an adic Zg-algebra.

THEOREM 4.4.5. Fiz a function field F and a prime number £. The family of
homomorphisms

(Lreyr (U, (2)):Ko(PDG" (U, A)) » Ki (A[[Gal(Feo /[ F)]1S)) (17 1o pveo

is uniquely characterised by following properties.
(1) For any (U, Fe,A) €©, and any F* in PDG™ (U, A),
dLp (U, F7°) = =[RT(U, Af*F*)].
(2) If j:U" > U is an open immersion and (U', Fo,A), (U, Foo,\) € ©, then
Lpp(UF*)=Lp p(U,j°F*) [IJ_IU’ﬁFw/F(»T, 7*),

for any F* in PDG™ (U, A).
(3) If (U, Fs,N), (U, FL,A) € © such that F., c Fe is a subfield, then

Uarcair m)))(Lro (U, F°)) = Lep (U, F°),
for any F* in PDG™ (U, A).

(4) If (U,Fo,A), (U, Fso, ") € © and P* is a complex of N'-A[[Gal(F/F)]]-
bimodules, strictly perfect as complex of A'-modules, then

U prical(Fu/F)115* (L p (U, F°)) = L p(U, ¥ pa(F°))

for any F* in PDG""* (U, A).
(5) If Oc¢ is the valuation ring of a finite extension field C of Qg and p: Galp —
Gla(O¢) is an Artin representation unramified over U, then the element

Lp,,.;r(Un.(p)) agrees with Definition [4.1.1]

Proor. By [Wit14] §8] and [Wit16l §5] the elements Lp_,p(U, #°) satisfy
the listed properties both in the case that ¢ # p and ¢ = p. In fact, one can even
replace U by any scheme of finite type over a finite field. The proof that these
properties uniquely characterise the above family of homomorphisms follows along
the lines of the proofs of Theorem and Theorem O

COROLLARY 4.4.6. Properties (1)—(9) of Corollary hold for the non-
commutative L-function Lp_;p(W,Rk.F*) of any complez F* in PDG*" (U, A).
If ¢ + p, then properties (1)—(10) hold for E?im/F(VKRk*T').

PROOF. Properties (1)—(9) are proved in the same way as in Corollary
We refer to Theorem for (10) in the case that £ # p. O

In the case of the cyclotomic extension Fiy./F, there exists an alternative
description of EFCyC/F(VV, RE.F*). Write s:W — SpecF for the structure map of
W as a scheme over SpecF. If £ = p, we assume W =U. If £ # p, we set

Q(f.’t) =1
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Set
Z(SpecF,Rs Rk, 7° t) = [id - vt C Alt]®r RT(W,RE, 7)™ e K1 (A[t]s,),
with Kj(A[t]s,) as defined in Appendix [A] Then
Q(F*,t)Z(SpecF,Rsi Rk, F*,t) = [ [id-Fut C A[[T]] @ RE.F]7,
zeWo

in Ky (A[[t]]), where the product runs over the closed point of W [Wit09, Thm. 7.2]

(¢ + p), [Witl6l Thm. 4.1] (¢ = p). Moreover, if vr € I" denotes the image of Fr,

then
Lryr(W.REF®) = Q(F* 95 ) Z(SpecF, Rsi Rk, F*, 75"

[Wit14, Thm. 8.6] (¢ # p) and [Witl6l Thm. 5.5] (£ =p). If A = O¢ for some

finite extension C of Q; and p is an Artin representation of Galg, then we have

Q(nep;t)Z(SpecF, R s1 Rkunup,t) = Z(W,REinep, t).






CHAPTER 5

Main Conjectures for Galois Representations

If T is a continuous representation over Z; of the Galois group Galp of a global field
F which is ramified in at most a finite set of points of X, then one can associate to
T a constructible f-adic sheaf on U c X by taking its direct image 7,7 under the
inclusion of the generic point

1n:Spec ' — U.
The stalk of 7,7 in a geometric point & over x € U is given by the invariants 77=
under the inertia group Z, of . However, there is one subtlety in the construction
of 7.7 due to the non-exactness of the functor 77,. The naive definition, taking the
projective system

(U*T/En‘f)neM
does not always lead to an f-adic sheaf in the honest sense. Yet, it is isomorphic to
the f-adic sheaf

0T = (L ZJ(E") @y(emy 1T [0 T e
m2n

in the Artin-Rees category [Gro77, VI, Lem. 2.2.2].

In Section [5.1] we extend the latter definition to Galg-representations 7 over
arbitrary adic Zg-algebras A. We cannot do this without an extra hypothesis.
Unless A is noetherian and regular of dimension less or equal 2, the A-module 7%=
might not be finitely generated and projective in some x € U. Those points have
to be excluded from U. Again due to the non-exactness of 7, the results do not
extend to complexes of Galp-representations.

If Foo/F is an admissible extension unramified over U, we can directly apply
the results of the previous chapter to the A-adic sheaf 1, 7. Yet, we can do a little
more and allow F/F to have some ramification over U by considering the A[[G]]-
adic sheaf 1, A[[G]]*®x T, with g € Galp acting on A[[G]]* by right multiplication
with the inverse of its image in G. The main objective of this chapter is formulate
and prove a version of the non-commutative main conjecture in this setting. This
will be achieved in Section

Although the A-adic sheaves 1,7 are not smooth in general, they still admit a
good duality theory, which we will develop in Section[5.3] As a consequence, we can
prove in Theorem a functional equation for the non-commutative L-functions
in the function field case.

In Section we calculate the cohomology of RT (W, Rk.n.A[[G]]! ®a T),
where k:U — W denotes the immersion into another open dense subscheme W
of X. f U+ W # X and F is a function field of characteristic different from ¢,
then Hg(VV, Rk.n.T) is the only non-vanishing cohomology group and a finitely
generated projective module over A[[H]]. Similar results also hold for function
fields of characteristic £ and CM-admissible extensions of totally real fields. This
generalises results of Greither and Popescu in [GP12] and [GP15].

The remaining sections of this chapter deal with special instances of the non-
commutative Iwasawa main conjecture for Galois representations. In Section [5.5
we deal with the case that A is a regular, noetherian, and commutative ring and
that G is an f-adic Lie group without elements of order ¢, such that we can replace

87
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the complex RT.(W,R k.. A[[G]]* ® T) by its cohomology groups. Finally, in
Section we prove the function field analogue of the Gl main conjecture of
I[CFK™*05] for abelian varieties in the case £ different from the characteristic of F'.

5.1. The Adic Sheaf Associated to a Galois Representation

Fix a prime number ¢ and an admissible extension Fi,/F of a global field F. As
before, we set

G = Gal(F./F), H = Gal(Fo/Feye), I' = Gal(Feyc/F).
Further, we write for each x € X
T, = Gal(F,/Fy™)

for Gj\l(?m /FPT) considered as a subgroup of Galg via our fixed embedding of F'
into F',.

DEFINITION 5.1.1. Let A be an adic ring. We call a compact A[[Galg]]-module
T a finitely ramified representation of Galg over A if

(1) it is finitely generated and projective as A-module,
(2) 7 is unramified outside a finite set of places, i.e. the set

{zeX|T5 + T}
is finite.

Recall that for a finite ring R, taking the stalk in the geometric point Spec F is
an equivalence of categories between the category of étale sheaves of R-modules on
Spec F' and the category of discrete R[[Galp]]-modules [Mil80, Thm. II.1.9]. In
our notation, we will not distinguish between the discrete R[[Galp]]-module and
the corresponding sheaf on Spec F'.

A finitely ramified representation 7" of Galg over an adic ring A then corre-
sponds to a projective system of sheaves on Spec F'. We want to consider the system
of direct image sheaves under the inclusion

n=np:Spec F - U.

of the generic point into an open, dense subscheme U of X. Since the naive defi-
nition, applying 1. to each element of the system, does not necessarily lead to an
adic sheaf in our sense, we will consider a stabilised version instead, redefining the
direct image sheaf as follows.

DEFINITION 5.1.2. Let A be an adic ring, U ¢ X an open non-empty subscheme
and 7 a finitely ramified representation of Galg over A. We define an inverse system
of étale sheaves of A-modules 1,7 = (1.77)1e5, on U by setting

N.T] = Lﬂl NI A T/JT.
JGjA

PROPOSITION 5.1.3. Let A be an adic ring and T be a finitely ramified repre-
sentation of Galp over A such that T+ is a finitely generated A-module for each
closed point x of U. Then n.T; is a constructible étale sheaf of AJ/I-modules on U
forany I € Jp. If x is a closed point of U, then the stalk of n.T; in the geometric
point T is given by

(N T1)s = AT ®p TE=.

In particular, 1,7 is an object in PDG™(U,A) if T2 is a finitely generated
projective A-module for each closed point x of U.
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PROOF. Let V' be the open complement of U by the set of points x with
7%= + 7. Consider a connected étale open set W of V and let L ¢ F be the
function field of W. Then for any J c I

(AT @ 0 TJITY(W) = (T/IT)% = (T /IT)(W).

In particular, the restriction of A/I®A 7.7 /JT to V is a locally constant étale sheaf
of A/I-modules which independent of J. Now the category of étale sheaves of A/I-
modules on U which are locally constant on V' is equivalent to the category of tuples
(M, (Mg, dz)zev-v ) where M is a discrete A/I[[Galr]]-module unramified over V',
the M, are discrete Galy(,)-modules, and ¢,: M, — M?%= are homomorphisms of
discrete Galy(,)-modules [Mil80], Ex. I1.3.16].

By the above considerations, it is clear that the projective limit of the system
(AJIT®ANT[JIT) ez, exists in the category of étale sheaves of A/I-modules which
are locally constant on V and coincides with the projective limit taken in the
category of all étale sheaves of A/I-modules. Moreover, it corresponds to the tuple

(T/IT, (lim AT @ (T/JT)™, ¢y lim AT @ (T/JT)5 > (T/IT)*)petrv).
JeTp JeTa

Beware that the projective limit

. To
lim A/T @ (7/JT)
JeTp
is a priori taken in the category of discrete A/I[[Galy(,)]]-modules (i.e. such that
the stabiliser of every element is open in Galy(,)).
In the category of abstract A/I[[Galy(,)]]-modules, we have

lim A/T®x (T/JT)™ = AT ®p lim (T/JT)" = A/T@y 77
Jeda JETN
Here, the first equality is justified because projective limits of finite A/I-modules
are exact and because A/I is finitely presented as A°P-module: In any adic ring
A, the Jacobson radical Jac(A) is finitely generated both as left and as right ideal
[War93| Thm. 36.39]. Therefore, the same is true for all open ideals I € J5 and
thus, A/I is a finitely presented A°P-module.
By assumption, 77+ is a finitely generated A-module. Hence, A/I ® TZ= is
finite and the equality
lim A/I @y (T/JT)E = AJT @y T
FEN
also holds in the category of discrete A/I[[Gal(,)]]-modules. This shows that 7,77
is constructible and that the stalks have the given form.
From the description of the stalks it is also immediate that

A/I ®A/J 77*7.1 = 77*7}

such that 7,7 is indeed an object of PDG ™ (U, A) if 77+ is finitely generated and
projective for all closed points z in U. U

REMARK 5.1.4. Note that if A is noetherian, 77+ is automatically finitely gen-
erated. For general adic rings A, this is not true. Assume that ¢ is a prime dividing
p—1 and let A be the power series ring over F, in three non-commuting indetermi-
nates a, b, ¢, modulo the relations ab =0, ac =ca, (b+1)(c+1) = (c+1)(b+1)P. Set
F =TF,(t) and let Fo, = F.yc( “\/f) be the Kummer extension of F.y. obtained by
adjoining all £"-th roots of ¢. Let = be the point of SpeclF,[t] corresponding to the
prime ideal (¢). Then Fi/F is unramified over the complement U of « in SpecF)[t]
and Fu [ Feyc is totally and tamely ramified in 2. The Galois group G = Gal(Fs/F')
is the pro-¢-group topologically generated by two elements 7 and o, subject to the
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relation o7 = 7Po. We obtain a finitely ramified representation 7 of Galg over A by
letting 7 act on A by right multiplication with b+1 and ¢ act by right multiplication
with ¢+ 1. Hence, 77+ is the kernel of the right multiplication with b, which is the
left ideal of A topologically generated by ba® for all i > 0. Clearly, this ideal is not
finitely generated.

We will now fix an admissible extension Fi,/F with Galois group G = H % T.
For a closed point « of X we will write I, and 7, for the kernel and the image of
the homomorphism Z, - G, respectively. We also fix an open dense subscheme U
of X, an adic Zg-algebra A and a finitely ramified representation 7 of Galp over A.
We let A[[G]]! denote the A[[G]][[Galr]]-module A[[G]] with g € Galr acting by
the image of g~! in G from the right. Note that A[[G]]! ® T is a finitely ramified
representation of Galg over A[[G]].

PrROPOSITION 5.1.5. Assume that for every closed point x of U one of the
following conditions is satisfied:

(1) 7% <o,

(2) J. contains an element of infinite order,

(3) 7%+ is a finitely generated, projective A-module and J, contains no ele-
ment of order £.

Then 0. (A[[G]]! ®a T) is an object in PDG ™ (U,A[[G]]) and for every I €
Iaren
(n+(A[[G1]P @A T)1)2 =0
if x satisfies condition (1) or (2),
(1« (A[[G]]F @A T) 1)z = A[[GI)/T ®aiay) (A[[G)F @a 7<)

if x satisfies condition (3).

PROOF. For each compact A-module M, write Uy, for the lattice of open sub-
modules of M. We note that A[[G]] is a projective limit of finitely generated,

free A°-modules and hence, a projective object in the category of compact A°P-
modules. The completed tensor product

A[[GNJéaM = lim  lim A[[G]]/J © MU
JEjA[[G]] UEZ/{]M

is thus an exact functor from the category of compact A-modules to the category
of compact A[[G]]-modules. Moreover, we have

A[[G1I8AM = A[[G]] &4 M
if M is finitely presented [Wit13bl Prop. 1.14]. In particular,
A[[GN&AT™ = (AL[GTIOATY = (A[[G]] @4 T) .
If 7%= = 0, this obviously implies
(A[[G]]®x T)* =0.

Assume that 7, contains an element of infinite order and let M be any finite A-
module with a continuous J,-action. We can then find an element 7 of infinite order
in an ¢-Sylow subgroup of 7, which operates trivially on M. Consider the subgroup
T 2 Zy of J, which is topologically generated by 7. By choosing a continuous map
of profinite spaces

G/T > G
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that is a section of the projection map, we can view A[[G]]! as a projective limit
of finitely generated, free A°P[[T]]-modules and conclude that 1 - 7 acts as non-

zero divisor. In particular, we obtain an exact sequence of projective compact
A°P-modules

1-7
0= A[[G]]F — A[[G1]F - A[[G/Y]] >0
The sequence remains exact after taking the tensor product over A with M. Hence,
(A[[G]] @ M)™ = ker (A[[G]]“ ®a M T A [[G]]F @4 M) _ 0.
Recall that the powers of the Jacobson radical Jac(A) are finitely generated
as left A-modules [War93, Thm. 36.39]. In particular, any finite A-module M is
finitely presented: For some k, the kernel K of a surjection

P->M

with P a finitely generated, free A-module contains the finitely generated module
Jac(A)kP as an open submodule. Hence, the tensor product of M with a compact
A-module agrees with the completed tensor product.

Writing the compact A[[J,]]-module 7%+ as projective limit of finite A[[J,]]-
modules, we conclude

(A[[G])f @ T)% = (A[[G]]1@ATF*)T+ = 0.

Assume that J, contains no element of infinite order nor an element of order
¢ and that 7%+ is a finitely generated, projective A-module. Then 7, is a finite
group of order d prime to £. Set

€T, = ggez‘;wo'.

Then ey, is a central idempotent in A[7,] and
(AL[GT) &a ) = eg, (A[[G) @4 TF)

is a finitely generated and projective A[[G]]-module.
We may now apply Proposition to conclude that n. (A[[G]]* ® T) is an
object in PDG™ (U, A[[G]]). O

REMARK 5.1.6. If F,/F is unramified over U and f:Ug_ — U is the corre-
sponding system of coverings as in Section then

1+ (A[[G])F @A T) = fif 0. T,
see also [Wit14l Rem. 6.10].

DEFINITION 5.1.7. Let A be an adic Zs-algebra, F.,/F an admissible extension,
x a closed point of X and 7 a finitely ramified representation of Galp over A.

(1) We say that 7 has projective stalks in z if 7%= is a finitely generated,
projective A-module.

(2) We say that 7 has projective local cohomology in z if H' (Z,,, T) is a finitely
generated, projective A-module and ¢ is different from the characteristic
of k(x).

(3) We say that 7 has projective stalks in x over F., if 7%+ is a finitely
generated, projective A-module.

(4) We say that 7 has projective local cohomology in x over Fa, if H' (K, T)
is a finitely generated, projective A-module and ¢ is different from the
characteristic of k().

(5) We say that 7 has ramification prime to ¢ in z if the image of Z,, in the
automorphism group of 7 has trivial -Sylow subgroups.
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We say that F,,/F has ramification prime to £ in z if 7, has trivial £-Sylow
subgroups.

We say that Fo,/F has non-torsion ramification if 7, contains an element
of infinite order.

In particular, if 7 has projective stalks over U, then 7,7 is an object of
PDG ™ (U, A).

EXAMPLE 5.1.8. Let © € X be a closed point and write p’ > 0 for the charac-
teristic of k(z).

(1)
(2)
3)

If 7 has ramification prime to £ in = and £ # p’, then it also has projective
local cohomology in z. If £ = p’, then it has projective stalks in x.

If T has projective local cohomology in x (in x over Fi,), then it also has
projective stalks in z (in z over Fy,).

Assume £ # p’ and that A has small finitistic projective dimension 0, i.e.
every finitely generated A-module of finitely generated projective dimen-
sion is projective. Then T has projective local cohomology in z if and
only if it has projective stalks in z. For example, this is true if A is finite
and commutative [Bas60, Thm. (Kaplansky)]. More generally, for any
finite A, it is true precisely if the left annihilator of every proper right
ideal of A is non-zero [Bas60, Thm. 6.3]. It is not true for

(zZI2) @O
A‘(Z/(ﬁ?) Z/w%)

IKKS92| Cor. 1.12].

If A is noetherian of global dimension less or equal to 2, then 7 has
projective stalks in all closed points z of X, as 7%+ is the kernel of the
continuous homomorphism of projective compact A-modules

T7- [] 7, te (t-ot)gez, -

oely

As the global dimension is assumed to be less or equal to 2, 7%+ is projec-
tive as compact A-module. As A is noetherian, 77 is finitely generated
and therefore, also projective as abstract A-module. The same argument
shows that 7" has projective stalks over F,, in all closed points x of X.
Assume that 7 has projective stalks over Fo, and Fo/F has ramification
prime to £ in x. Then 7 has projective stalks in z. Moreover, A[[G]]*®, T
also has projective stalks in x. The same remains true if one replaces
“projective stalks” by “projective local cohomology”.

It may happen that 7 has projective stalks, but does not have projective
stalks over Fy in z. For example, 727 can be trivial, while 7%+ is a
non-trivial A-module that is not projective.

If ¢ # p', then F./F has non-torsion ramification in z if and only if 7,
is infinite. If F' is a number field and ¢ = p’, then Fo/F always has
non-torsion ramification in z. Indeed, Fi/F contains the cyclotomic Z-
extension, which is ramified in x. In the equal characteristic function field
case, it may happen that 7, is an infinite torsion group.

REMARK 5.1.9. If A is a noetherian adic Zs-algebra of finite global dimension,
then one can modify Definition by choosing for each of the finitely many
points x for which 77+ is not projective a resolution P* of 7Z= by finitely generated,
projective A-modules and replacing the stalk of 7,77 in « by A/T @ P* for each
open two-sided ideal I of A.
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LEMMA 5.1.10. Assume that Feo | F has ramification prime to £ over U. Assume
further that A and A’ are two adic Z¢-algebras and that M is a A'-A[[G]]-bimodule
which is finitely generated and projective as A'-module. Write M for the finitely
ramified representation of Galp over A given by M, with g € Galp acting by the
inverse of its image in G.

(1) If T has projective local cohomology over Fo in all closed points of U,
then M ® T has projective local cohomology over U and

Uar (0 (A[[G]]F @4 T)) = 1. (M ©2 T)

is a weak equivalence in PDG ™ (U, A").
(2) If T has ramification prime to £ over U, then M ®5 T has ramification
prime to £ over U and

U (1« (A[[G]]F @4 T)) > (M @5 T)

is a weak equivalence in PDG ™ (U, A").

(3) If T has projective stalks over Fu in all closed points of U and M is
projective as compact A°P-module, then M @ T has projective stalks over
U and the canonical morphism

U (0« (A[[G]F @4 T)) > (M ©5 T)
is a weak equivalence in PDG ™ (U, A").

PROOF. By Proposition we need to prove that
M @aran (A[[G]] @A 7)™ = (M @x 7)™

for all closed points x € U. Since F,,/F has ramification prime to £ in z, the ¢-Sylow
subgroup of 7, is trivial such that taking invariants under 7, is an exact functor
on the category of compact Z,[[J,]]-modules. Moreover, 7%+ is finitely generated
and projective as A-module by assumption. Hence,

M ®qiay) (ALIG]] @a T50) 7 = (9 @p 7).

If M is projective as compact A°P-module, then taking the completed tensor
product with M over A is an exact functor on compact A-modules. Moreover,
the completed tensor product commutes with arbitrary direct products and agrees
with the usual tensor product on finitely presented modules [Wit13b, Prop. 1.7,
Prop. 1.14]. By taking the completed tensor product with M of the left exact
sequence

0- ‘I’C" ST > (T-0T) gex, H T
oek,
we obtain
M @) The » MéA‘TKI = (M Q) ‘T)KI,
as desired.

If ¢ is different from the characteristic of F', the Tor spectral sequence for the
derived tensor product of M with the cochain complex of the K -module T gives
us an exact sequence

0 — Tory (M, H (K., T)) » M @5 T - Tor) (M, H' (K., T)) - 0
Hence, if H' (K, T) is finitely generated and projective as a A-module, then
M @ The » (M ®p T)Kw.

If 7 has ramification prime to ¢, then one can replace K, by its image in the
automorphism group of 7. Since this group is of order prime to ¢, the natural map

Moy TN » (M ey T)

is again an isomorphism. This completes the proof of the lemma. U
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LEMMA 5.1.11. Assume that Fo [F has ramification prime to £ and that T has
projective stalks over Fu, in the closed point x of U. Write i:x — U for the closed
immersion. Then

RT(z,i*n.(A[[G]]* @ 7))
is in PDG™" 7 (A[[G]]).

PROOF. Choose an open pro-¢-subgroup H' of H which is normal in G. By
[Wit14l Prop. 4.8], it suffices to show that

U/ sacnyfcya (RT (@, i1 (A[[G]] @A T)))

has finite cohomology groups.
The complex RI'(z,i*n.(A[[G]]! ®a 7)) may be identified with the strictly
perfect complex of A[[G]]-modules

C* (A[[G]) &a T)% 255 (A[[G]] @r T) ™

sitting in degree 0 and 1. Let Z be the centre of A/ Jac(A), which is a finite product
of finite fields of characteristic ¢. Consider
P = A/ Jac(M)[[G/H'T] @arcy (A[[G]]! @4 T7)
2 (A/Jac(M)[[G/H']]} @4/ 1ac(a) T [ Jac(A) T )T

as finitely generated, projective Z[[T']]-module. Choose n large enough, such that
3" operates trivially on the finite groups J, and 7%¢/Jac(A)T=. Then

n-1
id-§72 = (1d-3.) (D &)
s=0

is an injective endomorphism of P. The same is then also true for id - §,. We
conclude from the elementary divisor theorem that the cokernel of id — § is finite,
as desired. [l

In particular, we may extend our previous definition of non-commutative Euler
factors introduced in Section 3.5l

DEFINITION 5.1.12. Assume that Fi/F has ramification prime to £ and 7 has
projective stalks over F,, in x. The non-commutative Euler factor of .7 in x € U
is the element

Lpp(2,n.T) =[id-F. C (A[[G]]'@r T)™]!

in K3 (A[[G]]s)- If £ is invertible on U, the non-commutative dual Euler factor in
2 €U is the element

L3 () =[id-§," O (A[[G]] &a T)F1L5_ p(, B T) ™!

with 8:U’ — U an open, dense subscheme not containing = such that Fi/F is
unramified over U’ and 7':Spec F' — U’ the generic point of U’.

For the dual non-commutative Euler factor, note that the complex

(ALLG]) @ 7Y% > DY, (A[[G]) @a T)) =5 DL(IL(ALG])} €4 7))

sitting in degrees 0, 1 and 2 is a strictly perfect complex of A[[G]]-modules weakly
equivalent to
RI(2,Ri'n. (A[[G]]F &a 7)) ~ H (Zo, A[[G]]} @1 T)[-2]

for i:x - U.

Propositions and Parts (2), (3) of Propositions extend
verbatimly. Part (1) must be replaced by:
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PROPOSITION 5.1.13. Assume that Foo[F has ramification prime to £ in x. Let
A be another adic Zy-algebra and let M be a A'-A[[G]]-bimodule, finitely generated
and projective as A'-module. Write M for the finitely ramified Galg-representation
given by M, with g € Galp acting by the image of its inverse in G. If T has
ramification prime to £ in x or if T has projective local cohomology over Fo in x
or if M is projective as compact A-module, then

Vore1)s (Lrayp(@,1:T)) = Lpyp (2,0 (M @7 T))
and, if ¢ # p,
Uy (Lo (@m0 T)) = LT p(2,10:(M @4 T)).
PROOF. This is an easy consequence of Lemma [5.1.10 O
Proposition does only extend under extra hypotheses.

PROPOSITION 5.1.14. Assume £ + p and that Foo/F has ramification prime to
£ in x. Let further O¢ denote the valuation ring of a finite extension C' of Q.

(1) If T has projective local cohomology over Fo in x, then
L yp(x,nT(1))® = £?ELO/F(JU,??*T)-

If A= Oc¢ and Fe = Fiyc, then the same is true for any finitely ramified
representation T over Og.
(2) If T has ramification prime to £ in x, then

L3 e ) = [-F: C R(@, "0 (A[[G]) @ T(-1))] " Liyr (@, 0T (-1)) 7!

If A=Oc¢c and Fo = Foye, then the same is true if T is a finitely ramified
representation over Oc such that the base change of T to C is a semi-
simple Gal(F,/Fy)-representation.

PROOF. If 7 has projective local cohomology over Fl,, in x, then A[[G]]* ®x T
has projective local cohomology in x and the explicit version of local duality from
Lemma B.2.7] shows that

PG ®per T (1))5) 0D = HY(Z,, A[[G]] @4 T)

Hence,

Lpp(z,n (1) = [[d-§,' CH(Z,, A[[G]] @x T)] = £F_ /5 (2, 7. 7).
If 7 has ramification prime to ¢ in x, then the differential in the complex

DY (n.(A[[G]] @A 7)) = D (n.(A[[G]]' @A 7))
is trivial, such that
HY(Z,, A[[G]] s T) 2 A[[G]] @4 T(-1).
Assume now that A = O¢ and Fo = Fiyc. Then
C oo, (779 (1)%) ¢ 2 C @0, H'(Oc, T).
If the base change of T to C is a semi-simple Gal(F,/F,)-representation, then
C®o. H (O, T) 2 C oo, T (-1).
The elements
ﬁ?izyc/F(x»n*‘f)a
L, r(z,n.77°c(1))%,
[-82 C R(&,7" 1. (Oc[[T]) ®0c T(-D))] ™ Lieyr(z,mT(-1))7!

are then all given by evaluating the reverse characteristic polynomial of F;' on
C®o, HI(LC,T) at the image v, of §, in T O
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EXAMPLE 5.1.15. Assume that the image of Galr in Gl2(O¢) coincides with
the image of Gal(F,/F,) and is generated by

(11 (@' 0
™o 1 *=lo 1

with 7 generating the image of Z, and ¢ serving as lift of §,. Write v for the image
of ¢ in I' = Gal(Feye/F). Then T has projective local cohomology in x, but the
base change of 7 to C' is not semi-simple. In this example,

Lo (@ T) =

[1-07 G O[T lid-¢y © Oc[T* 1™ [id - (=

T — 1

)ty © OclIrI? ]

=[1-g;"9],

whereas

[-32 C R(Z,i"n«(Oc[[T]] @0, T(-D)] ' L, yp(z,neT(-1)) " =
[y COc[[TN] ' [1-7" C O[T ]=[1-7].

5.2. Main Conjectures for Galois Representations

From now on, we fix two open dense subschemes V' and W of X such that VuW = X
and set
Y=X-W, T=X-V, U=VnnW.
We write
U=V, kU ->W
for the corresponding open immersions and
n:Spec F - U
for the inclusion of the generic point. We also fix a prime ¢, an adic Z,-algebra A
and a finitely ramified representation 7 of Galg over A.

PRrROPOSITION 5.2.1. Let A be an adic Zg-algebra, T be a finitely ramified rep-

resentation of Galg over A. Assume that TZ= is a finitely generated A-module for
allzelU. If £ =p, assume that V = X. Then

H*(V, jin.T) = lim H*(V, jin. T/JT).
JeTp
for all s € Z.
PRrOOF. Let (X7)je5, and (Cy)jes, denote the kernel and cokernel of the nat-
ural morphism of systems
(MeT1)geas = (T[T ) sen,
of étale sheaves on U. The restriction of (%) ez, to the complement of
S={zeU|T™ + T}
in U is 0. For z € ¥ the stalk of % in the geometric point Z is a finite abelian
group for each J € J5. From Proposition we conclude
T, _ 1 T .
T = Lin(n*qt])x = @(W*T/JT)I
JeTa JeTa

Hence, the projective limit of the system ((%7)z)jes, is 0. It follows that the
system must be Mittag-Leffler zero in the sense of [Jan88| Def. 1.10]: For each
natural number n there exists a m > n such that the transition maps

(ZKgac(aym)z = (Kjac(ayn )z
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is the zero map. We conclude that the system of sheaves (%) je3, are also Mittag-
Leffler zero. The same remains true for (ji%Xy)jes,. Now [Jan88 Lem. 1.11] implies

H*(V, (j1K7)e3,) = 0.
The same argumentation also shows
H*(V, (j1Cr)gen) = 0.

Since the cohomology groups H*(V, jin,.T/JT) are finite if ¢ # p [Mil06], Rem. after
Thm. I1.3.1] or if V = X [Mil80, Cor. VI.2.8] we conclude

H*(V,jin.T) = Lgl H*(V, jm.T/JT).
Jeda

Fix an admissible extension F.,/F with Galois group G =~ H x T".

COROLLARY 5.2.2. Assume that (A[[G]]'®4 T)%= is finitely generated for each
closed point © in U. If £ =p, assume V = X. Then

H (V. ji (A[[G])P @a 7)) = lim  H*(Vi,jrinc.T)
FCchFoc,

for each s € Z, where L runs through the finite Galois extensions of F inside Fu.

Proor. By Proposition we have

B (Vo (A[[G]P @ 7)) = lim  H*(V,jin. (A[Gal(L/F)]! @5 T)).
FcyplcFo

Let f:V, — V denote the finite morphism of schemes corresponding to the finite
extension L/F. Then

H*(V, jis (A[Gal(L/F) Y @5 7)) = B*(V, fujrie. T) = B (Ve jrme. T)
by [Mil80, Cor. IL.3.6]. O

LEMMA 5.2.3. Assume that A[[G]]' ®a T has projective stalks over U. If £ = p,
then we assume V = X. If p=0 and ¢ = 2, we assume that F has no real place.

(1) The complezes
RTc(W, Rk (A[[G]]F @4 7)) ~ RT(V, i (A[[G]] ©a T))
are objects of PDG™(A[[G])).

(2) IfU 2 U 25V are open immersions such that F/F has non-torsion
ramification over the complement of U in U’, then

RT(V, j21(j1 o)« (A[[G]]} @ 7)) > RT(V, junn. (A[[G]]F @4 7))
is a weak equivalence in PDG™ (A[[G]]).
The same is true for V replaced by V if p > 0.

PROOF. The first assertion follows from Proposition and the fact that
the derived section functors over V and V take objects of PDG“™(V, A[[G]]) to
objects of PDG ™ (A[[G]]).

We prove the second assertion. By Proposition we have

(ron)«(A[[G])F ®x T)s =0
for each z € U’ — U. Hence, the canonical morphism
Jun(AL[G]) ®4 T) > (jr o). (A[[G])} ®a T)
is an isomorphism in PDG“"(U’, A[[G]]). The second assertion is an immediate
consequence. O
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REMARK 5.2.4. In particular, by using Lemma we may exclude without
loss of generality from U all points in which Fs/F has non-torsion ramification.
We will also neglect the remaining points in which F.,/F does not have ramification
prime to £ or 7 has no projective stalks over Fy,, but A[[G]]! ® 7 has projective
stalks. These points may be considered as degenerate and it is not clear that their
corresponding non-commutative Euler factors are well-behaved.

REMARK 5.2.5. The complexes RT¢(W, R k.. (A[[G]]* ®A 7)) may be viewed
as Selmer complexes in the sense of Nekovar [Nek06l §6], with unramified local
conditions for each point z of U where (A[[G]]! ® 7) is ramified, full local con-

ditions in each point of W — U and empty local conditions in each point not in
wW.

In the following, we choose an open dense subscheme W' c W such that Fo,/F
is unramified over U’ :== W' nU. Set T :=U - U’. Write
W' - W
B:U -U
n':Spec F - U’
U ->w'
T - U
for the inclusion maps.

THEOREM 5.2.6. Assume that F is a function field of characteristic p # £.
Further, assume that Fo [F has ramification prime to £ and that T has projective
stalks over Fu in all closed points of U. Then

(1) The complexes
RT(W, Rk (A[[G]] @4 7)) ~ RT(V, jin. (A[[G]]' @4 T))
are in PDG"" (A[[G]]) and the endomorphisms

RT(W, Rk, (A[[G]] @4 T)) “55 RT(W, R k. (A[[G]]! ®4 T))

RT(V, jin. (A[[G]) @ 7)) 5 RT(V, jin. (A[[GT]} @1 T))

are weak equivalences in wgPDG ™ (A[[G]]).
(2) Set

Lp.psr(T)=Lp p(W,REn.T)
= [id - §r C RIO(W, Rk, (A[[G]]F @5 T))] 7"
E?W/F,TE(T) = C?im/p(‘/,jm*‘f)
=[id- 87" O RT(V,jim. (A[[G]]' ®4 T))].
in Ki(A[[G]]s). Then
dLr. r5,1(T) = [RT(W, Rk (A[[G]]F @4 7))],
ALY jprs(T) = [RT(V, i (A[[G]]F ®a 7))]
in Ko(A[[G]],9).
PRrOOF. Consider the exact sequence
0~ RE(W, Rk, A (A[[G]) @ 7)) > RE(W, Rk, (A[[G]) @ 7))
RTe(W, Rkxvy" 0« (A[[G]) @4 7)) > 0.
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Further, note that there are weak equivalences
RT(W, Rk A (A[[G1] @a 7)) ~ RE (W', REn,(A[[G]) ®4 T))
RT(W, kevey n. (A[[G]]! @4 T)) ~ RT (X, 71 (A[[G]]} @4 T)).

Hence, the outer two complexes of the exact sequence are in PDG™™# (A[[G]])
by Theorem and by Lemma We conclude that the complex in the
middle is also in PDG®"™# (A[[G]]). The rest is a consequence of the exact
sequence and the definition of d. O

THEOREM 5.2.7. Assume that £ = p, that Fo/F has ramification prime to p
and T has projective stalks over Fo, in each closed point of U, and that Foo/F and
T have ramification prime to p in each point of T. Then

(1) RT(W, ke (A[[G]]F ®4 T)) is in PDG®"" (A[[G]]) and the endo-
morphism id — g of R (W, k.n. (A[[G]]t ®a T)) is a weak equivalence
in wgPDG" (A[[G]]).

(2) Set

Lr pxr(T)=[d-Fr C RT(W, ki (A[[G]]F @4 T))]
Q(n (A[[G1)F&a 7),1) T][id - §2¢"* & (A[[G]] &a T)™]

zeT
in K1 (A[[G]]s). Then

dLp /s (T) = =[RT(W, k. (A[[G]] ®4 T))]

ProOOF. If T = @ and hence, W = U, then one proceeds exactly as in the
proof of Theorem For T # @ it remains to notice that id — §,¢%&®) is an
automorphism of the finitely generated projective A[[G]]-module (A[[G]]*®x T)%=
such that its class lies in K; (A[[G]]) ¢ K1 (A[[G]]s) and hence, has trivial image
under the boundary homomorphism d. O

If F is a totally real field, ¢ # 2, and 7 is a finitely ramified representation of
Galp over A, we say that 7 is smooth at oo if every complex conjugation in Galg
operates trivially on 7. In particular, 7 is smooth at oo if and only if 7,7 is smooth
at oo.

Let F../F be a CM-admissible extension. We write as in Section
Lo p(@meT(1+n)) =V, zen(Lr.r(z,nT(1+n)))
L3 p(eneT(n)) = Ve aran (L, jp(2,1.T (1))

for any closed point x € U, any integer n and € = + if n is even, € = — if n is odd. If
Fo/F has ramification prime to ¢ over U, £ is invertible on W, and T has projective
stalks over F,, in all closed points of U, we set

Ly psr(T(1+n)) =Ly (W, Rk T(1+n))

o L5 (W RELT (1)) [T £5(2,0.7(1+n))
zeT’

L3 s (T(0)) = L3 (W, Rk T (n))
= L85 (W R T(n)) [] L5527 ()

zeT’
THEOREM 5.2.8. Assume that Foo|F is a CM-admissible extension of a totally
real field F' and € + 2. Further, assume that Foo/F has ramification prime to £ over
U and that ¢ is invertible on W. Let T be a finitely ramified Galg-representation

over A that is smooth at co and has projective stalks over Fuo, in all closed points
of U. Then
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(1) The complexes
e RT(W, Rk (A[[G])F @A T(1+7))), e RT(W, k. (A[[G]]} @4 T(n)))

are in PDG™"" (A[[G]]).
(2) We have

L% psa(T(1+n)) = -[RT(W, Rk (A[[G]) @4 T(1+n)))],
ALY s (T(0)) = [RT(W, ki (A[[G]) @4 T(n)))]
in Ko(A[[G]],9).

PROOF. For L% 5 +(T(1+n)) the argument is essentially the same as for

Theorem For L?;f I (T (n)) we use the exact sequence from Lemma
L]

Note that in all three cases, one can also allow U to contain points x in which
F/F has non-torsion ramification. However, by Lemma the correspond-
ing non-commutative L-function Lp_/px v(7) then agrees with the L-function
Lr_/rsus,r(T) where the Euler factors in the set ¥y c U of points in which
F../F has non-torsion ramification are removed.

REMARK 5.2.9. Let A’ be another adic Zs-algebra and let M be a A'-A[[G]]-
bimodule which is finitely generated and projective as A’-module. Assume either
that 7 has only ramification prime to ¢ over U or that 7 has projective local

cohomology over Fy, in all closed points of U or that M is projective as compact
A°P-module. Then

rans (Lo pe (7)) = L5 ps o (M @A T)
for
De{2,®c,(®,¢)}

by Lemma [5.1.10, Furthermore, since A[[G]] is projective as compact A°P-module
for any profinite group G, the formulas (6), (8), and (9) of Corollary remain
valid.

5.3. Duality for Galois Representations

As before, we will write Homy (F, G) for the sheaf of morphisms from ¥ to G for
any two étale sheaves F, G of abelian groups on U. Write Gy, for the étale sheaf
corresponding to the multiplicative group on U. We set

Dy (F) =R Homz y (F,Gmy ),

considered as an object in the derived category of étale sheaves of abelian groups
on U. Further, we write

E:W - X

for the open immersion of W into X. Recall that 7V denotes the Pontryagin dual
of T.

PRrROPOSITION 5.3.1. Assume that A is a finite Zg-algebra with £ invertible on
W and T be any finitely ramified Galg-representation over A. Then there exists a
canonical isomorphism

Dx (kf Rk T) 2 RkLkn. TV (1)

in the derived category of complexes of étale sheaves of A°P-modules on X .
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PROOF. By the adjunction formula for the pair (k{,k’") we obtain an isomor-
phism
Dx (K Rk T) 2 RE,Dw (RkensT)
in the derived category of complexes of étale sheaves of A-modules on X. Since ¢
is invertible on W we have an isomorphism
@W(Rk*ﬂ*‘f) z R.’]‘[omw(Rk*n*T,Q[/Zz(l))

in the derived category of complexes of étale sheaves of A-modules on W. From
the biduality theorem [Del77, Dualité, Thm. 1.4] and the adjunction formula for
the pair (ki, k*) we then obtain a natural isomorphism

k!Q)U(n*'T) = Q)Wﬂ)w(]ﬂ@U(n*‘T)) = Dw(Rk*@U@U(’I]*‘T)) = Dw(Rk*’I]*‘T)
in the derived category of complexes of étale sheaves of A-modules on W. Finally
we note that by [Del77, Dualité, Thm 1.3],
Dy (1T) 20T (1)
if £ is invertible on U. O

COROLLARY 5.3.2. Assume that A is a finite Zy-algebra with £ invertible on
W. Let T be any finitely ramified Galg-representation over A.

(1) If F is a function field, there exists a canonical isomorphism
RHomz(RT.(W,Rkn.TY(1)),Q¢/Z¢) 2 RT(W, k. T)[2]

in the derived category of complexes of A-modules. It is compatible with
the operations of §r on the left-hand complex and Tz on the righthand
complez.

(2) Assume that £ + 2 or that F' has no real places. Then there exists a
canonical isomorphism

RHOle(RFC(VV, Rk*nx—‘fv(l))v QZ/ZZ) = RF(Wy k‘n*‘f)[3]
in the derived category of complexes of A-modules.

ProOF. Combine Prop with Poincaré duality [Del77, Dualité, Thm. 2.2]
and Artin-Verdier duality [Mil06l Prop. I1.3.1], respectively. O

Let now A be a general adic Zg-algebra. In the following two corollaries, we
consider a complex P* = (P})1e3, of PDG®"(A) as objects of the derived category
of complexes of A-modules by passing to the projective limit

lim P7.
163/\

We recall that the projective limit is an exact functor by the construction of
PDGCOIlt(A).

COROLLARY 5.3.3. Assume that A is an adic Zg-algebra with £ invertible on
U and that T has projective local cohomology over U. Then T**(1) has projective
local cohomology over U. Furthermore:

(1) If F is a function field, there exists a canonical isomorphism
RHompor (RTc(W,REmT**(1)),AP) = RT(W, kin. T)[2]

in the derived category of complexes of A-modules. It is compatible with
the operations of §r on the left-hand complex and Si-l on the righthand
complezx.
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(2) Assume that £ + 2 or that F has no real places. Then there exists a
canonical isomorphism

RHompor (RT(W, R kn T*(1)),A°?) 2 RT(W, k. T)[3]
in the derived category of complexes of A-modules.
PROOF. From our hypothesis and Lemma it follows easily that
H*(Z,, 7" (1)) 2 H*(Z,, 7)™
is finitely generated and projective for s € {0,1}.
For any finitely generated, projective A-module P, we have
(A ®x P)” = Homy (P, A)

by the adjunction formula for Hom and ® and by recalling that every homomor-
phism from P to A is automatically continuous for the compact topology. Hence,

R Homer (P®, A°P) = R Homgz ((A°P)" ®%o, P*,Qe/Z¢)
for every perfect complex of A-modules P*. Further,

(AP) @Fop RE(W, Rk, #*) = lim RT(W, Rk (A/I°P)" @410 77)
IGjA

for any 7* in PDG“" (U, A°?). Arguing as in Lemma|5.1.10, we further see that
the natural morphism

lim RTc(W, Rk« (A/T7)" @700 (0T (1))1)

IEjA
|
lim RTc(W, R k.. ((A/I°P)" @1 (T/IT)*7(1)))
VEAIN

is an isomorphism in the derived category of complexes of A°P-modules. The same is
true for W replaced by W. We now apply Corollary to the Gal p-representation
T/IT over A/I for each I in Jy. O

REMARK 5.3.4. Even for finite A, Corollary [5.3.3]is wrong without the hypoth-
esis that 7 has projective local cohomology over U. If one merely assumes that T
and T**(1) have projective stalks over U and F is a function field, then the cone
of the natural duality morphism

RT(W,kn.T)[2] » RHompos (RT (W, R k1. T** (1)), AP)
is given by the complex
c* @ H'(Z,.7) » @ (77 (1)")"
zeU0 zelU0
sitting in degrees —1 and 0, with
H(C*) 2 @ Extpo(H'(Z,, 7°(1)),AP)
zeUO°
H(C*) 2 @ Extio,(H'(Z,, T (1)), AP).
zeU0
Moreover, if T has projective stalks in x, the same does not need to be true for

T*2(1), and vice versa. For example, the dual of the representation 7 from Re-
mark satisfies (7*2(1))%= = 0 for the given x.

COROLLARY 5.3.5. Assume that A is an adic Z¢-algebra with £ invertible on
U. Let Foo/|F be an admissible extension with ramification prime to £ over U and
let T be a finitely ramified representation of Galgp over A that has projective local
cohomology over Fo, in all closed points of U. Then:
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(1) If F is a function field, there exists a canonical isomorphism

'R Hom pen (7] (RTe(W, R ke (AP[[G]]F @4 752 (1))), AP[[G]]) 2
RI(W, km. A[[G]] @A T)[2]

in the derived category of complexes of A[[G]]-modules. It is compati-
ble with the operations of §r on the left-hand complex and Sﬁl on the
righthand complez.

(2) Assume that £ # 2 or that F has no real places. Then there exists a
canonical isomorphism

”RHOmAnp[[G]](RFC(W,R]C*T]*(AOP[[G]]“ ®p T74(1))),AP[[G]]) =
RT(W, k. A[[G]]' @4 T)[3]
in the derived category of complezes of A[[G]]-modules.

ProOF. Note that A[[G]]* ® 7 has projective local cohomology in all closed
points of U and that

HALLGT) @a )50 = AP[[G]]F @per T
Then apply Corollary [5.3.3] O

We obtain the following functional equation for Lp_,p s v(7T) if F is a function
field of characteristic p # £. Recall the global e-factor from Definition To ease
notation, we set

er. s, (T) =e(W, Rk.n.A[[G]]' @ T)
=[-3r C RLc(W,REnA[[G]] @5 T)] € K1 (A[[G]]).

THEOREM 5.3.6. Assume that F' is a function field and that ¢ + p. Let Fo|F
be an admissible extension and T be a finitely ramified Galp-representation over A.
Assume that Foo[F has ramification prime to £ and T has projective local cohomol-
ogy over Fo, in all closed points of U. Then

(Lrprs(T(1)))® = E}&)rm/F,T,z(T) = EFOO/F,E,T(T)_l‘ch/F,Z,T(T)_l

PRrROOF. Choose a strictly perfect complex P* of A°P[[G]]-modules, an endo-
morphism f: P* — P® and a weak equivalence

: P* - RO(W, ki AP[[G]]F @ por T4 (1))
such that the diagram
P* — > RI(W, k. AP[[G]]} ®per T*2(1))
id-f lid—ﬁy
P* —2 > RI(W, ki AP[[G]]! @per T*2(1))

commutes in the derived category of complexes of A°P[[G]]-modules. In particular,
the diagram commutes up to homotopy in the Waldhausen category of perfect
complexes of A°P[[G]]-modules. By [Wit08| Lem. 3.1.6], this implies

[id-f G P*] " = Lp prx(T(1))
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in K1 (A°P[[G]],S). Applying Corollary to the representation T over A, we
obtain a commutative diagram

{(Poysrrion — o RT(W, Rk A[[G]]F @4 T)[2]

lid—]@ lid—&;l

i(poy*aien — 2 o RT(W, Rk A[[G]]F @4 T)[2]

in the derived category of complexes of A[[G]]-modules. Hence,
Lrprs(T(1))® =[id - f* G [(P*)*aeruen]
=[id-§' O RT(W,REA[[G]) @5 T)]
= L?‘M/F,T,Z(T)
=epper(T) Lo per(T)™
in Ky (A[[G]],59) O

REMARK 5.3.7. In the situation of Theorem [5.2.8] assume that 7 has projective
local cohomology over F,, in all closed points of U. Then

‘C;N/F,Z,T(T*A(l - n))® = ‘C?‘:/F’E’T(T(n))

holds almost by definition: Using Proposition one reduces to the case that T
is unramified over U. In this situation, one can refer to Corollary Similarly,
both this formula and Theorem also hold if A = O¢ is the valuation ring of a
finite extension C'/Qy, Foo = Foyc, and 7 is any finitely ramified Gal p-representation.

5.4. Calculation of the Cohomology

In this section, we will give a description of the cohomology groups of the complex
RL(W. R k.. (A[[G]]F 04 7).

LEMMA 5.4.1. Let F be a function field and Foo | F an admissible extension with
ramification prime to £ over U. We assume either £ + p or W = U. We further
assume that T has projective stalks over Fo, in each closed point of U. Then

(1) HE(W,Rkun.(A[[G]]F®a T)) =0 for s ¢ {1,2,3}.
(2)

Hi(WaRk*nx—(A[[G]]n ®A ‘T)) - {TG&IFOO ZfW =X and H is ﬁ’nite;
0 else.
3)
H(Q:(I/V)Rk*nx—(A[[G]]u RA ‘T)) = Hi(WFm’Rka*nFM*(A[[G]]n A ‘T))
If ¢ £ p, then
H2(W, R k. (A[[G]) @4 7)) = B (Wr kp e, 7V(1))
(4)

T(-1)galp. ifL#p and W =U,

0 else.

(W, R ke (A[[G]]' @1 7)) = {

PROOF. In the view of Proposition [5.2.1| we may assume that A is a finite ring.
We will first consider the case that H is finite. As RT(W,Rk.(A[[G]]' ®A 7))
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has S-torsion cohomology by Theorem and Theorem we conclude from
Proposition 2.8.1 and Remark [3.1.4] that

H (W, Rk (A[[G]])! ®a 7)) 2 H ' (Wp, Rkr_ iF. ,T)

= Hs_l(VFmaijlnFoo*T)

o Hs—l (Vﬁpm , jFoo IFe *T)Gal(]FFw/Fm).

From the fact that the cohomology of an étale sheaf of A-modules on the curve Vg,
over the algebraically closed field F is concentrated in degrees 0 up to 2 if £ # p and
V =X and up to 1 if £ = p [Mil80, Cor. VI.2.5] or V # X [Mil80, Rem. V.2.4]
we deduce Assertion (1) and the second case of Assertion (4). Assertion (2) for H
finite follows since

TCre  if U=V

H (Ve jroF. . T) =
0 else.

We now assume £ # p. Assertion (3) is a consequence of Corollary More-
over, this corollary implies

HE(U, 0. (A[[G) ©4 T)) = HO(Up p, TV (1))
= ((77(1))%7=)" = T(~1)Galy._ -

This proves Assertion (4) in the case £ # p.

Finally, we use Corollary [5.2.2] to deduce the assertions for general H. In the
case of Assertion (2) it remains to notice that, since 7 is finite, there exists a
finite extension L/Fe.y. inside F., with 7 = 792 and such that Gal(F./L) is
pro-¢. Hence, the norm map Ny r,:7 — 7 is multiplication by a power of £ for
Lcy L' cy L" c Foo. We conclude that

H'(V,no(A[G]) 04 7)) = lm 7630 =g
FeyccplcFe
if H is infinite. O
LEMMA 5.4.2. Let F be a totally real number field and Foo | F be a CM-admissible
extension. Assume that Feo/F has ramification prime to £ + 2 and that T has pro-
jective stalks over Fo, in all closed points of U. Assume moreover that £ is invertible

on W and that T is smooth at co. Fix an integer n. Choose € =+ if n is even and
e=—ifn is odd. If Conjecturel|3.3.4) is valid, then:

(1) HE (W, Rk (A[[G]]F ®a T(1 +n))) = H* (W, ki (A[[G]] @4 T(n))) = 0
for s ¢ {1,2,3}.
(2)

e« HX(W, R k. (A[[G]]* ®A T(1+n))) =0,

T(n)SF=  if U =W and H is finite,

e Hl(W ki (A[[G]]F @ T(n))) = {0 else.

(3)
e He(W, Rk (A[[G]] @4 T(1+n))) = ec Ho(Wr,, Rkp,  p.  T(1 + 1))
= eo(H' (W b e T (1))
e H2(W, k. (A[[G]]' @A T(n))) = e H' (W, k.. np. T (1))
= e.H (We , Rkp_ np. 7" (1-n))"
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(4)
He (W, Rk« (A[[G]) @a T(1+n))) = {oT(n)GalF“’ JZU -

H (W, ki (A[[G]]} @4 T(n))) = 0.
PROOF. Since £+ 2 and W # X, we have
H*(W,6) =0
for every ¢-torsion sheaf G on W and s > 2. If W # U, then V # X and the same
argument shows
H(W,Rk.F)=H*(V,71F)=0
for every (-torsion sheaf F on U and s> 2. If W = U, then
H(U,F)=0
for s > 3. The rest follows exactly as in Lemma [5.4.1] O

As we will explain in Chapter [} the following three corollaries may be viewed
as a generalisation of [GP12] Thm. 3.10] and [GP15l Thm. 4.6], respectively.

COROLLARY 5.4.3. Let F be a function field of characteristic p + £. Assume

(1) Fw/F has ramification prime to £ over U,

(2) T has projective local cohomology over Fu, in all closed points of U,
(3) either W+ X or (T**)Gal,_ =0, and

(4) either W U or T(-1)galx_ = 0.

Then H2(W, R k.. (A[[G]]Y ®a T)) is finitely generated and projective as A[[H]]-
module and H*(W, kin. (AP[[G]]*®r0r T*4) (1)) is finitely generated and projective
as A°P[[H]]-module. Moreover, we have
[RE(W. Rk, (A[[G]) @4 7))] = [H(W, Rk (A[[G]]} @4 7))]
= (H(W, ki (AP [[GT]F @en T54) (1)) A7 100)]
= ~[H*(W, ks (AP[[G]]F @ner T°4)(1))]°
= ~[RT(W, ki, (AP[[G]] @ner T74)(1))]°
in Ko(A[[G]],S).-

PROOF. Note that T~ = Homper ((7**)Galp_, A°P). According to Theo-
rem we may find strictly perfect complexes P* and Q° of A[[G]]-modules
and A[[H]]-modules, respectively, which are weakly equivalent to the complex
RT(W,Rk.n.(A[[G]]* ® T)). By Lemma and assumptions (3) and (4),
H? (W, R k.. (A[[G]]' ®4 T)) is the only cohomology group of these complexes
that does not vanish. Hence,

[REc(W, Rk (AL[G]]) @4 7))] = [HZ (W, Rk (A[[G])F @4 7))]

holds by Remark[2.5.11] Moreover, we may assume that P* and Q°® are concentrated
in degrees less or equal to 2.

Let M be a simple A[[G]]°P-module. Then M is also simple as module over
(A[[G]]/ Jac(A[[G]]))°P. By Schur’s lemma the endomorphism ring of M is divi-
sion ring k. Since k is clearly finite, it is a field. Hence, we may consider M as
k-A[[G]]-bimodule, which is finitely generated and projective as k-module. Write
M for the corresponding Galp-representation over k. Under assumptions (1) and
(2), the natural map

Upr RE(W, Rkan (A[[G]) @A T)) = RT(W, R kurps (M ®4 T))
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is a weak equivalence by Lemma [5.1.10] If W # X and hence, V # U, we have
HY(W. Rk, (M @4 T)) = HO (V. jin. (M @4 T)) = 0.
If W=X and (7%*)qgal,_ =0, then

H (W, Rk (M @5 T)) = H(U, . (M ©5 T))

= (M @) T)%7=

= (M & T)™)Galp, )"

= ((M*k & Aop T*A)GalFm )*k

= (M7 @por (T7")Galp,, )™

=0.
In particular, the flat dimension of H2(W,R k.7, (A[[G]]' @4 T)) over A[[G]] is
less or equal to 1 in both cases, such that we may assume that P® is concen-
trated in degrees 1 and 2. We may then apply Lemma to conclude that
HZ(W, R k.. (A[[G]]* ®4 T)) is projective over A[[H]]. The same reasoning ap-
plies to 7*4(1).

We now apply Corollary to the Galg-representation T over A and obtain

[RE(W, ki (AP[[G1]F ®@aor T°4)(1))] = ~[RTe(W, Rk (A[[G]]* @2 7))]°.
Using Corollary we conclude
[HZ(W. Rk (A[[G]) @4 7))] = ~[H* (W, ki (AP[G]]F @ner 77)(1))]°
= (B2 (W, k. (AP[[G]]} @aon T4)(1)) 7101,
as desired. O

COROLLARY 5.4.4. Let F be a function field of characteristic p=4£. Assume

(1) Fw/F has ramification prime to p in all closed points of U,
(2) T has ramification prime to p in all closed points of U, and
(3) either U # X or (T**)qaly_ = 0.

Then H2(U,n. (A[[G]]'®AT)) is finitely generated and projective as A[[H]]-module.
Moreover, we have

[RT(U, 0. (A[[G]) @1 7))] = [HZ(U, 0 (A[[G]]F @1 7))]
in Ko(A[[G]],5).

PROOF. Use Theorem [5.2.7) and proceed as in the first part of the proof of

Corollary [5.4.3 O

COROLLARY 5.4.5. Fix a prime £ # 2 and an integer n. Choose € = + if n is
even and € = — if n is odd. Let Foo [F be a CM-admissible extension of a totally real
number field F. Assume that

(1) Fo/F has ramification prime to £ in all closed points of U,

(2) T has projective local cohomology in all closed points of U and is smooth
at oo,

(3) ¢ is invertible on W,

(4) either W U or T(n)gal_ =0, and

(5) Congecture is valid.
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Then e. H2(W, R ks (A[[G]]t ®a T)(1+n)) is finitely generated and projective as
A[[H]]-module and e. H? (W, kin. (AP[[G]] @ ror T*2)(~n)) is finitely generated
and projective as A°P[[H]]-module. Moreover, we have
[e- RT(W. R ke (A[[G]] @4 T)(1+1))]
= [e HI (W, R k.. (A[[G]]F @4 T(1+1)))]
= [ec B (W, b (AP[[G]) @nop T*)(1+ m)) "]
= ~[ec B (W, ki, (AP[[G]] @ner T74) (1 +1))]®
= ~[e: RD(W, ki (AP [[G]]} @ T°4) (-1))]®

in Ko(A[[G]], S).
Proor. This is completely analogous to Corollary O

5.5. The Main Conjecture for Selmer Groups

In this section we will assume that R is a local, commutative, and regular adic
Zg-algebra. Further, we assume that F' has no real primes if ¢ = 2 and that £ is
different from the characteristic p of F' if F' is a function field. We fix an open,
dense subscheme U of X with complement ¥ and write

kU - X « X

for the associated immersions. Let 7 be a finitely ramified representation of Galr
over R. For F c L ¢ F we may define a Selmer group for 7. If L/F is a finite
extension, then

Sels (L, 7V (1)) = ker(Hl(GalL,‘IV(l)) - P Hl(Iz,‘IV(l)))
a:eUg
Otherwise, one defines

Sely(L, 7"(1)) = lim Sel (L, 7¥(1)),
LI

where L'/F runs through the finite subextensions of L/F. If W = X, then
Sel(L,7V(1)) = Sely(L,7V(1))

corresponds to the Selmer group as in [Gre89, §5] with trivial submodules for the
primes above £ in the number field case. In the function field case, Sel(L, 7V (1))
is the correct analogue of the classical Selmer group. If ¥ # @, then Sels (L, 7V (1))
is referred to as imprimitive Selmer group by Greenberg.

LEMMA 5.5.1. For any extension L|F inside F,
Sels (L, 7¥(1)) = H' (Up,n1.. 7" (1)).

PROOF. Without loss of generality we assume that L = F. According to
[AGVT2a, VII, Cor. 5.8] we have for every integer s

H*(Galp, 7¥(1)) = i H* (U, 7¥(1)).
UI

Here, U’ runs through the open dense subschemes of U and

Ny Spec F — U’
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denotes the immersion of the generic point. For any such U’, the Leray spectral
sequence shows

Hl(Uﬂ?*‘TV(l))gkeF(Hl(U'mU'*TV(l))—> &) H°<x,z‘;RanV(1)))
xeU-U’

with i,:x — U the immersion of the closed point . Recall that for any discrete
Galp-module M, one has (i%n.M); = M*=. By considering an injective resolution
of 7V(1) we conclude

(iR .7 (1)); = H\(Z,, TV (1)).
The equality in the lemma follows after passing to the direct limit over U’. (]

Fix an admissible ¢-adic Lie extension F.,/F, such that the Galois group G is
an f-adic Lie group. We set

Xpyrx(T) = Sels(Fuo, TV (1)) .
LEMMA 5.5.2. Assume that £ is invertible on U. Then
HZ(U,n(R[[G])' ®R T)) = Xr_/rs(T)

PrOOF. Note that 7[[G]] is a noetherian ring. Hence, 77+ is finitely generated
for all closed points x € X. According to Proposition [5.2.1] and Corollary we
have

H: (U (R[[G]]F @R 7)) = lim  HI(U,n.(R[[G])}/I ®r T))
TeTri1en
=l H'(Un (RGN er T’ (1))
T€TRri1en
By [AGVT72al, VII, Prop. 3.3, the étale cohomology of U commutes with direct

limits, such that

lim  H'(U,n. (RG] /T er T’ (1)) = H (U (R[G]] 02 T)")’
IeTRian

= Xp.rx(T)
by Lemma [5.5.1 O

We may thus deduce the following reformulation of the non-commutative main
conjecture in terms of the R[[G]]-module Xp_/p 5 (T).

COROLLARY 5.5.3. Let Foo/F be an admissible (-adic Lie extension of a func-
tion field F' of characteristic different from £. Assume that G has no element of
order £. Let Yo c U denote the set of points over which Fu|F has non-torsion
ramification and assume that T is a finitely ramified Galp-representation over T
that has projective stalks over Fo in all closed points of U — ¥g. Then

(1) Xp_ps(T) is in Ng(R[[G]]).
(2) In Ko(R[[G]],S) we have

AL 1F5use,6(T) == [Xp.ps(T)]+ [T(-1)qalr, ]

. [7CF=] if ¥ =@ and H is finite,
0 else.

PRrROOF. Note that

Xpps(T) = Xp oz, (T)
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by Lemma Moreover, since G has no element of order ¢, F,/F has ram-
ification prime to ¢ over U — X3. The rest is a direct consequence of (2.10.1)),
(|

Theorem [5.2.6] and Lemma [5.4.1]

Without the extra interpretation of the cohomology group, we obtain from
Theorem [5.2.7]

COROLLARY 5.5.4. Let F be a function field of characteristic p and Fo |F be
an admissible p-adic Lie extension. Assume that G has no element of order p. Let
Yo c U denote the set of points over which Fu [F has non-torsion ramification and
assume that T is a finitely ramified Galp-representation over T that has projective
stalks over Fo in all closed points of U — Xg. Then

(1) HZ(U,n.(R[[G])* ®r T)) is in Ny (R[[G])).
(2) In Ko(R[[G]],S) we have
dLp. jrsus,.o(T) =~ [Hz(Uv W*(R[[G]]u ®rT))]

. [,IGale] if X =@ and H 1is finite,
0 else.

REMARK 5.5.5.

(1) We recall from Example that if R has global dimension less or equal
to 2, for example R =Zy or R = Z,[[t]], then 7 has automatically projec-
tive stalks over F,, in every closed point of X. We may choose ¥ to be
empty in this case.

(2) If G satisfies the premisses of Proposition then [T(-1)gal,_]=0
in Ko(R[[G]],5).

As a special case of Corollary[5.5.3] we can deduce a non-commutative function
field analogue of the most classical formulation of the Iwasawa main conjecture.
We fix an admissible f-adic Lie extension F../F with Galois group G = H x T
Further, we will write ¥ for the closed subscheme of U where F./F has non-
torsion ramification.

COROLLARY 5.5.6. Let F be a function field of characteristic different from €.
Assume that G does not contain any element of order £. Let M be the mazimal
abelian (-extension of Fo, which is unramified outside . Then

(1) Gal(M/Fs) is in Ny (Z[[G]]) and
AL p. Fsusep(Ze(1)) = - [Gal(M [ Fo) ] + [Z]
. {[Ze(l)] if X =@, H is finite, and py ¢ Foo
0 else.
in Ko(Z[[G]], S)

(2) Let p:Galp - Glg(O¢) be an Artin representation over the valuation ring
Oc¢ of a finite extension C of Qg that factors through G. Then

@p(‘CFm/F,EUEo,Q(ZZ(l))) = EFCyC/F,Euzo,z(P(l))-
Proor. From Lemma and from the equality
H'(Ur..,Q¢/Z¢) = Gal(M/Fs)".
we deduce
HZ (U, 0. Zo[[G1] (1)) = X yps(Ze(1)) = Gal(M [ Fo).
We then apply Theorem [5.2.6| and Corollary Finally, we remark that
Zo(1)%1 =0
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if Fo does not contain any ¢-th root of unity. If F., does contain an ¢-th root
of unity, then it also contains all £"-th roots of unity for any n, and therefore,
Zy(1)9¥F= = 7,(1) in this case. O

If G does contain elements of order ¢, then Theorem applied to Z,(1) is
still a sensible main conjecture if we assume that F,,/F has ramification prime to
¢ over W; however, we can no longer replace the class of the complex

[RT(U,n(A[[G]]F 4 Ze(1)))] = =L pjr5,0(Ze(1))

by the classes of its cohomology modules. One may also apply Theorem and
Theorem to Z, resulting in a main conjecture for every ¢. Main conjectures
of this type have already been discussed in [Burll].

COROLLARY 5.5.7. Let Foo/F be a CM-admissible £-adic Lie extension of a
totally real number field F'. Assume that G has no element of order £. Let g c U
denote the set of points over which Feo[F has non-torsion ramification and assume
that T is a finitely ramified Galp-representation over T that has projective stalks
over Fo, in all closed points of U—-%q. Assume that T is smooth at co and let n € Z.
Choose ¢ = + if n is even and € = =1 if n is odd. If Conjecture[3.3.7) is valid, then

(1) ecXp_/px(T(1+n)) is in Ng(R[[G]]).
(2) In Ko(R[[G]],S) we have

ALY rsuse,o(T(L+n)) = —[ecXr rs(T(1+n))]+[T(n)calx, ]
PROOF. Use Theorem [5.2.8 and Lemma [5.4.2] O

5.6. The Main Conjecture For Abelian Varieties

Assume that F' is a function field of characteristic £ # p. In this section we let A
be an abelian variety over Spec F'. We continue to that U is an open dense subset
of X with complement ¥ (which may be empty). Our aim is to deduce a precise
function field analogue of the Gl main conjecture in [CFK*05].

Let O¢ be the valuation ring of a finite extension C' of @y and p a finitely
ramified representation of Galg over O¢. The X-truncated L-function of A twisted
by p is given by

Ls(A,p,t) = [] det(1-F.t8) G (p @z, H' (A xgpec r Spec F, Q) )"
zeU°
If p is an Artin representation of Galg, then Ly (A, p,¢”®) is the 3E-truncated Hasse-
Weil L-function of A twisted by p.
We will write A for the dual abelian variety,

A(F), =ker A(F) & A(F)
for the group of n-torsion points and
T,A:= Lin A(F) r
E

for the f-adic Tate module of A. It is well known that Ty A is a finitely ramified
representation of Galp over Zy. Moreover, the argument of [Sch82l §1] shows that
for any closed point z € X

(n(p®z, Te A(-1)))s ®2, Qr = (p ®2, H' (A xspec F Spec F, Q) )™
such that
Ls(A,p,q't) = Z(Un. Te Aoy, p,t).
Recall that ¢ denotes the number of elements in F and that g is the image of

the geometric Frobenius §r in T'.
As an immediate consequence of Theorem we obtain:
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COROLLARY 5.6.1. Let Foo/F be an admissible extension. Assume that Foo|F
has ramification prime to £ over U. Then:

(1) We have
dLp. rs,0(TeA) = -[RT(U, 1. (Ze[[G]]! ®z, Te A))]

in Ko(Ze[[G]],S).
(2) Let p:Galp - Glg(O¢) be a finitely ramified representation over the valu-
ation ring Oc¢ of a finite extension C of Qg that factors through G. Then

©,(Lrrse(TeAd)) = Le(A,p,q 95").
For any extension L/F inside F we let

Sels (L, A) = limker H' (Galy, A(F)+) > @ H'(Galg,, A(F))
k zeU?

be the 3-truncated Selmer group of A over L.
LEMMA 5.6.2. For every admissible £-adic Lie extension Fo[F we have
Sels; (Fuo, A) 2 Sels;(Foo, To(A) (1))

PROOF. Let L be an extension of F' and let L, be the completion of L at
x € Ur. According to Greenberg’s approximation theorem we have

H'(Galy,,A(F)) =H'(Galy,, A(L,))

IMil06, Rem. 1.3.10] for all finite extensions L/F. Since the points of the formal
group of A form an open pro-p-subgroup of A(L,) we conclude from the Kummer
sequence that

Selx (L, A) = limker H' (Galy,, A(F)x) ~ @ H'(Galg,, A(F)+)
k zelU?

for all extensions L/F inside F. If Fi.y. c L, then Gal(L2/L,) is a profinite group
of order prime to £ and the Hochschild-Serre spectral sequence shows that

H' (Galr,, A(F) ) » H' (Zy, A(F) 1)
is an injection. Furthermore,

To(A)"(1) = lim A(F) e
k

[Sch82, §1] such that indeed Sels(Fa, A) = Sels(Fao, To(A) " (1)). O
In particular, we deduce the following function field analogue of the Gls main

conjecture of [CFK*05] as a special case of Corollary

COROLLARY 5.6.3. Let Foo /F be an admissible £-adic Lie extension with Galois
group G, and A an abelian variety over Spec F'. We assume that G does not contain
any element of order ¢ and write ¥g for the set of points in W in which Fu[F has
non-torsion ramification. Then Sels;(Fu, A)" is in Ny (Z[[G]]) and

L. 17 s0s0.6(Te(A)) = ~[Sels (Foo, A) ']+ [Te(A) (-1calr,. ]
. {[Tg(A)Gale] if ¥ =@ and H s finite,

0 else.

in Ko(Z[[G]], ).
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The terms [T;(A)(-1)gal,_ ] and [T¢(A)%*'7=] disappear in the following sit-
uation. Recall that by an old result of Grothendieck [Oor73, Thm. 1.1], an abelian
variety over F' is of CM-type over a F if and only if it is isogenous to an abelian
variety over a finite field. Moreover, this is the case if the image of Galr, , in the
automorphism group of Ty(A) is finite [Oor73l Last step].

PrOPOSITION 5.6.4. Let A be an abelian variety over SpecF' of dimension
g > 1 which is not of CM-type over F. Let F., be the extension of F obtained by
adjoining the coordinates of all £™-torsion points of A. If £ > 8g? — 1, then Fuoo|F
is an admissible £-adic Lie extension, Gal(Fu/F) does not contain any element of
order { and §
ALr. ir2.0(Te(A)) = ~[Seln(Foo, A)].
in Ko(Ze[[Gal(Fo/F)]], 5).

PROOF. It is well known that the group Gal(Fw/F) is the image of Galp in
Autz, (Ty(A)), that T¢(A) is a free Zy-module of rank 2g, and that Galp acts on
the determinant of T;(A) via the cyclotomic character x. This shows that Fl,/F is
an admissible /-adic Lie extension. Since £ —1 > 2g, the group AutZ[(Tg(A)) does
not contain any element of order ¢. By a result of Zarhin [Zar77, §4], [Zar14! §6],
the Lie algebra L(G) of G is the direct product

L(G)=g"xc
of a simi-simple Lie algebra g° of dimension less or equal to 4g® — 1 over Q; and a
commutative Lie algebra ¢ of dimension 1. Since any finite extension of F' has only

one Zg-extension, g’ necessarily coincides with L(H). Since A is not of CM-type
over F, H is not finite and hence, L(H) is non-trivial. In particular,

[Te(A(-1))]=0
in Ko(Z[[Gal(Fw/F)]],S) by Corollary [2.10.3| O

REMARK 5.6.5. With F,, as in Proposition assume that ¢ > 2g - 1, such
that G has no elements of order /.

(1) By the above result of Zarhin, one can always find a finite extension F'/F
inside Fo/F such that

Gal(Fu/F') = Gal(Fo/Fly,) x Gal(Fyo/F").

Hence, applying Proposition [2.10.2[to N = Gal(F¢./F’), we conclude that

[Te(A(-1))]=0
in Ko(Z[[Gal(Foo/F")]], 5).
(2) One may also try apply the criterion of [FKO06|, Prop. 4.3.17] to the rep-
resentation T;(A(-1)). However, one of the requirements is that G has
infinite intersection with the subgroup

7;id c Autz, (T,(A)).

Different from the number field case, this condition is not always satisfied
for abelian varieties over F. Zarhin constructs in [Zar07] for every odd
g > 1 examples of abelian varieties of dimension g which are not of CM-
type and such that G has finite intersection with Z;id independent of the
choice of /.

(3) If g = 1, then one can always take F’ = F. Indeed, Gal(Fw/F) must be
open in Autz, (T,(A)) = Gl2(Z) and the intersection of Gal(Fu/Feyc)
with Sla(Zy) is open in Sla(Z;). Otherwise, Gal(Fo/F') would contain a
commutative open subgroup by the above result of Zarhin, which is not
possible since A is not of C'M-type over F (This was also observed in the
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thesis [Sec06], using a different argument). By the assumption on ¢ we
may write

Gl2(Z[) = H’ X Zg
with H' not virtually solvable. So we may apply Proposition [2.10.2



CHAPTER 6

Main Conjectures for Realisations of 1-Motives

In this chapter, we will clarify the relation of the main conjectures in Section [5.2
with the main conjecture for f-adic realisations of Picard 1-motives over function
fields considered in [GP12] and the main conjecture for ¢-adic realisations of ab-
stract 1-motives over number fields considered in [GP15].

In Section we recall the notion of a Picard 1-motive and give a description
of it in terms of étale cohomology. In Section[6.2] we consider the function field case
and formulate a non-commutative generalisation of the main conjecture in [GP12]
as a special case of the main conjecture for Galois representations considered in
Section Finally, in Section [6.3] we carry out the same program in the number
field case.

6.1. Picard 1-Motives

We recall the notion of Picard 1-motives introduced by Deligne [Del74]. For this,
we need some more notation. Let G,y denote the group of units of a scheme Y,
considered as a sheaf on the small étale site of Y. Let i:Z - Y be a closed immer-
sion. Recalling that the stalk of G,y in a geometric point of Y is given by the units
of the strict henselisation of the local ring in this point [Mil80, Rem. I1.2.9.(d)],
we see that

Gmy nd ’L'*(Grmz

is a surjection. We let G,y 7 denote its kernel.

From now on, we assume that Y is a quasi-compact, excellent, noetherian,
integral, normal scheme of dimension 1 with perfect residue fields at all closed
points of Y and that Z is a finite subscheme of Y. We write K for the function
field of Y. Let 1,Gy, ¢ denote the étale sheaf of invertible rational functions on Y
and

Pz =ker (.G e = ix* (1:Gm g /CGmy,z))

its subsheaf of rational functions which are congruent to 1 modulo the effective
divisor on Y corresponding to Z in the sense of [Ser88| Ch. III, §1]. For any locally
closed subscheme Y’ of Y we let Divy+ denote the étale sheaf on Y of divisors with
support on Y.

115
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Consider the diagram

(6.1.1) 0 0 0
0 GmY,Z GmY i*GmZ — >0
0 Pz NxGmg — 10" (NGmg /Gy, z) —=0
div
0—— Divy_y Divy Div 7 0
0 0 0

of étale sheaves on Y. One checks easily by taking stalks that all the rows and
columns are exact. By Hilbert 90 in the form of [Mil80, Prop. I11.4.9], we have

H'(Y,i,Gny) 2 HY(Z,Gny) = Pic(Z) = 0.

Hence, the third column is exact even in the category of presheaves. Clearly, this
is also true for the third row. The weak approximation theorem for K implies the
exactness of the second row in the category of presheaves. Hence,

H' (Y, 27) c H (Y, 7Gx )

and the group on the right-hand side is zero by Hilbert 90 and the Leray spectral
sequence. In particular, we have for any open dense subscheme Y’ of Y

H' (Y, Gmy.z) = Divyr—z(Y) [{div(f) | f € 22(Y")}
The group

Pic(Y,2) = H' v, GmY,Z)

is usually called the Picard group of Y relative to the effective divisor corresponding
to Z. If K is a global field, then it is also known as the ray class group of Y for
the modulus Z.

We will now assume that Y is a smooth and proper curve over an algebraically
closed field k of characteristic p > 0. Let Divd. denote the kernel of the degree map
Divy — Z. Likewise, we write Pic’(Y, Z) for the kernel of Pic(Y, Z) — Z. It can be
identified with k-valued points of the generalised Jacobian variety of Y with respect
to Z [Ser88, Ch. V, Thm. 1].

Recall from [Mil80, Ex. III.1.9.(c)] that an étale sheaf 7 on Y is flabby if
H*(U, ) =0 for all s> 0 and all étale schemes U of finite type over Y.

LEMMA 6.1.1. Let k be a algebraically closed field, Y be a smooth and proper
curve over k and Z c X be a finite closed subscheme. The complex of étale sheaves

Pz — Divy_gz
is a flabby resolution of Gy z on Y.

PROOF. Since Z is a scheme of finite type of dimension 0 over the alge-
braically closed field k, all étale sheaves on Z are flabby [Mil80, Rem. III.1.20.(b)].
Since i, maps flabby sheaves to flabby sheaves by [Mil80, Lem. III.1.19], the
sheaf (i.7*(7.Gmg/Gmy,z)) is flabby. The sheaf 7,Gy, is flabby by [Mil80,
Ex. I11.2.22.(d)]. As the second row of the diagram is exact in the category
of presheaves, Pz must also be flabby. O
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Consider two closed subschemes Z; and Z5 of Y with empty intersection. The
Picard 1-motive for Z; and Z5 is defined to be the complex of abelian groups

Mz, z,:Divy, (Y) - Pic’(Y, Z5)

concentrated in degrees 0 and 1 [GP12] Def. 2.3]. Its group of n-torsion points for
a number n > 0 is given by

MZl,Zz [n] = HO(MZhZ2 ®% Z/(n))
and its f-adic Tate module for a prime number £ is given by

TeMz, z, =lim Mz, z, [¢*]
k>0

[Del74] §10.1.5].
LEMMA 6.1.2. We have for all numbers n >0
Mz, 2,[n] 2 H'(RT(Y = Z1,Gux,z,) ®7 Z[(n))

where RT'(Y = Z1,Gny, z,) denotes the total derived section functor and ®HZ“ denotes
the total derived tensor product in the derived category of abelian groups.

Proor. Consider the complexes
A*:Divg, (Y) = Pic(Y, Zs),
B*:Divg, (V) @ Pz, (Y) > Divy_z,(Y),
and

g V2T i Zi=e L R i 2 =2,
0 else, 0 else.

We obtain two obvious distinguished triangles
Mz, .z, > A* > E, F* > B* > A*.
Moreover, the obvious map from B*® to the complex
Py, (Y = Z1) = Divy_z,(Y - Z7)

is a quasi-isomorphism. The latter complex may be identified with the complex
RT(Y - Z1,Gwy,z,)- For this, we note that

Pz, — Divy_z,

is a flabby resolution of Gy,y,z, by Lemma
Since k is algebraically closed, the group £* is divisible. Hence,

HO(F* &} Z/(n)) = H' (F* €5 Z/(n)) = 0.
Since Z is free as Z-module,
H™ ' (E®* ®;Z/(n)) = H°(E® ®3 Z/(n)) = 0.
Hence,
HY(RI(Y - Z1,Gux z,) ®; Z/(n)) 2 H'(B* ©5 Z/(n))
= H(A* @3 Z/(n))
= My, z,[n].
d

Write j1:Y-Z1 = Y, jo:Y-Z5 - Y for the open immersions of the complements
of Zl and ZQ.



118 6. MAIN CONJECTURES FOR REALISATIONS OF 1-MOTIVES

LEMMA 6.1.3. Ifp 4+ n, then
RI(Y - Z1,Gumy z,) ®; Z/(n) 2 RT(Y = Z1, jo, ) [1]
with p, the sheaf of n-th roots of unity on 'Y — Zy. In particular,
Mz, z,[n] 2 BY(Y = 2y, jorpin) = HU(Y = Za, 022 (n))
PROOF. The first statement follows from the Kummer sequences for G,y and
Gz, and the exactness of the sequence
0 = jJ2yftn = pin = i3pn > 0

with i9: Zo — Y denoting the closed immersion. The second statement follows from
Lemma [6.1.2] and Corollary [5.3:2] which holds equally well over any algebraically
closed field k of characteristic p. O

LEMMA 6.1.4. Assume p >0 and that Zs is reduced. For all numbers r >0 the
canonical morphism

RI(Y - Z1,CGmy.2,) ®7 Z/(p") > RI(Y = Z1,Gmy) @7 Z/(p") 2 RI(Y - Z1,1})

is an isomorphism. Here, v} = W, Q%,Jog is the logarithmic De Rham-Witt sheaf
on Y. In particular,

Mz, [P 2 HO(Y = Z1,0)) s HUY = Z1,Z/(0"))
PROOF. Since we assume Zs to be reduced, we have
RT(Z2,Gmz,) ®5 Z/(p") 2 0.

This explains the first isomorphism in the first part of the statement. For the second
isomorphism we may use [GeilOl Prop. 2.2] together with the identifications

Zy =Ly (1)[2] 2 Gy [1]
in the notation of loc. cit.. The duality statement
HO(Y = Zy,v)) = HA(Y - 20,2/ (p"))"
can be deduced from [Geil0, Thm. 4.1]:
RI(Y - Z1,1) 2 RI(Y - Z1,Z3) ®5 Z[(p")[-1]
2 RHomgz y_z, (Z/(p"),Zy)
2 RHomz(RT(Y - Z1,Z/(p")), Z)
2 RHomz(RT(Y - Z1,Z/(p")), Q/Z)[-1].

6.2. The Iwasawa Main Conjecture for Picard 1-Motives

We now return to our previous setting. Fix a prime number ¢. Assume that F' is
a function field of characteristic p with field of constants F. As before, we consider
an admissible extension F,,/F with Galois group G = H xI'. We will assume that
H = Gal(Fw/Fgyc) is finite. Let X be the proper smooth curve over F with function
field F. Fix two open dense subschemes V and W of X such that X =V uW and
set U =V nW. Further, we let
Z = X — W T = X - V
denote the complements with their reduced closed subscheme structure. We write
n:Spec F - U
for the inclusion of the generic point and
kU - W, 53U -V
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for the open immersions of the subscheme U.

Set Y := Gal(FF./Fs) and note that Y is of order prime to £. Furthermore,
note that for a commutative adic Z-algebra R, the Galp-representations R and (if
£ +p) R(1) of Galp over R are unramified in all closed points of X. We recall from
Definition that for a R[[G]]-module M which is finitely generated and free
as R-module, *M*% denotes the R-dual considered as left R[[G]]-module.

PROPOSITION 6.2.1. Let Foo |F be any admissible extension of a function field
F of characteristic p. For an integer r >0, we set R==7Z/({").
(1) If £ # p, then H*(W, ki, R[[G]]") is a finitely generated free R-module for

every s € Z and

(M, xo, [ODT 2B (Vi RI[G]]}(1))

= "2 (W, ki R[[G]]) "7

FFoo

(2) if £ =p, then H3(V, 5.0 R[[G]]") is a finitely generated free R-module for
every s € Z and

Ms, 1., '] =2 H2(V, . RI[G]]) .

FFoo’ FFoo

PROOF. Since H is finite, we may find a finite extension F'/F inside Fe/F
such that Fi, = Fc’yc. In the case that ¢ = p, we may further assume that V' = U and
hence, W = X. By Corollary

H (W, k. R[[G]]F) 2 B (W, kpnne R[[Gal(Fryo/F")]])

as R-modules. Hence, we may assume that F = Fiy.. In particular, FCyC/F is
unramified over all of X. From Lemma we conclude that H* (W, ki, R[[T']]*)
is a finitely generated and free R-module for s # 2. Moreover, since R-duality and
Pontryagin duality agrees for all finitely generated R-modules, we conclude

W2 (W, ko R[[G]]) ™" 2 (Mr,,_ s, ["])T

from Lemma [6.1.3] and Lemma [6.1.4l It remains to show the freeness for s = 2.
Assume that W # U. If £ = p, we may apply Corollary[5.4.4] If ¢ #pand V # U,

we may apply Corollary [5.4.3] We may proceed in the same way if V = U and Fey.

does not contain p. In this case, the image of Galg_ _ in the automorphism group

cyc

of R(-1) is a non-trivial group of order prime to ¢, such that R(-1)calp,,, =0.

To settle the remaining case, assume that py ¢ Fiy. and that the complement
of U in V consists of a single point = that does not split in Feye/F. Consider the
exact cohomology sequence

> (Vi JFeye 1Fye (1) = B (Vi GRy P R(D) = B (2R, R(1)) »
Since

HY (Vs JFoye 1P R(1) 2 B (2R, R(1)) 2 R(1),
H*(zp,,.,R(1))=0 for s> 0,

cye)

we conclude that

H' (Vi JFeye NPy JR()) 2 H (Vi e N5 R(1)).

Taking the Pontryagin dual, we conclude from Lemma [5.4.1] that
HZ (V. jan«R[[T]]") = H* (W, ki, RI[T]]F)

is still finitely generated and free as R-module.
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Similarly, for all ¢, if the complement of U in W consists of a single point x
that does not split in Feyc/F, then

H*(W, ko R[[G]]") = H' (W, kr.,. ,0F.,. k)

= H' (W, kr.,. np.,. R)
= H*(W, k. R[[G]]F)
is finitely generated and free as R-module. This settles the case W = U. O

COROLLARY 6.2.2. Let Foo/F be any admissible extension of a function field F
of characteristic p.
(1) If £ # p, then H*(W, k. Ze[[G]]") is a finitely generated free Zg-module
for every s € Z and

(Te My, s, )Y 2 HA(V, i Z[G]H(1))
= " (W, k. Z[[G])
(2) if € = p, then HI(V, 5.0 Ze[[G]]}) is a finitely generated free Z,-module

for every se€Z and

(T My

FFoo’

1o, )T 2 AV, G Za[[G]1)
Proor. Use Proposition and pass to the inverse limit over n € N. [l

REMARK 6.2.3. Note that the image of T in Autgz, (T, Mt w__ ) is finite.

FFoo ' FFoo
Hence, we can always choose the admissible extension F.,/F large enough such that

(TeMr. s )T =Ty Mr.

FFoo " “FFoo Fhro 12

FFoo '
The following two corollaries are a non-commutative generalisation of Greither’s
and Popescu’s main conjecture for Picard-1-motives [GP12], Cor. 4.13].

COROLLARY 6.2.4. Assume that £ + p, that H is finite, that both ¥ and T are
non-empty, and that Fo [F has ramification prime to £ over U. Then:

(1) The Z¢[[G]]-module (T¢ Mry, =,
tive over Ze[[H]]. In particular, it has a well-defined class in the Grothen-
dieck group Ko(Ze[[G]], S).

(2) We have

VY s finitely generated and projec-

dEFw/F,Z,T(ZZ(l)) =" [(T€ MT?FN z )T]

»“FFoo
in Ko(Ze[[G]],5).
(3) Let p:Galp - Glg(O¢) be a finitely ramified representation over the valu-
ation ring O¢ of a finite extension C of Qg that factors through G. Then

®,(Lryre,1(Ze(1))) = Lr iz r(p(1))

Proor. This follows from Theorem with 7 = Z,(1) together with Corol-
lary and Corollary (|

COROLLARY 6.2.5. Assume that H is finite and that ¥ is not empty. If £ +p
we also assume that T is not empty and that Fo[F has ramification prime to £
over U. If £ = p we assume that Foo[F has ramification prime to p over V. Then:

(1) The Z[[G]]-module n((Tg Ms_ 1., YY)*2e is finitely generated and pro-
jective over Zi[[H]]. In particular, it has a well-defined class in the
Grothendieck group Ko(Ze[[G]],S).
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(2) We have

d»CFm/F,E,T(Zl) == [n((Té MEMX, 1 TF P )T)*Z[ ]

in Ko(Ze[[G]], S).-
(3) Let p:Galp — Glg(O¢) be a finitely ramified representation over the valu-
ation ring O¢ of a finite extension C' of Qg that factors through G. Then

(I)p(‘CFw/F,Z,T(ZZ)) = ﬁFw/F,z,T(P)

ProoF. This follows from Theorem and Theorem with 7 = Z, to-
gether with Corollary Corollary and Corollary O

6.3. Realisations of Abstract 1-Motives

Assume that F'is any number field and let U ¢ W be two open dense subschemes of
X =SpecOp. Write k:U — W for the corresponding open immersion. Fix a closed
subscheme structure on the complement T of U in W and write i: T — W for the
closed immersion. Then

H (W, Guayy 1)  coker(2p (W) 2 Divg (W)

is the ray class group of W with respect to the modulus T. If K/F is a possibly
infinite algebraic extension of F', it follows from [AGV72al VII, Cor. 5.8] that

Hl(WK,GmWK,TK) = h_n)l coker(fPrK,(WKf) - Z)ivUK,(WK/))
K'cK
with
lim Divy,, (W) =@T,
K'cK v
where v ranges over the places of K lying over the closed points of U and T',, denotes
the value group of the associated, possibly non-discrete valuation.
Assume now that ¢ is invertible on W. We then obtain an exact 9-diagram

0 0 0

0 ]l/},en pn Z.*Z'*/,Lgn —0

0 > GmW,T > GmW > i*GmT >0
m m m

0 ——Gunwr —Gny —i.Gup ——0

0 0 0

and in combination with the diagram (6.1.1]), an exact sequence
. (e div) (G
0= jipten - Pr ——— Pr ® Divy —— Divy — 0.
We take global sections on W. Since Hl(T/V, Pr) =0 and since multiplication by £"
is injective on Divy (W), we obtain
div(f)=¢"D,

H' (W, jipen) = {f e 2r(W) ‘ D € Divy (W)

}/{92" gePr(W)}
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Note that this group does not depend on the subscheme structure of T. So, we
might as well equip it with the reduced scheme structure.

We now assume in addition that F' is totally real and fix a CM-admissible
extension F,,/F such that F, /FCyC is finite. Passing to the direct limit over all
finite subextensions F'/F of F,/F, we obtain

f € QTFN (VVFL,o )a
(6.3.1)  H'(Wr,, ko) =1 f | div(f) =€"D, 9" |g€Pr,_ (Wr.)}.
De Q)ivUFm (WFOO)
Write ¥ for the complement of W in X and X' for the complement of W in

Spec OF[%]. The Iwasawa-theoretic 1-motive associated to (Feo,Xp., Tr..) is the
complex of abelian groups

0
M= 4o Divs, (Xp) > H (Xe., G, 7y ) 82 Z
sitting in degrees 0 and 1 [GP15l, §3.1]. Its group of ¢{™-torsion points is defined to
be
De ’Di’(/g/pm (XE.),
Mgﬁmmm [("]=1(D,¢)| ce H(Xpo,Cmxp_ 1y ) ®2 Lo, { @2 L[ (L")
d(D)=1("c
=H (M7 5, ®2Z/(("))
and its f-adic Tate module is given by

Foo 1 Foo n
Ty MEFM,TFM = @Mmeme ["]

n

[GP15, Def. 2.2, Def. 2.3].

REMARK 6.3.1. The complex of abelian groups M}EFO;N,TFOQ is an abstract 1-
motive in the sense of [GP15l Def. 2.1] only if Hl(Xpm,GmXFm Tr.) ®z Zg is
divisible of finite corank. The proof of [GP15| Lem. 2.8] shows that this is true
if and only if Hl(XFW,(GmXFM) ®z Zy is divisible of finite corank. By [NSWO0O,
Thm. 11.1.8 | this is equivalent to the Galois group Xy, (Fe) of the maximal
abelian unramified pro-f-extension of F., being a finitely generated Zy,-module. It
suffices that Xy, (Feo(e)) is a finitely generated Z,-module. By [Was97, Thm
13.24] the latter statement is equivalent to e_ Xy (Fuo (11¢)) being finitely generated
over Zy, which is in turn equivalent to the Galois group of the maximal abelian
pro-f-extension unramified outside the primes over ¢ of the maximal totally real
subfield Fo (u¢)™ being finitely generated over Z, [NSWO0O, Cor. 11.4.4]. Hence,
Mg?prw is an abstract 1-motive under Conjecture m

PROPOSITION 6.3.2. There is a short exact sequence
0> H(Xps, Gimx, mp ) 82 Z)(€7) > B (Wi kg yen) > Mgz [07] = 0.
In particular, there are isomorphisms
e- H' (W, kpo i) = e_./\/l]‘;";joo T [,
e H'(We. ke (Zo)wy, (1) 2 e Te Mg 1

PrOOF. This follows from (6.3.1) and [GP15l Prop. 3.2, Cor. 3.4]. Note that
the proofs of these statements do not make use of the divisibility of the group
H' (Xp.,Gumxp Tr. ) ®2 Zs. O
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COROLLARY 6.3.3. Assume that Foo/F has ramification prime to £ over U.
Under Conjecture [3.3]), there are isomorphisms

e B*(W ki Z/(¢)[[GI]F (1) 2 e- Mgz 1, [€7],
e B (W, ki Zo[[G])' (1)) 2 e- Ty ME=_ .
In particular,
ALE o (Ze(D) = [e TeMES 1]
in Ko(Z[[Gal(Fu/F)]], S).

ProOF. Combine Proposition [6.3.2] with Lemma and use Corollary [£.3.3]
g

In particular, [GP15, Thm. 4.6] reduces to the special case T = Z; of Corol-
lary Moreover, if Gal(Fw/F) is commutative, we may identify the Fitting
ideal and the characteristic ideal of e_ Ty /\/lg";wTFw over Z¢[[Gal(Fo/F)]]. The
characteristic ideal may then be viewed as an element of

(Zo[[Gal(Foo /[ F)]]5)" [ Zo[[Gal(Foo / F)]]™ 2 Ko(Ze[[Gal(Foo [ F)]], S).

-1
Under this identification, it corresponds to the class [e_ T, /\/lg:f T ] . Fur-
thermore, the interpolation property (11) in Corollary shows that the ele-

ment E?;;/F(W, ki(Zg)y(1))7! agrees with the element e, + 0(;’12 with ¥ = X - W,
T =W - U in the notation of [GP15] Def. 5.16]. In particular, we recover the ver-
sion of the equivariant main conjecture formulated in [GP15], Thm. 5.6] as a special
case of Corollary In the same way, one can also recover its non-commutative

generalisation in [Nic13l Thm. 3.3].






APPENDIX A

Localisation in Polynomial Rings

Let R be any associative ring with 1 and let R[t] be the polynomial ring over R in
one indeterminate ¢ that commutes with the elements of R. Write SP(R[t]) and
P(R[t]) for the Waldhausen categories of strictly perfect and perfect complexes of
R[t]-modules. Consider R as a R-R[t]-bimodule via the augmentation map

R[t] - R, t 0.
We then define full subcategories
SP“*(R[t]) = {P*® € SP(R[t])| R®g[; P* is acyclic},
P“t(R[t]) = {P°® ¢ P(R[t])| P°® is quasi-isomorphic to a complex in SP"*(R[¢])}.
These categories are in fact Waldhausen subcategories of SP(R[t]) and P(R[t]),
respectively, since they are closed under shifts and extensions [Wit08] 3.1.1]. We
can then construct new Waldhausen categories w;SP(R[¢]) and w,P(R[t]) with
the same objects, morphisms, and cofibrations as SP(R[¢]) and P(R[¢]), but with
weak equivalences being those morphisms with cone in SP™* (R[t]) and P¥*(R[t]),
respectively. By the Waldhausen approximation theorem [T'T90] 1.9.1], the inclu-
sion functor wSP(R[t]) » w:P(R[t]) induces isomorphisms
Ko (wSP(R[t])) = Kn (w:P(R[]))

for all n > 0.
It might be reassuring to know that, if R is noetherian, we can identify these
K-groups for n > 1 with the K-groups of a localisation of R[t]: Set

Se={f(t) e R[t][ f(0) e R*}

PROPOSITION A.l. Assume that R is a noetherian. Then S; is a left (and
right) denominator set in the sense of [GWO04l, Ch. 10] such that the localisation
R[t]s, exists and is noetherian. Its Jacobson radical Jac(R[t]s,) is generated by
the Jacobson radical Jac(R) of R and t. In particular, if R is semi-local, then so
18 R[t]st.

Moreover, the category SP“(R[t]) consists precisely of those complexes P* in
SP(R[t]) with Si-torsion cohomology. In particular,

Ko (weSP(R[t])) = Kn (R[t]s,)
forn>1.

ProOF. Clearly, the set S; consists of non-zero divisors, such that we only need
to check the Ore condition:

VseSiVae R[t]: 3z € R[t]: Jy € Si:xs = ya.

Moreover, we may assume that s(0) = y(0) = 1. Write

oo ) o0 )
s=1—25itz, azz:aitl, T =
i=1 i=0

125

M

I
(e}

zit', y=1+ Zyzt’
i=1

2
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and assume that s; = a;_1 = 0 for ¢ > n. Comparing coefficients, we obtain the
recurrence equation

i—1 i [
(*) xT; = ijsi,j+ Zyjai,j+ai: Zyjbifj"'bi
J=0 j=1 j=1
with
i—1
bi = Z bjsifj + a;.
7=0

Write B; == (bi—n+1,--.,b;) € R™ with the convention that b; = 0 for ¢ < 0. Then for
1>n
B;=B;1S=DB,_15""!

with
0 Sn
» 1 Sn—-1
5= 0 - 0 :
: 1 S1
Since R was assumed to be noetherian, there exists a m > n and y,,...,¥m € R
such that

m m
0= Z ijm—j + Bm = Z iji—j + B,L
j=n j=n
for all ¢ > m. Hence, we can find a solution (x;,¥;)i=0,1,2... of equation (*) with
x; =y; =0 for i > m and y; = 0 for i < n. This shows that S; is indeed a left
denominator set such that R[t]s, exists and is noetherian [GWO04, Thm. 10.3,
Cor. 10.16].

Let N c R[t] be the semi-prime ideal of R[t] generated by ¢ and the Jacobson
ideal Jac(R) of R. Then S; is precisely the set of elements of A[¢] which are units
modulo N. In particular, the localisation Ng, is a semi-prime ideal of R[t]s, such
that

t

R[t]s,/Ns, = R[t]/N = R/ Jac(R)

[GWO04, Thm. 10.15, 10.18]. We conclude Jac(R[t]s,) ¢ Ng,. For the other
inclusion it suffices to note that for every s € S; and every n € IV, the element s +n
is a unit modulo N.

The Nakayama lemma implies that for any noetherian ring R with Jacobson
radical Jac(R), a strictly perfect complex of R-modules P*® is acyclic if and only
if R/Jac(R) ®g P* is acyclic. Hence, if P* is a strictly perfect complex of R[t]-
modules, then R ®p[,) P* is acyclic if and only if R[t]s, ® g P* is acyclic. This
shows that SP“*(R[t]) consists precisely of those complexes P* in SP(R[t]) with
S¢-torsion cohomology. From the localisation theorem in [WY92] we conclude that
the Waldhausen exact functor

wSP(R[t]) - SP(R[t]s,),  P*~ R[t]s, ®ppy P*
induces isomorphisms

K, (R[t]s,) if n>0,

Kn(thP(R[t])) = {lm (Ko(R[tD = KU(R[t]St)) if n=0.
(]

The set S; fails to be a left denominator set if R = Fy{{x,y)) is the power
series ring in two non-commuting indeterminates: a(1 — zt) = by has no solution
with a € R[t], b € S;. Note also that a commutative adic ring is always noetherian
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[War93|, Cor. 36.35]. In this case, S; is the union of the complements of all maximal
ideals of A[t] containing ¢ and the determinant provides an isomorphism
det

K1 (i SPAL])) = Ka (Alt]s,) 25 AL,
For any adic Zg-algebra A and any v €' 2 Z,, we have a ring homomorphism
evy: A[t] =~ A[[T]], f(8) = f(7).
inducing homomorphisms K, (A[t]) = K, (A[[T']]).

ProPOSITION A.2. Assume that v # 1. Then the ring homomorphism ev,
induces homomorphisms

vy Ko (wP(AL[H])) 2 Ko (1w, SP(AL])) ~ Kn(A[[TT]s)
for all n >0.

ProOF. It suffices to show that for any complex P* in SP**(A[¢]), the complex
Q* = A[[T']] ®ap P*
is perfect as complex of A-modules. We can check this after factoring out the

Jacobson radical of A [Wit14, Prop. 4.8]. Hence, we may assume that A is simi-
simple, i.e.

A= H M., (k;)
i=1
where M,,, (k;) is the algebra of n; xn;-matrices over a finite field k; of characteristic

£. By the Morita theorem, the tensor product over A with the []; k;-A-bimodule

m

[TF"
i=1

induces equivalences of categories

=

SP" (A[t]) — SP"* ( k;i[t]),

=
= L

SPY(A[[T]]) - sP* ([ [ &:[[T]]),

1=

—

with H c T being the trivial subgroup. Hence, we are reduced to the case

A =]k
=1

In this case, the set S c A[[T']] defined in consists of all non-zero divisors of
A[[T']], i.e. all elements with non-trivial image in each component k;[[T']]. Since
A[[T']] is commutative, this is trivially a left denominator set. Moreover, the com-
plex Q° is perfect as complex of A-modules precisely if its cohomology groups are
S-torsion. On the other hand, as a trivial case of Proposition we know that
S; is a left denominator set and that the cohomology groups of P*® are Si-torsion.
Since f(0) is a unit in A for each f € S, the element f() has clearly non-trivial
image in each component k;[[T']]. Hence, ev., maps S; to S and Q* is indeed perfect
as complex of A-modules. O
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