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CHAPTER 1

Introduction

In this work, we will prove various results concerning the non-commutative
main conjecture of Iwasawa theory both for function fields and for totally real
fields.

We build upon the framework introduced by Fukaya and Kato in their formu-
lation of the ζ-isomorphism conjecture. In particular, we consider representations
of the absolute Galois group of a global field F over an adic Z`-algebra Λ. Adding
a bit more generality, we will use a formulation of the non-commutative main con-
jecture in terms of perfect complexes of Λ-adic sheaves over the Dedekind schemes
associated to F .

As a central new result in the number field case, we prove a unicity statement for
the `-adic L-functions appearing in the non-commutative Iwasawa main conjecture
over totally real fields under the assumption that the Iwasawa µ-invariant vanishes,
improving on the work of Kakde. Using this unicity result, we show that there exists
a unique sensible definition of a non-commutative L-function for a perfect complex
F ● of Λ-adic sheaves. However, we still need to assume that the representations
corresponding to the stalks of F ● factor through a totally real extension of F .

For a function field of characteristic p, we formulate and prove an analogue
of the non-commutative Iwasawa main conjecture for complexes of Λ-adic sheaves
without further assumptions. We also prove a functional equation for the resulting
non-commutative L-functions.

As a corollary, we obtain non-commutative generalisations of the main conjec-
tures for Picard 1-motives and abstract 1-motives of Greither and Popescu. In the
case ` ≠ p, another corollary is a main conjecture for abelian varieties over func-
tion fields in precise analogy to the Gl2 main conjecture of Coates, Fukaya, Kato,
Sujatha and Venjakob.

1.1. Relation to Previous Work

The mysterious connection between special values of L-functions and algebraic in-
variants of a global field — such as its group of units and its class group, more
generally the Galois cohomology of representations of its absolute Galois group
with restricted ramification — is one of the central topics of the current research in
number theory. With the Tamagawa number conjecture of Bloch and Kato [BK90]
and its equivariant refinements of Burns and Flach [BF01], [BF03], Huber and
Kings [HK02], and finally, Fukaya and Kato [FK06], we have a very precise and
general conjectural description of this connection at our disposal. As a special case,
it includes the conjecture of Birch and Swinnerton-Dyer from the list of the Millen-
nium problems [CJW06]. However, only a few special instances of the Tamagawa
number conjecture have been verified so far [HK03], [BG03], [BF06].

Non-commutative Iwasawa theory is concerned with the part of the Tamagawa
number conjecture that involves `-adic representations. The central aim is the
formulation and the proof of non-commutative analogues of the classical Iwasawa
main conjecture [Coa77] for abelian and totally real number fields that were proved
in the works of Mazur und Wiles [MW86] and Wiles [Wil90]. The seminal work of
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2 1. INTRODUCTION

Coates, Fukaya, Kato, Sujatha and Venjakob [CFK+05] on the non-commutative
Gl2 main conjecture for elliptic curves created a blueprint for much of the current
work.

The interest in the non-commutative main conjecture is based on the funda-
mental insight, first described in [HK02], that the `-adic part of the Tamagawa
number conjecture can be deduced from a sufficiently general version of the main
conjecture. In particular, this version should infer a strong interpolation property
of the corresponding non-commutative `-adic L-functions in the sense that they are
compatible under changes of the coefficient rings induced by appropriate bimod-
ules. The strong interpolation property (Huber and Kings talk of twist invariance)
permits the reduction of the existence of non-commutative `-adic L-functions of an
arbitrary motive to the case of the motive Z(1), which corresponds in turn to an
equivariant refinement of the class number formula.

This insight was fully accounted for in the formulation of the ζ-isomorphism
conjecture [FK06] of Fukaya and Kato by integrating the corresponding Iwasawa
main conjecture into the general formalism. Whereas Burns and Flach [BF01],
[BF03] formulate their equivariant Tamagawa number conjecture for motives with
coefficients in the group ring of a Galois extension of number fields, Fukaya and
Kato extend the point of view even further and consider representations of the
absolute Galois groups over a certain class of profinite rings, which we shall refer
to as adic rings.

Building upon unpublished ideas of Kato [Kat93] and the seminal work of
Burns [Bur15], Kakde proves in [Kak13] a non-commutative main conjecture for
admissible `-adic Lie extension F∞/F of totally real number fields, formulated in the
style of [CFK+05]. In particular, he proves the existence of a non-commutative
`-adic ζ-function ζF∞/F in the first K-group of the localisation of the Iwasawa
algebra of F∞/F at Venjakob’s canonical Ore set, such that ζF∞/F verifies the
weaker interpolation property with respect to Artin representations. However, he
can prove uniqueness of the element ζF∞/F only modulo the first special K-group
SK1(Z`[[Gal(F∞/F )]]). The strong interpolation property is not investigated.

Independently and slightly earlier, Ritter and Weiss also completed the proof
of their formulation of the main conjecture in this case [RW02], [RW04], [RW05],
[RW11]. Again, the uniqueness and the strong interpolation property remain open.
The two versions of the main conjecture differ in some details, but may be translated
into each other. Their precise connection is investigated in [Ven13] and [Nic13].

An essential prerequisite of both approaches is the vanishing of the Iwasawa
µ-invariant for the cyclotomic extension of the relevant number fields. According to
a conjecture that goes back to Iwasawa himself [Iwa71], [Iwa73], this is always the
case. However, this conjecture is only known for pro-` Galois extensions of abelian
number fields [FW79] and in a few other special cases. In [Mih16], Mihăilescu
attempts to settle the conjecture in the case of CM fields, but so far, he has not
been able to convince the peers.

Fukaya and Kato also sketch in [FK06] an analogue of their conjecture for
curves over a finite field F of characteristic p different from `. In his disser-
tation [Wit08], the author proves an extension of this analogue to separated
schemes of finite type over F. Different from the number field case, the relevant ζ-
isomorphism can be constructed explicitly and without detour via a corresponding
non-commutative main conjecture.

In the case p ≠ `, the author proves in [Wit14] an analogue for separated
schemes over finite fields of the non-commutative main conjecture in the style of
[CFK+05]. This result already includes the strong interpolation property and
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the vanishing of the µ-invariant. On this basis, Burns proves in [Bur11] a non-
commutative main conjecture in the case ` = p, but only with the interpolation
property with respect to Artin representations; see [Wit13a] for a survey on both
articles. The strong interpolation property in this case is again proved by the author
[Wit16]. Note however, that the two latter works only give an interpolation of the
L-values at s = 0. So far, higher Tate twists can not be treated due to the lack of
an appropriate equivariant integral p-adic cohomology theory for varieties over Fp.

Another central tool in this context is the author’s article [Wit13b], which
generalises previous results of Schneider and Venjakob [SV10]. It is shown that the
localisation sequence of higher algebraic K-theory for the localisation of the Iwasawa
algebras with respect to Venjakob’s canonical Ore set splits into short split exact
sequences. In particular, this allows the general definition of a non-commutative
algebraic L-function in the sense of [Bur09]. This non-commutative algebraic L-
function satisfies a similar interpolation property as the true non-commutative L-
function, but it lacks the connection to the special values of classical L-functions. In
particular, the algebraic and the true non-commutative L-function differ in general.

Main conjectures for the Tate module of abelian varieties over function fields
in the case ` = p are considered among others in the articles [OT09], [LLTT16].
The lack of a suitable `-adic cohomology theory is compensated by the use of flat
cohomology. A proof of a analogue of the non-commutative Gl2 main conjecture
[CFK+05] in this case has been announced by Vauclair and Trihan [VT17]. The
results are summarised in [BT15]. Previous to the present work, there existed only
isolated partial results treating the case p ≠ ` [Sec06], [BV15], [Pal14], although
it is much simpler than the case ` = p.

In the works [GP12] and [GP15], Greither and Popescu formulate and prove
a commutative equivariant main conjecture for the S-truncated, T -modified ζ-
function both in the case of function fields and in the case of CM extensions of
totally real number fields. The corresponding Iwasawa modules are constructed as
`-adic realisations of so-called Picard 1-motives in the function field case and ab-
stract 1-motives in the number field case. In the number field case, Nickel [Nic13]
has already formulated a non-commutative generalisation of the latter conjecture.
He also describes how to deduce it from the main conjecture of Ritter and Weiss.

1.2. The Non-Commutative Main Conjecture of Iwasawa Theory

Let F∞/F be an admissible `-adic Lie extension of a totally real field F in the sense
of [Kak13] that is unramified over an open dense subscheme U of the spectrum X
of the algebraic integers of F and write G = Gal(F∞/F ) for its Galois group. We
further assume that ` is invertible on U . The non-commutative main conjecture
of Iwasawa theory for F∞/F predicts the existence of a non-commutative `-adic
L-function LF∞/F (U,Z`(1)) living in the first algebraic K-group K1(Z`[[G]]S) of
the localisation at Venjakob’s canonical Ore set S of the profinite group ring

Z`[[G]] = lim
←Ð
H◁G
open

Z`[[G/H]].

This L-function is supposed to satisfy the following two properties:

(1) It is a characteristic element for the total complex R Γc(U, f!f
∗Z`(1)) of

étale cohomology with proper support with values in the sheaf f!f
∗Z`(1)

corresponding to the the first Tate twist of the Galois module Z`[[G]]♯,
on which an element σ of the absolute Galois group GalF acts by right
multiplication with σ−1.

(2) It interpolates the values of the complex L-functions LX−U(ρ, s) for all
Artin representations ρ factoring through G.
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Under the assumption that

(a) ` ≠ 2,
(b) the Iwasawa µ-invariant of any totally real field is zero,

the non-commutative main conjecture is now a theorem, first proved by Ritter and
Weiss [RW11]. Almost simultaneously, Kakde [Kak13] published an alternative
proof, building upon unpublished work of Kato and the seminal article [Bur15] by
Burns. We refer to Theorem 4.2.1 for a more precise formulation of Kakde’s result.

It turns out that properties (1) and (2) are not sufficient to guarantee the
uniqueness of LF∞/F (U,Z`(1)). It is only well-determined up to an element of a
subgroup

ŜK1(Z`[[G]]) ⊂ K1(Z`[[G]]S).

A first objective of this volume is to eradicate this indeterminacy. Under the as-
sumptions (a) and (b) we show in Theorem 4.2.2 that if one lets F∞ vary over all
admissible extensions of F and requires a natural compatibility property for the
elements LF∞/F (U,Z`(1)), there is indeed a unique choice of such a family.

In the course of their formulation of a very general version of the equivariant
Tamagawa number conjecture, Fukaya and Kato introduced in [FK06] a certain
class of coefficient rings which we call adic rings for short. Adic rings are precisely
those compact, semi-local rings whose Jacobson radical is finitely generated as left
or right ideal. In particular, for every adic Z`-algebra Λ, the compact group ring
Λ[[G]] of G with coefficients in Λ will again be an adic Z`-algebra. Other examples
are finite rings and `-adic group rings of finite groups. Moreover, note that this
class also contains the coefficient rings of big Galois representations considered in
Hida theory.

Our second objective concerns continuous representations T of the absolute
Galois group GalF over an adic Z`-algebra Λ. Assume that T is smooth over U
and smooth at ∞ in the sense that it factors through the Galois group of some
(possibly infinite) totally real extension of F unramified over U . As a consequence
of Theorem 4.2.2, we show in Theorem 4.2.4 and Corollary 4.2.9 that there exists
a unique sensible assignment of a non-commutative L-function

LF∞/F (U,T (1)) ∈ K1(Λ[[G]]S)

to any such T . In the sequel [Wit] to the present volume, we will use our result to
prove the existence of the ζ-isomorphism for such T as predicted by Fukaya’s and
Kato’s central conjecture [FK06, Conj. 2.3.2].

In fact, Corollary 4.2.9 applies more generally to perfect complexes F ● of Λ-
adic sheaves on U which are smooth at ∞. Moreover, we also consider the total
derived direct image Rk∗F ● for the open immersion k∶U →W into another dense
open subscheme W of X. The extension F∞/F may be ramified over W − U ,
but we do assume that ` is invertible on W . We also prove the existence of a
dual non-commutative L-function L⊛

F∞/F (W,k!F ●) such that L⊛
F∞/F (W,k!F ●)−1 is

a characteristic element for the complex R Γ(W,k!F ●) and satisfies the appropriate
interpolation property. If T is a continuous representation as above and T ∗ the
dual representation over the opposite ring Λop, then L⊛

F∞/F (U,T ) is defined as the

image of LF∞/F (U,T ∗(1)) under the canonical isomorphism

⊛∶K1(Λ
op[[G]]S) ≅ K1(Λ[[G]]S)

induced by mapping an invertible matrix A to the inverse of its transpose. As we
explain in Corollary 4.3.3, all of this can be easily extended to the case that F∞ is
a CM field.

If F is a function field of positive characteristic p and U ⊂W are open, dense
subschemes of the associated smooth and proper curve X over the finite field of
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constants F ⊂ F , the formulation of the non-commutative main conjecture is basi-
cally the same, with some extra twists if ` = p. However, the proof is much sim-
pler, as there exists an explicit construction of the non-commutative L-functions
LF∞/F (W,Rk∗F ●) for all perfect complexes F ● of Λ-adic sheaves on U . Moreover,
this result is unconditional, as the vanishing of the Iwasawa µ-invariant is known
in the function field case. We refer to Section 4.4 for the details. If ` = p, there are
again some extra twists.

Write j∶U → V for the open immersion into V ∶= U ∪ (X −W ). In the function
field case, the dual non-commutative L-function L⊛

F∞/F (W,k!F ●) is the same as the

inverse of the product of LF∞/F (V,R j∗F ●) with a global ε-factor. For a continuous
representation T as above, we obtain in Theorem 5.3.6 the functional equation

(LF∞/F (W,Rk∗T ∗(1)))⊛ = ε(V,R j∗f!f
∗T )−1LF∞/F (V,R j∗T )−1.

The unusual appearance of the reciprocal on the right-hand side is explained by
the normalisation of ⊛.

Assume that F is a global field. If one restricts to GalF -representations T ,
one can also allow F∞/F to have some ramification over U . In particular, one can
define extra Euler factors for the non-commutative L-function in ramified points.
If the ramification indexes of F∞/F in the closed point of U are prime to `, these
Euler factors are in most aspects well-behaved. If the inertia group of F∞/F in a
point x contains an element of infinite order, then the corresponding Euler factor
is trivial. In these cases, one does not obtain any extra information. Points of
finite ramification index divisible by ` cannot be dealt with. However, the con-
struction of these extra non-commutative Euler factors necessitates some technical
considerations. The main idea is to consider the constructible Λ-adic sheaf η∗T for
η∶SpecF → U the inclusion of the generic point, in the spirit of the intermediate
image of a perverse sheaf. The technical issues arise from the non-exactness of η∗.
We will deal with these issues in Chapter 5.

As an application, we may choose T to be the `-adic Tate module of an abelian
variety over a function field F of characteristic p ≠ `. The corresponding non-
commutative main conjecture formulated in Corollary 5.6.1 is the direct analogue
of the non-commutative Gl2 main conjecture [CFK+05]. Finally, we will show
in Chapter 6 that in the special cases T = Z` and T = Z`(1), the complexes
R Γc(W,Rk∗T ) are directly related to the `-adic realisations of Picard 1-motives
and abstract 1-motives considered by Greither and Popescu. In particular, we iden-
tify their versions of the Iwasawa main conjecture as special instances of the type
of main conjectures considered above.

1.3. Notational Conventions

All rings will be associative with identity; a module over a ring will always refer to
a left unitary module. If R is a ring, Rop will denote the opposite ring and R× its
group of units. We will sometimes write f ⟳M for an endomorphism f of an object
M . The symbols N, Z, Q, R C have their usual meanings. For a prime number
`, Z` denotes the ring of `-adic integers and Q` its fraction field. We write ∶= do
denote the definition of a symbol, reserving the symbol = for expressing an identity.
Isomorphisms are denoted by ≅, weak equivalences and quasi-isomorphisms by ∼.
Cofibrations and quotient maps in Waldhausen categories are denoted by ↣ and
↠. Graded objects are denoted by P ● or P●, with Pn and Pn referring to the
component in degree n, respectively. For any compact or discrete abelian group A
we let

A∨ ∶= Homcont(A,R/Z)
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denote its Pontryagin dual. If G is a group and A is a G-module, then AG denotes
the invariants under G and AG the coinvariants.



CHAPTER 2

Algebraic Preliminaries

The main purpose of this chapter is to present some algebraic and K-theoretic
results that we will need for the formulation and the proof of the main conjecture.
A central input to the proof of the unicity of the non-commutative L-function is
Section 2.1, in which we show that the inverse limit

ŜK1(Z`[[Gal(F∞/F )]]) ∶= lim
←Ð
F ′

SK1(Z`[Gal(F ′/F )])

of the first special K-groups of the group rings Z`[Gal(F ′/F )] vanishes when F ′

runs through the Galois subextensions of a sufficiently large extension F∞/F of a
global field F . The results of this section are far more general than what is needed
for our later applications and might be useful in other contexts as well.

In Section 2.4 we recall the essences of the K-theoretic machinery behind the
formulation of the main conjecture. We briefly recall that notion of a Waldhausen
category and how it may be used to compute the K-groups of a ring. We also recall
the construction by Muro and Tonks of the one-type of the K-theory spectrum that
gives an algebraic model for Deligne’s category of virtual objects.

In Section 2.3, we explain how to identify the K-groups of a biWaldhausen
category with those of its opposite category and show that this identification is
compatible with localisation sequences. Then, we specialise to the case of rings and
construct the identification

K1(R
op) ≅ K1(R)

of the first K-groups of a ring R and its opposite ring Rop on the level of Waldhausen
categories.

Next, we introduce in Section 2.4 adic rings and discuss certain Waldhausen
categories associated with them. Examples are the profinite group rings Λ[[G]] over
any adic ring Λ, with G =H ⋊Γ a semi-direct product of Γ ≅ Z` and a topologically
finitely generated profinite group H which contains an open pro-`-subgroup.

We are particularly interested in perfect complexes of Λ[[G]]-modules which
are also perfect as complexes of Λ[[H]]-modules. If Λ[[H]] is noetherian, then
these complexes can be characterised as those perfect complexes of Λ[[G]]-modules
whose cohomology is S-torsion, where S denotes Venjakob’s canonical Ore set. The
K-groups of the corresponding Waldhausen category may be identified with the
relative K-groups Kn(Λ[[G]], S) and we may consider the long exact localisation
sequence

. . .→ K1(Λ[[G]]S)
d
Ð→ K0(Λ[[G]], S) → K0(Λ[[G]]) → K0(Λ[[G]]S).

These complexes will be studied in Section 2.5 and the succeeding sections of this
chapter. We investigate the behaviour of the complexes under base change with
complexes of bimodules in Section 2.6 and under duality in Section 2.7. Section 2.8
contains the proof of another presentation of the complexes that will turn out to
be useful.

7
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In Section 2.9 we investigate the base change properties of certain splittings of
the boundary map

d∶K1(Λ[[G]]S) → K0(Λ[[G]], S),

extending results from [Bur09] and [Wit13b]. With the help of these splittings
we are able produce characteristic elements with good functorial properties, which
we call non-commutative algebraic L-functions.

The final Section 2.10 deals with the K-theory of Λ[[G]] in the classical case
that the coefficient ring Λ is a commutative regular noetherian local ring and that
G is an `-adic Lie group without elements of order `.

2.1. On the First Special K-group of a Profinite Group Algebra

Let ` be a fixed prime number. For any profinite group G, we write N(G) for its
lattice of open normal subgroups and Gr ⊂ G for subset of `-regular elements, i. e.
the union of all q-Sylow-subgroups for all primes q ≠ `. Note that

Gr = lim
←Ð

U∈N(G)
(G/U)r

is closed subset of G. The group G acts continuously on Gr by conjugation. For
any profinite G-set S we write Z`[[S]] for the compact G-module which is freely
generated by S as compact Z`-module.

We want to analyse the completed first special K-group

ŜK1(Z`[[G]]) ∶= lim
←Ð

U∈N(G)
SK1(Z`[G/U])

of the profinite group algebra

Z`[[G]] ∶= lim
←Ð

U∈N(G)
Z`[G/U].

Note that ŜK1(Z`[[G]]) is a subgroup of the completed first K-group

K̂1(Z`[[G]]) ∶= lim
←Ð

U∈N(G)
K1(Z`[G/U]).

If G has an open pro-`-subgroup which is topologically finitely generated, then

K̂1(Z`[[G]]) = K1(Z`[[G]])

by [FK06, Prop. 1.5.3]. In the case that G is a pro-` `-adic Lie group a thorough

analysis of ŜK1(Z`[[G]]) has been carried out in [SV13]. Note in particular that
there are examples of torsion-free `-adic Lie groups with non-trivial first special
K-group. Some of the results of loc. cit. can certainly be extended to the case that
G admits elements of order prime to `. We will not pursue this further. Instead,
we limit ourselves to the following results relevant to our application.

Recall from [Oli88, Thm. 10.12] that there is a canonical surjective homomor-
phism

H2(G,Z`[[Gr]]) → ŜK1(Z`[[G]]).

where

H2(G,Z`[[Gr]]) ∶= lim
←Ð

U∈N(G)
H2(G/U,Z`[(G/U)r])

denotes the second continuous homology group of Z`[[Gr]]. We write X(Gr) ∶=
Map(Gr,Q`/Z`) for the Pontryagin dual of Z`[[Gr]], such that the Pontryagin dual
of H2(G,Z`[[Gr]]) is H2(G,X(Gr)).

Lemma 2.1.1. Let G =H⋊Γ be a semi-direct product of a finite normal subgroup
H ⊂ G and Γ ≅ Z`. Then H2(G,X(Gr)) and ŜK1(Z`[[G]]) are finite.
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Proof. Note that X(Gr) =X(Hr) is of finite corank over Z`. The Hochschild-
Serre spectral sequence induces an exact sequence

0→ H1(Γ,H1(H,X(Hr))) → H2(G,X(Hr)) → H0(Γ,H2(H,X(Hr))) → 0

where both H1(H,X(Hr)) and H2(H,X(Hr)) are finite `-groups. The lemma is
an immediate consequence. �

We are interested in the following number theoretic situation. Assume that K
is a global field. This means, either K is a number field, i. e. a finite extension of
Q or K is a function field, i. e. a finite extension of the field of rational functions
Fp(z) over the finite field Fp with p elements for some prime number p.

Assume further that K∞ is a Z`-extension of K. In particular, if K is a number
field, then K∞/K is unramified in the places (including the archimedean places) of
K that do not lie over `. If K is a function field of characteristic p different from `,
then there exists only one Z`-extension of K, namely the cyclotomic field extension

K∞ =Kcyc ∶= ⋃
n∈N

Fp`nK,

which is everywhere unramified. If ` = p, then Kcyc/K is the unique Z`-extension
that is everywhere unramified, but there exist infinitely many Z`-extensions K∞/K
which are unramified outside any given non-empty set of places. There also exist
Z`-extensions K∞/K that ramify at infinitely many places [GK88].

Let L∞ be a finite extension of K∞ which is Galois over K. Write

G ∶= Gal(L∞/K),

H ∶= Gal(L∞/K∞),

Γ ∶= Gal(K∞/K)

for the corresponding Galois groups. We fix a splitting Γ → G such that we may
write G as the semi-direct product of H and Γ and let L be the fixed field of an
`-Sylow subgroup of G containing Γ. Write L(`) for the maximal Galois `-extension

of L inside a fixed separable closure K of K. Note that L(`) = L
(`)
∞ is the subfield

of K fixed by the closed subgroup GalL(`) generated by all q-Sylow subgroups of
the absolute Galois group GalL for all primes q ≠ `. Hence, GalL(`) ⊂ GalL∞ is a

characteristic subgroup and therefore, L(`)/K is a Galois extension. The following
is an adaption of the proof of [FK06, Prop. 2.3.7].

Proposition 2.1.2. Set G ∶= Gal(L(`)/K). Then

H2(G,X(Gr)) = ŜK1(Z`[[G]]) = 0.

Proof. Note that the projection G → G induces a canonical isomorphism
X(Gr) =X(Hr) and that X(Hr) is of finite corank over Z`. We have

Hs(Gal(L(`)/L),X(Hr)) = Hs(GalL,X(Hr))

for all s according to [NSW00, Cor. 10.1.4, Cor. 10.4.8] applied to the class of

`-groups and the set of all places of L. Moreover, H2(GalL,X(Hr)) = 0 as a
consequence of the fact that H2(GalF ,Q`/Z`) = 0 for any number field F [FK06,
Prop. 2.3.7, Claim] and for any function field F [Wit09, Prop. 5.4].

Since [L ∶K] is prime to `, the restriction map

H2(G,X(Hr)) → H2(Gal(L(`)/L),X(Hr))

is split injective. In particular, H2(G,X(Hr)) = 0 as claimed. �
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Note that if K is a number field, L∞/K is unramified in a real place of K,

and ` ≠ 2, then L(`)/K is unramified in this real place as well. For the sake of
completeness we also deal with the case ` = 2 and consider for a set of real places Σ

of K such that L∞/K is unramified over Σ the maximal subfield L
(2)
Σc of L(2) which

is unramified over Σ. Note that L
(2)
Σc /K is still Galois over K.

Proposition 2.1.3. Assume that K is a number field. Set G ∶= Gal(L
(2)
Σc /K).

Then H2(G,X(Gr)) = ŜK1(Z2[[G]]) = 0.

Proof. Let L′ be the subfield fixed by the intersection of the centre of G
with Γ and let Y ∶= Map(Gal(L′/K),X(Hr)) be the induced module. We obtain a
canonical surjection Y → X(Hr) with kernel Z. For any discrete G-module A we
have

H3(G,A) = ⊕
v∈ΣcR

H3(GalKv ,A)

where v runs through set ΣcR of real places of K not in Σ and GalKv = Z/2Z denotes
the Galois group of the corresponding local field Kv = R [NSW00, Prop. 10.6.5].
By the proof of the (` = 2)-case in [FK06, Prop. 2.3.7, Claim] we have

H2(GalKv ,X(Hr)) = 0

such that
H3(G, Z) → H3(G, Y )

is injective and hence,

H2(Gal(L
(2)
Σc /L

′),X(Hr)) ≅ H2(G, Y ) → H2(G,X(Hr))

is a surjection. Moreover, GalL′ acts trivially on X(Hr) such that it suffices to
show that

H2(Gal(L
(2)
Σc /L

′),Q2/Z2) = 0.

By the proof of [NSW00, Thm. 10.6.1] we obtain an exact sequence

0→ H1(Gal(L
(2)
Σc /L

′)) → H1(Gal(L(2)/L′)) →

⊕
v∈ΣcR(L′)

H1(GalL′v) → H2(Gal(L
(2)
Σc /L

′)) → H2(Gal(L(2)/L′))

where we have omitted the coefficients Q2/Z2 and ΣcR(L
′) denotes the real places

of L′ lying over ΣcR. But

H2(Gal(L(2)/L′)) = H2(GalL′) = 0

by [NSW00, Cor. 10.4.8] and [Sch79, Satz 1.(ii)]. Moreover, L′ is dense in the
product of its real local fields such that for each real place v of L′, we find an
element a in L′ which is negative with respect to v and positive with respect to
all other real places. The element of H1(Gal(L(2)/L′)) corresponding via Kummer
theory to a square root of a maps to the non-trivial element of H1(GalL′v) = Z/2Z
and to the trivial element for all other real places. This shows that

H1(Gal(L
(2)
Σc /L

′)) → ⊕
v∈ΣcR(L′)

H1(GalL′v)

must be surjective. �

Corollary 2.1.4. Let K∞/K be a Z`-extension of a global field K and L∞/K∞
be a finite extension such that L∞/K is Galois with Galois group G. Assume further
that L∞/K is unramified in a (possibly empty) set of real places Σ of K. Then there
exists a finite extension L′∞/L∞ such that

(i) [L′∞ ∶ L∞] is a power of `,
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(ii) L′∞/K is Galois with Galois group G′,
(iii) L′∞/K is unramified over Σ,

(iv) The canonical homomorphism ŜK1(Z`[[G′]]) → ŜK1(Z`[[G]]) is the zero
map.

In particular, L′∞ may be chosen to be totally real if L∞ is a totally real extension
field of Q.

Proof. With L as above, set G ∶= Gal(L(`)/K) if ` ≠ 2 or K is a function field

and G ∶= Gal(L
(2)
Σc /K) if ` = 2 and K is a number field. Further, set H ∶= kerG →

Gal(K∞/K). According to Lemma 2.1.1, ŜK1(Z`[[G]]) is finite and so, the image
of

ŜK1(Z`[[G]]) = lim
←Ð

U∈N(G)
ŜK1(Z`[[G/U ∩H]]) → ŜK1(Z`[[G]])

will be equal to the image of ŜK1(Z`[[G/U0 ∩ H]]) for some U0 ∈ N(G). We let
L′∞ be the fixed field of U0 ∩ H. Then L′∞ clearly satisfies (i), (ii), and (iii).

Since ŜK1(Z`[[G]]) = 0 by Proposition 2.1.2 and Proposition 2.1.3, it also satisfies
(iv). �

Remark 2.1.5.

(1) If K is a number field, the extension L′∞/K will be unramified outside
a finite set of primes, but we cannot prescribe the ramification locus.
However, assume L∞/K is unramified outside the set S of places of K
and that the Leopoldt conjecture holds for every finite extension F of K

inside the maximal `-extension L
(`)
S which is unramified outside S, i. e.

that

H2(Gal(L
(`)
S /F ),Q`/Z`) = 0.

Then the same method of proof shows that we can additionally chose L′∞
to lie in L

(`)
S .

(2) Assume that K is a function field and L∞/K is unramified outside a
non-empty set S of places of K. Then [NSW00, Thm. 8.3.17] implies

H2(Gal(L
(`)
S /F ),Q`/Z`) = 0

for every finite extension F of K inside the maximal `-extension L
(`)
S which

is unramified outside S such that we can always chose L′∞ to lie in L
(`)
S .

2.2. Waldhausen K-Theory

Classically, the first K-group of a ring R may be described as the quotient of the
group

Gl∞(R) ∶= lim
Ð→
d∈N

Gld(R)

by its commutator subgroup, but for the formulation of the main conjecture, it is
more convenient to follow the constructions of higher K-theory. Among the many
roads to higher K-theory, Waldhausen’s S-construction [Wal85] turns out to be
particularly well-suited for our purposes.

Recall that a Waldhausen category W is a category with a zero object 0 and
two distinguished classes of morphisms, called cofibrations and weak equivalences,
closed under composition and subject to the following set of axioms.

(1) Any isomorphism in W is both a cofibration and a weak equivalence.
(2) For every object A in W, the unique map 0→ A is a cofibration.
(3) If A → B is a cofibration and A → C is a map in W, then the pushout

B ∪A C exists and the canonical map C → B ∪A C is a cofibration.
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(4) If in the commutative diagram

B

��

A
f
//oo

��

C

��
B′ A′

g
//oo C ′

the morphisms f and g are cofibrations and the downwards pointing ar-
rows are weak equivalences, then the natural map B ∪A C → B′ ∪A′ C ′ is
a weak equivalence.

We usually denote cofibrations from A to B by A ↣ B and weak equivalences

by A
∼
Ð→ B. If C ≅ B ∪A 0 is a cokernel of the cofibration A ↣ B, we denote the

natural quotient map from B to C by B↠ C. The sequence

A↣ B↠ C

is called exact sequence or cofibre sequence. A functor F ∶W →W′ between Wald-
hausen categories is called Waldhausen exact if it preserves cofibrations, weak equiv-
alences and pushouts along cofibrations.

For example, every exact category E in the sense of Quillen may be equipped
with the structure of a Waldhausen category by choosing the cofibrations to be
the injections that may be completed to admissible exact sequences and the weak
equivalences to be the isomorphisms.

Waldhausen’s S-construction then assigns to each Waldhausen category W a
bisimplicial set N.wS.W. The n-th K-group Kn(W) of W is by definition the
n + 1-th homotopy group of the topological realisation of N.wS.W.

To construct the K-groups of R, one can simply apply the S-construction to
the exact category of finitely generated, projective modules over R, but the true
beauty of Waldhausen’s construction is that we can choose among a multitude of
different Waldhausen categories that all give rise to the same K-groups. Below, we
will study a number of different Waldhausen categories whose K-theory agrees with
that of R.

We recall that for any ring R, a complex M● of R-modules is called DG-flat if
every module Mn is flat and for every acyclic complex N● of right R-modules, the
total complex (N ⊗RM)

●
is acyclic. In particular, any bounded above complex of

flat R-modules is DG-flat. The notion of DG-flatness can be used to define derived
tensor products without this boundedness condition. Unbounded complexes will
turn up naturally in our constructions. As usual, the complex M● is called strictly
perfect if Mn is finitely generated and projective for all n and Mn = 0 for almost
all n. A complex of R-modules is a perfect complex if it is quasi-isomorphic to a
strictly perfect complex.

Definition 2.2.1. For any ring R, we write SP(R) for the Waldhausen cat-
egory of strictly perfect complexes, PDG(R) for the category of perfect DG-
flat complexes, and P(R) for the Waldhausen category of perfect complexes of
left R-modules. In both categories, the weak equivalences are given by quasi-
isomorphisms. The cofibrations in P(R) are all injections, the cofibrations in
SP(R) and PDG(R) are the injections with strictly perfect and DG-flat perfect
cokernel, respectively.

It is a standard consequence of the Waldhausen approximation theorem [TT90,
1.9.1] that the inclusion functors SP(R) → PDG(R) → P(R) induces isomor-
phisms

Kn(SP(R)) ≅ Kn(PDG(R)) ≅ Kn(P(R))
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between the Waldhausen K-groups of these categories. Moreover, they agree with
the Quillen K-groups Kn(R) of R by the Gillet-Waldhausen theorem [TT90, Thm.
1.11.2, 1.11.7].

If S is another ring and M● is a complex of S-R-bimodules which is strictly
perfect as complex of S-modules, then the tensor product with M● is a Waldhausen
exact functor from SP(R) to SP(S) and from PDG(R) to PDG(S). Hence, it
induces homomorphisms Kn(R) → Kn(S). Note, however, that the tensor product
with M● does not give a Waldhausen exact functor from P(R) to P(S), as it
does not preserve weak equivalences nor cofibrations. In the context of homological
algebra, this problem can be solved by passing to the derived category, but there
is no general recipe how to construct the K-groups of R on the basis of the derived
category alone. As a consequence, in order to view certain homomorphisms between
K-groups as being induced from a Waldhausen exact functor, one has to make a
suitable choice of the underlying Waldhausen categories.

Thanks to a result of Muro and Tonks [MT08], the groups K0(W) and K1(W)
of any Waldhausen category W can be described as the cokernel and kernel of a
homomorphism

(2.2.1) ∂∶D1(W) → D0(W)

between two nil-2-groups (i. e. [a, [b, c]] = 1 for any three group elements a, b, c)
that are given by explicit generators and relations in terms of the structure of the
underlying Waldhausen category. As additional structure, there exists a pairing

D0(W) × D0(W) → D1(W), (A,B) ↦ ⟨A,B⟩

satisfying

∂ ⟨A,B⟩ = B−1A−1BA,

⟨∂a, ∂b⟩ = b−1a−1ba,

⟨A,B⟩ ⟨B,A⟩ = 1,

⟨A,BC⟩ = ⟨A,B⟩ ⟨A,C⟩ .

In other words, D●(W) is a stable quadratic module in the sense of [Bau91]. In
particular, X ∈ D0(W) operates from the right on a ∈ D1(W) via

aX ∶= a ⟨X,∂a⟩ .

More explicitly, D0(W) is the free nil-2-group generated by the objects of W
different from the zero object, while D1(W) is generated by all weak equivalences
and exact sequences in W subject to the following list of relations:

(R1) ∂[α] = [B]−1[A] for a weak equivalence α∶A
∼
Ð→ B,

(R2) ∂[∆] = [B]−1[C][A] for an exact sequence ∆∶A↣ B↠ C.
(R3) ⟨[A], [B]⟩ = [B ↣ A⊕B↠ A]−1[A↣ A⊕B↠ B] for any pair of objects

A,B.
(R4) [0↣ 0↠ 0] = 1D1 ,

(R5) [βα] = [β][α] for weak equivalences α∶A
∼
Ð→ B, β∶B

∼
Ð→ C,

(R6) [∆′][α][γ][A] = [β][∆] for any commutative diagram

A∆∶ // //

∼α

��

B // //

∼β

��

C

∼γ

��
A′

∆′∶ // // B′ // // C ′
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(R7) [Γ1][∆1] = [∆2][Γ2]
[A] for any commutative diagram

A∆1∶ // // B
Γ1∶

// //
��

��

C

Γ2∶

��

��
A∆2∶ // //

����

D // //

����

E

����
0 // // F F

[MT07, Def. 1.2].
In particular, K0(W) is the abelian group generated by the symbols [P ] with

P in W modulo the relations

[P ] = [Q] if P and Q are weakly equivalent,

[P2] = [P1] + [P3] if P1 ↣ P2 ↠ P3 is an exact sequence.

If f ∶P
∼
Ð→ P is an endomorphism which is a weak equivalence in W, we can assign

to it a class [f] in K1(W). The relations that are satisfied by these classes can be
read off from the above relations for D1W. By the classical definition of the first
K-group as factor group of the general linear group it is clear that these classes
generate K1(W) in the case that W is one of SP(R), PDG(R) and P(R) for a
ring R.

Remark 2.2.2. Some authors prefer the theory of determinant functors and
Deligne’s category of virtual objects [Del87] as an alternative model for the 1-type
of the K-theory spectrum. We refer to [MTW15] for the precise connection of the
two approaches.

2.3. Duality on the Level of K-Groups

Assume that W is a biWaldhausen category in the sense of [TT90, Def. 1.2.4]:
W is a Waldhausen category, the class of quotient maps is closed under composi-
tion, the opposite category Wop is a Waldhausen category with the same class of
weak equivalences and with the classes of quotient maps and cofibrations mutually
exchanged, and product and coproduct of any two objects in W are canonically
isomorphic.

In particular, the opposite category Wop is a biWaldhausen category as well
and there are natural isomorphisms

(2.3.1) I ∶Kn(W) ≅ Kn(W
op),

simply because the topological realisations of the bisimplicial sets N.wS.W and
N.wS.Wop resulting from Waldhausen’s S-construction agree [TT90, §1.5.5]. How-
ever, the obvious identifications

NmwSnW ≅ NmwSnWop

respect the boundary and degeneracy maps only up to reordering, so that we do
not obtain an isomorphism of the bisimplicial sets themselves.

In order to understand the isomorphism (2.3.1) in terms of the presentation of
K1(W) given by (2.2.1), we will construct a canonical isomorphism

I ∶D●(W) → D●(W
op).

For any morphism α∶A → B in W, write αop∶B → A for the corresponding mor-
phism in the opposite category Wop. Further, note that by the definition of bi-
Waldhausen categories, if A ↣ B ↠ C is an exact sequence in W, then the dual
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sequence C ↣ B↠ A is exact in Wop. We then set

I([A]) = [A] for objects A in W,

I([f ∶A
∼
Ð→ B]) = [fop∶B

∼
Ð→ A]−1 for weak equivalences f ,

I([A↣ B↠ C]) = [C ↣ B↠ A] ⟨[A], [C]⟩ for exact sequences A↣ B↠ C.

Proposition 2.3.1. For any biWaldhausen category W, the above assignment
defines an isomorphism of stable quadratic modules

I ∶D●(W) → D●(W
op).

Proof. It is sufficient to check that I respects the relations (R1)–(R7) in the
definition of D●(W). This is a straight-forward, but tedious exercise. �

Next, we investigate in how far I respects the boundary homomorphism of
localisation sequences. For this, we consider the same situation as in [Wit14, Ap-
pendix], but with all Waldhausen categories replaced by biWaldhausen categories.
Assume that wW is a biWaldhausen category with weak equivalences w that is
saturated and extensional in the sense of [TT90, Def. 1.2.5, 1.2.6]. Let vW be a
the same category with the same notion of fibrations and cofibrations, but with a
coarser notion of weak equivalences v ⊂ w and let vWw denote the full biWald-
hausen subcategory of vW consisting of those objects which are weakly equivalent
to the zero object in wW. We assume that Cyl is a cylinder functor in the sense of
[Wit14, Def. A.1] for both wW and vW and that it satisfies the cylinder axiom
for wW. We will write Cone and Σ for the associated cone and shift functors, i. e.

Cone(α) ∶= Cyl(α)/A for any morphism α∶A→ B,

ΣA ∶= Cone(A→ 0) for any object A.

Further, we assume that CoCyl is a cocylinder functor for both wW and vW in
the sense that the opposite functor CoCylop is a cylinder functor for wWop and
vWop. Again, we assume that CoCylop satisfies the cylinder axiom for wWop. We
will write CoCone and CoΣ for the associated cocone and coshift functors.

Recall from [Wit14, Thm. A.5] that the assignment
(2.3.2)
d(∆) = 0 for every exact sequence ∆ in wW,

d(α) = −[Cone(α)] + [Cone(idA)] for every weak equivalence α∶A
∼
Ð→ A′ in wW

defines a homomorphism d∶D1(wW) →K0(vWw) such that the sequence

K1(vW) → K1(wW)
d
Ð→ K0(vWw) → K0(vW) → K0(wW) → 0

is exact.

Lemma 2.3.2. For every weak equivalence α∶A→ B in wW,

d(α) = −[CoCone(idB)] + [CoCone(α)]

in K0(vWw).

Proof. We first assume that A and B are objects of vWw. Then

B ↣ Cone(α) ↠ ΣA,

A↣ Cone(idA) ↠ ΣA,

are exact sequences in vWW. Hence,

(2.3.3) d(α) = −[B] − [ΣA] + [ΣA] + [A] = −[B] + [A]

in K0(vWw).
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For a general weak equivalence α∶A→ B in wW, the natural morphism

Cone(α) → 0

is a weak equivalence in wW by the cylinder axiom. The commutative square

A A

∼α

��
A

∼
α
// B

induces by the functoriality of the cone and shift functor a commutative diagram
with exact rows

A // //

∼α

��

Cone(idA) // //

∼α∗

��

ΣA

B // // Cone(α) // // ΣA

where all downward pointing arrows are weak equivalences in wW. Dually, we also
obtain a commutative diagram

CoΣB // // CoCone(α) // //

∼α∗

��

A

∼α

��
CoΣB // // CoCone(idB) // // B

where all downward pointing arrows are weak equivalences in wW.
From (R6) and (2.3.3) we conclude

−[Cone(α)] + [Cone(idA)] = d(α∗) = d(α)

= d(α∗) = −[CoCone(idB)] + [CoCone(α)]

as desired. �

Remark 2.3.3. By basically the same argument, one also sees that d is inde-
pendent of the choice of the particular cylinder functor.

Proposition 2.3.4. With the notation as above, the diagram

D1(wW )
I //

d

��

D1(wW
op)

d

��
K0(vW

w)
I // K0((vW

w)op)

commutes.

Proof. This is a direct consequence of the definition of I and Lemma 2.3.2. �

If R is any ring and P ● is a strictly perfect complex of left R-modules, then

(P ●)∗R ∶= HomR(P
−●,R)

is a strictly perfect complex of left modules over the opposite ring Rop and

SP(R)op → SP(Rop) P ● ↦ (P ●)∗R

is a Waldhausen exact equivalence of categories. We omit the R from ∗R if it
is clear from the context. By composing with the homomorphisms I, we obtain
isomorphisms

Kn(R) ≅ Kn(R
op).
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Note that the isomorphism K1(R) → K1(R
op) corresponds to the isomorphism

induced by the group isomorphism

Gl∞(R) → Gl∞(Rop), A↦ (At)−1

that maps a matrix A to the inverse of its transposed matrix.
If S is a second ring and M● a complex of R-S-bimodules which is strictly

perfect as complex of R-modules, then (M●)∗R is a complex of Rop-Sop-bimodules
which is strictly perfect as complex of Rop-modules and there exists for any complex
P ● in SP(S) a canonical isomorphism

(2.3.4) (M∗R ⊗Sop P ∗S)
●
≅ ((M ⊗S P )

●
)∗R .

Hence, we obtain a commutative diagram

Kn(S) ≅
//

M●

��

Kn(S
op)

(M●)∗R
��

Kn(R) ≅
// Kn(R

op)

2.4. K-Theory of Adic Rings

We are mainly interested in the first K-group of a certain class of rings introduced
by Fukaya and Kato in [FK06]. It consists of those rings Λ such that for each n ≥ 1
the n-th power of the Jacobson radical Jac(Λ)n is of finite index in Λ and

Λ = lim
←Ð
n≥1

Λ/Jac(Λ)n.

In extension of the definition for commutative rings [Gro60, Ch. 0, Def. 7.1.9],
these rings should be called compact adic rings. We will call these rings adic rings
for short, as in [Wit14]. We do not intend to insinuate any relation to Huber’s
more recent concept of adic spaces with this denomination. By definition, an adic
ring Λ carries a natural profinite topology. We will write IΛ for the set of open
two-sided ideals of Λ, partially ordered by inclusion.

We mainly work with the following Waldhausen category taken from [Wit14].
Its main advantage is that it works well with our later definition of adic sheaves
in Section 3.1 and that it allows a direct construction of most of the relevant
Waldhausen exact functors.

Definition 2.4.1. Let Λ be an adic ring. We denote by PDGcont(Λ) the
following Waldhausen category. The objects of PDGcont(Λ) are inverse system
(P ●

I )I∈IΛ
satisfying the following conditions:

(1) for each I ∈ IΛ, P ●
I is a DG-flat perfect complex of Λ/I-modules,

(2) for each I ⊂ J ∈ IΛ, the transition morphism of the system

ϕIJ ∶ P
●
I → P ●

J

induces an isomorphism of complexes

Λ/J ⊗Λ/I P
●
I ≅ P

●
J .

A morphism of inverse systems (fI ∶P
●
I → Q●

I)I∈IΛ
in PDGcont(Λ) is a weak equiv-

alence if every fI is a quasi-isomorphism. It is a cofibration if every fI is injective
and the system (coker fI) is in PDGcont(Λ).

Definition 2.4.2. Let Λ′ be another adic ring and M● a complex of Λ′-Λ-
bimodules which is strictly perfect as complex of Λ′-modules. We define ΨM● to be
the following Waldhausen exact functor

ΨM● ∶PDGcont(Λ) → PDGcont(Λ′), P ● → ( lim
←Ð
J∈IΛ

Λ′/I ⊗Λ′ (M ⊗Λ PJ)
●
)I∈IΛ′ .
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If P ● is a strictly perfect complex of Λ-modules, we may identify it with the
system

(Λ/I ⊗Λ P
●)I∈IΛ

in PDGcont(Λ). By [Wit14, Prop. 3.7], the corresponding Waldhausen exact
functor

SP(Λ) → PDGcont(Λ)

induces isomorphisms

Kn(SP(Λ)) ≅ Kn(PDGcont(Λ))

between the K-groups of the Waldhausen categories. Hence, Kn(PDGcont(Λ)) also
coincide with the Quillen K-groups of the adic ring Λ and the homomorphism

ΨM● ∶Kn(Λ) → Kn(Λ
′)

induced by the Waldhausen exact functor ΨM● coincides with the homomorphism
induced by

SP(Λ) → SP(Λ′), P ● ↦ (M ⊗Λ P )
●
.

The essential point in this observation is that IΛ is a countable set and that all the
transition maps ϕIJ are surjective such that passing to the projective limit

lim
←Ð
I∈IΛ

P ●
I

is a Waldhausen exact functor from PDGcont(Λ) to the Waldhausen category P(Λ)
of perfect complexes of Λ-modules. We write

Hs((P ●
I )I∈IΛ

) ∶= Hs( lim
←Ð
I∈IΛ

P ●
I )

for its cohomology groups and note that

Hs((P ●
I )I∈IΛ

) = lim
←Ð
I∈IΛ

Hs(P ●
I )

[Wit08, Prop. 5.2.3].

2.5. S-Torsion Complexes

Note that for any adic Z`-algebra Λ and any profinite group G such that G has an
open pro-`-subgroup which is topologically finitely generated, the profinite group
algebra Λ[[G]] is again an adic ring [Wit14, Prop. 3.2]. Assume further that
G =H ⋊Γ is the semi-direct product of a closed normal subgroup H which is itself
topologically finitely generated and a subgroup Γ which is isomorphic to Z`. We
set

(2.5.1) S ∶= SΛ[[G]] ∶=

{f ∈ Λ[[G]] ∣ Λ[[G]]
⋅f
Ð→ Λ[[G]] is perfect as complex of Λ[[H]]-modules}

and call it Venjakob’s canonical Ore set. We may generalise the results of [CFK+05,
§2] as follows.

Lemma 2.5.1. Let

P ●∶P −1 ∂
Ð→ P 0

be a complex of length 2 in SP(Λ[[G]]). Then the following are equivalent:

(1) P ● is perfect as a complex of Λ[[H]]-modules.

(2) P −1 and P 0 are isomorphic as Λ[[G]]-modules and H0(P ●) is finitely
generated as Λ[[H]]-module.

(3) H−1(P ●) = 0 and H0(P ●) is finitely generated as Λ[[H]]-module.
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(4) H−1(P ●) = 0 and H0(P ●) is finitely generated and projective as Λ[[H]]-
module.

Proof. Clearly, (4) implies (1).
We prove that (1) implies (2). Assume that P ● is perfect as complex of Λ[[H]]-

modules. Then the class of P ● is trivial in K0(Λ[[G]]) by [Wit13b, Cor. 3.3]. As
Λ[[G]] is compact and semi-local, K0(Λ[[G]]) is the free abelian group over the
isomorphism classes of indecomposable, projective Λ[[G]]-submodules of Λ[[G]].
Hence, P −1 and P 0 must be isomorphic. Moreover, as P ● is quasi-isomorphic to a
strictly perfect complex of Λ[[H]]-modules, the highest non-vanishing cohomology
group of P ● is a finitely presented Λ[[H]]-module.

We prove that (2) implies (3). It is sufficient to show that

H−1(Λ/I[[G/U]] ⊗Λ[[G]] P
●) = 0

for every open two-sided ideal I of Λ and every open subgroup U of H that is normal
in G. Hence, we may assume that Λ and H are finite. Then ∂ is a homomorphism
of the torsion Z`[[Γ]]-modules P −1 and P 0. As the two modules are isomorphic
over Z`[[Γ]] and coker∂ is finite, ∂ must be a pseudo-isomorphism. Hence, ker∂
ist finite, as well. But P −1 is finitely generated and projective as Λ[[Γ]]-module
and therefore, it has no finite Λ[[Γ]]-submodules. We conclude that ∂ is injective.

We prove that (3) implies (4). Note that

Λ/I[[H/U]] ⊗Λ[[H]] H0(P ●) ≅ Λ/I[[G/U]] ⊗Λ[[G]] H0(P ●)

≅ H0(Λ/I[[G/U]] ⊗Λ[[G]] P
●) ≅ H0(Λ/I[[H/U]] ⊗Λ[[H]] P

●)

for any I ∈ IΛ and any open subgroup U ⊂ H which is normal in G. We conclude
that H0(P ●) is finitely generated and projective as Λ[[H]]-module if and only if
H0(Λ/I[[H/U]] ⊗Λ[[H]] P

●) is finitely generated and projective as Λ/I[[H/U]]-
module for every I and U . Hence, one may reduce to the case that Λ and H are
finite. By replacing G by an appropriate open subgroup of G containing H, we may
assume that Γ is central in G, such that we may identify Λ[[G]] with the power
series ring Λ[[H]][[t]] over Λ[[H]] in one indeterminate t. For any finite right
Λ[[H]]-module N , the Z`[[t]]-module N ⊗Λ[[H]] P

−1 cannot contain non-trivial

finite Z`[[t]]-submodules. Moreover, P −1 and P 0 are flat Λ[[H]]-modules such
that P ● is a flat resolution of H0(P ●) as Λ[[H]]-module. Hence, we have

Tor
Λ[[H]]
i (N,H0(P ●)) = 0

for i > 1 and
Tor

Λ[[H]]
1 (N,H0(P ●)) ⊂ N ⊗Λ[[H]] P

0

is a finite Z`[[t]]-submodule. Therefore,

Tor
Λ[[H]]
1 (N,H0(P ●)) = 0

and H0(P ●) is finite and projective. �

Lemma 2.5.2. If Λ and H are finite and γ ∈ Γ is a topological generator of Γ,
then

T ∶= {(γ − 1)n ∣ n ∈ N}

is a left and right denominator set in Λ[[G]] consisting of left and right non-zero
divisors in the sense of [GW04, Ch. 10] such that the left and right localisation

Λ[[G]]T .

exists. Moreover, S is equal to the set of elements of Λ[[G]] that become units in
Λ[[G]]T . In particular, S is also a left and right denominator set and

Λ[[G]]S = Λ[[G]]T .
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Proof. Set t = γ − 1. Viewing Λ[[G]] as a skew power series ring over Λ[[H]]
in t, it is clear that left and right multiplication with tn on Λ[[G]] is injective with
finite cokernel.

According to Lemma 2.5.1 we have s ∈ S if and only if Λ[[G]]/Λ[[G]]s is finite.
In particular, we have T ⊂ S. Considering Λ[[G]]/Λ[[G]]s as a finite Z`[[t]]-
module we see that it is annihilated by a power of t. We conclude that there exists
an integer n ≥ 0 such that for any a ∈ Λ[[G]] there exists a b ∈ Λ[[G]] such that

tna = bs.

Applying this to elements of T ⊂ S, we see that T and S are left denominator set
consisting of left and right non-zero divisors such that all elements of S are units
in Λ[[G]]T = Λ[[G]]S .

Applying the same arguments to s ∈ Λ[[G]] with Λ[[G]]/sΛ[[G]] finite, we see
that T is also a right denominator set.

Assume that s ∈ Λ[[G]] becomes a unit in Λ[[G]]T . Then kernel and cokernel
of

Λ[[G]]
⋅s
Ð→ Λ[[G]]

are annihilated by powers of t. Considering Λ[[G]] as a finitely generated Z`[[t]]-
module annihilated by a power of `, we conclude that the cokernel is finite, which
implies that s ∈ S. Since T is a right denominator set, the same is then true for

S = Λ[[G]] ∩Λ[[G]]×T .

�

Lemma 2.5.3. Assume that Λ[[H]] is noetherian. Then:

(1) S = {f ∈ Λ[[G]] ∣ Λ[[G]]/Λ[[G]]f is a f. g. left Λ[[H]]-module}.
(2) S = {f ∈ Λ[[G]] ∣ Λ[[G]]/fΛ[[G]] is a f. g. right Λ[[H]]-module}.
(3) S is a left and right denominator set consisting of left and right non-zero

divisors.
(4) A perfect complex of left Λ[[G]]-modules is perfect as complex of Λ[[H]]-

modules if and only its cohomology groups are S-torsion.

Proof. Lemma 2.5.1 implies that the elements of S are right non-zero divisors
and that (1) holds. Under the assumption that Λ[[H]] is noetherian, we know by
[Wit13b, Cor. 2.21] that S is a left denominator set. Assertion (4) follows from
[Wit13b, Thm. 2.18]. Write (Λ[[G]])op and Λop for the opposite rings of Λ[[G]]
and Λ, respectively. Consider the ring isomorphism

♯∶ (Λ[[G]])op → Λop[[G]]

that maps g ∈ G to g−1. To prove the remaining assertions, it is sufficient to show
that ♯ maps SΛ[[G]] ⊂ (Λ[[G]])op to SΛop[[G]].

If Λ and H are finite and γ ∈ Γ is a topological generator, then ♯ maps t ∶= γ −1
to t′ ∶= γ−1 − 1 and hence, it maps T = {tn ∣ n ∈ N} to T ′ = {t′n ∣ n ∈ N}. Using
Lemma 2.5.2 for T and T ′, we conclude that ♯(SΛ[[G]]) = SΛop[[G]].

In the general case, write

Λop[[G]] = lim
←Ð
U,I

Λop/I[[G/H ∩U]]

where the limit runs over all open two-sided ideals I of Λ and all open normal

subgroups U of G and note that Λop[[G]]
⋅s♯
Ð→ Λop[[G]] is perfect over Λop[[H]] if

and only if (Λ/I)op[[G/H ∩ U]]
⋅s♯
Ð→ (Λ/I)op[[G/H ∩ U]] is perfect over the finite

ring (Λ/I)op[[H/H ∩U]] for all I and U . �
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For general Λ and H, the set S is no longer a left or right denominator set, as
the following example shows.

Example 2.5.4. Assume that either Λ = F` is the finite field with ` elements
and H is the free pro-` group on two topological generators with trivial action of Γ
or Λ = F`⟨⟨x, y⟩⟩ is the power series ring in two non-commuting indeterminates x, y
and H is trivial. In both cases, Λ[[G]] = F`⟨⟨x, y⟩⟩[[t]] is the power series ring over
F`⟨⟨x, y⟩⟩ with t commuting with x and y and the set S is the set of those power
series f(x, y, t) with f(0,0, t) ≠ 0. Set s ∶= x − t ∈ S. If S were a left denominator
set, we could find

a ∶=
∞
∑
i=0

ait
i ∈ F`⟨⟨x, y⟩⟩[[t]], b ∶=

∞
∑
i=0

bit
i ∈ S

such that as = by, i. e.

a0x = b0y, aix − ai−1 = biy for i > 0.

The only solution for this equation is a = b = 0, which contradicts the assumption
b ∈ S.

Nevertheless, using Waldhausen K-theory, we can still give a sensible definition
of K1(Λ[[G]]S) even if Λ[[G]]S does not exist.

Definition 2.5.5. We write SPwH (Λ[[G]]) for the full Waldhausen subcat-
egory of SP(Λ[[G]]) of strictly perfect complexes of Λ[[G]]-modules which are
perfect as complexes of Λ[[H]]-modules.

We write wHSP(Λ[[G]]) for the Waldhausen category with the same objects,
morphisms and cofibrations as SP(Λ[[G]]), but with a new set of weak equivalences
given by those morphisms whose cones are objects of the category SPwH (Λ[[G]]).

The same construction also works for PDGcont(Λ[[G]]):

Definition 2.5.6. We write PDGcont,wH (Λ[[G]]) for the full Waldhausen
subcategory of PDGcont(Λ[[G]]) of objects (P ●

J)J∈IΛ[[G]] such that

lim
←Ð

J∈IΛ[[G]]

P ●
J

is a perfect complex of Λ[[H]]-modules.
We write wHPDGcont(Λ[[G]]) for the Waldhausen category with the same

objects, morphisms and cofibrations as PDGcont(Λ[[G]]), but with a new set of
weak equivalences given by those morphisms whose cones are objects of the category
PDGcont,wH (Λ[[G]]).

From the Waldhausen approximation theorem [TT90, 1.9.1] and from [Wit14,
Prop. 3.7] we conclude that

Kn(SPwH (Λ[[G]])) ≅ Kn(PDGcont,wH (Λ[[G]])),

Kn(wHSP(Λ[[G]])) ≅ Kn(wHPDGcont(Λ[[G]]))

We may then set for all n ≥ 0

Kn(Λ[[G]], S) ∶= Kn(PDGcont,wH (Λ[[G]])),

Kn+1(Λ[[G]]S) ∶= Kn+1(wHPDGcont(Λ[[G]])).

If Λ[[H]] is noetherian, these groups agree with their usual definition [Wit14, § 4].
A closely related variant of SPwH (Λ[[G]]) is the following Waldhausen cate-

gory.
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Definition 2.5.7. Let SP(Λ[[H]],G) be the Waldhausen category of com-
plexes of Λ[[G]]-modules which are strictly perfect as complexes of Λ[[H]]-modules.
Cofibrations are the injective morphisms with cokernel in SP(Λ[[H]],G); the weak
equivalences are given by the quasi-isomorphisms.

In other words, SP(Λ[[H]],G) is the Waldhausen category of bounded com-
plexes over the exact category of Λ[[G]]-modules which are finitely generated and
projective as Λ[[H]]-modules and hence, the groups Kn(SP(Λ[[H]],G)) agree
with the Quillen K-groups of this exact category. Unfortunately, we cannot prove
in general that Kn(SP(Λ[[H]],G)) agrees with Kn(Λ[[G]], S). However, we shall
see below that we always have a surjection

K0(SP(Λ[[H]],G)) → K0(Λ[[G]], S).

This is sufficient for our applications.

Lemma 2.5.8. Let P ● be a complex of projective compact Λ[[G]]-modules that
is bounded above. Assume that there exists a bounded above complex K● of finitely
generated, projective Λ[[H]]-modules that is quasi-isomorphic to P ● as complex of
Λ[[H]]-modules. Then there exists in the category of complexes of Λ[[G]]-modules
an injective endomorphism

ψ∶Λ[[G]] ⊗Λ[[H]] K
● → Λ[[G]] ⊗Λ[[H]] K

●

and a quasi-isomorphism

f ∶P ● → cokerψ.

such that cokerψ is a bounded above complex of Λ[[G]]-modules which are finitely
generated and projective as Λ[[H]]-modules.

In particular, if P ● is perfect as complex of Λ[[H]]-modules, then P ● is perfect
as complex of Λ[[G]]-modules and cokerψ is in SP(Λ[[H]],G).

Proof. Since K● is a bounded above complex of finitely generated projec-
tive Λ[[H]]-modules, there exists a quasi-isomorphism α∶K● → P ● of complexes
of Λ[[H]]-modules, which is automatically continuous for the compact topologies
on K● and P ●. Every projective compact Λ[[G]]-module is also projective in
the category of compact Λ[[H]]-modules. Hence, there exists a weak equivalence
β∶P ● → K● in the category of complexes of compact Λ[[H]]-modules such that
α ○β and β ○α are homotopic to the identity. Fix a topological generator γ ∈ Γ and
set

g∶K● →K●, x↦ β(γα(x)),

ψ∶Λ[[G]] ⊗Λ[[H]] K
● → Λ[[G]] ⊗Λ[[H]] K

●, λ⊗ x↦ λ⊗ x − λγ−1 ⊗ g(x).

Then ψ is a Λ[[G]]-linear complex morphism. Moreover, cokerψ is finitely gener-
ated over Λ[[H]] in each degree. Indeed, if we set t = γ−1 and let (e1, . . . , em) denote
a generating system of the Λ[[H]]-module Kn in degree n, then (tk⊗ei)k∈N0,i=1,...,m

is a topological generating system of Λ[[G]] ⊗Λ[[H]] K
n over Λ[[H]]. But

tk ⊗ v = tk−1 ⊗ (g(v) − v) + ψ(γtk−1 ⊗ v)

for all v ∈Kn, such that cokerψ is already generated by the images of 1⊗e1, . . . ,1⊗
em.

From Lemma 2.5.1 we conclude that ψ is injective and that cokerψ is finitely
generated and projective over Λ[[H]] in each degree. Set Q● ∶= cokerψ. Since P ●

is a bounded above complex of projective compact Λ[[G]]-modules, there exists a
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quasi-isomorphism f completing the homotopy-commutative diagram

0 // Λ[[G]]⊗̂Λ[[H]]P
● λ⊗̂x↦λ⊗̂x−λγ

−1⊗̂γx//

id⊗̂β∼
��

Λ[[G]]⊗̂Λ[[H]]P
● λ⊗̂x↦λx //

id⊗̂β∼
��

P ●

f∼
��

// 0

0 // Λ[[G]] ⊗Λ[[H]] K
● ψ // Λ[[G]] ⊗Λ[[H]] K

● // Q● // 0

in the category of complexes of compact Λ[[G]]-modules. Here, Λ[[G]]⊗̂Λ[[H]]P
●

denotes the completed tensor product. The exactness of the first row follows from
[Wit13b, Prop. 2.4]. If we can chooseK● to be a strictly perfect complex of Λ[[H]]-
modules, then P ● is also quasi-isomorphic to the cone of ψ, which is strictly perfect
as complex of Λ[[G]]-modules. Moreover, cokerψ is a bounded complex and hence,
an object of SP(Λ[[H]],G). �

Proposition 2.5.9. Let γ ∈ Γ be a topological generator. The functor

Cγ ∶SP(Λ[[H]],G) → SPwH (Λ[[G]]),

P ● ↦ Cone(Λ[[G]] ⊗Λ[[H]] P
● λ⊗p↦λ⊗p−λγ−1⊗γp
ÐÐÐÐÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] P

●)

is well defined and Waldhausen exact. It induces a surjection

Cγ ∶K0(SP(Λ[[H]],G)) → K0(SPwH (Λ[[G]]))

which is independent of the choice of γ.

Proof. From [Wit13b, Prop. 2.4] we conclude that

0→ Λ[[G]] ⊗Λ[[H]] P
● id−(⋅γ−1⊗γ⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] P

● λ⊗p↦λp
ÐÐÐÐ→ P ● → 0

is an exact sequence of complexes of Λ[[G]]-modules for any P ● in SP(Λ[[H]],G).
In particular, the strictly perfect complex of Λ[[G]]-modules Cγ(P

●) is quasi-
isomorphic to P ● in the category of complexes of Λ[[G]]-modules and therefore per-
fect as complex of Λ[[H]]-modules. Thus, Cγ(P

●) is an object of SPwH (Λ[[G]]).
The Waldhausen exactness of the functor Cγ follows easily from the Waldhausen
exactness of the cone construction.

Consider the Waldhausen category PwH (Λ[[G]]) of those perfect complexes
of Λ[[G]]-modules which are also perfect as complexes of Λ[[H]]-modules. The
Waldhausen approximation theorem [TT90, 1.9.1] implies that the inclusion

ι∶SPwH (Λ[[G]]) → PwH (Λ[[G]])

induces isomorphisms

Kn(SPwH (Λ[[G]])) ≅ Kn(P
wH (Λ[[G]]))

for all n. The functorial quasi-isomorphism Cγ(P
●)

∼
Ð→ P ● in PwH (Λ[[G]]) im-

plies that the homomorphism of K-groups induced by ι ○ Cγ agrees with the ho-
momorphism induced by the inclusion ι′∶SP(Λ[[H]],G) → PwH (Λ[[G]]). Since
K0(P

wH (Λ[[G]])) is generated by the quasi-isomorphism classes of complexes in
PwH (Λ[[G]]), we deduce from Lemma 2.5.8 that ι′ induces a surjection

K0(SP(Λ[[H]],G)) → K0(P
wH (Λ[[G]])).

�

Remark 2.5.10. In order to deduce from the Waldhausen approximation the-
orem (applied to the opposite categories) that Cγ induces isomorphisms

Kn(SP(Λ[[H]],G)) ≅ Kn(SPwH (Λ[[G]]))

for all n, it would suffice to verify that for every complex P ● in SP(Λ[[H]],G) and
every morphism f ∶K● → P ● in PwH (Λ[[G]]), there exists a morphism f ′∶Q● → P ●
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in SP(Λ[[H]],G) and a quasi-isomorphism w∶K● ∼
Ð→ Q● in PwH (Λ[[G]]) such that

f = f ′ ○w.

Remark 2.5.11.

(1) In the light of Proposition 2.5.9, we will write

[P ●] ∶= [Cγ(P
●)] ∈ K0(Λ[[G]], S)

for any P ● in SP(Λ[[H]],G).
(2) More generally, let M be a Λ[[G]]-module which has a resolution by a

strictly perfect complex of Λ[[H]]-modules Q●. By Lemma 2.5.8, M then
also has a resolution by a complex P ● in SP(Λ[[H]],G). We set

[M] ∶= [P ●] ∈ K0(Λ[[G]], S).

Note that [M] does not depend on the particular choice of the resolutions
P ● or Q●.

2.6. Base Change with Bimodules

Let Λ and Λ′ be two adic Z`-algebras and G =H⋊Γ, G =H ′⋊Γ′ be profinite groups,
such that H and H ′ contain open, topologically finitely generated pro-` subgroups
and Γ ≅ Z` ≅ Γ′. Suppose that K● is a complex of Λ′[[G′]]-Λ[[G]]-bimodules,
strictly perfect as complex of Λ′[[G′]]-modules and assume that there exists a
complex L● of Λ′[[H ′]]-Λ[[H]]-bimodules, strictly perfect as complex of Λ′[[H ′]]-
modules, and a quasi-isomorphism of complexes of Λ′[[H ′]]-Λ[[G]]-bimodules

L●⊗̂Λ[[H]]Λ[[G]]
∼
Ð→K●.

Here,

L●⊗̂Λ[[H]]Λ[[G]] ∶= lim
←Ð

I∈IΛ′[[G′]]

lim
←Ð

J∈IΛ[[G]]

L/IL
●
⊗Λ[[H]] Λ[[G]]/J

denotes the completed tensor product.
In the above situation, the Waldhausen exact functor

(2.6.1) ΨK● ∶PDGcont(Λ[[G]]) → PDGcont(Λ′[[G′]])

takes objects of the category PDGcont,wH (Λ[[G]]) to objects of the category
PDGcont,wH′ (Λ′[[G′]]) and weak equivalences of wHPDGcont(Λ[[G]]) to weak
equivalences of wH′PDGcont(Λ′[[G′]]) [Wit14, Prop. 4.6]. Hence, it also induces
homomorphisms between the corresponding K-groups. In particular, this applies
to the following examples:

Example 2.6.1. [Wit14, Prop. 4.7]

(1) Assume G = G′, H = H ′. For any complex P ● of Λ′-Λ[[G]]-bimodules,
strictly perfect as complex of Λ′-modules, let K● be the complex

P [[G]]δ
●
∶= Λ′[[G]] ⊗Λ′ P ●

of Λ′[[G]]-Λ[[G]]-bimodules with the right G-operation given by the diag-
onal action on both factors. This applies in particular for any complex P ●

of Λ′-Λ-bimodules, strictly perfect as complex of Λ′-modules and equipped
with the trivial G-operation.

(2) Assume Λ = Λ′. Let α∶G → G′ be a continuous homomorphism such that
α maps H to H ′ and induces a bijection of G/H and G′/H ′. Let K● be
the Λ[[G′]]-Λ[[G]]-bimodule Λ[[G′]].

(3) Assume that G′ is an open subgroup of G and set H ′ ∶= H ∩ G′. Let
Λ = Λ′ and let K● be the complex concentrated in degree 0 given by the
Λ[[G′]]-Λ[[G]]-bimodule Λ[[G]].



2.7. DUALITY FOR S-TORSION COMPLEXES 25

Example 2.6.2. The assumptions in Example 2.6.1.(2) are in fact stronger
than necessary. We may combine it with the following result. Assume that G is
an open subgroup of G′ such that H ∶= H ′ ∩ G = H ′ and Γ = (Γ′)`

n

. Let Λ = Λ′

and let K● be the Λ[[G′]]-Λ[[G]]-bimodule Λ[[G′]]. Fix a topological generator
γ′ ∈ Γ′ and let L● be the Λ[[H]]-Λ[[H]]-sub-bimodule of Λ[[G′]] generated as left

Λ[[H]]-module by 1, γ′, (γ′)2, . . . , (γ′)`
n−1. Then L● is a strictly perfect complex

of Λ[[H]]-modules concentrated in degree 0 and the canonical map

L●⊗̂Λ[[H]]Λ[[G]]
∼
Ð→K●, `⊗̂λ↦ `λ

is an isomorphism of Λ′[[H ′]]-Λ[[G]]-bimodules such that [Wit14, Prop. 4.6] ap-
plies. In combination with Example 2.6.1.(2) this implies that any continuous group
homomorphism α∶G→ G′ such that α(G) /⊂H ′ induces Waldhausen exact functors
between all three variants of the above Waldhausen categories.

Example 2.6.3. As a special case of Example 2.6.1.(1), assume that Λ = Z` and
that ρ is some continuous representation of G on a finitely generated and projective
Λ′-module. Let ρ♯ be the Λ′-Z`[[G]]-bimodule which agrees with ρ as Λ′-module,
but on which g ∈ G acts from the right by the left operation of g−1 on ρ. We thus
obtain Waldhausen exact functors

(2.6.2) Φρ ∶= ΨΛ′[[Γ]] ○Ψρ♯[[G]]δ

from all three variants of the Waldhausen category PDGcont(Z`[[G]]) to the cor-
responding variant of PDGcont(Λ′[[Γ]]). If Λ′ is a commutative adic Z`-algebra,
then the image of

[Z`[[G]]
⋅g
Ð→ Z`[[G]]] ∈ K1(Z`[[G]]), g ∈ G,

under the composition of Φρ with

det∶K1(Λ
′[[Γ]])

≅
Ð→ Λ′[[Γ]]×

is ḡ det(ρ(g))−1, where ḡ denotes the image of g under the projection G→ Γ. Note
that this differs from [CFK+05, (22)] by a sign. So, our evaluation at ρ corresponds
to the evaluation at the representation dual to ρ in terms of the cited article.

2.7. Duality for S-Torsion Complexes

As before, Λ is an adic ring and G =H ⋊Γ is a profinite group such that H contains
an open, topologically finitely generated pro-` subgroup and Γ ≅ Z`.

We define

♯∶Λ[[G]]op → Λop[[G]], a↦ a♯,

to be the ring homomorphism that is the identity on the coefficients and maps
g ∈ G to g−1 and write Λop[[G]]♯ for Λop[[G]] considered as Λop[[G]]-Λ[[G]]op-
bimodule via ♯. If P ● is a bounded above complex of finitely generated, projective
Λ[[G]]-modules, we set

♯(P ●)∗Λ[[G]] ∶= Λop[[G]]♯ ⊗Λ[[G]]op (P ●)∗Λ[[G]] ,

i. e. the complex (P ●)∗Λ[[G]] of finitely generated, projective Λ[[G]]op-modules is
turned into a complex of finitely generated, projective Λop[[G]]-modules by letting
g ∈ G act as g−1.

In particular, we obtain Waldhausen exact equivalence of categories

SP(Λ[[G]])op → SP(Λop[[G]]), P ● ↦ ♯(P ●)∗Λ[[G]] .
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Definition 2.7.1. We write

⊛∶Kn(Λ[[G]]) → Kn(Λ
op[[G]])

for the homomorphisms obtained by composing I with the homomorphism

Kn(SP(Λ[[G]])op) → Kn(SP(Λop[[G]]))

induced by the Waldhausen exact functor P ● ↦ ♯(P ●)∗Λ[[G]] .

Remark 2.7.2. The author does not know wether it is possible to produce an
extension of P ● ↦ ♯(P ●)∗Λ[[G]] to a Waldhausen exact functor

PDGcont(Λ[[G]])op → PDGcont(Λop[[G]])

inducing the same homomorphisms on K-theory. This would avoid some technical-
ities that we need to deal with later on.

Lemma 2.7.3. Assume that K● is in SP(Λ[[G]]).

(1) Let Λ′ be another adic Z`-algebra. For any complex P ● of Λ′-Λ[[G]]-
bimodules, strictly perfect as complex of Λ′-modules, set

(P ●)∗Λ,♯ ∶= (P ●)∗Λ ⊗Λ[[G]]op (Λ[[G]]op)♯

such that (P ●)∗Λ,♯ is a complex of Λ′op-Λop[[G]]-bimodules, with g ∈ G

acting by (g−1)∗. With P [[G]]δ
●

as in Example 2.6.1,

♯(ΨP [[G]]δ●(K
●))∗Λ[[G]] ≅ Ψ(P ●)∗Λ,♯[[G]]δ(

♯(K●)∗Λ[[G]]).

(2) Let G′ =H ′⋊Γ′ be another profinite group such that H ′ contains an open,
topologically finitely generated pro-` subgroup and Γ′ ≅ Z`. Let α∶G → G′

be a continuous homomorphism such that α(G) /⊂ H ′. Consider Λ[[G′]]
as a Λ[[G′]]-Λ[[G]]-bimodule. Then

♯(ΨΛ[[G′]](K
●))∗Λ[[G]] ≅ ΨΛop[[G′]](

♯(K●)∗Λ[[G]]).

(3) Assume that G′ is an open subgroup of G and set H ′ ∶=H ∩G′. Consider
Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then

♯(ΨΛ[[G]](K
●))∗Λ[[G]] ≅ ΨΛop[[G]](

♯(K●)∗Λ[[G]]).

Proof. Using the canonical isomorphism (2.3.4), it remains to notice that

Λ′op[[G]]♯ ⊗Λ′[[G]]op (P [[G]]δ
●
)∗Λ′[[G]] ≅ (P ●)∗,♯[[G]]δ ⊗Λop[[G]] Λop[[G]]♯

as complexes of Λ′op[[G]]-Λ[[G]]op-bimodules to prove (1). The other two parts
are straightforward. �

Proposition 2.7.4. The functor P ● ↦ ♯(P ●)∗Λ[[G]] extends to Waldhausen ex-
act equivalences

(wHSP(Λ[[G]]))op → wHSP(Λop[[G]]),

(SPwH (Λ[[G]]))op → SPwH (Λop[[G]])

and hence, it induces a commutative diagram

0 // K1(Λ[[G]]) //

⊛≅
��

K1(Λ[[G]]S)

⊛≅
��

d // K0(Λ[[G]], S) //

⊛≅
��

0

0 // K1(Λ
op[[G]]) // K1(Λ

op[[G]]S)
d // K0(Λ

op[[G]], S) // 0

with exact rows.
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Proof. The exactness of the rows follows from [Wit13b, Cor. 3.3]. To extend
⊛, it suffices to show that for any strictly perfect complex P ● of Λ[[G]]-modules

which is also perfect as complex of Λ[[H]]-modules, the complex ♯(P ●)∗Λ[[G]] is
perfect as complex of Λop[[H]]-modules. By [Wit14, Prop. 4.8] we may check
this after tensoring with (Λ/Jac(Λ))op[[G/V ]] with V ⊂ G a closed normal pro-`-
subgroup which is open in H. Using Lemma 2.7.3, we may therefore assume that
Λ and H are finite.

By Lemma 2.5.3, S = SΛ[[G]] ⊂ Λ[[G]] is a left and right denominator set and

♯ maps SΛ[[G]] to the set SΛop[[G]] ⊂ Λop[[G]]. Moreover ♯(P ●)∗Λ[[G]] is perfect as
complex of Λop[[H]]-modules if and only if its cohomology is SΛop[[G]]-torsion.

As P ● has SΛ[[G]]-torsion cohomology and as

(Λ[[G]]S)
op ⊗Λ[[G]]op (P ●)∗Λ[[G]] ≅ (Λ[[G]]S ⊗Λ[[G]] P

●)∗Λ[[G]]S ,

we conclude that ♯(P ●)∗Λ[[G]] is indeed perfect as complex of Λop[[H]]-modules. �

We may extend ⊛ to the Waldhausen category SP(Λ[[H]],G) from Defini-
tion 2.5.7. More generally, we can also explicitly describe the class [M]⊛ for any
Λ[[G]]-module M that has a strictly perfect resolution as a Λ[[H]]-module.

Assume that P is a Λ[[G]]-module that is finitely generated and projective as
Λ[[H]]-module. We may let g ∈ G act on φ ∈ P ∗Λ[[H]] by setting

gφ∶P → Λ[[H]], p↦ gφ(g−1p)g−1.

We write ♯P ∗Λ[[H]] for the resulting Λop[[G]]-module.

Lemma 2.7.5. Let γ ∈ Γ be a topological generator. Then for any bounded
above complex P ● of Λ[[G]]-modules which are finitely generated and projective as
Λ[[H]]-modules, we have a commutative diagram

Λop[[G]] ⊗Λop[[H]]
♯(P ●)∗Λ[[H]]

α≅
��

id−⋅γ−1⊗γ // Λop[[G]] ⊗Λop[[H]]
♯(P ●)∗Λ[[H]]

α≅
��

♯(Λ[[G]] ⊗Λ[[H]] P
●)∗Λ[[G]]

id−(⋅γ⊗γ−1⋅)∗ // ♯(Λ[[G]] ⊗Λ[[H]] P
●)∗Λ[[G]]

of complexes of Λ[[G]]-modules.

Proof. For any degree n and any f ∈ (Pn)∗Λ[[H]] , we write

f̃ ∶Λ[[G]] ⊗Λ[[H]] P
n → Λ[[G]], λ⊗ p↦ λf(p).

We then set

Λop[[G]] ⊗Λop[[H]]
♯(Pn)∗Λ[[H]]

≅α

��

λ⊗ f_

��
♯(Λ[[G]] ⊗Λ[[H]] P

n)∗Λ[[G]] λf̃

It is then straightforward to check that the above diagram commutes. �

Corollary 2.7.6. Assume that P ● is in SP(Λ[[H]],G) and let γ be a topo-
logical generator of Γ. Then there exists a canonical isomorphism

♯Cγ−1(P ●)∗Λ[[G]] ≅ Cγ(
♯(P ●)∗Λ[[H]])[1].

In particular, we have

[P ●]⊛ = −[♯(P ●)∗Λ[[H]]]

in K0(Λ
op[[G]], S).
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Proof. Consider the diagram of Lemma 2.7.5. The cone of the first row is
Cγ(

♯(P ●)∗Λ[[H]]), the cone of the second row is the Λ[[G]]-dual of the cocone of

Λ[[G]] ⊗Λ[[H]] P
● id−(⋅γ⊗γ−1⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] P

●

in SPwH (Λ[[G]]), which is in turn the same as Cγ−1(P ●)[−1]. Finally, recall from
Proposition 2.5.9 that the class of Cγ(P

●) in K0(Λ[[G]], S) is independent of the
choice of the topological generator γ. Hence,

[P ●]⊛ = [♯Cγ(P
●)∗Λ[[G]]] = [♯Cγ−1(P ●)∗Λ[[G]]] = −[Cγ(

♯(P ●)∗Λ[[H]])] = −[♯(P ●)∗Λ[[H]]].

�

The following lemma is a minor improvement on [NSW00, Prop. 5.4.17].

Lemma 2.7.7. Let H ′ ⊂ H be an open subgroup and assume M is a Λ[[H]]-
module which has a resolution by finitely generated, free Λ[[H ′]]-modules. Then
there exist an isomorphism

α∶R HomΛ[[H′]](M,Λ[[H ′]])
≅
Ð→ R HomΛ[[H]](M,Λ[[H]])

in the derived category of complexes of Λ[[H ′]]op-modules.

Proof. Choose a system g1, . . . , gd of right coset representatives of H ′/H. For
any finitely generated, free Λ[[H]]-module P ,

α∶HomΛ[[H′]](P,Λ[[H ′]]) → HomΛ[[H]](P,Λ[[H]]),

α(φ)(p) ∶=
d

∑
i=1

giφ(g
−1
i p) for p ∈ P , φ ∈ HomΛ[[H′]](P,Λ[[H ′]]),

is an isomorphism of Λ[[H ′]]op-modules and does not depend on the choice of
g1, . . . , gd. By Lemma 2.7.8 below, M also has a resolution P ● by finitely generated,
free Λ[[H]]-modules. Moreover, any finitely generated, free Λ[[H]]-module is also
finitely generated and free as Λ[[H ′]]-module, so that we can use the same P ● to
compute the total derived functor of HomΛ[[H]](M,Λ[[H]]) in the categories of
complexes of Λ[[H]]-modules or of Λ[[H ′]]-modules. �

Lemma 2.7.8. Let A be a subring of a ring B and assume that B has a resolution
by finitely generated, free A-modules as a left A-module. Then a B-module M has
a resolution by finitely generated, free B-modules if and only if it has a resolution
by finitely generated, free A-modules.

Proof. If M has a resolution P ● by finitely generated, free B-modules, then
we may find a resolution of P −n by finitely generated, free A-modules for each n ≥ 0.
We obtain a resolution of M by finitely generated, free A-modules by taking the
total complex of the resulting double complex.

To prove the converse, we proceed by induction. For any ring R and any
R-module N , recall that a finite free presentation of length µ is an exact sequence

P −µ → P 1−µ → ⋯→ P 0 → N → 0

with finitely generated, free R-modules P k. Set λR(N) ∶= −1 if N is not finitely
generated and

λR(N) ∶= sup{µ ∣ there exists a finite free presentation of length µ}

else. Clearly, for all B-modules N , if λA(N) ≥ 0, then also λB(N) ≥ 0. Assume
that we know for some n ≥ 0 that λA(N) ≥ n implies λB(N) ≥ n for B-modules N .
Let N ′ be a B-module with λA(N

′) ≥ n + 1. Then there exists an exact sequence

0→ Q→ P → N ′ → 0
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of B-modules with P finitely generated and free. By [Bou89, §II.2, Ex. 6.(d)],

λA(Q) ≥ inf{λA(P ), λA(N
′) − 1} ≥ n.

Hence, λB(Q) ≥ n by the induction assumption. By [Bou89, §II.2, Ex. 6.(c)],

λB(N ′) ≥ inf{λB(P ), λB(Q) + 1} ≥ n + 1

In particular, we conclude that λA(M) = ∞ implies λB(M) = ∞. �

The following Lemma is a variant of [SV06, Prop. 3.1].

Lemma 2.7.9. Assume that M is a Λ[[G]]-module that has a resolution by
finitely generated, projective Λ[[H]]-modules. Then M also has a resolution by
finitely generated, projective Λ[[G]]-modules and there exists an isomorphism

β∶R HomΛ[[H]](M,Λ[[H]])
≅
Ð→ R HomΛ[[G]](M,Λ[[G]])[1]

in the derived category of complexes of Λ[[H]]op-modules.

Proof. By Lemma 2.5.8 we may find a resolution K● of M by Λ[[G]]-modules
which are finitely generated and projective as Λ[[H]]-modules. Choose a topolog-
ical generator γ ∈ Γ. We then obtain an exact sequence of complexes of Λ[[G]]-
modules

0→ Λ[[G]] ⊗Λ[[H]] K
● id−(⋅γ−1⊗γ⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] K

● →K● → 0

from [Wit13b, Prop. 2.4]. The cone of id − (⋅γ−1 ⊗ γ⋅) is a resolution of M by
finitely generated, projective Λ[[G]]-modules. One then uses Lemma 2.7.5. �

Assume that M is a Λ[[G]]-module that has a resolution by finitely generated,
projective Λ[[H ′]]-modules for some open subgroup H ′ of H and that

ExtnΛ[[H′]](M,Λ[[H ′]]) = Extn+1
Λ[[G]](M,Λ[[G]]) = 0

for all n ≠ 0. By Lemma 2.7.7 and Lemma 2.7.9,

ExtnΛ[[H′′]](M,Λ[[H ′′]]) = Extn+1
Λ[[G]](M,Λ[[G]]) = 0

for all open subgroups H ′′ of H and all n ≠ 0. We may then extend the notation in-

troduced above as follows: Let
♯
Ext1

Λ[[G]](M,Λ[[G]]) denote the Λ[[G]]op-module

Ext1
Λ[[G]](M,Λ[[G]]) considered as Λop[[G]]-module.

Definition 2.7.10. We write ♯M∗Λ[[H′′]] for HomΛ[[H′′]](M,Λ[[H ′]]) consid-
ered as Λop[[G]]-module via the isomorphism

♯M∗Λ[[H′′]]
α
Ð→
≅

♯M∗Λ[[H]]
β
Ð→
≅

♯
Ext1

Λ[[G]](M,Λ[[G]]).

If H ′′ is normal in G, g ∈ G acts on φ ∈ ♯M∗Λ[[H′′]] via

gφ∶M → Λ[[H ′′]], m↦ gφ(g−1m)g−1.

In the case that H ′′ is not normal in G, it is more difficult to give an explicit
description of the G-operation.

We conclude that if M has a resolution by a strictly perfect complex of Λ[[H]]-
modules, then

(2.7.1) [M]⊛ = −[♯M∗Λ[[H′]]]

in K0(Λ[[G]], S) for every open subgroup H ′ of H.
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2.8. Another Property of S-Torsion Complexes

In this section, we prove Proposition 2.8.1, which is an abstract generalisation of
[Wit13a, Prop. 2.1]. We will apply this proposition later in Section 3.4.

With the notation of the previous section, fix a topological generator γ ∈ Γ and
set t ∶= γ − 1. Assume for the moment that Λ is a finite Z`-algebra and that H is a
finite group. By Lemma 2.5.2, we have

Λ[[G]]S = lim
Ð→
n≥0

Λ[[G]]t−n

as Λ[[G]]-modules.
Assume that `i+1 = 0 in Λ. Then

(
`n+i

k
) = 0

in Λ whenever `n ∤ k. Hence,

γ`
n+i

− 1 = (t + 1)`
n+i

− 1 = t`
n
`i

∑
k=1

(
`n+i

k`n
)t`

n(k−1),

t`
n+i

= (γ − 1)`
n+i

− (1 − 1)`
n+i

=
`i

∑
k=1

(
`n+i

k`n
)(γk`

n

− 1)(−1)`
n(`i−k)

= (γ`
n

− 1)
`i

∑
k=1

(
`n+i

k`n
)(−1)`

n(`i−k)
k−1

∑
v=0

γv`
n

and therefore,

Λ[[G]]S = lim
Ð→
n≥0

Λ[[G]](γ`
n

− 1)−1.

Since H was assumed to be finite, the same is true for the automorphism group
of H. We conclude that γ`

n

is a central element of G and Γ`
n

⊂ G a central subgroup
for all n ≥ n0 and n0 large enough. Set

Nn ∶=
`−1

∑
k=0

γ`
nk.

The homomorphism

Λ[[G]](γ`
n

− 1)−1 → Λ[[G/Γ`
n

]], λ(γ`
n

− 1)−1 ↦ λ +Λ[[G]](γ`
n

− 1)

induces an isomorphism Λ[[G]](γ`
n

− 1)−1/Λ[[G]] ≅ Λ[[G/Γ`
n

]] such that the dia-
gram

Λ[[G]](γ`
n

− 1)−1/Λ[[G]]
⊂ //

≅
��

Λ[[G]](γ`
n+1

− 1)−1/Λ[[G]]

≅
��

Λ[[G/Γ`
n

]]
⋅Nn // Λ[[G/Γ`

n+1

]]

commutes. Hence, we obtain an isomorphism of (left and right) Λ[[G]]-modules

Λ[[G]]S/Λ[[G]] ≅ lim
Ð→
n

Λ[[G/Γ`
n

]].

We note that this isomorphism may depend on the choice of the topological gener-
ator γ.

For any strictly perfect complex P ● of Λ[[G]]-modules, we thus obtain an exact
sequence

0→ P ● → Λ[[G]]S ⊗Λ[[G]] P
● → lim

Ð→
n

Λ[[G/Γ`
n

]] ⊗Λ[[G]] P
● → 0.
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If P ● is also perfect as a complex of Λ[[H]]-modules such that the cohomology of
P ● is S-torsion by Lemma 2.5.3, then we conclude that there exists an isomorphism

P ●[1] ≅ lim
Ð→
n

Λ[[G/Γ`
n

]] ⊗Λ[[G]] P
●

in the derived category of complexes of Λ[[G]]-modules. In particular, the right-
hand complex is perfect as complex of Λ[[G]]-modules and of Λ[[H]]-modules.
This signifies that its cohomology modules

Hs(lim
Ð→
n

Λ[[G/Γ`
n

]] ⊗Λ[[G]] P
●) ≅ lim

Ð→
n

Hs(Λ[[G/Γ`
n

]] ⊗Λ[[G]] P
●) ≅ Hs+1(P ●)

are finite as abelian groups.
We now drop the assumption that Λ and H are finite. Let I ⊂ J be two open

ideals of Λ and U ⊂ V be the intersections of two open normal subgroups of G with
H. Then the diagram

0 // Λ/I[[G/U]] //

��

Λ/I[[G/U]]S //

��

lim
Ð→
n

Λ/I[[G/UΓ`
n

]] //

��

0

0 // Λ/J[[G/V ]] // Λ/J[[G/V ]]S // lim
Ð→
n

Λ/J[[G/V Γ`
n

]] // 0

commutes and the downward pointing arrows are surjections. Tensoring with P ●

and passing to the inverse limit we obtain the exact sequence

0→ P ● → lim
←Ð
I,U

Λ/I[[G/U]]S ⊗Λ[[G]] P
● → lim

←Ð
I,U

lim
Ð→
n

Λ/I[[G/UΓ`
n

]] ⊗Λ[[G]] P
● → 0.

If P ● is also perfect as a complex of Λ[[H]]-modules, then complex in the middle
is acyclic and we obtain again an isomorphism

P ●[1] ≅ lim
←Ð
I,U

lim
Ð→
n

Λ/I[[G/UΓ`
n

]] ⊗Λ[[G]] P
●

in the derived category of complexes of Λ[[G]]-modules and hence, isomorphisms
of Λ[[G]]-modules

Hs+1(P ●) ≅ lim
←Ð
I,U

lim
Ð→
n

Hs(Λ/I[[G/UΓ`
n

]] ⊗Λ[[G]] P
●).

Here, we use that the modules in the projective system on the righthand side are
finite and thus lim

←Ð
-acyclic.

Finally, assume that (Q●
J)J∈IΛ[[G]] is a complex in PDGcont,wH (Λ[[G]]). Then

we can find a strictly perfect complex of Λ[[G]]-modules P ● and a weak equivalence

f ∶ (Λ[[G]]/J ⊗Λ[[G]] P
●)J∈IΛ[[G]] → (Q●

J)J∈IΛ[[G]]

in PDGcont,wH (Λ) [Wit08, Cor. 5.2.6]. Moreover, this complex P ● will also be
perfect as a complex of Λ[[H]]-modules. For I ∈ IΛ, U the intersection of an open

normal subgroup of G with H and a positive integer n such that Γ`
n

is central in
G/U we set

JI,U,n ∶= ker Λ[[G]] → Λ/I[[G/UΓ`
n

]],

such that the JI,U,n form a final subsystem in IΛ[[G]]. We conclude:

Proposition 2.8.1. For (Q●
J)J∈IΛ[[G]] in PDGcont,wH (Λ[[G]]) there exists an

isomorphism

R lim
←Ð

J∈IΛ[[G]]

Q●
J[1] ≅ R lim

←Ð
I,U

lim
Ð→
n

Q●
JI,U,n
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in the derived category of Λ[[G]]-modules and isomorphisms of Λ[[G]]-modules

lim
←Ð

J∈IΛ[[G]]

Hs+1(Q●
J) ≅ lim

←Ð
I,U

lim
Ð→
n

Hs(Q●
JI,U,n

).

Remark 2.8.2. For any (Q●
J)J∈IΛ[[G]] in PDGcont(Λ[[G]]) we obtain in the

same way a distinguished triangle

R lim
←Ð

J∈IΛ[[G]]

Q●
J → R lim

←Ð
I,U

⎛

⎝
Λ/I[[G/U]]S ⊗

L
Λ/I[[G/U]] R lim

←Ð
n

Q●
JI,U,n

⎞

⎠
→ R lim

←Ð
I,U

lim
Ð→
n

Q●
JI,U,n

in the derived category of complexes of Λ[[G]]-modules.

2.9. Non-Commutative Algebraic L-Functions

Let G =H ⋊ Γ as before. Recall the split exact sequence

0→ K1(Λ[[G]]) → K1(Λ[[G]]S)
d
Ð→ K0(Λ[[G]], S) → 0.

[Wit13b, Cor. 3.4], which is central for the formulation of the non-commutative
main conjecture: The map K1(Λ[[G]]) → K1(Λ[[G]]S) is the obvious one; the
boundary map

d∶K1(Λ[[G]]S) → K0(Λ[[G]], S)

on the class [f] of an endomorphism f which is a weak equivalence in the Wald-
hausen category wHPDGcont(Λ[[G]]) is given by

d[f] = −[Cone(f)
●
]

where Cone(f)
●

denotes the cone of f [Wit14, Thm. A.5]. (Note that other authors
use −d instead.) For a fixed choice of a topological generator γ ∈ Γ, a splitting sγ
of d is given by

(2.9.1) sγ([P
●]) ∶= [Λ[[G]]⊗̂Λ[[H]]P

● x⊗̂y↦x⊗̂y−xγ−1⊗̂γy
ÐÐÐÐÐÐÐÐÐÐÐ→ Λ[[G]]⊗̂Λ[[H]]P

●]−1

for any P ● in PDGcont,wH (Λ[[G]]), where the precise definition of Λ[[G]]⊗̂Λ[[H]]P
●

as an object of the Waldhausen category wHPDGcont(Λ[[G]]) is

Λ[[G]]⊗̂Λ[[H]]P
● = ( lim

←Ð
J∈IΛ[[G]]

Λ[[G]]/I ⊗Λ[[H]] P
●
J)I∈IΛ[[G]]

[Wit13b, Def. 2.12]. A short inspection of the definition shows that sγ only depends
on the image of γ in G/H. Following [Bur09], we may call sγ(−A) the non-
commutative algebraic L-function of A ∈ K0(Λ[[G]], S).

Proposition 2.9.1. Consider an element A ∈ K0(Λ[[G]], S).

(1) Let Λ′ be another adic Z`-algebra. For any complex P ● of Λ′-Λ[[G]]-
bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(sγ(A)) = sγ(ΨP [[G]]δ●(A))

in K1(Λ
′[[G]]S).

(2) Let G′ =H ′ ⋊Γ′ such that H ′ has an open, topologically finitely generated
pro-`-subgroup and Γ′ ≅ Z`. Assume that α∶G → G′ is a continuous ho-
momorphism such that α(G) /⊂ H ′. Set r ∶= [G′ ∶ α(G)H ′]. Let γ′ ∈ Γ′ be
a topological generator such that α(γ) = (γ′)r in G′/H ′. Then

ΨΛ[[G′]](sγ(A)) = sγ′(ΨΛ[[G′]](A))

in K1(Λ[[G′]]S).
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(3) Assume that G′ is an open subgroup of G and set H ′ ∶= H ∩ G′, r ∶=
[G ∶ G′H]. Consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then γr

generates G′/H ′ ⊂ G/H and

ΨΛ[[G]](sγ(A)) = sγr(ΨΛ[[G]](A))

in K1(Λ[[G]]S).

Proof. For (1), we first note that by applying the Waldhausen additivity
theorem [Wal85, Prop. 1.3.2] to the short exact sequences resulting from stupid
truncation, we have

ΨP [[G]]δ● = ∑
i∈Z

(−1)iΨP i[[G]]δ

as homomorphisms between the K-groups. Hence we may assume that P = P ● is
concentrated in degree 0. We now apply [Wit13b, Prop 2.14.1] to the Λ′[[G]]-
Λ[[G]]-bimodule M ∶= P [[G]]δ and its Λ′[[H]]-Λ[[H]]-sub-bimodule

N ∶= Λ′[[H]] ⊗Λ′ P

(with the diagonal right action of H) and t1 ∶= t2 ∶= γ − 1, γ1 ∶= γ2 ∶= γ.
For (2), we first assume that α induces an isomorphism G/H ≅ G/H ′ and that

γ′ = α(γ). We then apply [Wit13b, Prop 2.14.1] to M ∶= Λ[[G′]], N ∶= Λ[[H ′]],
and t1 ∶= γ − 1, t2 ∶= α(γ) − 1, γ1 ∶= γ, γ2 ∶= α(γ).

Next, we assume that G ⊂ G′, H = H ′, and γ = (γ′)r. This case is not covered
by [Wit13b, Prop 2.14] and therefore, we will give more details. Consider the
isomorphism of Λ[[G′]]-Λ[[G]]-bimodules

κ∶Λ[[G′]]⊗̂Λ[[H]]Λ[[G]]r → Λ[[G′]]⊗̂Λ[[H]]Λ[[G′]],

µ⊗̂
⎛
⎜
⎝

λ0

⋮
λr−1

⎞
⎟
⎠
↦

r−1

∑
i=0

µ(γ′)−i⊗̂(γ′)i(λi).

Then the map µ⊗̂λ↦ µ⊗̂λ−µ(γ′)−1⊗̂γ′λ on the righthand side corresponds to left
multiplication with the matrix

A ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

id 0 ⋯ 0 −(⋅γ−1)⊗̂(γ⋅)
−id id ⋱ ⋮ 0
0 ⋱ ⋱ 0 ⋮
⋮ ⋱ ⋱ id 0
0 ⋯ 0 −id id

⎞
⎟
⎟
⎟
⎟
⎟
⎠

on the left-hand side. Let P ● be a complex in PDGcont,wH (Λ[[G]]). Then κ
induces an isomorphism

κ∶ΨΛ[[G′]](Λ[[G]]⊗̂Λ[[H]](P
●)r) → Λ[[G′]]⊗̂Λ[[H]]ΨΛ[[G′]](P

●)

in wHPDGcont(Λ[[G′]]) whileA⟳ ΨΛ[[G′]](Λ[[G]]⊗̂Λ[[H]](P
●)r) is a weak equiv-

alence. Hence,
[A]−1 = sγ′([ΨΛ[[G′]](P

●)])

in K1(Λ[[G′]]S). Moreover,

⎛
⎜
⎜
⎜
⎜
⎜
⎝

id 0 ⋯ ⋯ 0
id id ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ id 0

id ⋯ ⋯ id id

⎞
⎟
⎟
⎟
⎟
⎟
⎠

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

id 0 ⋯ 0 −(⋅γ−1)⊗̂(γ⋅)
0 id ⋱ ⋮ −(⋅γ−1)⊗̂(γ⋅)
⋮ ⋱ ⋱ 0 ⋮
⋮ ⋱ id −(⋅γ−1)⊗̂(γ⋅)
0 ⋯ ⋯ 0 id − (⋅γ−1)⊗̂(γ⋅)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The relations (R1)–(R7) in the definition of D●(W) imply that the class of a trian-
gular matrix is the product of the classes of its diagonal entries in K1(Λ[[G′]]S).
Hence, [A]−1 = ΨΛ[[G′]](sγ[P

●]), as desired.
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In the general case, we note that the image of α is contained in the subgroup
G′′ of G′ topologically generated by (γ′)r and H ′ and recall that sγ only depends
on the image of γ in G/H. We are then reduced to the two cases already treated
above.

For (3), we first treat the case r = 1, i. e. G′ → G/H is a surjection. Hence,
we may assume γ ∈ G′. We then apply [Wit13b, Prop 2.14.1] to M ∶= Λ[[G]],
N ∶= Λ[[H]], and t1 ∶= t2 ∶= γ − 1, γ1 ∶= γ2 ∶= γ as above. If r > 1 we can thus reduce
to the case that G′ is topologically generated by H and γr and apply [Wit13b,
Prop 2.14.2].

In [Wit13b], we use a slightly different Waldhausen category for the construc-
tion of the K-theory of Λ[[G]], but the proof of [Wit13b, Prop 2.14] goes through
without changes. �

Example 2.9.2.

(1) Assume that M is a Λ[[G]]-module which is finitely generated and pro-
jective as a Λ[[H]]-module. Then the complex

Cγ(M)∶ Λ[[G]] ⊗Λ[[H]] M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

degree −1

id−(⋅γ−1⊗γ⋅)
ÐÐÐÐÐÐÐ→ Λ[[G]] ⊗Λ[[H]] M

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
degree 0

is an object of PDGcont,wH (Λ[[G]]) whose cohomology is M in degree 0
and zero otherwise. Moreover,

sγ([M]) = sγ([Cγ(M)]) = [id − (⋅γ−1 ⊗ γ⋅) ⟳ Λ[[G]] ⊗Λ[[H]] M]−1

in K1(Λ[[G]]S). If Λ[[G]] is commutative, then the image of the element
sγ([M])−1 under

det∶K1(Λ[[G]]S) → Λ[[G]]×S

is precisely the reverse characteristic polynomial

detΛ[[H]][t](id − (⋅t⊗ γ⋅) ⟳ Λ[[H]][t] ⊗Λ[[H]] M)

evaluated at t = γ−1 ∈ Γ. In fact, one may extend this to non-commutative
Λ[[H]] and G =H × Γ as well, using the results of the appendix.

(2) If M = Λ[[G]]/Λ[[G]]f with

f ∶= tn +
n−1

∑
i=0

λit
i ∈ Λ[[G]]

a polynomial of degree n in t ∶= γ − 1 with λi ∈ Jac(Λ[[H]]), then M is
finitely generated and free as Λ[[H]]-module. A Λ[[H]]-basis is given by
the residue classes of 1, t, . . . , tn−1 ∈ Λ[[G]]. If we use this basis to identify
Λ[[G]] ⊗Λ[[H]] M with Λ[[G]]n, then the Λ[[G]]-linear endomorphism

id − (⋅γ−1 ⊗ γ⋅) is given by right multiplication with the matrix

A ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

γ−1t −γ−1 0 ⋯ 0
0 γ−1t ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 γ−1t −γ−1

γ−1λ0 γ−1λ1 ⋯ γ−1λn−2 γ−1(t + λn−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

By right multiplication with

E ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ⋯ ⋯ 0
t 1 ⋱ ⋮
t2 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0

tn−1 ⋯ t2 t 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠
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one can transform A into

A′ ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 −γ−1 0 ⋯ 0
⋮ 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ 0
0 0 ⋯ 0 −γ−1

γ−1f γ−1(tn−1 +∑
n−1
i=1 λit

i−1) ⋯ γ−1(t2 + λn−1t + λn−2) γ−1(t + λn−1)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

By left multiplication with

P ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 ⋯ 0 1
0 1 ⋱ ⋮ 0
⋮ ⋱ ⋱ 0 ⋮
0 ⋯ 0 1 0
1 0 ⋯ 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

one can exchange the first and last row of A′ to obtain a triangular matrix.
In K1(Λ[[G]]), we have

[ ⋅E⟳ Λ[[G]]n ] = 1,

[ ⋅P ⟳ Λ[[G]]n ] = [ −1⟳ Λ[[G]] ]n−1.

We conclude

sγ([M])−1 = [ ⋅A⟳ Λ[[G]]n ]

= [ ⋅A′⟳ Λ[[G]]n ]

= [ ⋅P ⟳ Λ[[G]]n ]−1[ ⋅(−γ−1) ⟳ Λ[[G]] ]n−1[ ⋅γ−1f ⟳ Λ[[G]] ]

= [ ⋅γ−nf ⟳ Λ[[G]] ].

The section sγ ∶K0(Λ[[G]], S) → K1(Λ[[G]]S) also commutes with the ho-
momorphisms ⊛∶K0(Λ[[G]]) → K0(Λ

op[[G]]), ⊛∶K1(Λ[[G]]S) → K0(Λ
op[[G]]S)

from Definition 2.7.1 in the following sense.

Proposition 2.9.3. For any element A ∈ K0(Λ[[G]], S),

sγ−1(A)⊛ = sγ(A
⊛)

in K1(Λ
op[[G]]S).

Proof. Since K0(SP(Λ[[H]],G)) surjects onto K0(Λ[[G]], S) by Proposi-
tion 2.5.9, it suffices to prove the formula for Cγ(M) with M a Λ[[G]]-module
that is finitely generated and projective over Λ[[H]]. The equality is then a direct
consequence of the diagram in Lemma 2.7.5. �

Remark 2.9.4. Note that

sγ([Cγ(M)]) = sγ−1([Cγ(M)])[−(⋅γ−1 ⊗ γ⋅) ⟳ Λ[[G]] ⊗Λ[[H]] M]

for any topological generator γ of Γ and any Λ[[G]]-module M that is finitely
generated and projective over Λ[[H]].

2.10. Regular Coefficient Rings

Assume that R is a commutative, local, and regular adic Z`-algebra. By the Cohen
structure theorem [Bou89, Ch. VIII, §5, Thm. 2], we have

R ≅ R0[[X1, . . . ,Xn]]

where R0 is either a finite field of characteristic ` or the valuation ring of a finite
field extension of Q` and X1, . . . ,Xn are indeterminates. In particular, we may
identify R with the profinite group algebra of Zn` with coefficients in R0.

If G =H ⋊ Γ is an `-adic Lie group without elements of order `, then the rings
R[[G]] and R[[H]] are both noetherian and of finite global dimension [Bru66,
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Thm. 4.1]. Let NH(R[[G]]) denote the abelian category of finitely generated
R[[G]]-modules which are also finitely generated as R[[H]]-modules. Note that

K0(SPwH (R[[G]])) → K0(NH(R[[G]])),

[P ●] ↦
∞
∑
s=−∞

(−1)s[Hs(P ●)]
(2.10.1)

is an isomorphism. The inverse is given by the construction in Remark 2.5.11. The
same argument also shows that

K0(SP(R[[H]],G)) ≅ K0(NH(R[[G]])),

providing some evidence to the conjectured isomorphism in Remark 2.5.10.
If the quotient field of R is of characteristic 0, one may also consider the abelian

category MH(R[[G]]) of finitely generated R[[G]]-modules whose `-torsionfree
part is finitely generated as R[[H]]-module and the left denominator set

S∗ ∶= ⋃
n

`nS ⊂ R[[G]].

Still assuming that G has no element of order ` it is known that the natural maps

K1(R[[G]]S) → K1(R[[G]]S∗), K0(NH(R[[G]])) → K0(MH(R[[G]]))

are split injective [BV11, Prop. 3.4] and fit into a commutative diagram

0 // K1(R[[G]]) //

=
��

K1(R[[G]]S)
d //

��

K0(NH(R[[G]])) //

��

0

0 // K1(R[[G]]) // K1(R[[G]]S∗)
d // K0(MH(R[[G]])) // 0

In particular, an identity of the type f = dg in K0(NH(R[[G]])) will imply a cor-
responding identity in K0(MH(R[[G]])). It is MH(R[[G]]) which plays a central
role in the original formulation of the non-commutative Iwasawa Main Conjecture
[CFK+05]. However, we will not make use of MH(R[[G]]) in the following.

Assume that T is a R[[G]]-module that is finitely generated as R-module.
Quite often, the class [T ] is zero in K0(R[[G]], S) if H is infinite. However, this is
not always the case. Since the forgetful functor from NH(R[[G]]) to the category
of finitely generated R[[H]]-modules induces a homomorphism K0(R[[G]], S) →
K0(R[[H]]), a necessary condition is that [T ] is zero in K0(R[[H]]). For this
condition, we can formulate the following useful criterion, which is essentially due
to Serre (see also [AW08, §1.3]). In particular, we see that this condition is not
satisfied by the group H = Zd` ⋊µ`−1 with the group of `− 1-th roots of units acting

by multiplication on Zd` if ` > 2.
Recall that an `-adic Lie group H is called virtually solvable if its Lie algebra

L(H) is solvable.

Lemma 2.10.1. Let H be a compact `-adic Lie group without any element of
order ` and R a commutative, local, regular adic Z`-algebra. The class [T ] of every
R[[H]]-module T which is finitely generated as R-module is zero in K0(R[[H]])
precisely if the centraliser of every element of finite order in H has infinitely many
elements. This condition is satisfied if H is a pro-`-group or if H is not virtually
solvable.

Proof. By the Cohen structure theorem [Bou89, Ch. VIII, §5, Thm. 2], we
have

R ≅ R0[[X1, . . . ,Xn]]

where R0 is either a finite field of characteristic ` or the valuation ring of a finite
field extension of Q` and X1, . . . ,Xn are indeterminates. We do induction on n.
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Assume that n = 0 and that R0 is a finite field. By [Ser98, Cor. to Thm. C] the
Euler characteristic of every R0[[H]]-module T which is of finite dimension over
R0 is trivial precisely if the centraliser of every element of H has infinitely many
elements. For any element of infinite order this is clearly an empty condition. Now
the proof of [AW06, Thm. 8.2, (a) ⇒ (b)] shows that the vanishing of the Euler
characteristics is equivalent with the vanishing of the classes [T ].

If H is a pro-`-group without any element of order `, then there are no elements
of finite order at all. If H is not virtually solvable, then its Lie algebra L(H) is not
solvable. Since any element h ∈ H of finite order has order prime to `, the image
of h in the automorphism group of L(H) must be semi-simple. By an old result of
Borel and Mostow [BM55, Thm. 4.5] (the author thanks S. Wadsley for pointing
out this reference to him), h fixes a non-trivial subspace of L(H), which implies
that the centraliser of h in H must be infinite.

Now assume that R0 is the valuation ring of a finite field extension of Q`.
Let π ∈ R0 be a uniformiser and k the residue field of R0. By Quillen’s dévissage
theorem [Qui73, Thm. 4], we may identify K0(k[[H]]) with the K-group of the
abelian category of finitely generated R0[[H]]-modules that are annihilated by a
power of π. Under this identification, classes of those R0[[H]]-modules which are
additionally finitely generated over R0 are mapped to the subgroup of K0(k[[H]])
generated by the classes of those k[[H]]-modules that are finitely generated over
k. By Quillen’s localisation theorem [Qui73, Thm. 5] we thus obtain an exact
sequence

K0(k[[H]]) → K0(R0[[H]]) → K0(R0[[H]][
1

π
]) → 0,

noting that all rings in this sequence are of finite global dimension. For any
R0[[H]]-module T which is finitely generated over R0, there exists an exact se-
quence of R0[[H]]-modules, finitely generated over R0,

0→ T ′ → T → T ′′ → 0

where T ′ is annihilated by a power of π and π is a non-zero divisor on T ′′.
Assume that the centraliser of every element of finite order in H has infinitely

many elements. We already know that [T ′] = 0. Hence, we may assume that π is a
non-zero divisor on T . In particular,

k[[H]] ⊗R0[[H]] T = k ⊗R0 T

agrees with the derived tensor product with k[[H]] over R0[[H]] and is finitely
generated over k. Hence, [k ⊗R0 T ] = 0 in K0(k[[H]]). Since π is in the Jacobson
radical of R0[[H]], the derived tensor product with k[[H]] induces an isomorphism

K0(R0[[H]]) → K0(k[[H]]).

Hence [T ] = 0 in K0(R0[[H]]).
Conversely, if H does not satisfy the above property, we may find a k[[H]]-

module T which is finitely generated over k and which has non-trivial class [T ] in
K0(k[[H]]). The image of H in the automorphism group of T is a finite group ∆.
By [Ser77, Thm. 33], [T ] has a preimage in K0(R0[[H]]) consisting of a linear
combination of classes of finitely generated R0[∆]-modules which are free as R0-
modules. Hence, there exist R0[[H]]-modules which are finitely generated and free
over R0 and have non-trivial class in K0(R0[[H]]).

The same argumentation still works for R0 replaced by R, k replaced by R′ ∶=
R0[[X1, . . . ,Xn−1]] and π replaced by Xn. The lifting argument in the last step
becomes a bit easier. If T is a R′[[H]]-module which is finitely generated and free
over R′, then T ′ ∶= R⊗R′ T is a R[[H]]-module which is finitely generated and free
over R and satisfies R′ ⊗R T

′ ≅ T . This completes the induction step. �
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However, the vanishing in K0(R[[H]]) is not sufficient. Here is an example.
Assume that G =< τ, γ >≅ Z` ⋊ Z` with γ−1τγ = τ1+`. Set H ∶=< τ > and consider
the constant Z`[[G]]-module Z`. Clearly, [Z`] = 0 in K0(Z`[[H]]) according to
Lemma 2.10.1. However, [Z`] ≠ 0 in K0(Z`[[G]], S). Indeed, the complex

Z`[[G]]
v↦(v−vτ1+`,v−v(∑`i=0 τ

i)γ)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Z`[[G]]2

(v,w)↦v−vγ−w+wτ1+`

ÐÐÐÐÐÐÐÐÐÐÐÐ→ Z`[[G]]

is a projective resolution of Z`. Hence, the image of [Z`] in

K0(Z`[[Γ]], S) = Z`[[Γ]]×S/Z`[[Γ]]×

under the natural projection map is given by the class of

1 − (` + 1)γ

1 − γ
∈ Z`[[Γ]]×S ,

which is not in Z`[[Γ]]×.
A sufficient criterion for the vanishing of the class [T ] in K0(R[[G]], S) is given

in [FK06, Prop. 4.3.17]. Here is another one, inspired by [Záb10, Prop. 4.2].

Proposition 2.10.2. Let G = H ⋊ Γ be an `-adic Lie group without elements
of order `. Assume that there exists a closed normal subgroup N ⊂ G such that

(1) G/N has no elements of order ` and the centraliser of every element in
G/N of finite order has infinitely many elements,

(2) the image of H in G/N is open.

Let further R be a commutative, local, regular adic Z`-algebra. Then the class of ev-
ery R[[G]]-module which is finitely generated as R-module is zero in K0(R[[G]], S).

Proof. By assumption (1) and Lemma 2.10.1 the constant R[[G/N]]-module
R has trivial class in K0(R[[G/N]]). Set G′ ∶= G/N × G/H. Every R[[G/N]]-
module may be considered as R[[G′]]-module by letting G/H act trivially. Thus,
we see that [R] = 0 in K0(NG/N(R[[G′]])), as well. By assumption (2) every
finitely generated R[[G′]]-module which is finitely generated as R[[G/N]]-module
may be considered via

G→ G′, g ↦ (gN, gH)

as a finitely generated R[[G]]-module which is also finitely generated as R[[H]]-
module. This induces an exact functor NG/N(R[[G′]]) →NH(R[[G]]) and hence,
a homomorphism between the corresponding K-groups. We conclude that [R] = 0
also in K0(NH(R[[G]])).

If T is a R[[G]]-module which is finitely generated and free as R-module and

M is any module in NH(R[[G]]), we let TorRi (T,M) denote the i-th left derived
functor of the tensor product T ⊗RM with the diagonal action of G. Since R is
noetherian, any finitely generated, projective R[[H]]-module is flat as R-module
and the same is true for R[[G]]. In particular, it does not matter if we com-

pute TorRi (T,M) in the category of finitely generated R[[G]]-modules or R[[H]]-

modules or R-modules. Hence, TorRi (T,M) is again in NH(R[[G]]) and it is
finitely generated over R if M is a finitely generated R-module. We thus obtain an
endomorphism

K0(NH(R[[G]])) → K0(NH(R[[G]])), [M] ↦
∞
∑
i=0

(−1)i[TorRi (T,M)],

which maps [R] to [T ]. In particular, [T ] = 0. �

Corollary 2.10.3. Let G =H ⋊ Γ be an `-adic Lie group. Assume that

(1) H is not virtually solvable and has no elements of order `,
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(2) the Lie algebra L(G) of G decomposes as

L(G) = L(H) ⊕ V

with L(H) the Lie algebra of H and some ideal V of L(G),
(3) ` − 1 > 2 dimQ` L(H).

Let further R be a commutative, local, regular adic Z`-algebra. Then the class of ev-
ery R[[G]]-module which is finitely generated as R-module is zero in K0(R[[G]], S).

Proof. By assumption (2) there exist a characteristic open subgroup H ′ ⊂H
and a closed subgroup Γ′ ≅ Z` of the centraliser ZG(H ′) of H ′ in G such that
H ′ ∩ Γ′ = 1 and H ′Γ′ is open in G. We may also assume that H ′ is a uniformly
powerful pro-`-group in the sense of [DdSMS99, Def. 4.1]. Set d ∶= dimQ` L(H).
By [DdSMS99, Cor. 4.18] the automorphism group of H ′ is isomorphic to a closed
subgroup of Gld(Z`), which does not have elements of order ` by assumption (3).
In particular, this is also true for G/ZG(H ′), as this group acts faithfully on H ′

by conjugation. Since Γ′ ⊂ ZG(H ′), the image of H ′ must be open in G/ZG(H ′).
This image is just the quotient of H ′ by its centre Z(H ′). Since H ′ is not virtually
solvable, the same must be true for H ′/Z(H ′) and therefore, also for G/ZG(H ′).
We may thus apply Proposition 2.10.2 with N = ZG(H ′). �

Remark 2.10.4. In fact, one can replace condition (1) in Proposition 2.10.2
by

(1)’ [R] = 0 in G0(R[[G/N]]).

where G0(R[[G/N]]) is the Grothendieck group of all finitely generated R[[G/N]]-
modules, dropping the assumption that G/N has no elements of order `. Presum-
ably, (1)′ is satisfied for all G/N which are not virtually solvable. If this is true,
then one can drop assumption (3) in Corollary 2.10.3.





CHAPTER 3

Perfect Complexes of Adic Sheaves

We will use étale cohomology instead of Galois cohomology to formulate the main
conjecture. The main advantage is that we have a little bit more flexibility in choos-
ing our coefficient systems. Instead of being restricted to locally constant sheaves
corresponding to Galois modules, we can work with constructible sheaves. An al-
ternative would be the use of cohomology for Galois modules with local conditions,
in the style of [Nek06].

As Waldhausen models for the derived categories of complexes of constructible
sheaves, we will use the Waldhausen categories of complexes of Λ-adic sheaves
introduced in [Wit08, § 5.4–5.5] for separated schemes of finite type over a finite
field. We will need them in the case of subschemes U of a smooth and proper
curve X with function field F . The same constructions still work with some minor
changes if we consider subschemes U of the spectrum X of the ring of integers of
a number field F . We will give the definition in Section 3.1. Moreover, we will
define derived direct images, exceptional direct images, inverse images, exceptional
inverse images as well as derived tensor products as Waldhausen exact functors.
In Section 3.2, we consider local and global duality theorems for smooth Λ-adic
sheaves.

We then recall in Section 3.3 the notion of an admissible extension F∞/F of a
global field F . By definition, F∞ contains the cyclotomic Z`-extension Fcyc of F ,
such that the Galois group G of F∞/F may be written as the semi-direct product of
the Galois group H of F∞/Fcyc and a subgroup Γ ≅ Z`. If U is an open subscheme
of X such that F∞/F is unramified over U , then we may associate to each perfect
complex of Λ-adic sheaves F ● on U a compactly induced complex of Λ[[G]]-adic
sheaves f!f

∗F ● on U .
Section 3.4 contains the proof of a key assertion of the main conjecture. We

prove that the total complex of cohomology with proper support of f!f
∗F ● is not

only perfect as complex of Λ[[G]]-modules, but also as complex of Λ[[H]]-modules.
If Λ[[H]] is noetherian, this signifies that the cohomology groups with proper
support are S-torsion if S denotes Venjakob’s canonical Ore set. In the number
field case, we have to restrict to totally real fields and assume the vanishing of
Iwasawa’s µ-invariant. We also consider a local variant of this S-torsion property.

This local variant permits us to introduce the notion of non-commutative
Euler factors by producing canonical characteristic elements for the complexes
R Γ(x, i∗ Rk∗F ●(1)) for the embedding k∶U → W and a closed point i∶x → W
of W . Comparing Euler factors with the non-commutative algebraic L-functions
of these complexes, we obtain certain elements in K1(Λ[[G]]), which we call lo-
cal modification factors. In the same way, we also introduce the notion of dual
non-commutative Euler factors by producing canonical characteristic elements for
the complexes R Γ(x, i!k!F ●) and the corresponding dual local modification fac-
tors. The investigation of the Euler factors and local modification factors is carried
out in Section 3.5 and Section 3.6, first in general, then in the special case of the
cyclotomic extension.

41
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3.1. Adic Sheaves

Let F be a global field with ring of integers OF . We also fix a separable closure
F of F . If F is a number field, we set X ∶= SpecOF . If F is a function field of
characteristic p, we let X = XF denote the smooth and proper curve associated to
F . Further, we write F and F for the algebraic closure of the prime field Fp in F

and F , respectively. For any open or closed subscheme U of X, we then write

U = U ×SpecF SpecF

for the base change to the algebraic closure. In particular, U is connected if U is
an open dense subscheme of X.

Assume that U is an open or closed subscheme of X. Recall that for a finite
ring R, a complex F ● of étale sheaves of left R-modules on U is called strictly
perfect if it is strictly bounded and each F n is constructible and flat. It is perfect
if it is quasi-isomorphic to a strictly perfect complex. We call it DG-flat if for each
geometric point of U , the complex of stalks is DG-flat.

Fix a prime `. Let Λ be an adic Z`-algebra.

Definition 3.1.1. The category PDGcont(U,Λ) of perfect complexes of adic
sheaves on U is the following Waldhausen category. The objects of PDGcont(U,Λ)
are inverse systems (F ●

I )I∈IΛ
such that:

(1) for each I ∈ IΛ, F ●
I is DG-flat perfect complex of étale sheaves of Λ/I-

modules on U ,
(2) for each I ⊂ J ∈ IΛ, the transition morphism

ϕIJ ∶ F ●
I → F ●

J

of the system induces an isomorphism

Λ/J ⊗Λ/I F ●
I

∼
Ð→ F ●

J .

Weak equivalences and cofibrations are defined as in Definition 2.4.1.

Definition 3.1.2. Any system F = (FI)I∈IΛ
in PDGcont(U,Λ) consisting of

flat, constructible sheaves FI of Λ/I-modules on U , regarded as complexes concen-
trated in degree 0, will be called a Λ-adic sheaf on U . If in addition, the FI are
locally constant, we call F a smooth Λ-adic sheaf. We write S(U,Λ) and Ssm(U,Λ)
for the full Waldhausen categories of PDGcont(U,Λ) consisting of Λ-adic sheaves
and smooth Λ-adic sheaves, respectively.

Note that if U is a closed subscheme of X, then every Λ-adic sheaf on U is
automatically smooth.

Definition 3.1.3. Assume that ` ≠ 2 and that F is a number field. If U
is an open dense subscheme of X = SpecOF , we will call a complex (F ●

I )I∈IΛ
in

PDGcont(U,Λ) to be smooth at ∞ if for each I ∈ IΛ, the stalk of F ●
I in SpecF is

quasi-isomorphic to a strictly perfect complex of Λ/I-modules with trivial action
of any complex conjugation σ ∈ GalF . The full subcategory of PDGcont(U,Λ) of
complexes smooth at ∞ will be denoted by

PDGcont,∞(U,Λ)

Since we assume ` ≠ 2, it is immediate that if in an exact sequence

0→ F ● → G● → H ● → 0

in PDGcont(U,Λ), the complexes F ● and H ● are smooth at ∞, then so is G●. It
then follows from [Wit08, Prop. 3.1.1] that PDGcont,∞(U,Λ) is a Waldhausen
subcategory of PDGcont(U,Λ).
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We will write ΛU for the smooth Λ-adic sheaf on U given by the system of
constant sheaves (Λ/I)I∈IΛ

on U . Further, if ` is invertible on U , we will write µ`n

for the sheaf of `n-th roots of unity on U , and

(F ●
I )I∈IΛ

(1) = (lim
←Ð
n

µ`n ⊗Z` F ●
I )I∈IΛ

for the Tate twist of a complex in PDGcont(U,Λ).
We will consider Godement resolutions of the complexes in PDGcont(U,Λ).

To be explicit, we will fix for each place x of F an embedding F ⊂ F x into a
fixed separable closure of the local field Fx in x. In particular, we also obtain an

embedding of the residue field k(x) of x into the separably closed residue field k(x)

of F x for each closed point x of U . We write x̂ for the corresponding geometric

point x̂∶Speck(x) → U over x and let U0 denote the set of closed points of U .
For each étale sheaf F on U we set

(GU F )n ∶= ∏
u∈U0

û∗û
∗ ⋅ ⋅ ⋅ ∏

u∈U0

û∗û
∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

F

and turn (GU F )
●

into a complex by taking as differentials

∂n∶ (GU F )n → (GU F )n+1

the alternating sums of the maps induced by the natural transformation

F → ∏
u∈U0

û∗û
∗F .

The Godement resolution of a complex of étale sheaves is given by the total complex
of the corresponding double complex as in [Wit08, Def. 4.2.1]. The Godement reso-
lution of a complex (F ●

I )I∈IΛ
in PDGcont(U,Λ) is given by applying the Godement

resolution to each of the complexes F ●
I individually.

If j∶U → V is an open immersion, we set

j!(F ●
I )I∈IΛ

∶= (j!F ●
I )I∈IΛ

,

R j∗(F ●
I )I∈IΛ

∶= (j∗ GU F ●
I )I∈IΛ

.

for any (F ●
I )I∈IΛ

∈ PDGcont(U,Λ). While the extension by zero j! always gives us
a Waldhausen exact functor

j!∶PDGcont(U,Λ) → PDGcont(V,Λ),

the total direct image

R j∗∶PDGcont(U,Λ) → PDGcont(V,Λ)

is only a well-defined Waldhausen exact functor if ` is invertible on V − U . If ` is
not invertible on V − U , then R j∗(F ●

I )I∈IΛ
is still a system of DG-flat complexes

compatible in the sense of Definition 3.1.1.(2), but for I ∈ IΛ the cohomology of
the complex of stalks of the complexes R j∗F ●

I in the geometric points of V − U is
in general not finite, such that R j∗F ●

I fails to be a perfect complex. In any case,

we may consider R j∗ as a Waldhausen exact functor from PDGcont(U,Λ) to the
Waldhausen category of complexes over the abelian category of inverse systems of
étale sheaves of Λ-modules, indexed by IΛ.

The inverse image f∗ of a morphism of schemes f and the direct image f∗
of a finite morphism of schemes are also defined as Waldhausen exact functors by
degreewise application. No Godement resolution is needed, since these functors are
exact on all étale sheaves.

Assume one of the following conditions:

(C1) F is a number field, without real places if ` = 2,



44 3. PERFECT COMPLEXES OF ADIC SHEAVES

(C2) F is a function field of characteristic different from `,
(C3) F is a function field of characteristic ` and U =X,
(C4) U is a finite subscheme of X,

Then we may define the total derived section functor

R Γ(U, ⋅)∶PDGcont(U,Λ) → PDGcont(Λ)

by the formula

R Γ(U, (F ●
I )I∈IΛ

) = (Γ(U,GU F ●
I ))I∈IΛ

.

This agrees with the usual construction if we consider (F ●
I )I∈IΛ

as an object of
the ‘derived’ category of adic sheaves, e. g. as defined in [KW01] for Λ = Z`. In
addition, however, we see that R Γ(U, ⋅) is a Waldhausen exact functor and hence,
induces homomorphisms

R Γ(U, ⋅)∶Kn(PDGcont(U,Λ)) → Kn(Λ)

for all n [Wit08, Prop. 4.6.6, Def. 5.4.13]. Here, we use the finiteness and the
vanishing in large degrees of the étale cohomology groups Hs(U,G) for constructible
sheaves G of abelian groups in order to assure that R Γ(U, (F ●

I )I∈IΛ
) is indeed an

object of PDGcont(Λ). In particular, for each I ∈ IΛ, R Γ(U,F ●
I ) is a perfect

complex of Λ/I-modules. Note that we do not need to assume that ` is invertible
on U if F is a number field (see the remark after [Mil06, Thm. II.3.1]). However,
if the characteristic of F is equal to `, the complexes R Γ(U,F ●

I ) are no longer
perfect if U ≠X is an open dense subscheme. If F is a number field with real places
and we had allowed ` = 2, then the complexes R Γ(U,F ●

I ) would not need to be
cohomologically bounded.

Assume that F has no real places in the case that ` = 2. Let j∶U → X be an
open immersion into X. We set as a shorthand

R Γc(U, (F ●
I )I∈IΛ

) ∶= R(X, j!(F ●
I )I∈IΛ

).

If ` ≠ 2 or F has no real places, this agrees with the definition of cohomology with
proper support in [Mil06, §II.2]. If F is a totally real number field, ` ≠ 2, and
(F ●
I (−1))I∈IΛ

is smooth at ∞, then it also agrees with the definition in [FK06,
§1.6.3], but in general, the three definitions differ by contributions coming from the
archimedean places.

If F is a function field, we define in the same way Waldhausen exact functors

R Γ(U, ⋅),R Γc(U, ⋅)∶PDGcont(U,Λ) → PDGcont(Λ),

replacing U by U in the construction.

Remark 3.1.4. Assume that j′∶V → X and k′∶W → X are two open dense
subschemes of X such that X = V ∪W . Set U ∶= V ∩W and let j∶U → V and
k∶U →W denote the corresponding open immersions. If the characteristic of F is
equal to `, we assume that V =X. If F is a number field and ` = 2, we assume that
F has no real places. For any étale sheaf G on U , the canonical morphism

k′!k∗ GU G ≅ j′∗j! GU G → j′∗ GV j!G

is seen to be a quasi-isomorphism by checking on the stalks. Hence, for any F ● in
PDGcont(U,Λ), there is a weak equivalence

R Γc(W,Rk∗F ●)
∼
Ð→ R Γ(V, j!F ●).

We recall that the righthand complex is in PDGcont(Λ). Therefore, the same is true
for the left-hand complex without any condition on U and W , even if Rk∗f!f

∗F ●

fails to be a perfect complex if F is a number field and ` is not invertible of W −U .
In particular, we may use the two complexes interchangeably in our results.
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Assume again that U ⊂ X is an open or closed subscheme. If Λ′ is another
adic Z`-algebra and M● a complex of Λ′-Λ-bimodules which is strictly perfect as
complex of Λ′-modules, we may extend ΨM● to a Waldhausen exact functor

ΨM● ∶PDGcont(U,Λ) → PDGcont(U,Λ′),

(P ●
J)J∈IΛ

↦ ( lim
←Ð
J∈IΛ

Λ′/I ⊗Λ M
● ⊗Λ PJ ●)I∈IΛ′

such that
ΨM● R Γ(U,P ●)

∼
Ð→ R Γ(U,ΨM●(P ●))

is a weak equivalence in PDGcont(Λ′) [Wit08, Prop. 5.5.7] if one of the conditions

(C1)–(C4) is given. In the function field case, we may replace U by U .
For any closed point x of X and any complex F ● in PDGcont(x,Λ), we set

R Γ(x̂,F ●) ∶= Γ(Speck(x), x̂∗ Gx F ●)

and let Fx ∈ Gal(k(x)/k(x)) denote the geometric Frobenius of k(x). We obtain
an exact sequence

0→ R Γ(x,F ●) → R Γ(x̂,F ●)
id−Fx
ÐÐÐ→ R Γ(x̂,F ●) → 0

in PDGcont(Λ) [Wit08, Prop. 6.1.2]. Note that if x̂′ is the geometric point corre-

sponding to another choice of an embedding F ⊂ F x and if F′x denotes the associated
geometric Frobenius, then there is a canonical isomorphism

σ∶R Γ(x̂,F ●) → R Γ(x̂′,F ●)

such that

(3.1.1) σ ○ (id − Fx) = (id − F′x) ○ σ.

At some point, we will also make use of the categories PDGcont(SpecFx,Λ)
for the local fields Fx together with the associated total derived section functors.
In this case, one can directly appeal to the constructions in [Wit08, Ch. 5]. We

write F nr
x for the maximal unramified extension field of Fx in F x and note that we

have a canonical identification Gal(F nr
x /Fx) ≅ Gal(k(x)/k(x)).

Lemma 3.1.5. Let j∶U → V denote the open immersion of two open dense
subschemes of X and assume that i∶x → V is a closed point in the complement of
U such that the characteristic of k(x) is different from `. Write ηx∶SpecFx → U
for the map to the generic point of U . Then there exists a canonical chain of weak
equivalences

(3.1.2) R Γ(x̂, i∗ R j∗F ●)
∼
Ð→ R Γ(SpecF nr

x , η
∗
x GU F ●)

∼
←Ð R Γ(SpecF nr

x , η
∗
xF ●)

in PDGcont(Λ) compatible with the operation of the Frobenius on each complex and
hence, a canonical chain of weak equivalences

(3.1.3) R Γ(x, i∗ R j∗F ●)
∼
Ð→ R Γ(SpecFx, η

∗
x GU F ●)

∼
←Ð R Γ(SpecFx, η

∗
xF ●)

in PDGcont(Λ).

Proof. From [Mil80, Thm. III.1.15] we conclude that for each I ∈ IΛ, the
complex η∗x GU FI● is a complex of flabby sheaves on SpecFx and that

R Γ(x̂, i∗ R j∗F ●
I ) → Γ(SpecF nr

x , η
∗
x GU FI●)

is an isomorphism. Write GFx for the Godement resolution on SpecFx with respect

to SpecF x → SpecFx. Then

η∗x GU F ●
I → GFx η

∗
x GU F ●

I ← GFx η
∗
xF ●

I

are quasi-isomorphisms of complexes of flabby sheaves on SpecFx. Hence, they
remain quasi-isomorphisms if we apply the section functor Γ(SpecF nr

x ,−) in each
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degree. Since the Frobenius acts compatibly on F nr
x and k(x), the induced operation

on the complexes is also compatible. The canonical exact sequence

0→ Γ(SpecFx,−) → Γ(SpecF nr
x ,−)

id−Fx
ÐÐÐ→ Γ(SpecF nr

x ,−) → 0

on flabby sheaves on SpecFx implies that the morphisms in the chain (3.1.3) are
also quasi-isomorphisms. �

Remark 3.1.6. Note that if the characteristic of k(x) is equal to `, the proof
of the lemma remains still valid, except that the complexes in the chain (3.1.2) do
not lie in PDGcont(Λ).

It will be useful to introduce an explicit strictly perfect complex weakly equiv-
alent to R Γ(SpecFx, η

∗
xF ) in the case that F is a Λ-adic sheaf on U . Assume that

the characteristic of k(x) is different from `. Let N be the compact Gal(F x/Fx)-

module corresponding to η∗xF and write F
nr,(`)
x for the maximal pro-` extension of

F nr
x inside F x, such that Gal(F

nr,(`)
x /F nr

x ) ≅ Z`.
We set N ′ ∶= NGal(Fx/Fnr,(`)

x ). Note that N ′ is a direct summand of the finitely
generated, projective Λ-module N , because the `-Sylow subgroups of the Galois

group Gal(F x/F
nr,(`)
x ) are trivial by our assumption on the characteristic of k(x).

In particular, N ′ is itself finitely generated and projective over Λ.

Fix a topological generator τ of Gal(F
nr,(`)
x /F nr

x ) and a lift ϕ ∈ Gal(F
nr,(`)
x /Fx)

of the geometric Frobenius Fx. Then τ and ϕ are topological generators of the

profinite group Gal(F
nr,(`)
x /Fx) and

ϕτϕ−1 = τ q
−1

with q = qx the number of elements of k(x) [NSW00, Thm. 7.5.3].

Definition 3.1.7. We define a strictly perfect complex D●
x̂(F ) of Λ-modules

with an action of Fx as follows: For k ≠ 0,1 we set Dk
x̂(F ) ∶= 0. As Λ-modules we

have D0
x̂(F ) = D1

x̂(F ) = N ′ and the differential is given by id − τ . The geometric
Frobenius Fx acts on D0

x̂(F ) via ϕ and on D1
x̂(F ) via

ϕ(
τ q − 1

τ − 1
) ∈ Λ[[Gal(F nr,(`)

x /Fx)]]
×.

Lemma 3.1.8. Assume that the characteristic of k(x) is different from `. There
exists a weak equivalence

D●
x̂(F )

∼
Ð→ R Γ(SpecF nr

x , η
∗
xF )

in PDGcont(Λ) that is compatible with the operation of the geometric Frobenius Fx
on both sides.

Proof. Clearly, we have

Λ/I ⊗Λ D
●
x̂(F ) ≅D●

x̂(FI)

for all I ∈ IΛ. We may therefore reduce to the case that Λ is a finite Z`-algebra.
By construction, the perfect complex of Λ-modules R Γ(F nr

x , η
∗
xF ) may be

canonically identified with the homogenous cochain complex

X●(Gal(F x/Fx),N)Gal(Fx/Fnr
x )

(in the notation of [NSW00, Ch. I, §2]) of the finite Gal(F x/Fx)-module N . Recall

that the elements of Xn(Gal(F x/Fx),N) are continuous maps

f ∶Gal(F x/Fx)
n+1 → N

and the operation of σ ∈ Gal(F x/Fx) on f ∈Xn(Gal(F x/Fx),N) is defined by

σf ∶Gal(F x/Fx)
n+1 → N, (σ0, . . . , σn) ↦ σf(σ−1σ0, . . . , σ

−1σn).
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The inflation map provides a quasi-isomorphism

X●(Gal(F nr,(`)
x /Fx),N

′)Gal(Fnr,(`)
x /Fnr

x ) ∼
Ð→X●(Gal(F x/Fx),N)Gal(Fx/Fnr

x ),

which is compatible with the operation of Fx by a lift to Gal(F x/Fx) on both sides.
We define a quasi-isomorphism

α∶D●
x̂(F )

∼
Ð→X●(Gal(F nr,(`)

x /Fx),N
′)Gal(Fnr,(`)

x /Fnr
x )

compatible with the Fx-operation by

α(n)∶Gal(F nr,(`)
x /Fx) → N ′, τaϕb ↦ τan for n ∈D0

x̂(F ),

α(n)∶Gal(F nr,(`)
x /Fx)

2 → N ′, (τaϕb, τ cϕd) ↦
τ c − τa

1 − τ
n for n ∈D1

x̂(F ),

with a, c ∈ Z` and b, d ∈ Ẑ. Note that

τ c − τa

1 − τ
= τ c

∞
∑
n=1

(
a − c

n
)(τ − 1)n−1

is a well-defined element of Λ[[Gal(F
nr,(`)
x /Fx)]] for any a, c ∈ Z`. �

If i∶Σ → V is the embedding of a closed subscheme Σ of X into an open
subscheme V of X with complement j∶U → V and F is an étale sheaf of abelian
groups on V , then we may consider the sheaf

i!F = ker(i∗F → i∗j∗j
∗F )

on Σ. Its global sections i!F (Σ) are the global sections of F on V with support on
Σ. The right derived functor R i! can also be defined via Godement resolution:

Lemma 3.1.9. Assume that ` is invertible on Σ.

R i!∶PDGcont(V,Λ) → PDGcont(Σ,Λ), (F ●
I )I∈IΛ

↦ (i! GV (F ●
I ))I∈IΛ

is a Waldhausen exact functor and for every F ● in PDGcont(V,Λ) there is an exact
sequence

0→ i∗ R i!F ● → GV (F ●) → R j∗j
∗F ● → 0

in PDGcont(V,Λ). In particular, if i∗F ● is weakly equivalent to 0, then there exists
a chain of weak equivalences

i∗ R j∗j
∗F ● ∼ R i!F ●[1].

Proof. Note that for any abelian étale sheaf F on V , we habe j∗ GV (F ) =
GU(F ). Moreover, by [AGV72b, XVII, Prop. 4.2.3], GU(F ) is a complex of
flasque sheaves in the sense of [AGV72b, V, Def. 4.1]. In particular, GV (F ) →
j∗j

∗ GV (F ) is surjective in the category of presheaves by [AGV72a, V, Prop. 4.7].
If F ● is a complex of abelian sheaves, GV (F ●) is constructed as the total complex of
the double complex obtained by taking the Godement resolution of each individual
sheaf. In particular, GV (F ●) is a complex of possibly infinite sums of flasque
sheaves. Note that infinite sums of flasque sheaves are not necessarily flasque. Still,
as étale cohomology of noetherian schemes commutes with filtered direct limits,
GV (F ●) → j∗j

∗ GV (F ●) is always surjective in the category of presheaves. This
proves the exactness of the above sequence. Moreover, it implies that GV (F ●)
is a i!-acyclic resolution of F ● such that i! GV preserves quasi-isomorphisms and
injections. If F ● is a perfect complex of sheaves of Λ-modules on V for any finite
ring Λ, then i! GV (F ●) is perfect since this is true for i∗ GV (F ●) and i∗j∗j

∗ GV (F ●).
Similarly, we see that i! GV commutes with tensor products with finitely generated
right Λ-modules. In particular, R i! does indeed take values in PDGcont(Σ,Λ) for
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any adic ring Λ. Finally, if i∗F ● is weakly equivalent to 0, then we obtain the chain
of weak equivalences

i∗ R j∗j
∗F ● ∼

←Ð Cone (R i!F ● → i∗ GV (F ●))
∼
Ð→ R i!F ●[1].

�

3.2. Duality for Smooth Adic Sheaves

For any scheme Z, any ring R and any two étale sheaves of R-modules F , G on Z,
let

HomR,Z(F ,G)

denote the sheaf of R-linear morphisms F → G on Z. As before, we fix an adic Z`-
algebra Λ. Let U ⊂ X be an open or closed subscheme. Unfortunately, we cannot
present a construction of a Waldhausen exact functor

∗∶PDGcont(U,Λ)op → PDGcont(U,Λop)

that would give rise to the usual total derived Hom-functor F ↦ R HomΛ,U(F ,ΛU)
on the ‘derived’ category of Λ-adic sheaves. Instead, we will construct a Waldhausen
exact duality functor on the Waldhausen subcategory Ssm(U,Λ) of smooth Λ-adic
sheaves.

For any smooth Λ-adic sheaf F ,

F ∗Λ ∶= (HomΛ/I,U(FI , (Λ/I)U))I∈IΛ

= (HomZ,U(HomZ,U((Λ/I)U , (Q`/Z`)U) ⊗Λ/I FI , (Q`/Z`)U))I∈IΛ

is a smooth Λop-adic sheaf on U . In this way, we obtain a Waldhausen exact
equivalence

∗∶Ssm(U,Λ)op → Ssm(U,Λop)

and, by composing with I ∶Kn(S
sm(U,Λ))

≅
Ð→ Kn(S

sm(U,Λ)op), isomorphisms

∗∶Kn(S
sm(U,Λ)) → Kn(S

sm(U,Λop))

for each n ≥ 0.
Assume that U is an open dense subscheme of X such that ` is invertible on U

and that F has no real places if ` = 2. If F is a smooth Λ-adic sheaf on U , we can
find a strictly perfect complex of Λ-modules P ● together with a weak equivalence

P ● ∼
Ð→ R Γc(U,F )

in PDGcont(Λ). As a consequence of Artin-Verdier duality [Mil06, Thm. II.3.1],
we then also have a weak equivalence

(3.2.1) (P ●)∗
∼
Ð→ R Γ(U,F ∗(1))[−3].

in PDGcont(Λop). We refer to Corollary 5.3.3 for a slightly more general statement.
We could proceed in the same way for local duality and duality over finite fields,

but instead, we prove the following finer results.

Lemma 3.2.1. Assume that U is an open subscheme of X such that ` is in-
vertible on U and that i∶x → X is a closed point such that the characteristic of
k(x) is different from `. For any smooth Λ-adic sheaf F on U , there exists a weak
equivalence

D●
x̂(F )∗

∼
Ð→ R Γ(SpecF nr

x , ηxF ∗(1))[−1]

in PDGcont(Λop), compatible with the operation of F∗x on the left and of F−1
x on

the right.
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Proof. As in the proof of Lemma 3.1.8, we can replace R Γ(SpecF nr
x , ηxF ∗(1))

by the homogenous cochain complex X●(Gal(F
nr,(`)
x /Fx), (N

′)∗(1))Gal(Fnr,(`)
x /Fnr

x ).
By choosing a basis of the free Z`-module Z`(1), i. e. a compatible system of `n-th
roots of unity, we may identify the underlying Λ-modules of (N ′)∗ and (N ′)∗(1).

The operation of σ ∈ Gal(F
nr,(`)
x /F nr

x ) on f ∈ (N ′)∗ is given by

σf = f ○ (σ∗)−1.

The operation of F∗x on f ∈D1
x̂(F )∗ = (N ′)∗ is then given by

F∗x(f) = (
τ−q − 1

τ−1 − 1
)ϕ−1f

and on g ∈D0
x̂(F )∗ = (N ′)∗ by

F∗x(g) = ϕ
−1g,

with ϕ, τ ∈ Gal(F
nr,(`)
x /Fx) denoting our fixed topological generators and q ∈ Λ×

denoting the order of the residue field k(x). For b ∈ Ẑ set

s(b) ∶= q−b (
τ−1 − 1

τ−q−b − 1
) ∈ Λ[[Gal(F nr,(`)

x /F nr
x )]]×

and note that s satisfies the cocycle relation

s(b + 1) = q−1ϕs(b)(
τ−q − 1

τ−1 − 1
)ϕ−1 = q−1ϕs(b)ϕ−1s(1).

We define a weak equivalence

β∶D●
x̂(F )∗

∼
Ð→X●(Gal(F nr,(`)

x /Fx), (N
′)∗(1))Gal(Fnr,(`)

x /Fnr
x )[−1]

by

β(f)∶Gal(F nr,(`)
x /Fx) → (N ′)∗(1), τaϕb ↦ τas(b)f

for f ∈D1
x̂(F )∗ and by

β(g)∶Gal(F nr,(`)
x /Fx)

2 → (N ′)∗(1), (τaϕb, τ cϕd) ↦ (
τas(b) − τ cs(d)

1 − τ−1
) g

for g ∈D0
x̂(F )∗, a, c ∈ Z` and b, d ∈ Ẑ.

Using the cocycle relation for s, it is easily checked that

β ○ F∗x = F−1
x ○ β,

as claimed. �

In particular, if Q● denotes the cocone of

D●
x̂(F )

id−Fx
ÐÐÐ→D●

x̂(F ),

then Q● is a strictly perfect complex of Λ-modules and there exist weak equivalences

(3.2.2)
Q● ∼
Ð→ R Γ(SpecFx, η

∗
xF ),

(Q●)∗
∼
Ð→ R Γ(SpecFx, η

∗
xF ∗(1))[−2].

in PDGcont(Λop).
Let now G be a complex in S(x,Λ) = Ssm(x,Λ) and let

Gx̂ ∶= lim
←Ð
I∈IΛ

(GI)x̂
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be the stalk of G in the geometric point x̂ over x. Then Gx̂ is a finitely generated,
projective Λ-module, equipped with a natural operation of Fx. Clearly, the natural
morphism

(3.2.3) Gx̂
∼
Ð→ R Γ(x̂,G)

is a weak equivalence in PDGcont(Λ) that is compatible with the operation of Fx
on both sides. In particular, the cocone C● of

Gx̂
id−Fx
ÐÐÐ→ Gx̂

is weakly equivalent to R Γ(x,G).

Lemma 3.2.2. With G as above, there exists an isomorphism

(Gx̂)∗
≅
Ð→ (G∗)x̂

of finitely generated, projective Λ-modules, compatible with the operation of F∗x on
the left and of F−1

x on the right.

Proof. Let R be any finite ring. Under the equivalence between the categories

of étale sheaves of R-modules on x and of discrete R[[Gal(k(x)/k(x))]]-modules,
given by F ↦ Fx̂, the dual sheaf F ∗R corresponds to the Rop-module (Fx̂)∗R with

σ ∈ Gal(k(x)/k(x)) acting on f ∶Fx̂ → R by f ○ (σ∗R)−1. �

Consequently, we obtain a weak equivalence

(3.2.4) (C●)∗
∼
Ð→ R Γ(x,G∗)[−1]

in PDGcont(Λop). If G = i∗F with F a smooth Λ-adic sheaf on U as above, then by
the exchange formula [Fu11, Thm. 8.4.7], there exists a chain of weak equivalences

(3.2.5)

(i∗F )∗ = (R HomΛ/I,x(i
∗FI , (Λ/I)x))I∈IΛ

∼ (R HomΛ/I,x(i
∗FI ,R i!(Λ/I)U(1)[−2]))I∈IΛ

∼ (R i! HomΛ/I,U(FI , (Λ/I)U(1))[−2])I∈IΛ

= R i!F ∗(1)[−2]

in PDGcont(x,Λop).

3.3. Admissible Extensions

As before, we fix a global field F and a prime `. Assume that F∞/F is a possibly
infinite Galois extension unramified over an open or closed subscheme U = UF of X.
Let G = Gal(F∞/F ) be its Galois group. We also assume that G has a topologically
finitely generated, open pro-`-subgroup, such that for any adic Z`-algebra Λ, the
profinite group ring Λ[[G]] is again an adic ring [Wit14, Prop. 3.2]. For any
intermediate field K of F∞/F , we will write UK for the base change with XK and
fK ∶UK → U for the corresponding Galois covering of U , such that we obtain a
system of Galois coverings (fK ∶UK → U)F⊂K⊂F∞ , which we denote by

f ∶UF∞ → U.

As in [Wit14, Def. 6.1] we make the following construction.

Definition 3.3.1. Let Λ be any adic Z`-algebra. For F ● ∈ PDGcont(U,Λ) we
set

f!f
∗F ● ∶= ( lim

←Ð
I∈IΛ

lim
←Ð

F⊂K⊂F∞
Λ[[G]]/J ⊗Λ[[G]] fK !f

∗
KFI●)J∈IΛ[[G]]
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As in [Wit14, Prop. 6.2] one verifies that we thus obtain a Waldhausen exact
functor

f!f
∗∶PDGcont(U,Λ) → PDGcont(U,Λ[[G]]).

We recall how the functor f!f
∗ transforms under the change of the extension

F∞/F and under changes of the coefficient ring Λ.

Proposition 3.3.2. Let f ∶UF∞ → U be the system of Galois coverings of the
open or closed subscheme U of X associated to the extension F∞/F with Galois
group G which is unramified over U . Let further Λ be an adic Z`-algebra and F ●

be a complex in PDGcont(U,Λ).

(1) Let Λ′ be another adic Z`-algebra and let P ● be a complex of Λ′-Λ[[G]]-
bimodules, strictly perfect as complex of Λ′-modules. Then there exists a
natural isomorphism

ΨP [[G]]δ●f!f
∗F ● ≅ f!f

∗ΨP ●f!f
∗F ●

(2) Let F ′
∞ ⊂ F∞ be a subfield such that F ′

∞/F is a Galois extension with
Galois group G′ and let f ′∶UF ′

∞
→ U denote the corresponding system of

Galois coverings. Then there exists a natural isomorphism

ΨΛ[[G′]]f!f
∗F ● ≅ (f ′)!(f

′)∗F ●

in PDGcont(U,Λ[[G′]]).
(3) Let F ′/F be a finite extension inside F∞/F , let fF ′ ∶UF ′ → U denote the

associated étale covering of U and let g∶UF∞ → U ′
F be the restriction of

the system of coverings f to UF ′ . Write G′ ⊂ G for the corresponding
open subgroup and view Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then there
exists a natural isomorphism

ΨΛ[[G]]f!f
∗F ● ≅ fF ′∗ (g!g

∗) f∗F ′F ●

in PDGcont(U,Λ[[G′]]).
(4) With the notation of (3), let G● be a complex in PDGcont(UF ′ ,Λ) and

view Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule. Then there exists a natural
isomorphism

ΨΛ[[G]]fF ′∗g!g
∗G● ≅ f!f

∗(fF ′∗G●)

in PDGcont(U,Λ[[G]]).

Proof. Part (1) − (3) are proved in [Wit14, Prop. 6.5, 6.7]. We prove (4).
First, note that for any finite Galois extension F ′′/F with F ′ ⊂ F ′′ ⊂ F∞ and any
I ∈ IΛ the canonical map

gF ′′ !g
∗
F ′′(Λ/I)UF ′ → f∗F ′fF ′′ !f

∗
F ′′(Λ/I)U

induces an isomorphism

Λ/I[Gal(F ′′/F )] ⊗Λ/I[Gal(F ′′/F ′)] gF ′′ !g
∗
F ′′(Λ/I)UF ′ ≅ f

∗
F ′fF ′′ !f

∗
F ′′(Λ/I)U .

Hence,
ΨΛ[[G]](g!g

∗ΛUF ′ ) ≅ f
∗
F ′f!f

∗ΛU

in PDGcont(UF ′ ,Λ[[G]]). We further recall that in the notation of [Wit14,
Prop. 6.3], there exists an isomorphism

f!f
∗fF ′∗G● ≅ Ψf!f∗ΛU fF ′∗G●.

The projection formula then implies

Ψf!f∗ΛU fF ′∗G● ≅ fF ′∗(Ψf∗
F ′f!f∗ΛU (G●))

≅ fF ′∗(ΨΨΛ[[G]](g!g∗ΛUF ′
)(G●))

≅ fF ′∗(ΨΛ[[G]](g!g
∗G●))
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as desired. �

To understand Part (1) of this proposition, note that if ρ is a representation
of G on a finitely generated and projective Λ-module and ρ♯ is the corresponding
Λ-Z`[[G]]-bimodule as in Example 2.6.3, then

(3.3.1) η∗(ρ) ∶= Ψρ♯f!f
∗(Z`)U

is simply the smooth Λ-adic sheaf on U associated to ρ [Wit14, Prop. 6.8]. In
general,

(3.3.2) ΨP̃ ●F ● ∶= ΨP ●f!f
∗F ●

should be understood as the derived tensor product over Λ of the complex of sheaves
associated to P ● and the complex F ●.

Assume that F is a smooth Λ-adic sheaf on U . As before, we write

F ∗Λ ∶= (HomΛ/I,U(FI ,Λ/I))I∈IΛ/I ∈ PDGcont(U,Λop)

for the Λ-dual of F and Λop[[G]]♯ for the Λop[[G]]-Λ[[G]]op-bimodule with g ∈ G
acting by g−1 from the right. We then have a natural isomorphism

(3.3.3) f!f
∗F ∗Λ ≅ ΨΛop[[G]]♯(f!f

∗F )∗Λ[[G]] .

This can then be combined with the duality assertions (3.2.1), (3.2.2), and (3.2.4).
For example, we may find a strictly perfect complex of Λop[[G]]-modules P ● and
weak equivalences

(3.3.4)
P ● ∼
Ð→ R Γc(U, f!f

∗F ∗Λ(1)),

♯(P ●)∗Λop[[G]] ∼
Ð→ R Γ(U, f!f

∗F )[−3]

if ` is invertible on U and F has no real places in the case that ` = 2.
Let Fcyc/F denote the cyclotomic Z`-extension of F , i. e.

Fcyc = ⋃
n∈N

Fp`nF

if F is a function field of characteristic p and Fcyc/F is the unique Z`-subextension
of

⋃
n∈N

F (ζ`n)

with ζ`n denoting an `n-th root of unity if F is a number field.

Definition 3.3.3. Let F be a global field. An extension F∞/F inside F is
called admissible if

(1) F∞/F is Galois and unramified outside a finite set of places,
(2) F∞ contains the cyclotomic Z`-extension Fcyc,
(3) Gal(F∞/Fcyc) contains a topologically finitely generated, open pro-` sub-

group.

An admissible extension F∞/F of a number field F is called really admissible if F∞
and F are totally real.

If F∞/F is an admissible extension, we let G ∶= Gal(F∞/F ) denote its Galois
group and set H ∶= Gal(F∞/Fcyc), Γ ∶= Gal(Fcyc/F ). We may then choose a con-
tinuous splitting Γ → G to identify G with the corresponding semi-direct product
G =H ⋊ Γ.

Assume that F is a totally real number field and that ` ≠ 2. Let M be the
maximal abelian `-extension of Fcyc unramified outside the places over `. By the
validity of the weak Leopoldt conjecture for Fcyc, the Galois group Gal(M/Fcyc)
is a finitely generated torsion module of projective dimension less or equal 1 over
the classical Iwasawa algebra Z`[[Gal(Fcyc/F )]] [NSW00, Thm. 11.3.2]. Like in
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[Kak13], we will assume the vanishing of its Iwasawa µ-invariant in the following
sense:

Conjecture 3.3.4. For every totally real field F , the Galois group over Fcyc

of the maximal abelian `-extension of Fcyc unramified outside the places over ` is a
finitely generated Z`-module.

In particular, for any totally real field F and any finite set Σ of places of F
containing the places over `, the Galois group over Fcyc of the maximal abelian `-
extension of Fcyc unramified outside Σ is also a finitely generated Z`-module, noting
that no finite place is completely decomposed in Fcyc/F [NSW00, Cor. 11.3.6]. We

also observe that the Galois group Gal(F
(`)
Σ /Fcyc) of the maximal `-extension of F

unramified outside Σ is then a free pro-`-group topologically generated by finitely
many elements [NSW00, Thm. 11.3.7].

Remark 3.3.5. The notion of really admissible extensions is slightly weaker
than the notion of admissible extension used in [Kak13, Def. 2.1]: We do not need
to require Gal(F∞/F ) to be an `-adic Lie group. For example, as a result of the

preceding discussion, we see that we could choose F∞ = F
(`)
Σ for some finite set of

places Σ of F containing the places above `, provided that Conjecture 3.3.4 is valid.

If a really admissible extension F∞/F is unramified over the open dense sub-
scheme U =W of X, Λ = Z` and F ● = (Z`)U(1), then

lim
←Ð

I∈IZ`[[G]]

R Γc(U, f!f
∗(Z`)U(1))[−3]

is by Artin-Verdier duality and comparison of étale and Galois cohomology quasi-
isomorphic to the complex C(F∞/F ) featuring in the main conjecture [Kak13,
Thm. 2.11]. In particular,

R Γc(U, f!f
∗(Z`)U(1))

is in fact an object of PDGcont,wH (Z`[[G]]) under Conjecture 3.3.4. We will
generalise this statement in the next section.

3.4. The S-Torsion Property

Let F be a global field. Assume that F∞/F is an admissible extension that is
unramified over the open dense subscheme U of X and that k∶U →W is the open
immersion into another open dense subscheme of X. We also fix an adic Z`-algebra
Λ. If F is a number field, we note that ` must be invertible on U , because the
cyclotomic extension Fcyc/F is ramified in all places over `.

Our purpose is to prove:

Theorem 3.4.1. Assume that F is a function field of characteristic p. Let F ●

be a complex in PDGcont(U,Λ). If p ≠ `, then the complexes

R Γc(W,Rk∗f!f
∗F ●(1)), R Γ(W,k!f!f

∗F ●)

are in PDGcont,wH (Λ[[G]]). If ` = p, then the complex

R Γc(U, f!f
∗F ●)

is in PDGcont,wH (Λ[[G]]).

Theorem 3.4.2. Assume that F∞/F is a really admissible extension and that
` ≠ 2 is invertible on W . Let F ● be a complex in PDGcont,∞(U,Λ). If Conjec-
ture 3.3.4 is valid, then the complexes

R Γc(W,Rk∗f!f
∗F ●(1)), R Γ(W,k!f!f

∗F ●)

are in PDGcont,wH (Λ[[G]]).
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In the course of the proof, we will also need to consider the following local
variant, whose validity is independent of Conjecture 3.3.4 in the number field case.

Theorem 3.4.3. Assume that F∞/F is an admissible extension of a global
field F with k∶U →W as above. Let i∶Σ→W denote a closed subscheme of W and
assume that F ● is in PDGcont(U,Λ). If ` is invertible on Σ, the complexes

R Γ(Σ, i∗ Rk∗f!f
∗F ●),R Γ(Σ,R i!k!f!f

∗F ●)

are in PDGcont,wH (Λ[[G]]). If the characteristic of F is ` and Σ is a closed
subscheme of U , then

R Γ(Σ, i∗f!f
∗F ●)

is in PDGcont,wH (Λ[[G]]).

Using [Wit14, Prop. 4.8] we may at once reduce to the case that Λ is a finite
simi-simple Z`-algebra and that F∞/Fcyc is a finite extension. It then suffices to
show that the complexes appearing in the above theorems have finite cohomology
groups. We may then replace F ● by a quasi-isomorphic strictly perfect complex.
Using stupid truncation and induction on the length of the strictly perfect complex
we may assume that F is in fact a flat and constructible sheaf (unramified in ∞).
Note further that the cohomology groups

Hs
c(W,Rk∗f!f

∗F (1)) = lim
←Ð

F⊂K⊂F∞
Hs

c(WK ,Rk∗f
∗
KF (1)),

Hs(W,k!f!f
∗F ) = lim

←Ð
F⊂K⊂F∞

Hs(WK , k!f
∗
KF ),

Hs(Σ, i∗ Rk∗f!f
∗F ) = lim

←Ð
F⊂K⊂F∞

Hs(ΣK , i
∗ Rk∗f

∗
KF )

Hs(Σ,R i!k!f!f
∗F ) = lim

←Ð
F⊂K⊂F∞

Hs(ΣK ,R i!k!f
∗
KF )

do not change if we replace F by a finite extension of F inside F∞. So, we may
assume that F∞ = Fcyc and that no place in Σ splits in F∞/F . Further, we may
reduce to the case that Σ consists of a single place x. In particular, x does not split
or ramify in F∞/F .

We consider Theorem 3.4.3 in the case that x ∈ U and write i′∶x → U for the
inclusion map. Under the above assumptions on x, there exists a chain of weak
equivalences

R Γ(x, i∗ Rk∗f!f
∗F )

∼
←Ð R Γ(x, i′

∗
f!f

∗F )
∼
Ð→ R Γ(x, g!g

∗i′
∗F )

where g∶x∞ → x is the unique Z`-extension of x. We can now refer directly to
[Wit14, Thm. 8.1] or identify

Hs(x, g!g
∗i′

∗F ) = Hs(Galk(x),F`[[Γ]]♯ ⊗F` M)

with Galk(x) the absolute Galois group of the residue field k(x) of x, M the stalk of
F in a geometric point over x and F`[[Γ]]♯ being the Galk(x)-module F`[[Γ]] with

σ ∈ Galk(x) acting by right multiplication with the image of σ−1 in Γ. It is then

clear that the only non-vanishing cohomology group is H1(Galk(x),F`[[Γ]]♯⊗F`M),
of order bounded by the order of M .

Assume that the characteristic of k(x) is different from `. Write U ′ = U − {x}
and let j′∶U ′ → U denote the inclusion morphism. Then there is an exact sequence

0→ R i!k!j
′
!j
′∗f!f

∗F → R i!k!f!f
∗F → R i!i∗i

∗k!F → 0.

Moreover, there exists a chain of weak equivalences

i′
∗
f!f

∗F
≅
Ð→ i∗k!f!f

∗F
∼
Ð→ R i!i∗i

∗k!f!f
∗F .
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Since we already know that the groups Hs(x, i′
∗
f!f

∗F ) are finite, it is sufficient to
prove that Hs(x,R i!k!f!f

∗F ) is finite in the case that x ∈W −U .
Now we prove Theorem 3.4.3 in the case that x ∈ W − U , assuming that the

characteristic of F is different from `. First, note that the complex R i! Rk∗f!f
∗F

is quasi-isomorphic to 0. Hence, there is a chain of weak equivalences

i∗ Rk∗f!f
∗F ∼ R i!k!f!f

∗F [1]

by Lemma 3.1.9. So, it suffices to consider the left-hand complex. By Lemma 3.1.5
and the smooth base change theorem there exists a chain of weak equivalences

R Γ(x, i∗ Rk∗f!f
∗F ) ∼ R Γ(SpecFx, h!h

∗η∗xF ),

where Fx is the local field in x with valuation ring OFx , ηx∶SpecFx → U is the map
to the generic point of U , and h∶Spec(Fx)cyc → SpecFx is the unique Z`-extension

of Fx inside F x. We may now identify

Hs(x, i∗ Rk∗f!f
∗F ) = Hs(GalFx ,F`[[Γ]]♯ ⊗F` M)

with GalFx the absolute Galois group of the local field Fx in x, M the finite GalFx-
module corresponding to η∗xF and F`[[Γ]]♯ being the GalFx -module F`[[Γ]] with
σ ∈ GalFx acting by right multiplication with the image of σ−1 in Γ. The finiteness
of the cohomology group on the righthand side is well-known: We can use local
duality to identify it with the Pontryagin dual of

H2−s(Gal(Fx)cyc
,M∨(1))

where M∨(1) is the first Tate twist of the Pontryagin dual of M .
Next, we prove Theorem 3.4.1 and Theorem 3.4.2. By [Wit14, Thm. 8.1], we

know that the complex

R Γc(U, f!f
∗F )

is in PDGcont,wH (Λ[[G]]) if F is a function field. This settles in particular the
case that the characteristic p of F is equal to `. So, let us assume that ` is invertible
on W and ` ≠ 2 if F is a totally real field.

We begin with the case of étale cohomology with proper support. Letting
i∶Σ→W denote the complement of U in W , we have the exact excision sequence

0→ R Γc(W,k!k
∗ Rk∗f!f

∗F (1)) → R Γc(W,Rk∗f!f
∗F (1))

→ R Γc(W, i∗i
∗ Rk∗f!f

∗F (1)) → 0

and chains of weak equivalences

R Γc(W,k!k
∗ Rk∗f!f

∗F (1)) ∼ R Γc(U, f!f
∗F (1)),

R Γc(W, i∗i
∗ Rk∗f!f

∗F (1)) ∼ R Γ(Σ, i∗ Rk∗f!f
∗F (1)).

By Theorem 3.4.3, we may thus reduce to the case W = U . In particular, this
settles the function field case.

Furthermore, we may shrink U ad libitum. Hence, we may assume that F∞/F
is really admissible, F is locally constant on U and smooth at ∞. Consequently,
there exists a finite Galois extension F ′/F such that F ′ is totally real, gF ′ ∶UF ′ → U
is étale and g∗F ′F is constant. Then F ′

cyc/F is an admissible extension and

ρ ∶= g∗F ′F (UF ′)

may be viewed as a continuous representation of G = Gal(F ′
cyc/F ) on a finitely

generated, projective Λ-module. Write g∶UF ′
cyc
→ U for the corresponding system

of coverings of U and observe that there exists a weak equivalence

Φρ(R Γc(U, g!g
∗(Z`)U(1)))

∼
Ð→ R Γc(U, f!f

∗F (1))
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with Φρ being defined by (2.6.2) [Wit14, Prop. 5.9, 6.3, 6.5, 6.7]. Since Φρ takes

complexes in PDGcont,wH (Z`[[G]]) to complexes in PDGcont,wH (Λ[[Γ]]), it re-
mains to show that the cohomology groups Hs

c(U, g!g
∗(Z`)U(1)) are finitely gener-

ated as Z`-modules.
Let M denote the maximal abelian `-extension of F ′

cyc unramified over U . Then

Hs
c(U, g!g

∗(Z`)U(1)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if s ≠ 2,3,

Gal(M/F ′
cyc) if s = 2,

Z` if s = 3

by [Kak13, p. 548]. At this point, we make use of Conjecture 3.3.4 on the vanishing
of the µ-invariant to finish the proof for the first complex.

We now turn to the complex R Γ(W,k!f!f
∗F ●). We still assume that Λ is a

finite ring. Write Σ =W − U , V = U ∪ (X −W ) and j∶U → V , j′∶V → X, i∶Σ → X
for the natural immersions. As mentioned in Remark 3.1.4, the exists a chain of
weak equivalences

R Γc(V,R j∗f!f
∗F ) ∼ R Γ(W,k!f!f

∗F ).

In the function field case, we are thus reduced to the case already treated above.
The proof of Theorem 3.4.1 is now complete.

So, let us again assume that F∞/F is really admissible. Using the exact se-
quence

0→ j′! R j∗f!f
∗F → R(j′ ○ j)∗f!f

∗F → i∗i
∗ R j∗f!f

∗F → 0

and Theorem 3.4.3 we may reduce to the case that V = X, W = U and F locally
constant on U and smooth at ∞.

Let P ● be a strictly perfect complex of Λop[[G]]-modules quasi-isomorphic to
R Γc(U, f!f

∗F ∗Λ(1)). By what we have proved above, P ● is also perfect as complex
of Λop[[H]]-modules. By (3.3.4) we obtain a weak equivalence

♯(P ●)∗Λop[[G]] ∼
Ð→ R Γ(U, f!f

∗F ).

We conclude that R Γ(U, f!f
∗F ) is in PDGcont,wH (U,Λ[[G]]) by applying Propo-

sition 2.7.4. This completes the proof of Theorem 3.4.2.

3.5. Non-Commutative Euler Factors

Assume as before that F∞/F is an admissible extension of a global field F which
is unramified over a dense open subscheme U of X and write f ∶UF∞ → U for the
system of Galois coverings of U corresponding to F∞/F . If the characteristic of F
is different from `, we let W be another dense open subscheme of X containing U ,
such that ` is invertible on W . If the characteristic of F is equal to `, we choose
W = U . Write k∶U → W for the corresponding open immersion. We consider a
complex F ● in PDGcont(U,Λ). As the complexes

R Γ(x, i∗ Rk∗f!f
∗F ●)

are in PDGcont,wH (Λ[[G]]) for i∶x → W a closed point, we conclude that the
endomorphism

R Γ(x̂, i∗ Rk∗f!f
∗F ●)

id−Fx
ÐÐÐ→ R Γ(x̂, i∗ Rk∗f!f

∗F ●)

is in fact a weak equivalence in wHPDGcont(Λ[[G]]). Hence, it gives rise to an
element in K1(Λ[[G]]S).

Definition 3.5.1. The non-commutative Euler factor LF∞/F (x,Rk∗F ●) of
Rk∗F ● at x is the inverse of the class of the above weak equivalence in K1(Λ[[G]]S):

LF∞/F (x,Rk∗F ●) = [id − Fx⟳ R Γ(x̂, i∗ Rk∗f!f
∗F ●)]−1
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Note that LF∞/F (x,Rk∗F ●) is independent of our specific choice of a geometric
point above x. Indeed, by (3.1.1) and relation (R5) in the definition of D●(W), we
conclude that the classes [id − Fx] and [id − F′x] agree in K1(Λ[[G]]S). Moreover,
LF∞/F (x,Rk∗F ●) does not change if we enlarge W by adding points with residue
field characteristic different from ` or shrink U by removing a finite set of points
different from x.

Proposition 3.5.2. The non-commutative Euler factor is a characteristic el-
ement for R Γ(x, i∗ Rk∗f!f

∗F ●):

dLF∞/F (x,Rk∗F ●) = −[R Γ(x, i∗ Rk∗f!f
∗F ●)]

in K0(Λ[[G]], S).

Proof. The complex R Γ(x, i∗ Rk∗f!f
∗F ●) is weakly equivalent to the cone of

the endomorphism

R Γ(x̂, i∗ Rk∗f!f
∗F ●)

id−Fx
ÐÐÐ→ R Γ(x̂, i∗ Rk∗f!f

∗F ●)

shifted by one. Hence, the result follows from the explicit description of d given in
(2.3.2). �

Definition 3.5.3. For a topological generator γ ∈ Γ, we define the local modi-
fication factor at x to be the element

MF∞/F,γ(x,Rk∗F ●) ∶= LF∞/F (x,Rk∗F ●)sγ([R Γ(x, i∗ Rk∗f!f
∗F ●)]).

in K1(Λ[[G]]).

We obtain the following transformation properties.

Proposition 3.5.4. With k∶U →W as above, let Λ be any adic Z`-algebra and
let F ● be a complex in PDGcont(U,Λ).

(1) Let Λ′ be another adic Z`-algebra. For any complex P ● of Λ′-Λ[[G]]-
bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(LF∞/F (x,Rk∗F ●)) = LF∞/F (x,Rk∗ΨP̃ ●(F ●))

in K1(Λ
′[[G]]S) and

ΨP [[G]]δ●(MF∞/F,γ(x,Rk∗F ●)) =MF∞/F,γ(x,Rk∗ΨP̃ ●(F ●))

in K1(Λ
′[[G]]).

(2) Let F ′
∞/F be an admissible subextension of F∞/F with Galois group G′.

Then

ΨΛ[[G′]](LF∞/F (x,Rk∗F ●)) = LF ′
∞/F (x,Rk∗F ●)

in K1(Λ[[G′]]S) and

ΨΛ[[G′]](MF∞/F,γ(x,Rk∗F ●)) =MF ′
∞/F,γ(x,Rk∗F ●)

in K1(Λ[[G′]]).
(3) Let F ′/F be a finite extension inside F∞/F . Set r ∶= [F ′∩Fcyc ∶ F ]. Write

fF ′ ∶UF ′ → U for the corresponding étale covering and xF ′ for the fibre in
XF ′ above x. Let G′ ⊂ G be the Galois group of the admissible extension
F∞/F ′ and consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then

ΨΛ[[G]](LF∞/F (x,Rk∗F ●)) = ∏
y∈xF ′

LF∞/F ′(y,Rk∗f
∗
F ′F ●)

in K1(Λ[[G′]]S) and

ΨΛ[[G]](MF∞/F,γ(x,Rk∗F ●)) = ∏
y∈xF ′

MF∞/F ′,γr(y,Rk∗f
∗
F ′F ●)

in K1(Λ[[G′]]).
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(4) With the notation of (3), assume that G● is a complex in PDGcont(UF ′ ,Λ)
and consider Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule. Then

∏
y∈xF ′

ΨΛ[[G]](LF∞/F ′(y,Rk∗G●)) = LF∞/F (x,Rk∗fF ′∗G●)

in K1(Λ[[G]]S) and

∏
y∈xF ′

ΨΛ[[G]](MF∞/F ′,γr(y,Rk∗G●)) =MF∞/F ′,γ(x,Rk∗fF ′∗G●)

in K1(Λ[[G]]).

Proof. Note that the functor Ψ commutes up to weak equivalences with R Γ,
i∗, and Rk∗ [Wit08, 5.5.7] and apply Proposition 3.3.2 and Proposition 2.9.1. Part
(1) and (2) are direct consequences.

For Part (3), we additionally need the same reasoning as in the proof of [Wit14,
Thm. 8.4.(3)] to verify that for any G● in PDGcont(UF ′ ,Λ)

(3.5.1) [id − Fx⟳ R Γ(y ×x x̂,Rk∗g!g
∗G●)] = [id − Fy⟳ R Γ(ŷ,Rk∗g!g

∗f∗F ′G●)]

in K1(Λ[[G′]]S). Here, g∶UF∞ → UF ′ denotes the system of coverings induced by
f . This implies the formula for ΨΛ[[G]](LF∞/F (x,Rk∗F ●)). Moreover, we have a
weak equivalence

ΨΛ[[G]] R Γ(x,Rk∗f!f
∗F ●)

∼
Ð→ R Γ(xF ′ ,Rk∗g!g

∗f∗F ′F ●)

in PDGcont(Λ[[G′]]). In particular,

sγr([ΨΛ[[G]] R Γ(x,Rk∗f!f
∗F ●)]) = ∏

y∈xF ′
sγr([R Γ(y,Rk∗g!g

∗f∗F ′F ●)])

from which the formula for ΨΛ[[G]](MF∞/F,γ(x,Rk∗F ●)) follows.
For Part (4) we use (3.5.1) to show

∏
y∈xF ′

ΨΛ[[G]](LF∞/F ′(y,Rk∗G●)) =

= ΨΛ[[G]]([id − Fx⟳ R Γ(xF ′ ×x x̂,Rk∗g!g
∗G●)]−1)

= [id − Fx⟳ R Γ(x̂,Rk∗f!f
∗fF ′∗G●)]−1

= LF∞/F (x,Rk∗fF ′∗G●).

On the other hand, we also have a weak equivalence

ΨΛ[[G]] R Γ(xF ′ ,Rk∗g!g
∗G●)

∼
Ð→ R Γ(x,Rk∗f!f

∗fF ′∗G●),

thence the formula for the local modification factors. �

For the rest of this section, we assume that the characteristic of F is different
from `. If G is a smooth Λ-adic sheaf on U and x is a point in U , it makes sense to
consider the element

LF∞/F (x,Rk∗G∗Λ(1))⊛ ∈ K1(Λ[[G]], S)

as an alternative Euler factor, which does not agree with LF∞/F (x,Rk∗G) in gen-
eral. We shall show below that

LF∞/F (x,Rk∗G∗Λ(1))⊛ = [id − F−1
x ⟳ R Γ(x̂,R i!k!f!f

∗G)]

and take this as a definition for arbitrary complexes F ● in PDGcont(U,Λ).

Definition 3.5.5. The dual non-commutative Euler factor of k!F ● at x ∈W is
the element

L⊛F∞/F (x, k!F ●) ∶= [id − F−1
x ⟳ R Γ(x̂,R i!k!f!f

∗F ●)]

in K1(Λ[[G]]S).
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Proposition 3.5.6. The inverse of the dual non-commutative Euler factor is
a characteristic element for R Γ(x,R i!k!f!f

∗F ●):

dL⊛F∞/F (x, k!F ●) = [R Γ(x,R i!k!f!f
∗F ●)]

in K0(Λ[[G]], S).

Proof. The complex R Γ(x, i∗ Rk∗f!f
∗F ●) is weakly equivalent to the cone of

the endomorphism

R Γ(x̂,R i!k!f!f
∗F ●)

id−F−1
x

ÐÐÐÐ→ R Γ(x̂,R i!k!f!f
∗F ●)

shifted by one. Hence, the result follows from the explicit description of d given in
[Wit14, Thm. A.5]. �

Definition 3.5.7. For a topological generator γ ∈ Γ, the dual local modification
factor k!F ● at x is the element

M⊛
F∞/F,γ(x, k!F ●) ∶= L⊛F∞/F (x, k!F ●)sγ−1([R Γ(x,R i!k!f!f

∗F ●)])−1.

We obtain the following transformation properties.

Proposition 3.5.8. With k∶U →W as above, let Λ be any adic Z`-algebra and
let F ● be a complex in PDGcont(U,Λ).

(1) Let Λ′ be another adic Z`-algebra. For any complex P ● of Λ′-Λ[[G]]-
bimodules which is strictly perfect as complex of Λ′-modules we have

ΨP [[G]]δ●(L
⊛
F∞/F (x, k!F ●)) = L⊛F∞/F (x, k!ΨP̃ ●(F ●))

in K1(Λ
′[[G]]S) and

ΨP [[G]]δ●(M
⊛
F∞/F,γ(x, k!F ●)) =M⊛

F∞/F,γ(x, k!ΨP̃ ●(F ●))

in K1(Λ
′[[G]]).

(2) Let F ′
∞/F be an admissible subextension of F∞/F with Galois group G′.

Then
ΨΛ[[G′]](L

⊛
F∞/F (x, k!F ●)) = L⊛F ′

∞/F (x, k!F ●)

in K1(Λ[[G′]]S) and

ΨΛ[[G′]](M
⊛
F∞/F,γ(x, k!F ●)) =M⊛

F ′
∞/F,γ(x, k!F ●)

in K1(Λ[[G′]]).
(3) Let F ′/F be a finite extension inside F∞/F . Set r ∶= [F ′∩Fcyc ∶ F ]. Write

fF ′ ∶UF ′ → U for the corresponding étale covering and xF ′ for the fibre in
XF ′ above x. Let G′ ⊂ G be the Galois group of the admissible extension
F∞/F ′ and consider Λ[[G]] as a Λ[[G′]]-Λ[[G]]-bimodule. Then

ΨΛ[[G]](L
⊛
F∞/F (x, k!F ●)) = ∏

y∈xF ′
L⊛F∞/F ′(y, k!f

∗
F ′F ●)

in K1(Λ[[G′]]S) and

ΨΛ[[G]](M
⊛
F∞/F,γ(x, k!F ●)) = ∏

y∈xF ′
M⊛

F∞/F ′,γr(y, k!f
∗
F ′F ●)

in K1(Λ[[G′]]).
(4) With the notation of (3), assume that G● is a complex in PDGcont(UF ′ ,Λ)

and consider Λ[[G]] as a Λ[[G]]-Λ[[G′]]-bimodule. Then

∏
y∈xF ′

ΨΛ[[G]](L
⊛
F∞/F ′(y, k!G●)) = L⊛F∞/F (x, k!fF ′∗G●)

in K1(Λ[[G]]S) and

∏
y∈xF ′

ΨΛ[[G]](M
⊛
F∞/F ′,γr(y, k!G●)) =M⊛

F∞/F ′,γ(x, k!fF ′∗G●)
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in K1(Λ[[G]]).

Proof. The arguments are the same as in the proof of Proposition 3.5.4. �

Proposition 3.5.9.

(1) Let G be a smooth Λ-adic sheaf on U . Then

(LF∞/F (x,Rk∗G∗Λ(1)))⊛ = L⊛F∞/F (x, k!G) =

=

⎧⎪⎪
⎨
⎪⎪⎩

[−Fx⟳ R Γ(x̂, i∗f!f
∗G(−1))]−1LF∞/F (x,G(−1))−1 if x ∈ U

[−Fx⟳ R Γ(x̂, i∗ Rk∗f!f
∗G)]LF∞/F (x,Rk∗G) if x ∈W −U

in K1(Λ[[G]], S) and

(MF∞/F,γ(x,Rk∗G∗Λ(1)))⊛ =M⊛
F∞/F,γ(x, k!G)

in K1(Λ[[G]]).
(2) Let G be a Λ-adic sheaf on x ∈ U . Then

(LF∞/F (x, i∗G∗Λ))⊛ = L⊛F∞/F (x, i∗G)

= [−Fx⟳ R Γ(x̂, i∗f!f
∗i∗G)]−1LF∞/F (x, i∗G)−1

in K1(Λ[[G]], S) and

(MF∞/F,γ(x, i∗G∗Λ))⊛ =M⊛
F∞/F,γ(x, i∗G)

in K1(Λ[[G]]).

Proof. We only need to prove the formulas for the non-commutative Euler
factors, the formulas for the local modification factors then follow from Proposi-
tion 2.9.3.

We begin by proving (1) in the case that x ∈W −U . By (3.3.3), combined with
Lemma 3.1.8 and Lemma 3.1.5, we have

LF∞/F (x, i∗ Rk∗G∗Λ(1)) =

= ΨΛop[[G]]♯([id − Fx⟳ R Γ(x̂, (i∗ Rk∗f!f
∗G)∗Λ[[G]](1))]−1)

= ΨΛop[[G]]♯([id − Fx⟳D●
x̂((Rk∗f!f

∗G)∗Λ[[G]](1))]−1).

From the Definition 2.7.1 of ⊛, Lemma 3.2.1, and again Lemma 3.1.5, we conclude

♯
(ΨΛop[[G]]♯([id − Fx⟳D●

x̂((Rk∗f!f
∗G)∗Λ[[G]](1))]−1))

∗Λop[[G]]
=

= [id − F
∗Λ[[G]]op

x ⟳D●
x̂((Rk∗f!f

∗G)∗Λ[[G]](1))∗Λ[[G]]op ]

= [id − F−1
x ⟳ R Γ(x̂, i∗ Rk∗f!f

∗G)]−1

= [−F−1
x ⟳ R Γ(x̂, i∗ Rk∗f!f

∗G)]−1LF∞/F (x,Rk∗G).

Finally,
[id − F−1

x ⟳ R Γ(x̂, i∗ Rk∗f!f
∗G)]−1 = L⊛F∞/F (x, k!G)

by Lemma 3.1.9.
The validity of the first equality in (2) follows similarly from Lemma 3.2.2 and

the exchange formula (3.2.5):

(LF∞/F (x, i∗G∗Λ))⊛ = ([id − Fx⟳ (i∗f!f
∗i∗G∗Λ)x̂]

−1)⊛

= ΨΛ[[G]]♯([id − F
∗Λ[[G]]op

x ⟳ ((i∗f!f
∗i∗G∗Λ)x̂)

∗Λ[[G]]op ])

= ΨΛ[[G]]♯([id − F−1
x ⟳ R Γ(x̂, (i∗f!f

∗i∗G∗Λ))∗Λ[[G]]op ])

= [id − F−1
x ⟳ R Γ(x̂,R i!f!f

∗(i∗G∗Λ))∗Λop ]

= L⊛F∞/F (x, i∗G)
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Further, write j′∶U ′ → U for the complement of x in U . Then

R j′∗j
′∗f!f

∗i∗G ≅ R j′∗f!f
∗j′

∗
i∗G = 0

and hence,
R i!f!f

∗i∗G ≅ i∗f!f
∗i∗G ,

from which the second equality in (2) follows.
For the proof of (1) in the case that x ∈ U , we observe that

(LF∞/F (x,G∗Λ(1)))⊛ = (LF∞/F (x,R j′∗j
′∗G∗Λ(1)))⊛(LF∞/F (x, i∗ R i!G∗Λ(1)))⊛

= (LF∞/F (x,R j′∗j
′∗G∗Λ(1)))⊛(LF∞/F (x, i∗(i

∗G)∗Λ))⊛

= L⊛F∞/F (x, j′!j
′∗G)L⊛F∞/F (x, i∗G)

= L⊛F∞/F (x,G)

by what we have proved above. For the second equality, we use that by absolute
purity [Mil06, Ch. II, Cor. 1.6], there exists chain of weak equivalences

i∗f!f
∗G(−1) ∼ R i!f!f

∗G[2].

�

3.6. Euler Factors for the Cyclotomic Extension

In the case F∞ = Fcyc, we can give a different description of LF∞/F (x,Rk∗F ●). We
will undergo the effort to allow arbitrary adic Z`-algebras Λ as coefficient rings,
but in the end, we will use the results only in the case that Λ is the valuation
ring in a finite extension of Q`. If one restricts to this case, some of the technical
constructions that follow may be skipped.

Let Λ[t] be the polynomial ring over Λ in the indeterminate t that is assumed to
commute with the elements of Λ. In Appendix A we define a Waldhausen category
wtP(Λ[t]): The objects are perfect complexes of Λ[t]-modules and cofibrations
are injective morphism of complexes such that the cokernel is again perfect. A
weak equivalence is a morphism f ∶P ● → Q● of perfect complexes of Λ[t]-modules
such that Λ ⊗L

Λ[t] f is a quasi-isomorphism of complexes of Λ-modules. Here, Λ is

considered as a Λ-Λ[t]-bimodule via the augmentation map and Λ ⊗L
Λ[t] ⋅ denotes

the total derived tensor product as functor between the derived categories.
If Λ is noetherian, then the subset

St ∶= {f(t) ∈ Λ[t] ∣ f(0) ∈ Λ×} ⊂ Λ[t]

is a left and right denominator set, the localisation Λ[t]St is semi-local and Λ[t] →
Λ[t]St induces an isomorphism

K1(wtP(Λ[t])) ≅ K1(Λ[t]St)

(Proposition A.1). By [War93, Cor. 36.35], commutative adic rings are always
noetherian . In this case, we may further identify

K1(Λ[t]St) ≅ Λ[t]×St

via the determinant map. In general, St is not a left or right denominator set. We
then take

K1(Λ[t]St) ∶= K1(wtP(Λ[t]))

as a definition.
For any adic Z`-algebra Λ and any γ ∈ Γ ≅ Z`, the ring homomorphism

evγ ∶Λ[t] ↦ Λ[[Γ]], f(t) ↦ f(γ).

induces a homomorphism

evγ ∶K1(Λ[t]St) → K1(Λ[[Γ]]S)
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(Proposition A.2). In the noetherian case, the proof boils down to a verification
that evγ(St) ⊂ S.

Assume as before that W = U if the characteristic p of F is equal to ` and that
` is an odd prime invertible on W if F is a number field.

Definition 3.6.1. For F ● = (F ●
I )I∈IΛ

∈ PDGcont(U,Λ) we define

Z(x,Rk∗F ●, t) ∶= [id − tFx⟳ P ●]−1 ∈ K1(Λ[t]St)

for
P ● ∶= Λ[t] ⊗Λ lim

←Ð
I∈IΛ

R Γ(x̂, i∗ Rk∗F ●).

If p ≠ `, we set

Z⊛(x, k!F ●, t) ∶= [id − tF−1
x ⟳ Q●] ∈ K1(Λ[t]St)

where
Q● ∶= Λ[t] ⊗Λ lim

←Ð
I∈IΛ

R Γ(x̂,R i!k!F ●).

For any 1 ≠ γ ∈ Γ, we write Z(x,Rk∗F ●, γ) and Z⊛(x, k!F ●, γ) for the images of
Z(x,Rk∗F ●, t) and Z⊛(x, k!F ●, t) under

K1(Λ[t]St)
evγ
ÐÐ→ K1(Λ[[Γ]]S).

Since the endomorphism id − tFx is canonical, it follows easily from the rela-
tions in the definition of D●(W) that Z(x,F ●, t) does only depend on the weak
equivalence class of F ● and is multiplicative on exact sequences. So, it defines a
homomorphism

Z(x,Rk∗(−), t)∶K0(PDGcont(U,Λ)) → K1(Λ[t]St).

The same is also true for Z⊛(x, k!F ●, t).

Proposition 3.6.2. Let γx ∈ Γ be the image of Fx in Γ. Then

LFcyc/F (x,Rk∗F ●) = Z(x,Rk∗F ●, γ−1
x ).

If p ≠ `, then
L⊛Fcyc/F (x, k!F ●) = Z⊛(x, k!F ●, γx).

Proof. Since ` is invertible on W in the number field case, the extension
Fcyc/F is unramified over W . Assume p ≠ `. By the smooth base change theorem
applied to the étale morphism fK ∶WK → W for each finite subextension K/F of
Fcyc/F and the quasi-compact morphism k∶U →W there exists a weak equivalence

f!f
∗ Rk∗F ● ∼

Ð→ Rk∗f!f
∗F ●

in PDGcont(W,Λ). By the proper base change theorem, there exists also an iso-
morphism

f!f
∗k!F ● ≅ k!f!f

∗F ●

Hence, we may assume x ∈ U =W and drop the assumption p ≠ `.
For any finite subextension K/F in Fcyc/F write xK for the set of places of K

lying over x and g∶xFcyc → x for the corresponding system of Galois covers. (We
note that this system might not be admissible in the sense of [Wit14, Def. 2.6] for
any base field F ⊂ k(x): for example if F = Q and x = (p) with p ≠ ` splitting in the
cyclotomic Z`-extension of Q.) By the proper base change theorem there exists an
isomorphism

i∗f!f
∗F ● ≅ g!g

∗i∗F ●.

From Lemma 3.1.9 we can then also infer the existence of a weak equivalence

R i!f!f
∗F ● ∼

Ð→ g!g
∗ R i!F ●
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if p ≠ `.
We will now concentrate on the proof of the equality

LFcyc/F (x,F ●) = Z(x,F ●, γ−1
x ).

The proof of the equality for the dual Euler factors follows along the same lines,
with Fx replaced by F−1

x and γ−1
x replaced by γx.

By our choice of the embedding F ⊂ F x, we have a compatible system of mor-

phisms Speck(x) → xK for each K ⊂ Fcyc and hence, distinguished isomorphisms

α∶Z[Gal(K/F )] ⊗Z Mx̂ → (gK !g
∗
KM )x̂

for the stalk Mx̂ in x̂ of any étale sheaf M on x. The action of the Frobenius Fx on
the righthand side corresponds to the operation of ⋅γ−1

x ⊗ Fx on the left-hand side.
By compatibility, we may extend α to an isomorphism

α∶ΨΛ[[Γ]] R Γ(x̂, i∗F ●) ≅ R Γ(x̂, g!g
∗i∗F ●)

in PDGcont(Λ[[Γ]]). Hence,

LFcyc/F (x,F ●) = [id − γ−1
x ⊗ Fx⟳ ΨΛ[[Γ]] R Γ(x̂, i∗F ●)]−1

in K1(Λ[[Γ]]S). Furthermore, we may choose a strictly perfect complex of Λ-
modules P ● with an endomorphism f and a quasi-isomorphism

β∶P ● → lim
←Ð
I∈IΛ

R Γ(x̂,G●)

under which f and Fx are compatible up to chain homotopy [Wit08, Lem. 3.3.2].
The endomorphism

id − tf ∶Λ[t] ⊗Λ P
● → Λ[t] ⊗Λ P

●

is clearly a weak equivalence in wtP(Λ[t]). By [Wit08, Lem. 3.1.6], homotopic
weak auto-equivalences have the same class in the first K-group. Hence, we may
conclude

[id − tf ⟳ Λ[t] ⊗Λ P
●]−1 = Z(x,Rk∗F ●, t)

in K1(Λ[t]St) and

Z(x,Rk∗F ●, γ−1
x ) = LFcyc/F (x,Rk∗F ●)

in K1(Λ[[Γ]]S). �

We will make this construction a little more explicit in the case that F is a
Λ-adic sheaf on U . If x ∈ U , recall from (3.2.3) that there is a weak equivalence

Fx̂
∼
Ð→ R Γ(x̂, i∗ Rk∗F )

in PDGcont(Λ) compatible with the operation of the Frobenius Fx on both sides.
Hence, we have

(3.6.1) Z(x,Rk∗F , t) = [Λ[t] ⊗Λ Fx̂
id−tFx
ÐÐÐÐ→ Λ[t] ⊗Λ Fx̂]−1

in K1(Λ[t]St) and

LFcyc/F (x,Rk∗F ) = [Λ[[Γ]] ⊗Λ Fx̂
id−γ−1

x ⊗Fx
ÐÐÐÐÐÐ→ Λ[[Γ]] ⊗Λ Fx̂]−1

in K1(Λ[[Γ]]S). In particular, if Λ is commutative, then the isomorphism

K1(Λ[t]St)
det
ÐÐ→ Λ[t]×St

sends Z(x,Rk∗F , t) to the inverse of the reverse characteristic polynomial of the
geometric Frobenius operation on Fx̂.

Assume now that p ≠ `. If F is smooth in x ∈ U , then by absolute purity
[Mil06, Ch. II, Cor. 1.6], there exists chain of weak equivalences

F (−1)x̂ ∼ R Γ(x̂,R i!k!F )[2].
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Hence,

(3.6.2) Z⊛(x, k!F , t) = [Λ[t] ⊗Λ F (−1)x̂
id−tF−1

x
ÐÐÐÐ→ Λ[t] ⊗Λ F (−1)x̂]

in K1(Λ[t]St) and

L⊛Fcyc/F (x, k!F ) = [Λ[[Γ]] ⊗Λ F (−1)x̂
id−γx⊗F−1

x
ÐÐÐÐÐÐ→ Λ[[Γ]] ⊗Λ F (−1)x̂]

in K1(Λ[[Γ]]S). If F = i∗G for some G in PDGcont(x,Λ), then there exists a weak
equivalence

Gx̂
∼
Ð→ R Γ(x̂,R i!k!F ).

Hence,

(3.6.3) Z⊛(x, k!F , t) = [Λ[t] ⊗Λ Gx̂
id−tF−1

x
ÐÐÐÐ→ Λ[t] ⊗Λ Gx̂]

in K1(Λ[t]St) and

L⊛Fcyc/F (x, k!F ) = [Λ[[Γ]] ⊗Λ Gx̂
id−γx⊗F−1

x
ÐÐÐÐÐÐ→ Λ[[Γ]] ⊗Λ Gx̂]

in K1(Λ[[Γ]]S).
If x ∈ W − U , there exists by Lemma 3.1.5, Lemma 3.1.8 and Lemma 3.1.9 a

chain of weak equivalences

D●
x̂(F ) ∼ R Γ(x̂, i∗ Rk∗f!f

∗F ) ∼ R Γ(x̂,R i!k!f!f
∗F )[1]

compatible with the Frobenius operation.
We conclude that for x ∈W −U ,

Z(x,Rk∗F , t) = [id − tFx⟳ Λ[t] ⊗Λ D
0
x̂(F )]−1[id − tFx⟳ Λ[t] ⊗Λ D

1
x̂(F )],

Z⊛(x, k!F , t) = [id − tF−1
x ⟳ Λ[t] ⊗Λ D

0
x̂(F )]−1[id − tF−1

x ⟳ Λ[t] ⊗Λ D
1
x̂(F )]

in K1(Λ[t]St) and

LFcyc/F (x,Rk∗F ) =[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ D

0
x̂(F )]−1

[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ D

1
x̂(F )],

L⊛Fcyc/F (x, k!F ) =[id − γx ⊗ F−1
x ⟳ Λ[[Γ]] ⊗Λ D

0
x̂(F )]−1

[id − γx ⊗ F−1
x ⟳ Λ[[Γ]] ⊗Λ D

1
x̂(F )].

Let N be the stalk of F in the geometric point SpecF , viewed as Gal(F x/Fx)-

module. If the image of Gal(F x/F
nr
x ) in the automorphism group of N has trivial

`-Sylow subgroups, then NGal(Fx/Fnr
x ) = D0

x̂(F ) and the differential of D●
x̂(F ) is

trivial. Our formula then simplifies to

(3.6.4)

Z(x,Rk∗F , t) = [id − tFx⟳ Λ[t] ⊗Λ N
Gal(Fx/Fnr

x )]−1

[id − tqxFx⟳ Λ[t] ⊗Λ N
Gal(Fx/Fnr

x )],

Z⊛(x, k!F , t) = [id − tF−1
x ⟳ Λ[t] ⊗Λ N

Gal(Fx/Fnr
x )]−1

[id − tq−1
x F−1

x ⟳ Λ[t] ⊗Λ N
Gal(Fx/Fnr

x )],

where qx is the order of the residue field k(x). In particular, this is the case if N is
unramified in x.

Conversely, assume that the differential of D●
x̂(F ) is an isomorphism. Since the

operation of Fx commutes with the differential, we then have

Z(x,Rk∗F , t) = Z⊛(x, k!F , t) = 1.

If Λ = OC is the valuation ring of a finite field extension C of Q`, then we may
replace C ⊗OC N by its semi-simplification (C ⊗OC N)ss as a Gal(F x/Fx)-module
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and obtain a corresponding decomposition (C⊗OCD
●
x̂(F ))ss of the complex D●

x̂(F ).
Note that

(C ⊗OC N)ss = ((C ⊗OC N)ss)Gal(Fx/Fnr
x ) ⊕ V

with V Gal(Fx/Fnr
x ) = 0. In particular, on each simple part of (C ⊗OC D

●
x̂(F ))ss, the

differential is either trivial or an isomorphism. We conclude

(3.6.5)

detZ(x,Rk∗F , t) = det(id − tFx⟳ ((C ⊗OC N)ss)Gal(Fx/Fnr
x ))−1

det(id − tqxFx⟳ ((C ⊗OC N)ss)Gal(Fx/Fnr
x )),

detZ⊛(x, k!F , t) = det(id − tF−1
x ⟳ ((C ⊗OC N)ss)Gal(Fx/Fnr

x ))−1

det(id − tq−1
x F−1

x ⟳ ((C ⊗OC N)ss)Gal(Fx/Fnr
x )),

in the units (C[t](t))
× of the localisation of C[t] at the prime ideal (t).

Remark 3.6.3. In the case that F is a function field of characteristic ` and Λ
is any adic ring, we will use (3.6.4) as a definition for Z(x,Rk∗F , t) for x ∈W −U ,
provided that N is at most tamely ramified in x. If Λ = OC , we can use (3.6.5)
instead, without any condition on N . In both cases, we set

LFcyc/F (x,Rk∗F ) ∶= Z(x,Rk∗F , γ−1
x ).

We can also give more explicit formulas for the local modification factors. We
will not make use of the following calculations in any other part of the text.

Let M be one of the finitely generated and projective Λ-modules Fx̂, F (−1)x̂,
D0
x̂(F ), D1

x̂(F ). Then M comes equipped with a continuous action of the Galois

group Gal(k(x)/k(x)). Let k(x)cyc denote the unique Z`-extension of k(x) and let
r be the index of the image of Γ′ ∶= Gal(k(x)cyc/k(x)) in Γ = Gal(Fcyc/F ). Fix a
topological generator γ ∈ Γ.

Clearly,

[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M] = ΨΛ[[Γ]]([id − γ

−1
x ⊗ Fx⟳ Λ[[Γ′]] ⊗Λ M])

in K1(Λ[[Γ]]S), while

ΨΛ[[Γ]](sγr([coker(id − γ−1
x ⊗ Fx⟳ Λ[[Γ′]] ⊗Λ M)])) =

sγ(ΨΛ[[Γ]]([coker(id − γ−1
x ⊗ Fx⟳ Λ[[Γ′]] ⊗Λ M)]))

= sγ([coker(id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M)])

by Proposition 2.9.1. Hence, it suffices to consider the case that x does not split in
Fcyc/F . So, we assume from now on that r = 1.

The image of Gal(k(x)/k(x)cyc) in the automorphism group of M is a finite
commutative group ∆ of order d prime to `. Write

e∆ ∶=
1

d
∑
δ∈∆

δ

for the corresponding idempotent in the endomorphism ring. We thus obtain a
canonical decomposition

M ≅M ′ ⊕M ′′

of M with M ′ ∶= e∆M and M ′′ ∶= (id − e∆)M .
Since

(id − δ)(id − e∆)m = (id − δ)m

for every id ≠ δ ∈ ∆ and every m ∈M , the action of ∆ on M ′′ is faithful. Since d is
prime to `, the action of ∆ on M ′′/Jac(Λ)M ′′ is still faithful. Indeed, the kernel K
of id − δ⟳M ′′ is a direct summand of M ′′ with K ≠M ′′. The Nakayama lemma
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then implies K/Jac(Λ)K ≠M ′′/Jac(Λ)M ′′ such that δ⟳M ′′/Jac(Λ)M ′′ cannot
be the identity.

Note that K is trivial if δ is a generator of ∆. In this case,

id − δ∶M ′′/Jac(Λ)M ′′ →M ′′/Jac(Λ)M ′′

must be an automorphism. We may apply this to a suitable `n-th power of Fx to
infer that id−Fx⟳M ′′/Jac(Λ)M ′′ is an automorphism. By the Nakayama lemma
for Λ[[Γ]] we conclude that the endomorphism id − γ−1

x ⊗ Fx of Λ[[Γ]] ⊗Λ M
′′ is

also an automorphism.
The Λ-module M ′ can be seen as Λ[[Γ]]-module with γx acting as Fx and by

Example 2.9.2 we have

[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M

′′] = sγx([coker(id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M

′)])−1

We conclude that

[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M]sγ([coker(id − γ−1

x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M)]) =

[id − γ−1
x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M

′′]
sγ

sγx
([coker(id − γ−1

x ⊗ Fx⟳ Λ[[Γ]] ⊗Λ M
′)]).

In particular, if x ∈ U and H0(Speck(x)cyc, i
∗F ) = 0, then

MFcyc/F,γ(x,Rk∗F ) = LFcyc/F (x,Rk∗F ).

If x ∈ U , H0(Speck(x)cyc, i
∗F ) = Fx̂ and γ = γx, then

MFcyc/F,γ(x,Rk∗F ) = 1.

The same considerations apply to the dual local modification factors.

Remark 3.6.4. Write V 0 for the set of closed points of V . Note that the
infinite product

∏
x∈V 0

MFcyc/F,γ(x,Rk∗F )

does not converge in the compact topology of K1(Λ[[Γ]]). Indeed, by the Cheb-
otarev density theorem, we may find for each non-trivial finite subextensions F ′/F
of Fcyc/F an infinite subset S ⊂ U of closed points such that the elements

MFcyc/F,γ(x,Rk∗F ) ∈ K1(Λ[[Γ]])

for x ∈ S have a common non-trivial image in K1(Λ/Jac(Λ)[[Gal(F ′/F )]]).



CHAPTER 4

Main Conjectures for Perfect Complexes of Adic
Sheaves

In this chapter, we will consider the non-commutative Iwasawa main conjecture for
perfect complexes of adic sheaves. We begin with a short reminder on L-functions
of Artin representations in Section 4.1.

Section 4.2 contains the main results in the case of really admissible extensions
F∞/F . Our objective is to show that Kakde’s proof of the main conjecture may be
refined in order to obtain a unique choice of a non-commutative L-function as an
element of the localised K-group K1(Λ[[G]]S).

We use Kakde’s non-commutative L-functions and the non-commutative alge-
braic L-function of the complex R Γc(U, f!f

∗Z`(1)) to define global modification
factors. Changing the open dense subscheme U is reflected by adding or remov-
ing local modification factors. This compatibility allows us to pass to field ex-
tensions with arbitrarily large ramification. We can then use the results of Sec-
tion 2.1 to prove the uniqueness of the family of modification factors for all pairs
(U,F∞) with F∞/F admissible and unramified over U . The corresponding non-
commutative L-functions are the product of the global modification factors and
the non-commutative algebraic L-functions. We then extend in Theorem 4.2.4 the
definition of global modification factors to Λ-adic sheaves smooth at ∞ by requiring
a compatibility under twists with certain bimodules. In the same way, we construct
global dual modification factors in Theorem 4.2.5. In Theorem 4.2.7 we show that
the global modification factors are also compatible under changes of the base field
F . The non-commutative L-functions for the complexes F ● are then defined as the
product of the algebraic L-function and the modification factors. Corollary 4.2.9
subsumes the transformation properties of the non-commutative L-functions.

In Section 4.3 we extend our results to the case of CM-extensions of F . Sec-
tion 4.4 deals with the function field case.

4.1. Artin Representations

Let OC be the valuation ring of a finite extension field C of Q` inside a fixed
algebraic closure Q` and assume as before that Γ ≅ Z`. The augmentation map
ϕ∶OC[[Γ]] → OC extends to a map

ϕ∶K1(OC[[Γ]]S)
det
ÐÐ→
≅
OC[[Γ]]×S → P1(C).

Indeed, let a
s
∈ OC[[Γ]]×S . Since OC[[Γ]] is a unique factorisation domain and the

augmentation ideal is a principal prime ideal, we may assume that not both a and
s are contained in the augmentation ideal. Hence, we obtain a well-defined element

ϕ(
a

s
) ∶= [ϕ(a) ∶ ϕ(s)] ∈ P1(C) = C ∪ {∞},

with [x ∶ y] denoting the standard projective coordinates of P1(C). Note that this
map agrees with ϕ′ in [Kak13, §2.4]. We further note that deta⊛ = ((deta)♯)−1

67
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for any a ∈ K1(OC[[Γ]]S). Since ♯∶OC[[Γ]]S → OC[[Γ]]S maps γ ∈ Γ to γ−1 and is
given by the identity on OC , we conclude that

(4.1.1) ϕ(a⊛) = ϕ(a)−1.

Finally, note that the diagram

K1(OC[t]St)
det //

t↦γ
��

(C[t](t))
×

f
g↦[f(1)∶g(1)]
��

K1(OC[[Γ]]S)
ϕ // P1(C)

commutes for any choice of γ ∈ Γ with γ ≠ 1. On the right downward pointing map,
f
g

denotes a reduced fraction.

Let F be a global field of characteristic p ≥ 0. Consider an Artin representation
ρ∶GalF → Gld(OC) (i. e. with open kernel) over OC . We will write

ρ∗∶GalF → Gld(OC), g ↦ ρ(g−1)t

for the dual representation. Any Artin representation may also be considered as
a OC-adic sheaf on SpecF whose global sections over SpecF ′ is the module of
invariants of ρ under GalF ′ for each field F ′ ⊂ F . We will not distinguish between
the representation ρ and the corresponding OC-adic sheaf.

Fix two open dense subschemes U ⊂W ⊂X. We set

Σ ∶=X −W, T ∶=W −U

and assume that ` is invertible on T. Since the image of Gal(F x/Fx) in Gld(OC)
is finite, the base change of ρ to C is automatically a simi-simple representation of
Gal(F x/Fx). For any x ∈ X, we let ρx denote the representation of Gal(F nr

x /Fx)

obtained from ρ by restricting to Gal(F x/Fx) and then taking invariants under

Gal(F x/F
nr
x ).

For any open dense subscheme V of X, we write V 0 for the set of closed points
of V . Let α∶Q` → C be an embedding of Q` into the complex numbers. We can
then associate to the complex Artin representation α ○ ρ the classical Σ-truncated
T-modified Artin L-function with the product formula

LΣ,T(α ○ ρ, s) ∶= ∏
x∈U0

det(1 − α ○ ρx(Fx)q
−s
x )−1

∏
x∈T

det(1 − α ○ ρx(Fx)q
1−s
x )

det(1 − α ○ ρx(Fx)q−sx )

for Re s > 1. Note that we follow the geometric convention of using the geometric
Frobenius in the definition of the Artin L-function as in [CL73].

Write η∶SpecF → U for the generic point of U and assume for simplicity that
ρ is unramified over U , i. e. for each x ∈ U , the restriction of ρ to Gal(F x/F

nr
x )

is trivial. Then ρ corresponds to the smooth OC-adic sheaf η∗(ρ) on U ⊂ W
defined by (3.3.1) and therefore, to an object in PDGcont(U,OC). Analogously, ρ∗

corresponds to η∗(ρ
∗) = (η∗ρ)

∗OC .
Assume that ` ≠ p. From (3.6.1), (3.6.2), and (3.6.5) we conclude

(4.1.2)

ϕ(LFcyc/F (x,Rk∗η∗(ρ)(n)))

=

⎧⎪⎪
⎨
⎪⎪⎩

[1 ∶ det(1 − ρx(Fx)q
−n
x )] if x ∈ U ,

[det(1 − ρx(Fx)q
1−n
x ) ∶ det(1 − ρx(Fx)q

−n
x )] if x ∈ T,

ϕ(L⊛Fcyc/F (x, k!η∗(ρ)(n)))

=

⎧⎪⎪
⎨
⎪⎪⎩

[det(1 − ρ∗x(Fx)q
n−1
x ) ∶ 1] if x ∈ U ,

[det(1 − ρ∗x(Fx)q
n−1
x ) ∶ det(1 − ρ∗x(Fx)q

n
x)] if x ∈ T,
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where qx denotes the number of elements of the residue field k(x). Note that
det(1−ρx(Fx)q

−n
x ) = 0 if and only if n = 0 and ρx contains the trivial representation

as a subrepresentation.
In particular, we have

LΣ,T(α ○ ρ,n) = ∏
x∈W 0

α(ϕ(LFcyc/F (x,Rk∗η∗(ρ)(n))))

= ∏
x∈W 0

α(ϕ(L⊛Fcyc/F (x, k!η∗(ρ
∗)(1 − n))))−1

for all integers n > 1.
If ` = p and n = 0, then we still have

ϕ(LFcyc/F (x, η∗(ρ))) = [1 ∶ det(1 − ρx(Fx))]

if x ∈ U . If x ∈ T, we use the definition of LFcyc/F (x,Rk∗η∗(ρ)) from Remark 3.6.3
and obtain

ϕ(LFcyc/F (x,Rk∗η∗(ρ))) = [det(1 − ρx(Fx)qx) ∶ det(1 − ρx(Fx))].

Assume that F is a function field. As before, we let q denote the number of
elements of the algebraic closure F of the prime field Fp in F . It follows from the
work of Weil [Wei48] that there exists a unique element

Z(W,Rk∗η∗(ρ), t) ∈ K1(OC[t]St) ≅ (OC[t](t,`))
× = OC[[t]]× ∩C(t)×

such that

α(Z(W,Rk∗η∗(ρ), q
−n)) = LΣ,T(α ○ ρ,n) ∈ P1(C)

for all integers n.

Definition 4.1.1. Let F be a function field of characteristic p and n be an
integer. If ` = p, we assume n = 0. Write γF for the image of the geometric Frobenius
automorphism FF of F in Γ = Gal(Fcyc/F ). The `-adic L-function of Rk∗η∗(ρ) is
given by

LFcyc/F (W,Rk∗η∗(ρ)(n)) ∶= Z(W,Rk∗η∗(ρ), q
−nγ−1

F ) ∈ K1(Λ[[Γ]]S).

From now on, we let F denote a totally real number field and assume ` ≠ 2.
By [CL73, Cor 1.4] there exists for each n ∈ Z, n < 0 a well defined number
LΣ,T(ρ,n) ∈ C such that

α(LΣ,T(ρ,n)) = LΣ,T(α ○ ρ,n) ∈ C

Consequently,

LΣ′,T′(ρ,n) = LΣ,T(ρ,n) ∏
x∈Σ′∪T′−Σ∪T

ϕ(LFcyc/F (x,Rk∗η∗(ρ)(n)))
−1

if Σ ⊂ Σ′ and T ⊂ T′ with disjoint subsets Σ′ and T′ of X such that ρ is unramified
over X −Σ′ −T′ and ` is invertible on T′.

Let κF ∶GalF → Z×` denote the cyclotomic character such that

σ(ζ) = ζκF (σ)

for every σ ∈ GalF and ζ ∈ µ`∞ . Further, we write ωF ∶GalF → µ`−1 for the Te-
ichmüller character, i. e. the composition of κF with the projection Z×` → µ`−1.
Finally, we set εF ∶= κFω

−1 and note that εF factors through Γ = Gal(Fcyc/F ).
Assume that ρ factors through the Galois group of a totally real field extension

of F . Then η∗(ρ) is smooth at ∞. Assume further that U = W , such that T is
empty. Under Conjecture 3.3.4 it follows from [Gre83] and from the validity of the
classical main conjecture that for every integer n there exist unique elements

LFcyc/F (U, η∗(ρω
n
F )(1 − n)) ∈ K1(OC[[Γ]]S)
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such that

(4.1.3)
Φεn

F
(LFcyc/F (U, η∗(ρω

n
F )(1 − n))) = LFcyc/F (U, η∗(ρ)(1)),

ϕ(LFcyc/F (U, η∗(ρω
n
F )(1 − n))) = LΣ,∅(ρω

n
F ,1 − n) if n > 1.

with Φεn
F

as defined in Example 2.6.3. Beware that Greenberg uses the arithmetic
convention for L-functions.

Definition 4.1.2. Let γ ∈ Γ be a topological generator. We define the global
modification factor for η∗(ρω

n
F )(1) and f ∶UFcyc → U to be the element

MFcyc/F,γ(U, η∗(ρ)(1)) ∶= LFcyc/F (U, η∗(ρ)(1))sγ([R Γc(U, f!f
∗η∗(ρ)(1))])

in K1(OC[[Γ]]).

If ρ has ramification over U , we will see later in Section 5.1 that we can still
associate a OC-adic sheaf η∗(ρ) on U to ρ. In general, this sheaf will not be smooth.
Still, all other results in this section can be extended in an obvious manner.

4.2. Non-Commutative L-Functions for Really Admissible Extensions

Let F be a totally real number field and ` ≠ 2. Throughout this section, we make
use of Conjecture 3.3.4. We recall the main theorem of [Kak13].

Theorem 4.2.1. Let U ⊂X be a dense open subscheme with complement Σ and
assume that ` is invertible on U . Assume that F∞/F is a really admissible extension
which is unramified over U and that G = Gal(F∞/F ) is an `-adic Lie group. Then

there exists unique elements L̃F∞/F (U, (Z`)U(1)) ∈ K1(Z`[[G]]S)/ŜK1(Z`[[G]])
such that

(1)

dL̃F∞/F (U, (Z`)U(1)) = −[R Γc(U, f!f
∗(Z`)U(1))],

(2) For any Artin representation ρ factoring through G

Φρ(L̃F∞/F (U, (Z`)U(1))) = LFcyc/F (U, η∗(ρ)(1))

Proof. This is [Kak13, Thm. 2.11] translated into our notations. Recall that
our Φρκ−n

F
corresponds to Φρ̄κn

F
in the notation of the cited article. Moreover, Kakde

uses the arithmetic convention in the definition of L-values. Further, note that
the `-adic L-function LFcyc/F (U, η∗(ρ)(1)) is uniquely determined by the values
ϕ(Φεn

F
(LFcyc/F (U, η∗(ρ)(1)))) for n < 0 and n ≡ 0 mod ` − 1. Finally, Kakde’s

complex C(F∞/F ) corresponds to R Γc(U, f!f
∗(Z`)U(1)) shifted by 3 and therefore,

the images of the two complexes under d differ by a sign, but at the same time, his
definition of d differs by a sign from ours. �

We will improve this theorem as follows. Let Ξ = ΞF be the set of pairs (U,F∞)
such that U ⊂ X is a dense open subscheme with ` invertible on U and F∞/F is a
really admissible extension unramified over U .

Theorem 4.2.2. Let γ ∈ Γ = Gal(Fcyc/F ) be a topological generator. There
exists a unique family of elements

(MF∞/F,γ(U, (Z`)U(1)))(U,F∞)∈Ξ

such that

(1) MF∞/F,γ(U, (Z`)U(1)) ∈ K1(Z`[[Gal(F∞/F )]]),
(2) if U ⊂ U ′ with complement Σ and (U,F∞), (U ′, F∞) ∈ Ξ, then

MF∞/F,γ(U
′, (Z`)U ′(1)) =MF∞/F,γ(U, (Z`)U(1)) ∏

x∈Σ
MF∞/F,γ(x, (Z`)U ′(1)),
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(3) if (U,F∞), (U,F ′
∞) ∈ Ξ such that F ′

∞ ⊂ F∞ is a subfield, then

ΨZ`[[Gal(F ′
∞/F )]](MF∞/F,γ(U, (Z`)U(1))) =MF ′

∞/F,γ(U, (Z`)U(1)),

(4) if (U,F∞) ∈ Ξ and ρ∶Gal(F∞/F ) → Gln(OC) is an Artin representation,
then

Φρ(MF∞/F,γ(U, (Z`)U(1))) =MFcyc/F,γ(U, η∗(ρ)(1))

with MFcyc/F,γ(U, η∗(ρ)(1)) as in Definition 4.1.2.

Proof. Uniqueness: Assume that mk(U,F∞), k = 1,2 are two families with
the listed properties. Then

d(F∞) ∶=m2(U,F∞)−1m1(U,F∞)

does not depend on U as a consequence of (2).
Let (U,F∞) ∈ Ξ be any pair such that F∞/Fcyc is finite and write f ∶UF∞ → U

for the system of coverings of U associated to F∞/F . Then (4) implies that the
elements

mi(U,F∞)sγ(−[R Γc(U, f!f
∗(Z`)U(1))])

both agree with L̃F∞/F (U, (Z`)U(1)) modulo ŜK1(Z`[[Gal(F∞/F )]]). Hence,

d(F∞) ∈ ŜK1(Z`[[Gal(F∞/F )]]).

By Corollary 2.1.4, we may find a pair (U ′, F ′
∞) ∈ Ξ such that F ′

∞/F∞ is finite,
U ′ ⊂ U , and

(4.2.1) ΨZ`[[Gal(F∞/F )]]∶ ŜK1(Z`[[Gal(F ′
∞/F )]]) → ŜK1(Z`[[Gal(F∞/F )]])

is the zero map. We conclude from (3) that d(F∞) = 1 for all (U,F∞) with F∞/Fcyc

finite. Now for any really admissible extension F∞/F ,

K1(Z`[[Gal(F∞/F )]]) = lim
←Ð
F ′
∞

K1(Z`[[Gal(F ′
∞/F )]])

where F ′
∞ runs through the really admissible subextensions of F∞/F with F ′

∞/Fcyc

finite [FK06, Prop. 1.5.3]. We conclude that d(F∞) = 1 in general.
Existence: It suffice to construct the elements for (U,F∞) ∈ Ξ with F∞/Fcyc

finite. Choose (U ′, F ′
∞) as above such that the map in (4.2.1) becomes trivial. Pick

any m ∈ K1(Z`[[Gal(F ′
∞/F )]]) such that

msγ(−[R Γc(U, f!f
∗(Z`)U(1))]) ≡

L̃F ′
∞/F (U ′, (Z`)U ′(1)) mod ŜK1(Z`[[Gal(F ′

∞/F )]])

Define

MF∞/F,γ(U, (Z`)U(1)) ∶= ΨZ`[[Gal(F∞/F )]](m) ∏
x∈U−U ′

MF∞/F,γ(x, (Z`)U(1)).

By Proposition 2.9.1 and Proposition 3.5.4 we conclude that

MF∞/F,γ(U, (Z`)U(1))sγ(−[R Γc(U, f!f
∗(Z`)U(1))]) ≡ L̃F∞/F (U, (Z`)U(1))

mod ŜK1(Z`[[Gal(F∞/F )]])

and that MF∞/F,γ(U, (Z`)U(1)) satisfies

Φρ(MF∞/F,γ(U, (Z`)U(1))) =MFcyc/F,γ(U, η∗(ρ)(1))

for any Artin representation ρ∶Gal(F∞/F ) → Gld(OC). In particular, the system

(MF∞/F,γ(U, (Z`)U(1)))(F∞,U)∈Ξ

satisfies (1) and (4). By construction and again by Proposition 3.5.4, it is inde-
pendent of the choices of (U ′, F ′

∞) and m and satisfies (2) and (3). �
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Corollary 4.2.3. There exists a unique family of elements

(LF∞/F (U, (Z`)U(1)))(U,F∞)∈Ξ

such that

(1) LF∞/F (U, (Z`)U(1)) ∈ K1(Z`[[Gal(F∞/F )]]S),
(2) if (U,F∞) ∈ Ξ and f ∶UF∞ → U denotes the associated system of coverings,

then

dLF∞/F (U, (Z`)U(1)) = −[R Γc(U, f!f
∗(Z`)U(1))]

(3) if U ′ ⊂ U with complement Σ and (U ′, F∞), (U,F∞) ∈ Ξ, then

LF∞/F (U, (Z`)U(1)) = LF∞/F (U ′, (Z`)U ′(1)) ∏
x∈Σ
LF∞/F (x, (Z`)U(1)),

(4) if (U,F∞), (U,F ′
∞) ∈ Ξ such that F ′

∞ ⊂ F∞ is a subfield, then

ΨZ`[[Gal(F ′
∞/F )]](LF∞/F (U, (Z`)U(1))) = LF ′

∞/F (U, (Z`)U(1)),

(5) if (U,F∞) ∈ Ξ and ρ∶Gal(F∞/F ) → Gld(OC) is an Artin representation,
then

Φρ(LF∞/F (U, (Z`)U(1))) = LFcyc/F (U, η∗(ρ)(1)).

Proof. Fix a topological generator γ ∈ Γ and set

LF∞/F (U, (Z`)U(1)) ∶= MF∞/F,γ(U, (Z`)U(1))sγ(−[R Γc(U, f!f
∗(Z`)U(1))]).

If (L̃(U,F∞))(U,F∞)∈Ξ is a second family with the listed properties, then

L̃(U,F∞)sγ([R Γc(U, f!f
∗(Z`)U(1))]) =MF∞/F,γ(U, (Z`)U(1))

by the uniqueness of MF∞/F,γ(U, (Z`)U(1)). �

Let Θ = ΘF be the set of triples (U,F∞,Λ) such that U ⊂ X is a dense open
subscheme with ` invertible on U , F∞/F is a really admissible extension unramified
over U and Λ is an adic Z`-algebra.

Theorem 4.2.4. Let γ ∈ Γ = Gal(Fcyc/F ) be a topological generator. There
exists a unique family of homomorphisms

(MF∞/F,γ(U, (−)(1))∶K0(PDGcont,∞(U,Λ)) → K1(Λ[[Gal(F∞/F )]]))(U,F∞,Λ)∈Θ

such that

(1) for any (U,F∞,Z`) ∈ Θ,MF∞/F,γ(U, (Z`)U(1)) is the element constructed
in Theorem 4.2.2,

(2) if j∶U ′ → U is an open immersion and (U ′, F∞,Λ), (U,F∞,Λ) ∈ Θ, then

MF∞/F,γ(U,F
●(1)) =MF∞/F,γ(U

′, j∗F ●(1)) ∏
x∈U−U ′

MF∞/F,γ(x,F
●(1)),

for any F ● in PDGcont,∞(U,Λ).
(3) if (U,F∞,Λ), (U,F ′

∞,Λ) ∈ Θ such that F ′
∞ ⊂ F∞ is a subfield, then

ΨZ`[[Gal(F ′
∞/F )]](MF∞/F,γ(U,F

●(1))) =MF ′
∞/F,γ(U,F

●(1)),

for any F ● in PDGcont,∞(U,Λ).
(4) if (U,F∞,Λ), (U,F∞,Λ

′) ∈ Θ and P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-
bimodules, strictly perfect as complex of Λ′-modules, then

ΨP [[Gal(F∞/F )]]δ●(MF∞/F,γ(U,F
●(1))) =MF∞/F,γ(U,ΨP̃ ●(F ●)(1))

for any F ● in PDGcont,∞(U,Λ).
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Proof. Applying (4) to the Λ/I-Λ[[G]]-bimodule Λ/I[[G]] for any open two-
sided ideal I of Λ and using

K1(Λ[[G]]) = lim
←Ð
I∈IΛ

K1(Λ/I[[G]]),

we conclude that it is sufficient to consider triples (U,F∞,Λ) ∈ Θ with Λ a finite
ring. So, let Λ be finite. Since MF∞/F,γ(U,F ●(1)) depends only on the class of

F ● in K0(PDGcont,∞(U,Λ)), we may assume that F ● is a bounded complex of flat
constructible étale sheaves of Λ-modules. Using (2) we may shrink U until F ● is a
complex of locally constant étale sheaves. Hence, there exists a (U,F ′

∞,Λ) ∈ Θ such
that F∞/F is a subextension of F ′

∞/F and such that the restriction of F ● to UK for
some finite subextension K/F of F ′

∞/F is a complex of constant sheaves. By (3),
we may replace F∞ by F ′

∞. We may then find a complex of Λ-Z`[[Gal(F∞/F )]]-
bimodules P ●, strictly perfect as complex of Λ modules and a weak equivalence

ΨP ●f!f
∗(Z`)U(1)

∼
Ð→ F ●(1)

[Wit14, Prop. 6.8]. By (4), the only possible definition of MF∞/F,γ(U,F ●(1)) is

MF∞/F,γ(U,F
●(1)) = ΨP [[Gal(F∞/F )]]δ●(MF∞/F,γ(U, (Z`)U(1))).

It is then clear that this construction satisfies the given properties. �

Theorem 4.2.5. Let γ ∈ Γ = Gal(Fcyc/F ) be a topological generator. There
exists a unique family of homomorphisms

(M⊛
F∞/F,γ(U,−)∶K0(PDGcont,∞(U,Λ)) → K1(Λ[[Gal(F∞/F )]]))

(U,F∞,Λ)∈Θ

such that

(1) for any (U,F∞,Z`) ∈ Θ,

M⊛
F∞/F,γ(U, (Z`)U) = (MF∞/F,γ(U, (Z`)U(1)))⊛

(2) if j∶U ′ → U is an open immersion and (U ′, F∞,Λ), (U,F∞,Λ) ∈ Θ, then

M⊛
F∞/F,γ(U,F

●) =M⊛
F∞/F,γ(U

′, j∗F ●) ∏
x∈U−U ′

M⊛
F∞/F,γ(x,F

●),

for any F ● in PDGcont,∞(U,Λ).
(3) if (U,F∞,Λ), (U,F ′

∞,Λ) ∈ Θ such that F ′
∞ ⊂ F∞ is a subfield, then

ΨZ`[[Gal(F ′
∞/F )]](M

⊛
F∞/F,γ(U,F

●(1))) =M⊛
F ′
∞/F,γ(U,F

●),

for any F ● in PDGcont,∞(U,Λ).
(4) if (U,F∞,Λ), (U,F∞,Λ

′) ∈ Θ and P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-
bimodules, strictly perfect as complex of Λ′-modules, then

ΨP [[Gal(F∞/F )]]δ●(M
⊛
F∞/F,γ(U,F

●)) =M⊛
F∞/F,γ(U,ΨP̃ ●(F ●))

for any F ● in PDGcont,∞(U,Λ).

Moreover, for any (U,F∞,Λ) ∈ Θ and any smooth Λ-adic sheaf F on U , we have

M⊛
F∞/F,γ(U,F ) = (MF∞/F,γ(U,F

∗Λ(1)))⊛.

Proof. We proceed as in Theorem 4.2.4 and use Lemma 2.7.3. �
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Proposition 4.2.6. Assume that γ, γ′ are two topological generators of Γ.
Then

MF∞/F,γ

MF∞/F,γ′
(U,F ●(1)) =

sγ

sγ′
([R Γc(U, f!f

∗F ●(1))])

M⊛
F∞/F,γ

M⊛
F∞/F,γ′

(U,F ●) =
s(γ′)−1

sγ−1

([R Γ(U, f!f
∗F ●)])

for any (U,F∞,Λ) ∈ Θ and any F ● in PDGcont,∞(U,Λ).

Proof. By definition, these identities hold for the local modification factors
and by Corollary 4.2.3 and Proposition 2.9.3 they hold for F ● = (Z`)U . Hence,

MF∞/F,γ(U,F
●(1)) =

sγ

sγ′
([R Γc(U, f!f

∗F ●(1))])MF∞/F,γ′(U,F
●(1))

M⊛
F∞/F,γ(U,F

●) =
s(γ′)−1

sγ−1

([R Γ(U, f!f
∗F ●)])M⊛

F∞/F,γ′(U,F
●)

by the uniqueness assertion in Theorem 4.2.4 and Theorem 4.2.5. �

Theorem 4.2.7. Let F ′/F be a finite extension of totally real fields. Set r ∶=
[F ′ ∩ Fcyc ∶ F ] and let γ ∈ Gal(Fcyc/F ) be a topological generator. Assume that
(U,F∞,Λ) ∈ ΘF with F ′ ⊂ F∞ and write fF ′ ∶UF ′ → U for the associated covering.
Then

(1) for every F ● in PDGcont,∞(U,Λ),

MF∞/F ′,γr(UF ′ , f∗F ′F ●(1)) = ΨΛ[[Gal(F∞/F )]]MF∞/F,γ(U,F
●(1)),

M⊛
F∞/F ′,γr(UF ′ , f∗F ′F ●) = ΨΛ[[Gal(F∞/F )]]M

⊛
F∞/F,γ(U,F

●);

(2) for every G● in PDGcont,∞(UF ′ ,Λ),

MF∞/F,γ(U, fF ′∗G●(1)) = ΨΛ[[Gal(F∞/F )]]MF∞/F ′,γr(UF ′ ,G●(1)),

M⊛
F∞/F,γ(U, fF ′∗G●) = ΨΛ[[Gal(F∞/F )]]M

⊛
F∞/F ′,γr(UF ′ ,G●).

Proof. We prove the identities for the global modification factors; the proof
for the global dual modification factors is the same.

We first note that for any complex P ● of Λ′-Λ[[Gal(F∞/F )]]-bimodules, strictly
perfect as complex of Λ′-modules, there exists an obvious isomorphism of complexes
of Λ′[[Gal(F∞/F ′)]]-Λ[[Gal(F∞/F )]]-bimodules

Λ′[[Gal(F∞/F )]] ⊗Λ′[[Gal(F∞/F )]] P [[Gal(F∞/F )]]δ
●
≅

P [[Gal(F∞/F ′)]]δ
●
⊗Λ[[Gal(F∞/F ′)]] Λ[[Gal(F∞/F )]].

Hence,

(4.2.2) ΨΛ′[[Gal(F∞/F )]] ○ΨP [[Gal(F∞/F )]]δ● = ΨP [[Gal(F∞/F ′)]]δ● ○ΨΛ[[Gal(F∞/F )]]

as homomorphisms from K1(Λ[[Gal(F∞/F )]]) to K1(Λ
′[[Gal(F∞/F ′)]]). Like-

wise, for a complex Q● of Λ′-Λ[[Gal(F∞/F ′)]]-bimodules, strictly perfect as com-
plex of Λ′-modules, we have an equality

(4.2.3) ΨΛ′[[Gal(F∞/F )]] ○ΨQ[[Gal(F∞/F ′)]]δ● = ΨQ[[Gal(F∞/F )]]δ● ○ΨΛ[[Gal(F∞/F )]].

in Hom(K1(Λ[[Gal(F∞/F ′)]]),K1(Λ
′[[Gal(F∞/F )]])).

In particular, we may reduce to the case of finite Z`-algebras Λ by choosing
P ● = Λ = Q● with the trivial action of Gal(F∞/F ) and Gal(F∞/F ′), respectively.
By Proposition 3.5.4.(4) we may then shrink U until F ● and G● may be assumed to
be strictly perfect complexes of locally constant étale sheaves. Using the identities
(4.2.2) and (4.2.3) again, we may reduce to the case Λ = Z` and F ● = (Z`)U ,
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G● = (Z`)UF ′ . We may then further reduce to the case that F∞/F ′
cyc is a finite

extension.
Setting

q ∶=
MF∞/F ′,γr(UF ′ , f∗F ′(Z`)UF ′ (1))

ΨΛ[[Gal(F∞/F )]]MF∞/F,γ(U, (Z`)U(1))
∈ K1(Λ[[Gal(F∞/F ′)]]),

q′ ∶=
MF∞/F,γ(U, fF ′∗(Z`)UF ′ (1))

ΨΛ[[Gal(F∞/F )]]MF∞/F ′,γr(UF ′ , (Z`)U(1))
∈ K1(Λ[[Gal(F∞/F )]]),

it suffices to show that q = 1 and q′ = 1.
Let g∶UF∞ → UF ′ denote the restriction of f ∶UF∞ → U . Write

M = Z`[Gal(F∞/F ′)/Gal(F∞/F )]

for the Z`-Z`[[Gal(F∞/F )]]-bimodule freely generated as Z`-module by the right
cosets Gal(F∞/F )σ for σ ∈ Gal(F∞/F ) and on which τ ∈ Gal(F∞/F ) operates by
right multiplication. From Proposition 3.3.2 we conclude

ΨZ`[[Gal(F∞/F )]] R Γc(U, f!f
∗(Z`)U(1)) ∼ R Γc(U, fF ′∗g!g

∗f∗F ′(Z`)U(1))

∼ R Γc(UF ′ , g!g
∗(Z`)UF ′ (1)),

ΨZ`[[Gal(F∞/F )]] R Γc(UF ′ , g!g
∗(Z`)UF ′ (1))
∼ ΨZ`[[Gal(F∞/F )]] R Γc(U, fF ′∗g!g

∗(Z`)UF ′ (1))
∼ R Γc(U, f!f

∗fF ′∗(Z`)UF ′ (1))
∼ ΨM[[Gal(F∞/F )]]δ R Γc(U, f!f

∗(Z`)U(1)).

Additionally, we note that

MF∞/F,γ(U, fF ′∗(Z`)U(1)) = ΨM[[Gal(F∞/F )]]δMF∞/F,γ(U, (Z`)U(1))

by Theorem 4.2.4.
From this and from Proposition 2.9.1, we conclude

q =
LF∞/F ′(UF ′ , (Z`)UF ′ (1))

ΨΛ[[Gal(F∞/F )]]LF∞/F (U, (Z`)U(1))
,

q′ =
ΨM[[Gal(F∞/F )]]δLF∞/F (U, (Z`)U(1))

ΨΛ[[Gal(F∞/F )]]LF∞/F ′(UF ′ , (Z`)U(1))
.

Let C/Q` be a finite field extension and

ρ′∶Gal(F∞/F ′) → Gld(OC)

ρ∶Gal(F∞/F ) → Gld(OC)

be Artin representations. Write

ϕF ∶OC[[Gal(Fcyc/F )]] → OC

ϕF ′ ∶OC[[Gal(F ′
cyc/F

′)]] → OC

for the augmentation maps. We denote by IndFF ′ ρ′ and ResF
′

F ρ the induced and
restricted representations, respectively.

Then for every n ∈ Z

ϕF ′ ○Φρ′εn
F ′
○ΨZ`[[Gal(F∞/F )]] = ϕF ○ΦIndF

F ′ ρ
′εn
F ′

= ϕF ○Φεn
F

IndF
F ′ ρ

′

as maps from K1(Z`[[Gal(F∞/F )]]S) to P1(C) and

ϕF ○Φρεn
F
○ΨZ`[[Gal(F∞/F )]] = ϕF ′ ○ΦResF

′
F ρεn

F
= ϕF ′ ○Φεn

F ′ ResF
′

F ρ
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as maps from K1(Z`[[Gal(F∞/F ′)]]S) to P1(C). From (4.1.3) and the transfor-
mation properties of the complex Artin L-functions with respect to inflation and
restriction we conclude that for n < −1 and Σ =X −U

ϕF ′ ○Φρ′εn
F ′

(ΨΛ[[Gal(F∞/F )]]LF∞/F (U, (Z`)U(1))) =

= LΣ,∅(ω
−n
F IndFF ′ ρ′,1 + n)

= LΣF ′ ,∅(ρ
′ω−nF ′ ,1 + n)

= ϕF ′ ○Φρ′εn
F ′

(LF∞/F ′(UF ′ , (Z`)UF ′ (1))),
ϕF ○Φρεn

F
(ΨΛ[[Gal(F∞/F )]]LF∞/F ′(UF ′ , (Z`)UF ′ (1)) =

= LΣF ′ ,∅(ω
−n
F ′ ResF

′

F ρ,1 + n)

= LΣ,∅(ω
−n
F IndF

′

F ResF
′

F ρ,1 + n)

= ϕF ○Φεn
F

IndF
′

F ResF
′

F ρ(LF∞/F (U, (Z`)U(1))))

= ϕF ○Φρεn
F
(ΨM[[Gal(F∞/F )]]δLF∞/F (U, (Z`)U(1))).

From [Bur15, Lem. 3.4] we conclude that Φρ′(q) = 1 in K1(OC[[Γ]]) and thus
ϕF ′(Φρ′(q)) = 1 in C for every Artin representation ρ′ of Gal(F∞/F ′). In particular,
with K running through the finite Galois extension fields of F in F∞, the images
of q in the groups K1(Q`[Gal(K/F )]) are trivial. This implies

q ∈ ŜK1(Z`[[Gal(F∞/F ′)]]).

Using Corollary 2.1.4 we find a suitable admissible extension L∞/F unramified over
U ′ ⊂ U such that

ΨZ`[[Gal(F∞/F ′)]]∶ ŜK1(Z`[[Gal(L∞/F ′)]]) → ŜK1(Z`[[Gal(F∞/F ′)]])

is the zero map. As

q = ΨZ`[[Gal(F∞/F ′)]] (
ML∞/F ′,γr(U

′
F ′ , f∗F ′(Z`)U ′

F ′
(1))

ΨΛ[[Gal(L∞/F )]]ML∞/F,γ(U ′, (Z`)U ′(1))
) ,

we conclude q = 1. The proof that q′ = 1 follows the same pattern. �

Definition 4.2.8. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that ` is invertible on W , and Λ
be an adic Z`-algebra. Fix a topological generator γ ∈ Gal(Fcyc/F ). For any F ● in

PDGcont,∞(U,Λ), and any really admissible extension F∞/F unramified over U ,
we set

MF∞/F,γ(W,Rk∗F ●(1)) ∶= MF∞/F ′,γ(U,F
●(1)) ∏

x∈W−U
MF∞/F ′,γ(x,Rk∗f!f

∗F ●(1)),

M⊛
F∞/F,γ(W,Rk∗F ●) ∶= M⊛

F∞/F ′,γ(U,F
●) ∏
x∈W−U

M⊛
F∞/F ′,γ(x, k!f!f

∗F ●)

in K1(Λ[[Gal(F∞/F )]]) and

LF∞/F (W,Rk∗F ●(1)) ∶= MF∞/F,γ(W,Rk∗F ●(1))sγ(−[R Γc(W,Rk∗f!f
∗F ●(1))]),

L⊛F∞/F (W,k!F ●) ∶= M⊛
F∞/F,γ(W,k!F ●)sγ−1([R Γ(W,k!f!f

∗F ●)])

in K1(Λ[[Gal(F∞/F )]]S).

Note that we do not assume that F∞/F is unramified over W . If it is unramified
over W , then

R Γc(W,Rk∗f!f
∗F ●(1)) = R Γc(W,f!f

∗ Rk∗F ●(1)),

R Γ(W,k!f!f
∗F ●) = R Γ(W,f!f

∗k!F ●)
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and the two possible definitions ofMF∞/F,γ(W,Rk∗F ●(1)) andM⊛
F∞/F,γ(W,k!F ●)

agree. Moreover, by Proposition 4.2.6, LF∞/F (W,Rk∗F ●(1)) and L⊛
F∞/F (W,k!F ●)

do not depend on the choice of γ.
In the following corollary, we compile a list of the transformation properties of

LF∞/F (W,Rk∗F ●(1)) and L⊛
F∞/F (W,k!F ●).

Corollary 4.2.9. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that ` is invertible on W , and Λ be
an adic Z`-algebra. Fix a F ● in PDGcont,∞(U,Λ), and a really admissible extension
F∞/F unramified over U .

(1) Write f ∶UF∞ → U for the system of coverings associated to F∞/F . Then

dLF∞/F (W,Rk∗F ●(1)) = −[R Γc(W,Rk∗f!f
∗F ●(1))],

dL⊛F∞/F (W,k!F ●) = [R Γ(W,k!f!f
∗F ●)]

(2) If G● and F ● are weakly equivalent in PDGcont,∞(U,Λ), then

LF∞/F (W,Rk∗F ●(1)) = LF∞/F (W,Rk∗G●(1)),

L⊛F∞/F (W,k!F ●) = L⊛F∞/F (W,k!G●).

(3) If 0 → F ′● → F ● → F ′′● → 0 is an exact sequence in PDGcont,∞(U,Λ),
then

LF∞/F (W,Rk∗F ●(1)) = LF∞/F (W,Rk∗F ′●(1))LF∞/F (W,Rk∗F ′′●(1)),

L⊛F∞/F (W,k!F ●) = L⊛F∞/F (W,k!F ′●)L⊛F∞/F (W,k!F ′′●).

(4) If W ′ is an open dense subscheme of X on which ` is invertible and
k′∶W →W ′ is an open immersion, then

LF∞/F (W ′,R(k′k)∗F ●(1)) =LF∞/F (W,Rk∗F ●(1))

∏
x∈W ′−W

LF∞/F (x,R(k′k)∗F ●(1)),

L⊛F∞/F (W ′, (k′k)!F ●) =L⊛F∞/F (W,k!F ●)

∏
x∈W ′−W

L⊛F∞/F (x, (k′k)!F ●).

(5) If i∶x→ U is a closed point, then

LF∞/F (W,Rk∗i∗i
∗F ●(1)) = LF∞/F (x,F ●(1)),

L⊛F∞/F (W,k!i∗ R i!F ●) = L⊛F∞/F (x,F ●).

(6) If F ′
∞/F is a really admissible subextension of F∞/F , then

ΨΛ[[Gal(F ′
∞/F )]](LF∞/F (W,Rk∗F ●(1))) = LF ′

∞/F (W,Rk∗F ●(1)),

ΨΛ[[Gal(F ′
∞/F )]](L

⊛
F∞/F (W,k!F ●)) = L⊛F ′

∞/F (W,k!F ●).

(7) If P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-bimodules, strictly perfect as
complex of Λ′-modules, for another adic Z`-algebra Λ′, then

ΨP [[Gal(F∞/F )]]δ●(LF∞/F (W,Rk∗F ●(1))) = LF∞/F (W,Rk∗ΨP̃ ●(F ●)(1)),

ΨP [[Gal(F∞/F )]]δ●(L
⊛
F∞/F (W,k!F ●)) = L⊛F∞/F (W,k!ΨP̃ ●(F ●)).

(8) If F ′/F is a finite extension inside F∞ and fF ′ ∶UF ′ → U the associated
covering, then

ΨΛ[[Gal(F∞/F )]](LF∞/F (W,Rk∗F ●(1))) = LF∞/F ′(WF ′ ,Rk∗f
∗
F ′F ●(1)),

ΨΛ[[Gal(F∞/F )]](L
⊛
F∞/F (W,k!F ●)) = L⊛F∞/F ′(WF ′ , k!f

∗
F ′F ●).
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(9) With the notation of (8), if G● is in PDGcont,∞(UF ′ ,Λ), then

ΨΛ[[Gal(F∞/F )]](LF∞/F ′(WF ′ ,Rk∗G●(1))) = LF∞/F (W,Rk∗fF ′∗G●(1)),

ΨΛ[[Gal(F∞/F )]](L
⊛
F∞/F ′(WF ′ , k!G●)) = L⊛F∞/F (W,k!fF ′∗G●).

(10) If F is a smooth Λ-adic sheaf on U which is smooth at ∞, then

L⊛F∞/F (W,k!F ) = (LF∞/F (W,Rk∗F ∗Λ(1)))⊛.

(11) If C/Q` is a finite field extension and ρ∶Gal(F∞/F ) → Gld(OC) is an
Artin representation, then

Φρε−n
F

(LF∞/F (W,Rk∗(Z`)U(1))) = LFcyc/F (W,Rk∗η∗(ρω
n
F )(1 − n)),

Φρεn
F
(L⊛F∞/F (W,Rk∗(Z`)U)) = L⊛Fcyc/F (W,Rk∗η∗(ρω

−n
F )(n)),

for any integer n.
(12) If C/Q` is a finite field extension and ρ∶GalF → Gld(OC) is an Artin

representation which factors through a totally real field and which is un-
ramified over U , then

ϕ(LFcyc/F (W,Rk∗η∗(ρω
n
F )(1 − n))) = LΣ,T(ρωnF ,1 − n),

ϕ(L⊛Fcyc/F (W,k!η∗(ρω
−n
F )(n))) = LΣ,T(ρ∗ωnF ,1 − n)

−1

with Σ =X −W , T =W −U and any integer n > 1.

Proof. Properties (1)–(4) are clear by definition. For Property (5) we notice
that for y ∈W

LF∞/F (y,Rk∗i∗i
∗F ●(1)) =

⎧⎪⎪
⎨
⎪⎪⎩

LF∞/F (x,F ●(1)) if y = x,

1 else.

Hence,

LF∞/F (W,Rk∗i∗i
∗F ●(1)) = LF∞/F (U, i∗i

∗F ●(1)) = LF∞/F (x,F ●(1))

by (4) and by Theorem 4.2.4.(2). The proof for the dual L-function is analogous.
Properties (6) and (7) follow from Theorem 4.2.4 or Theorem 4.2.5 combined

with Proposition 2.9.1 and either Proposition 3.5.4 or Proposition 3.5.8. For Proper-
ties (8) and (9) one applies Theorem 4.2.7. Property (10) follows from the last part
of Theorem 4.2.5 combined with Proposition 2.9.3 and Proposition 3.5.9. Property
(11) is just a special case of (7) in a different notation.

It remains to prove (12). The first identity is simply the combination of (4.1.3)
and (4.1.2). The second identity follows from (4.1.1), Property (10) and the first
identity. �

4.3. CM-Admissible Extensions

Definition 4.3.1. Let F be a totally real number field and F∞/F an admissible
extension. We call F∞/F CM-admissible if F∞ is totally imaginary and there exists
an involution ι ∈ Gal(F∞/F ) such that the fixed field F +

∞ of ι is totally real.

Let F be a totally real number field and ` ≠ 2 throughout this section. Note
that for a CM-admissible extension F∞/F with Galois group

G ∶= Gal(F∞/F ),

the automorphism ι is uniquely determined and commutes with every other field
automorphism of F∞. As usual, we write

e− ∶=
1 − ι

2
, e+ ∶=

1 + ι

2
∈ Λ[[G]].

for the corresponding central idempotents.
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The extension F +
∞/F is Galois and a hence, a really admissible extension. We

set G+ ∶= Gal(F +
∞/F ). Moreover, we fix as before an immersion k∶U →W of open

dense subschemes of X = SpecF such that F∞/F is unramified over U and ` ≠ 2 is
invertible on W . Let

f+∶UF+
∞
→ U

denote the restriction of the family of coverings f ∶UF∞ → U to UF+
∞

.
If F∞ contains the `-th roots of unity and hence, the `n-th roots of unity for

all n ≥ 1, the cyclotomic character

κF ∶GalF → Z×` , gζ = ζκF (g), g ∈ GalF , ζ ∈ µ`∞

factors through G = Gal(F∞/F ). We then obtain for every odd n ∈ Z a ring
isomorphism

Λ[[G]] → Λ[[G+]] ×Λ[[G+]], G ∋ g ↦ (g+, κF (g)ng+),

where g+ denotes the image of g ∈ G in G+. The projections onto the two compo-
nents corresponds to the decomposition of Λ[[G]] with respect to e+ and e−.

We will construct the corresponding decomposition of A(Λ[[G]]), where

A ∈ {PDGcont,wHPDGcont,PDGcont,wH}.

Write Λ(κnF )♯ for the Λ-Λ[[G]]-bimodule Λ with g ∈ G acting by κnF (g−1) from the
right and Λ(κnF )♯[[G]]δ for the Λ[[G]]-Λ[[G]]-bimodule Λ[[G]] ⊗Λ Λ(κnF )♯ with
the diagonal right action of G. According to Example 2.6.1, we obtain Waldhausen
exact functors

ΨΛ(κn
F
)♯[[G]]δ ∶A(Λ[[G]]) →A(Λ[[G]]).

Moreover, considering Λ[[G+]] as a Λ[[G+]]-Λ[[G]]-bimodule or as a Λ[[G]]-
Λ[[G+]]-bimodule, we obtain Waldhausen exact functors

ΨΛ[[G+]]∶A(Λ[[G]]) →A(Λ[[G+]]), ΨΛ[[G+]]∶A(Λ[[G+]]) →A(Λ[[G]]).

Note there exists isomorphisms of Λ[[G]]-Λ[[G]]-bimodules

e+Λ[[G]] ≅ Λ[[G+]] ⊗Λ[[G+]] Λ[[G+]]

e−Λ[[G]] ≅ Λ(κnF )♯[[G]]δ ⊗Λ[[G]] e+Λ[[G]] ⊗Λ[[G]] Λ(κ−nF )♯[[G]]δ

for every odd n ∈ Z such that the composition

ΨΛ[[G+]] ○ΨΛ[[G+]]∶A(Λ[[G]]) →A(Λ[[G]])

is just the projection onto the e+-component, whereas the projection onto the e−-
component may be written as

ΨΛ(κn
F
)♯[[G]]δ⊗Λ[[G]]Λ[[G+]] ○ΨΛ[[G+]]⊗Λ[[G]]Λ(κ−n

F
)♯[[G]]δ ∶A(Λ[[G]]) →A(Λ[[G]]).

We further note that

ΨΛ(κn
F
)♯[[G]]δ(f!f

∗F ●) ≅ f!f
∗F ●(n).

If Λ′ is another adic Z`-algebra and P ● is a complex of Λ′-Λ[[G]]-bimodules,
strictly perfect as complex of Λ′-modules, we set

(4.3.1) P ●
+ ∶= P

●e+, P ●
− ∶= P

●e−

such that ι acts trivially on P ●
+ and by −1 on P ●

− . Both are again complex of Λ′-
Λ[[G]]-bimodules and strictly perfect as complex of Λ′-modules. In particular, we
have an isomorphism of complexes of Λ′[[G]]-Λ[[G]]-bimodules

P [[G]]δ
●
≅ P+[[G]]δ

●
⊕ P−[[G]]δ

●
.
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Beware that P+[[G]]δ
●

differs from P [[G]]δ
●
e+. The element ι acts as ι⊗ id on the

first complex and trivially on the second. In fact, we have

P+[[G]]δ
●
e+ = e+P+[[G]]δ

●
, P+[[G]]δ

●
e− = e−P+[[G]]δ

●
,

P−[[G]]δ
●
e+ = e−P−[[G]]δ

●
, P−[[G]]δ

●
e− = e+P−[[G]]δ

●
.

Moreover, the Waldhausen exact functors

PDGcont(U,Λ) → PDGcont(U,Λ′), F ● ↦ ΨP̃+
●(F ●),

PDGcont(U,Λ) → PDGcont(U,Λ′), F ● ↦ ΨP̃−
●(F ●)(1)

map complexes in PDGcont,∞(U,Λ) to complexes in PDGcont,∞(U,Λ′).
Throughout the rest of this section, we make use of Conjecture 3.3.4.

Corollary 4.3.2. Assume that F∞/F is any CM-admissible extension unram-
ified over U . For any F ● in PDGcont,∞(U,Λ), the complexes

e+ R Γc(W,Rk∗f!f
∗F ●(1)), e− R Γc(W,Rk∗f!f

∗F ●),

e+ R Γ(W,k!f!f
∗F ●), e− R Γ(W,k!f!f

∗F ●(1))

are in PDGcont,wH (Λ[[G]]).

Proof. Without loss of generality, we may enlarge F∞ by adjoining the `-th
roots of unity. The claim of the corollary is then an immediate consequence of
Theorem 3.4.2 applied to

ΨΛ[[G+]](R Γc(W,Rk∗f!f
∗F ●(1))) ∼ R Γc(W,Rk∗(f

+)!(f
+)

∗F ●(1)),

ΨΛ[[G+]](R Γ(W,k!f!f
∗F ●)) ∼ R Γ(W,k!(f

+)!(f
+)∗F ●),

ΨΛ[[G+]]⊗Λ[[G]]Λ(κF )♯[[G]]δ(R Γc(W,Rk∗f!f
∗F ●)) ∼ R Γc(W,Rk∗(f

+)!(f
+)∗F ●(1)),

ΨΛ[[G+]]⊗Λ[[G]]Λ(κ−1
F

)♯[[G]]δ(R Γ(W,k!f!f
∗F ●(1))) ∼ R Γ(W,k!(f

+)!(f
+)∗F ●)

�

Assume that F∞/F is CM-admissible and that F∞ contains the `-th roots of
unity. For any F ● in PDGcont,∞(U,Λ), we set

L+F∞/F (W,Rk∗F ●(1)) ∶= ΨΛ[[G+]](LF+
∞/F (W,Rk∗F ●(1))),

L⊛,+
F∞/F (W,k!F ●) ∶= ΨΛ[[G+]](L

⊛
F+
∞/F (W,k!F ●)),

L−F∞/F (W,Rk∗F ●) ∶= ΨΛ(κ−1
F

)♯[[G]]δ⊗Λ[[G]]Λ[[G+]](LF+
∞/F (W,Rk∗F ●(1))),

L⊛,−
F∞/F (W,k!F ●(1)) ∶= ΨΛ(κF )♯[[G]]δ⊗Λ[[G]]Λ[[G+]](L

⊛
F+
∞/F (W,k!F ●))

in K1(Λ[[G]]S). We extend this definition to CM-admissible subextensions F ′
∞/F

with F ′
∞ not containing the `-th roots of unity by taking the image of the elements

under
ΨΛ[[Gal(F ′

∞/F )]]∶K1(Λ[[G]]S) → K1(Λ[[Gal(F ′
∞/F )]]S).

Furthermore, for ε ∈ {+,−}, x ∈W and F ● in PDGcont(U,Λ) we set

LεF∞/F (x,Rk∗F ●) = ΨeεΛ[[G]](LF∞/F (x,Rk∗F ●)),

L⊛,ε
F∞/F (x, k!F ●) = ΨeεΛ[[G]](L

⊛
F∞/F (x, k!F ●)).

We will write −ε ∈ {+,−} for the opposite sign.
Assume that C/Q` is a finite field extension and ρ∶GalF → Gld(OC) is an Artin

representation unramified over U . If ρ(σ) = −id for every complex conjugation
σ ∈ GalF , then ρ factors through a CM-extension of F . In particular, η∗(ρω

−1
F ) is

smooth on U and at ∞ and we may define elements

(4.3.2) LFcyc/F (W,Rk∗η∗(ρω
n
F )(−n)), L⊛Fcyc/F (W,k!η∗(ρω

n
F )(1 − n))
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by identifying η∗(ρω
n
F )(−n) with η∗(ρω

−1
F ω

n+1
F )(1 − (n + 1)). In particular,

ϕ(LFcyc/F (W,Rk∗η∗(ρω
n
F )(−n))) = LΣ,T(ρωnF ,−n),

ϕ(L⊛Fcyc/F (W,k!η∗(ρω
−n
F )(1 − n))) = LΣ,T(ρ∗ωnF ,−n)

−1

with Σ =X −W , T =W −U and any integer n > 0. If ρ is any Artin representation
that factors through a CM-extension, then we can decompose it as in (4.3.1) into
two subrepresentations ρ+ and ρ− such that

ρ+(σ) = id, ρ−(σ) = −id

for all complex conjugations σ ∈ GalF .

Corollary 4.3.3. Let F be a totally real field, k∶U →W be an open immersion
of open dense subschemes of X = SpecOF such that ` is invertible on W , and Λ be
an adic Z`-algebra. Fix a F ● in PDGcont,∞(U,Λ), and a CM-admissible extension
F∞/F unramified over U . If ε = +, we choose n to be an even integer. We choose
n to be odd if ε = −.

(1) Write f ∶UF∞ → U for the system of coverings associated to F∞/F . Then

dLεF∞/F (W,Rk∗F ●(1 + n)) = −[eεR Γc(W,Rk∗f!f
∗F ●(1 + n))],

dL⊛,ε
F∞/F (W,k!F ●(n)) = [eεR Γ(W,k!f!f

∗F ●(n))]

(2) If G● and F ● are weakly equivalent in PDGcont,∞(U,Λ), then

LεF∞/F (W,Rk∗F ●(1 + n)) = LεF∞/F (W,Rk∗G●(1 + n)),

L⊛,ε
F∞/F (W,k!F ●(n)) = L⊛,ε

F∞/F (W,k!G●(n)).

(3) If 0 → F ′● → F ● → F ′′● → 0 is an exact sequence in PDGcont,∞(U,Λ),
then

LεF∞/F (W,Rk∗F ●(1 + n)) = LεF∞/F (W,Rk∗F ′●(1 + n))LεF∞/F (W,Rk∗F ′′●(1 + n)),

L⊛,ε
F∞/F (W,k!F ●(n)) = L⊛,ε

F∞/F (W,k!F ′●(n))L⊛,ε
F∞/F (W,k!F ′′●(n)).

(4) If W ′ is an open dense subscheme of X on which ` is invertible and
k′∶W →W ′ is an open immersion, then

LεF∞/F (W ′,R(k′k)∗F ●(1 + n)) =LεF∞/F (W,Rk∗F ●(1 + n))

∏
x∈W ′−W

LεF∞/F (x,R(k′k)∗F ●(1 + n)),

L⊛,ε
F∞/F (W ′, (k′k)!F ●(n)) =L⊛,ε

F∞/F (W,k!F ●(n))

∏
x∈W ′−W

L⊛,ε
F∞/F (x, (k′k)!F ●(n)).

(5) If i∶x→ U is a closed point, then

LεF∞/F (W,Rk∗i∗i
∗F ●(1 + n)) = LF∞/F (x,F ●(1 + n)),

L⊛,ε
F∞/F (W,k!i∗ R i!F ●(n)) = L⊛,ε

F∞/F (x,F ●(n)).

(6) If F ′
∞/F is a CM-admissible subextension of F∞/F , then

ΨΛ[[Gal(F ′
∞/F )]](L

ε
F∞/F (W,Rk∗F ●(1 + n))) = LεF ′

∞/F (W,Rk∗F ●(1 + n)),

ΨΛ[[Gal(F ′
∞/F )]](L

⊛,ε
F∞/F (W,k!F ●(n))) = L⊛,ε

F ′
∞/F (W,k!F ●(n)).
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If F ′
∞/F is a really admissible subextension of F∞/F , then

ΨΛ[[Gal(F ′
∞/F )]](L

+
F∞/F (W,Rk∗F ●(1 + n))) = LF ′

∞/F (W,Rk∗F ●(1 + n)),

ΨΛ[[Gal(F ′
∞/F )]](L

⊛,+
F∞/F (W,k!F ●(n))) = L⊛F ′

∞/F (W,k!F ●(n)),

ΨΛ[[Gal(F ′
∞/F )]](L

−
F∞/F (W,Rk∗F ●(1 + n))) = 1

ΨΛ[[Gal(F ′
∞/F )]](L

⊛,−
F∞/F (W,k!F ●(n))) = 1.

(7) If P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-bimodules, strictly perfect as
complex of Λ′-modules, for another adic Z`-algebra Λ′, then

ΨP+[[Gal(F∞/F )]]δ●(L
ε
F∞/F (W,Rk∗F ●(1 + n))) = LεF∞/F (W,Rk∗ΨP̃+

●(F ●)(1 + n)),

ΨP−[[Gal(F∞/F )]]δ●(L
ε
F∞/F (W,Rk∗F ●(1 + n))) = L−εF∞/F (W,Rk∗ΨP̃−

●(F ●)(1 + n)),

ΨP+[[Gal(F∞/F )]]δ●(L
⊛,ε
F∞/F (W,k!F ●(n))) = L⊛,ε

F∞/F (W,k!ΨP̃+
●(F ●(n))),

ΨP−[[Gal(F∞/F )]]δ●(L
⊛,ε
F∞/F (W,k!F ●(n))) = L⊛,−ε

F∞/F (W,k!ΨP̃−
●(F ●(n))).

(8) If F ′/F is a finite extension inside F∞ such that F ′ is totally real and
fF ′ ∶UF ′ → U is the associated covering, then

ΨΛ[[Gal(F∞/F )]](L
ε
F∞/F (W,Rk∗F ●(1 + n))) = LεF∞/F ′(WF ′ ,Rk∗f

∗
F ′F ●(1 + n)),

ΨΛ[[Gal(F∞/F )]](L
⊛,ε
F∞/F (W,k!F ●)(n)) = L⊛,ε

F∞/F ′(WF ′ , k!f
∗
F ′F ●(n)).

(9) With the notation of (8), if G● is in PDGcont,∞(UF ′ ,Λ), then

ΨΛ[[Gal(F∞/F )]](L
ε
F∞/F ′(WF ′ ,Rk∗G●(1 + n))) = LεF∞/F (W,Rk∗fF ′∗G●(1 + n)),

ΨΛ[[Gal(F∞/F )]](L
⊛,ε
F∞/F ′(WF ′ , k!G●(n))) = L⊛,ε

F∞/F (W,k!fF ′∗G●(n)).

(10) If F is a smooth Λ-adic sheaf on U which is smooth at ∞, then

L⊛,ε
F∞/F (W,k!F (n)) = (LεF∞/F (W,Rk∗F ∗Λ(1 − n)))⊛.

(11) If C/Q` is a finite field extension and ρ∶Gal(F∞/F ) → Gld(OC) is an
Artin representation, then

Φρ(L
ε
F∞/F (W,Rk∗(Z`)U(1 + n))) = LFcyc/F (W,Rk∗η∗(ρε)(1 + n)),

Φρ(L
⊛,ε
F∞/F (W,Rk∗(Z`)U(n))) = LFcyc/F (W,Rk∗η∗(ρε)(n)),

Proof. This is an easy consequence of the preceding remarks and Corol-
lary 4.2.9. �

4.4. Admissible Extensions of Function Fields

Let F be a function field of characteristic p. We write F for the algebraic closure
of Fp inside F and F the algebraic closure of F inside F . Further, let

q ∶= p[F∶Fp]

denote the number of elements of F. For a fixed prime number `, we let Fcyc/F
denote the unique Z`-extension of F and write Fcyc for the composite field FcycF .
As before, we write X for the smooth and proper curve over F whose closed points
are the places of F . For any subscheme Z of X, we write Z for the base change to
F. Further, we fix an immersion of two open dense subschemes

k∶U →W

of X. If ` = p, we will assume W = U .
Let F∞/F be an admissible extension unramified over U and Λ an adic Z`-

algebra. Different from the number field case, there exists an explicit construction of
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the non-commutative L-function. For this, recall that for any F ● in PDGcont(U,Λ),
we obtain a exact sequence

(4.4.1) 0→ R Γc(W,Rk∗F ●) → R Γc(W,Rk∗F ●)
id−FF
ÐÐÐ→ R Γc(W,Rk∗F ●) → 0

in PDGcont(Λ) [Wit08, Prop. 6.1.2]. Since the complex R Γc(W,Rk∗f!f
∗F ●) is

in PDGcont,wH (Λ[[G]]) by Theorem 3.4.1, the endomorphism

R Γc(W,Rk∗f!f
∗F ●)

id−FF
ÐÐÐ→ R Γc(W,Rk∗f!f

∗F ●)

is a weak equivalence in wHPDGcont(Λ[[G]]) and hence, we may consider its class

[id − FF ⟳ R Γc(W,Rk∗f!f
∗F ●)] ∈ K1(Λ[[G]]S).

If ` ≠ p, we obtain in the same way a class

[id − F−1
F ⟳ R Γ(W,k!f!f

∗F ●)] ∈ K1(Λ[[G]]S).

Definition 4.4.1. Assume that F∞/F is an admissible extension unramified
over U and ` ≠ p. Let Λ be any adic Z`-algebra. For any F ● in PDGcont(U,Λ), we
set

LF∞/F (W,Rk∗F ●) ∶= [id − FF ⟳ R Γc(W,Rk∗f!f
∗F ●)]−1

L⊛F∞/F (W,k!F ●) ∶= [id − F−1
F ⟳ R Γ(W,k!f!f

∗F ●)]

If ` ≠ p, the dual non-commutative L-function may be related to the non-
commutative L-function as follows. Set

V = U ∪ (X −W )

and let j∶U → V denote the inclusion map. Recall from Remark 3.1.4 that

j′! R j∗F ● ∼ Rk′∗k!F ●

in PDGcont(X,Λ) if j′∶V →X, k′∶W →X denote the inclusion maps.

Definition 4.4.2. Assume ` ≠ p and let Λ be any adic Z`-algebra. If F ● is in
PDGcont(V,Λ), we define the global ε-factor of F ● on V to be

ε(V,F ●) ∶= [−FF ⟳ R Γc(V ,F ●)] ∈ K1(Λ).

Remark 4.4.3. It is expected that the global ε-factor may be expressed as a
finite product of local ε-factors. For Λ = Z`, this is a theorem of Laumon [Lau87,
Thm. 3.2.1.1]. In [FK06, §3.5.6], Fukaya and Kato sketch how to extend this result
to arbitrary adic Z`-algebras.

We then obtain

(4.4.2) L⊛F∞/F (W,k!F ●)LF∞/F (V,R j∗F ●) = ε(V,R j∗f!f
∗F ●).

If F is a smooth Λ-adic sheaf, we will show later in Theorem 5.3.6 that

L⊛F∞/F (W,k!F ) = (LF∞/F (W,Rk∗F ∗Λ(1)))⊛.

In the case that ` = p, the above elements do not have the right interpolation
property. However, we can associate to F ● an element

Q(f!f
∗F ●, t) ∈ lim

←Ð
I∈IΛ[[G]]

K1(Λ[[G]]/I[t])

that measures the failure of the Grothendieck trace formula [Wit16, Thm. 4.1]. In
particular, we may consider its image Q(f!f

∗F ●,1) under the homomomorphism

lim
←Ð

I∈IΛ[[G]]

K1(Λ[[G]]/I[t]) → lim
←Ð

I∈IΛ[[G]]

K1(Λ[[G]]/I) = K1(Λ[[G]])

induced by the ring homomorphisms

Λ[[G]]/I[t] → Λ[[G]]/I, t↦ 1.
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Definition 4.4.4. Assume that F∞/F is an admissible extension unramified
over U and that ` = p. Let Λ be any adic Z`-algebra. For any F ● in PDGcont(U,Λ),
we set

LF∞/F (U,F ●) ∶= Q(f!f
∗F ●,1)[id − FF ⟳ R Γc(U, f!f

∗F ●)]−1

It might be worthwhile to notice that the family of non-commutative L-functions
is already completely determined by the `-adic L-functions for Artin representa-
tions. Let Θ = ΘF be the set of triples (U,F∞,Λ) such that U ⊂X is a dense open
subscheme with ` invertible on U , F∞/F is an admissible extension unramified over
U and Λ is an adic Z`-algebra.

Theorem 4.4.5. Fix a function field F and a prime number `. The family of
homomorphisms

(LF∞/F (U, (−))∶K0(PDGcont(U,Λ)) → K1(Λ[[Gal(F∞/F )]]S))(U,F∞,Λ)∈Θ

is uniquely characterised by following properties.

(1) For any (U,F∞,Λ) ∈ Θ, and any F ● in PDGcont(U,Λ),

dLF∞/F (U,F ●) = −[R Γc(U, f!f
∗F ●)].

(2) If j∶U ′ → U is an open immersion and (U ′, F∞,Λ), (U,F∞,Λ) ∈ Θ, then

LF∞/F (U,F ●) = LF∞/F (U ′, j∗F ●) ∏
x∈U−U ′

LF∞/F (x,F ●),

for any F ● in PDGcont(U,Λ).
(3) If (U,F∞,Λ), (U,F ′

∞,Λ) ∈ Θ such that F ′
∞ ⊂ F∞ is a subfield, then

ΨΛ[[Gal(F ′
∞/F )]](LF∞/F (U,F ●)) = LF ′

∞/F (U,F ●),

for any F ● in PDGcont(U,Λ).
(4) If (U,F∞,Λ), (U,F∞,Λ

′) ∈ Θ and P ● is a complex of Λ′-Λ[[Gal(F∞/F )]]-
bimodules, strictly perfect as complex of Λ′-modules, then

ΨP [[Gal(F∞/F )]]δ●(LF∞/F (U,F ●)) = LF∞/F (U,ΨP̃ ●(F ●))

for any F ● in PDGcont,∞(U,Λ).
(5) If OC is the valuation ring of a finite extension field C of Q` and ρ∶GalF →

Gld(OC) is an Artin representation unramified over U , then the element
LFcyc/F (U, η∗(ρ)) agrees with Definition 4.1.1.

Proof. By [Wit14, §8] and [Wit16, §5] the elements LF∞/F (U,F ●) satisfy
the listed properties both in the case that ` ≠ p and ` = p. In fact, one can even
replace U by any scheme of finite type over a finite field. The proof that these
properties uniquely characterise the above family of homomorphisms follows along
the lines of the proofs of Theorem 4.2.4 and Theorem 4.2.2. �

Corollary 4.4.6. Properties (1)–(9) of Corollary 4.2.9 hold for the non-
commutative L-function LF∞/F (W,Rk∗F ●) of any complex F ● in PDGcont(U,Λ).

If ` ≠ p, then properties (1)–(10) hold for L⊛
F∞/F (W,Rk∗F ●).

Proof. Properties (1)–(9) are proved in the same way as in Corollary 4.2.9.
We refer to Theorem 5.3.6 for (10) in the case that ` ≠ p. �

In the case of the cyclotomic extension Fcyc/F , there exists an alternative
description of LFcyc/F (W,Rk∗F ●). Write s∶W → SpecF for the structure map of
W as a scheme over SpecF. If ` = p, we assume W = U . If ` ≠ p, we set

Q(F ●, t) = 1.
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Set

Z(SpecF,R s! Rk∗F ●, t) ∶= [id − FFt⟳ Λ[t] ⊗Λ R Γc(W,Rk∗F ●)]−1 ∈ K1(Λ[t]St),

with K1(Λ[t]St) as defined in Appendix A. Then

Q(F ●, t)Z(SpecF,R s! Rk∗F ●, t) = ∏
x∈W 0

[id − Fxt⟳ Λ[[T ]] ⊗Λ Rk∗F ●
x̂ ]

−1,

in K1(Λ[[t]]), where the product runs over the closed point of W [Wit09, Thm. 7.2]
(` ≠ p), [Wit16, Thm. 4.1] (` = p). Moreover, if γF ∈ Γ denotes the image of FF,
then

LFcyc/F (W,Rk∗F ●) = Q(F ●, γ−1
F )Z(SpecF,R s! Rk∗F ●, γ−1

F )

[Wit14, Thm. 8.6] (` ≠ p) and [Wit16, Thm. 5.5] (` = p). If Λ = OC for some
finite extension C of Q` and ρ is an Artin representation of GalF , then we have

Q(η∗ρ, t)Z(SpecF,R s! Rk∗η∗ρ, t) = Z(W,Rk∗η∗ρ, t).





CHAPTER 5

Main Conjectures for Galois Representations

If T is a continuous representation over Z` of the Galois group GalF of a global field
F which is ramified in at most a finite set of points of X, then one can associate to
T a constructible `-adic sheaf on U ⊂ X by taking its direct image η∗T under the
inclusion of the generic point

η∶SpecF → U.

The stalk of η∗T in a geometric point x̂ over x ∈ U is given by the invariants T Ix
under the inertia group Ix of x̂. However, there is one subtlety in the construction
of η∗T due to the non-exactness of the functor η∗. The naive definition, taking the
projective system

(η∗T /`nT )n∈N,

does not always lead to an `-adic sheaf in the honest sense. Yet, it is isomorphic to
the `-adic sheaf

η∗T ∶= ( lim
←Ð
m≥n

Z/(`n) ⊗Z/(`m) η∗T /`mT )n∈N

in the Artin-Rees category [Gro77, VI, Lem. 2.2.2].
In Section 5.1, we extend the latter definition to GalF -representations T over

arbitrary adic Z`-algebras Λ. We cannot do this without an extra hypothesis.
Unless Λ is noetherian and regular of dimension less or equal 2, the Λ-module T Ix
might not be finitely generated and projective in some x ∈ U . Those points have
to be excluded from U . Again due to the non-exactness of η∗, the results do not
extend to complexes of GalF -representations.

If F∞/F is an admissible extension unramified over U , we can directly apply
the results of the previous chapter to the Λ-adic sheaf η∗T . Yet, we can do a little
more and allow F∞/F to have some ramification over U by considering the Λ[[G]]-
adic sheaf η∗Λ[[G]]♯⊗Λ T , with g ∈ GalF acting on Λ[[G]]♯ by right multiplication
with the inverse of its image in G. The main objective of this chapter is formulate
and prove a version of the non-commutative main conjecture in this setting. This
will be achieved in Section 5.2.

Although the Λ-adic sheaves η∗T are not smooth in general, they still admit a
good duality theory, which we will develop in Section 5.3. As a consequence, we can
prove in Theorem 5.3.6 a functional equation for the non-commutative L-functions
in the function field case.

In Section 5.4 we calculate the cohomology of R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T ),
where k∶U → W denotes the immersion into another open dense subscheme W
of X. If U ≠ W ≠ X and F is a function field of characteristic different from `,
then H2

c(W,Rk∗η∗T ) is the only non-vanishing cohomology group and a finitely
generated projective module over Λ[[H]]. Similar results also hold for function
fields of characteristic ` and CM-admissible extensions of totally real fields. This
generalises results of Greither and Popescu in [GP12] and [GP15].

The remaining sections of this chapter deal with special instances of the non-
commutative Iwasawa main conjecture for Galois representations. In Section 5.5
we deal with the case that Λ is a regular, noetherian, and commutative ring and
that G is an `-adic Lie group without elements of order `, such that we can replace

87
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the complex R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T ) by its cohomology groups. Finally, in
Section 5.6, we prove the function field analogue of the Gl2 main conjecture of
[CFK+05] for abelian varieties in the case ` different from the characteristic of F .

5.1. The Adic Sheaf Associated to a Galois Representation

Fix a prime number ` and an admissible extension F∞/F of a global field F . As
before, we set

G ∶= Gal(F∞/F ), H ∶= Gal(F∞/Fcyc), Γ ∶= Gal(Fcyc/F ).

Further, we write for each x ∈X

Ix ∶= Gal(F x/F
nr
x )

for Gal(F x/F
nr
x ) considered as a subgroup of GalF via our fixed embedding of F

into F x.

Definition 5.1.1. Let Λ be an adic ring. We call a compact Λ[[GalF ]]-module
T a finitely ramified representation of GalF over Λ if

(1) it is finitely generated and projective as Λ-module,
(2) T is unramified outside a finite set of places, i. e. the set

{x ∈X ∣ T Ix ≠ T }

is finite.

Recall that for a finite ring R, taking the stalk in the geometric point SpecF is
an equivalence of categories between the category of étale sheaves of R-modules on
SpecF and the category of discrete R[[GalF ]]-modules [Mil80, Thm. II.1.9]. In
our notation, we will not distinguish between the discrete R[[GalF ]]-module and
the corresponding sheaf on SpecF .

A finitely ramified representation T of GalF over an adic ring Λ then corre-
sponds to a projective system of sheaves on SpecF . We want to consider the system
of direct image sheaves under the inclusion

η ∶= ηF ∶SpecF → U.

of the generic point into an open, dense subscheme U of X. Since the naive defi-
nition, applying η∗ to each element of the system, does not necessarily lead to an
adic sheaf in our sense, we will consider a stabilised version instead, redefining the
direct image sheaf as follows.

Definition 5.1.2. Let Λ be an adic ring, U ⊂X an open non-empty subscheme
and T a finitely ramified representation of GalF over Λ. We define an inverse system
of étale sheaves of Λ-modules η∗T ∶= (η∗TI)I∈IΛ

on U by setting

η∗TI ∶= lim
←Ð
J∈IΛ

Λ/I ⊗Λ η∗T /JT .

Proposition 5.1.3. Let Λ be an adic ring and T be a finitely ramified repre-
sentation of GalF over Λ such that T Ix is a finitely generated Λ-module for each
closed point x of U . Then η∗TI is a constructible étale sheaf of Λ/I-modules on U
for any I ∈ IΛ. If x is a closed point of U , then the stalk of η∗TI in the geometric
point x̂ is given by

(η∗TI)x̂ = Λ/I ⊗Λ T Ix .

In particular, η∗T is an object in PDGcont(U,Λ) if T Ix is a finitely generated
projective Λ-module for each closed point x of U .
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Proof. Let V be the open complement of U by the set of points x with
T Ix ≠ T . Consider a connected étale open set W of V and let L ⊂ F be the
function field of W . Then for any J ⊂ I

(Λ/I ⊗Λ η∗T /JT )(W ) = (T /IT )GalL = (η∗T /IT )(W ).

In particular, the restriction of Λ/I⊗Λη∗T /JT to V is a locally constant étale sheaf
of Λ/I-modules which independent of J . Now the category of étale sheaves of Λ/I-
modules on U which are locally constant on V is equivalent to the category of tuples
(M, (Mx, φx)x∈U−V ) where M is a discrete Λ/I[[GalF ]]-module unramified over V ,
the Mx are discrete Galk(x)-modules, and φx∶Mx → MIx are homomorphisms of
discrete Galk(x)-modules [Mil80, Ex. II.3.16].

By the above considerations, it is clear that the projective limit of the system
(Λ/I ⊗Λ η∗T /JT )J∈IΛ

exists in the category of étale sheaves of Λ/I-modules which
are locally constant on V and coincides with the projective limit taken in the
category of all étale sheaves of Λ/I-modules. Moreover, it corresponds to the tuple

(T /IT , ( lim
←Ð
J∈IΛ

Λ/I ⊗Λ (T /JT )Ix , φx∶ lim
←Ð
J∈IΛ

Λ/I ⊗Λ (T /JT )Ix → (T /IT )Ix)x∈U−V ).

Beware that the projective limit

lim
←Ð
J∈IΛ

Λ/I ⊗Λ (T /JT )Ix

is a priori taken in the category of discrete Λ/I[[Galk(x)]]-modules (i. e. such that
the stabiliser of every element is open in Galk(x)).

In the category of abstract Λ/I[[Galk(x)]]-modules, we have

lim
←Ð
J∈IΛ

Λ/I ⊗Λ (T /JT )Ix = Λ/I ⊗Λ lim
←Ð
J∈IΛ

(T /JT )Ix = Λ/I ⊗Λ T Ix .

Here, the first equality is justified because projective limits of finite Λ/I-modules
are exact and because Λ/I is finitely presented as Λop-module: In any adic ring
Λ, the Jacobson radical Jac(Λ) is finitely generated both as left and as right ideal
[War93, Thm. 36.39]. Therefore, the same is true for all open ideals I ∈ IΛ and
thus, Λ/I is a finitely presented Λop-module.

By assumption, T Ix is a finitely generated Λ-module. Hence, Λ/I ⊗Λ T Ix is
finite and the equality

lim
←Ð
J∈IΛ

Λ/I ⊗Λ (T /JT )Ix = Λ/I ⊗Λ T Ix

also holds in the category of discrete Λ/I[[Galk(x)]]-modules. This shows that η∗TI
is constructible and that the stalks have the given form.

From the description of the stalks it is also immediate that

Λ/I ⊗Λ/J η∗TJ ≅ η∗TI

such that η∗T is indeed an object of PDGcont(U,Λ) if T Ix is finitely generated and
projective for all closed points x in U . �

Remark 5.1.4. Note that if Λ is noetherian, T Ix is automatically finitely gen-
erated. For general adic rings Λ, this is not true. Assume that ` is a prime dividing
p− 1 and let Λ be the power series ring over F` in three non-commuting indetermi-
nates a, b, c, modulo the relations ab = 0, ac = ca, (b+ 1)(c+ 1) = (c+ 1)(b+ 1)p. Set

F = Fp(t) and let F∞ = Fcyc(
`∞
√
t) be the Kummer extension of Fcyc obtained by

adjoining all `n-th roots of t. Let x be the point of SpecFp[t] corresponding to the
prime ideal (t). Then F∞/F is unramified over the complement U of x in SpecFp[t]
and F∞/Fcyc is totally and tamely ramified in x. The Galois group G = Gal(F∞/F )
is the pro-`-group topologically generated by two elements τ and σ, subject to the
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relation στ = τpσ. We obtain a finitely ramified representation T of GalF over Λ by
letting τ act on Λ by right multiplication with b+1 and σ act by right multiplication
with c + 1. Hence, T Ix is the kernel of the right multiplication with b, which is the
left ideal of Λ topologically generated by bai for all i > 0. Clearly, this ideal is not
finitely generated.

We will now fix an admissible extension F∞/F with Galois group G = H ⋊ Γ.
For a closed point x of X we will write Kx and Jx for the kernel and the image of
the homomorphism Ix → G, respectively. We also fix an open dense subscheme U
of X, an adic Z`-algebra Λ and a finitely ramified representation T of GalF over Λ.
We let Λ[[G]]♯ denote the Λ[[G]][[GalF ]]-module Λ[[G]] with g ∈ GalF acting by
the image of g−1 in G from the right. Note that Λ[[G]]♯ ⊗Λ T is a finitely ramified
representation of GalF over Λ[[G]].

Proposition 5.1.5. Assume that for every closed point x of U one of the
following conditions is satisfied:

(1) T Kx = 0,
(2) Jx contains an element of infinite order,
(3) T Kx is a finitely generated, projective Λ-module and Jx contains no ele-

ment of order `.

Then η∗(Λ[[G]]♯ ⊗Λ T ) is an object in PDGcont(U,Λ[[G]]) and for every I ∈
IΛ[[G]],

(η∗(Λ[[G]]♯ ⊗Λ T )I)x̂ = 0

if x satisfies condition (1) or (2),

(η∗(Λ[[G]]♯ ⊗Λ T )I)x̂ = Λ[[G]]/I ⊗Λ[[G]] (Λ[[G]]♯ ⊗Λ T Kx)Jx

if x satisfies condition (3).

Proof. For each compact Λ-module M , write UM for the lattice of open sub-
modules of M . We note that Λ[[G]] is a projective limit of finitely generated,
free Λop-modules and hence, a projective object in the category of compact Λop-
modules. The completed tensor product

Λ[[G]]⊗̂ΛM = lim
←Ð

J∈IΛ[[G]]

lim
←Ð
U∈UM

Λ[[G]]/J ⊗Λ M/U

is thus an exact functor from the category of compact Λ-modules to the category
of compact Λ[[G]]-modules. Moreover, we have

Λ[[G]]⊗̂ΛM = Λ[[G]] ⊗Λ M

if M is finitely presented [Wit13b, Prop. 1.14]. In particular,

Λ[[G]]⊗̂ΛT Kx ≅ (Λ[[G]]⊗̂ΛT )Kx ≅ (Λ[[G]] ⊗Λ T )Kx .

If T Kx = 0, this obviously implies

(Λ[[G]] ⊗Λ T )Ix = 0.

Assume that Jx contains an element of infinite order and let M be any finite Λ-
module with a continuous Jx-action. We can then find an element τ of infinite order
in an `-Sylow subgroup of Jx which operates trivially on M . Consider the subgroup
Υ ≅ Z` of Jx which is topologically generated by τ . By choosing a continuous map
of profinite spaces

G/Υ→ G
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that is a section of the projection map, we can view Λ[[G]]♯ as a projective limit
of finitely generated, free Λop[[Υ]]-modules and conclude that 1 − τ acts as non-
zero divisor. In particular, we obtain an exact sequence of projective compact
Λop-modules

0→ Λ[[G]]♯
1−τ
ÐÐ→ Λ[[G]]♯ → Λ[[G/Υ]] → 0

The sequence remains exact after taking the tensor product over Λ with M . Hence,

(Λ[[G]]♯ ⊗Λ M)Υ = ker(Λ[[G]]♯ ⊗Λ M
id−τ⊗1
ÐÐÐÐ→ Λ[[G]]♯ ⊗Λ M) = 0.

Recall that the powers of the Jacobson radical Jac(Λ) are finitely generated
as left Λ-modules [War93, Thm. 36.39]. In particular, any finite Λ-module M is
finitely presented: For some k, the kernel K of a surjection

P →M

with P a finitely generated, free Λ-module contains the finitely generated module
Jac(Λ)kP as an open submodule. Hence, the tensor product of M with a compact
Λ-module agrees with the completed tensor product.

Writing the compact Λ[[Jx]]-module T Kx as projective limit of finite Λ[[Jx]]-
modules, we conclude

(Λ[[G]]♯ ⊗Λ T )Ix = (Λ[[G]]♯⊗̂ΛT Kx)Jx = 0.

Assume that Jx contains no element of infinite order nor an element of order
` and that T Kx is a finitely generated, projective Λ-module. Then Jx is a finite
group of order d prime to `. Set

eJx =
1

d
∑
σ∈Jx

σ.

Then eJx is a central idempotent in Λ[Jx] and

(Λ[[G]]♯ ⊗Λ T )Ix = eJx(Λ[[G]]♯ ⊗Λ T Kx)

is a finitely generated and projective Λ[[G]]-module.
We may now apply Proposition 5.1.3 to conclude that η∗(Λ[[G]]♯ ⊗Λ T ) is an

object in PDGcont(U,Λ[[G]]). �

Remark 5.1.6. If F∞/F is unramified over U and f ∶UF∞ → U is the corre-
sponding system of coverings as in Section 3.3, then

η∗(Λ[[G]]♯ ⊗Λ T ) = f!f
∗η∗T ,

see also [Wit14, Rem. 6.10].

Definition 5.1.7. Let Λ be an adic Z`-algebra, F∞/F an admissible extension,
x a closed point of X and T a finitely ramified representation of GalF over Λ.

(1) We say that T has projective stalks in x if T Ix is a finitely generated,
projective Λ-module.

(2) We say that T has projective local cohomology in x if H1(Ix,T ) is a finitely
generated, projective Λ-module and ` is different from the characteristic
of k(x).

(3) We say that T has projective stalks in x over F∞ if T Kx is a finitely
generated, projective Λ-module.

(4) We say that T has projective local cohomology in x over F∞ if H1(Kx,T )
is a finitely generated, projective Λ-module and ` is different from the
characteristic of k(x).

(5) We say that T has ramification prime to ` in x if the image of Ix in the
automorphism group of T has trivial `-Sylow subgroups.
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(6) We say that F∞/F has ramification prime to ` in x if Jx has trivial `-Sylow
subgroups.

(7) We say that F∞/F has non-torsion ramification if Jx contains an element
of infinite order.

In particular, if T has projective stalks over U , then η∗T is an object of
PDGcont(U,Λ).

Example 5.1.8. Let x ∈ X be a closed point and write p′ > 0 for the charac-
teristic of k(x).

(1) If T has ramification prime to ` in x and ` ≠ p′, then it also has projective
local cohomology in x. If ` = p′, then it has projective stalks in x.

(2) If T has projective local cohomology in x (in x over F∞), then it also has
projective stalks in x (in x over F∞).

(3) Assume ` ≠ p′ and that Λ has small finitistic projective dimension 0, i. e.
every finitely generated Λ-module of finitely generated projective dimen-
sion is projective. Then T has projective local cohomology in x if and
only if it has projective stalks in x. For example, this is true if Λ is finite
and commutative [Bas60, Thm. (Kaplansky)]. More generally, for any
finite Λ, it is true precisely if the left annihilator of every proper right
ideal of Λ is non-zero [Bas60, Thm. 6.3]. It is not true for

Λ = (
Z/(`2) (`)/(`2)
Z/(`2) Z/(`2)

)

[KKS92, Cor. 1.12].
(4) If Λ is noetherian of global dimension less or equal to 2, then T has

projective stalks in all closed points x of X, as T Ix is the kernel of the
continuous homomorphism of projective compact Λ-modules

T → ∏
σ∈Ix

T , t↦ (t − σt)σ∈Ix .

As the global dimension is assumed to be less or equal to 2, T Ix is projec-
tive as compact Λ-module. As Λ is noetherian, T Ix is finitely generated
and therefore, also projective as abstract Λ-module. The same argument
shows that T has projective stalks over F∞ in all closed points x of X.

(5) Assume that T has projective stalks over F∞ and F∞/F has ramification
prime to ` in x. Then T has projective stalks in x. Moreover, Λ[[G]]♯⊗ΛT
also has projective stalks in x. The same remains true if one replaces
“projective stalks” by “projective local cohomology”.

(6) It may happen that T has projective stalks, but does not have projective
stalks over F∞ in x. For example, T Ix can be trivial, while T Kx is a
non-trivial Λ-module that is not projective.

(7) If ` ≠ p′, then F∞/F has non-torsion ramification in x if and only if Jx
is infinite. If F is a number field and ` = p′, then F∞/F always has
non-torsion ramification in x. Indeed, F∞/F contains the cyclotomic Z`-
extension, which is ramified in x. In the equal characteristic function field
case, it may happen that Jx is an infinite torsion group.

Remark 5.1.9. If Λ is a noetherian adic Z`-algebra of finite global dimension,
then one can modify Definition 5.1.2 by choosing for each of the finitely many
points x for which T Ix is not projective a resolution P ● of T Ix by finitely generated,
projective Λ-modules and replacing the stalk of η∗TI in x by Λ/I ⊗Λ P

● for each
open two-sided ideal I of Λ.
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Lemma 5.1.10. Assume that F∞/F has ramification prime to ` over U . Assume
further that Λ and Λ′ are two adic Z`-algebras and that M is a Λ′-Λ[[G]]-bimodule
which is finitely generated and projective as Λ′-module. Write M for the finitely
ramified representation of GalF over Λ′ given by M , with g ∈ GalF acting by the
inverse of its image in G.

(1) If T has projective local cohomology over F∞ in all closed points of U ,
then M ⊗Λ T has projective local cohomology over U and

ΨM(η∗(Λ[[G]]♯ ⊗Λ T )) → η∗(M ⊗Λ T )

is a weak equivalence in PDGcont(U,Λ′).
(2) If T has ramification prime to ` over U , then M ⊗Λ T has ramification

prime to ` over U and

ΨM(η∗(Λ[[G]]♯ ⊗Λ T )) → η∗(M ⊗Λ T )

is a weak equivalence in PDGcont(U,Λ′).
(3) If T has projective stalks over F∞ in all closed points of U and M is

projective as compact Λop-module, then M ⊗Λ T has projective stalks over
U and the canonical morphism

ΨM(η∗(Λ[[G]]♯ ⊗Λ T )) → η∗(M ⊗Λ T )

is a weak equivalence in PDGcont(U,Λ′).

Proof. By Proposition 5.1.3 we need to prove that

M ⊗Λ[[G]] (Λ[[G]]♯ ⊗Λ T )Ix = (M ⊗Λ T )Ix

for all closed points x ∈ U . Since F∞/F has ramification prime to ` in x, the `-Sylow
subgroup of Jx is trivial such that taking invariants under Jx is an exact functor
on the category of compact Z`[[Jx]]-modules. Moreover, T Kx is finitely generated
and projective as Λ-module by assumption. Hence,

M ⊗Λ[[G]] (Λ[[G]]♯ ⊗Λ T Kx)Jx = (M ⊗Λ T Kx)Jx .

If M is projective as compact Λop-module, then taking the completed tensor
product with M over Λ is an exact functor on compact Λ-modules. Moreover,
the completed tensor product commutes with arbitrary direct products and agrees
with the usual tensor product on finitely presented modules [Wit13b, Prop. 1.7,
Prop. 1.14]. By taking the completed tensor product with M of the left exact
sequence

0→ T Kx → T
x↦(x−σx)σ∈Kx
ÐÐÐÐÐÐÐÐ→ ∏

σ∈Kx
T

we obtain
M ⊗Λ T Kx ≅ M ⊗̂ΛT Kx ≅ (M ⊗Λ T )Kx ,

as desired.
If ` is different from the characteristic of F , the Tor spectral sequence for the

derived tensor product of M with the cochain complex of the Kx-module T gives
us an exact sequence

0→ TorΛ
2 (M ,H1(Kx,T )) →M ⊗Λ T Kx → TorΛ

1 (M ,H1(Kx,T )) → 0

Hence, if H1(Kx,T ) is finitely generated and projective as a Λ-module, then

M ⊗Λ T Kx ≅ (M ⊗Λ T )Kx .

If T has ramification prime to `, then one can replace Kx by its image in the
automorphism group of T . Since this group is of order prime to `, the natural map

M ⊗Λ T Kx → (M ⊗Λ T )Kx

is again an isomorphism. This completes the proof of the lemma. �
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Lemma 5.1.11. Assume that F∞/F has ramification prime to ` and that T has
projective stalks over F∞ in the closed point x of U . Write i∶x → U for the closed
immersion. Then

R Γ(x, i∗η∗(Λ[[G]]♯ ⊗Λ T ))

is in PDGcont,wH (Λ[[G]]).

Proof. Choose an open pro-`-subgroup H ′ of H which is normal in G. By
[Wit14, Prop. 4.8], it suffices to show that

ΨΛ/Jac(Λ)[[G/H′]](R Γ(x, i∗η∗(Λ[[G]]♯ ⊗Λ T )))

has finite cohomology groups.
The complex R Γ(x, i∗η∗(Λ[[G]]♯ ⊗Λ T )) may be identified with the strictly

perfect complex of Λ[[G]]-modules

C●∶ (Λ[[G]]♯ ⊗Λ T )Ix
id−Fx
ÐÐÐ→ (Λ[[G]]♯ ⊗Λ T )Ix

sitting in degree 0 and 1. Let Z be the centre of Λ/Jac(Λ), which is a finite product
of finite fields of characteristic `. Consider

P ∶= Λ/Jac(Λ)[[G/H ′]] ⊗Λ[[G]] (Λ[[G]]♯ ⊗Λ T Ix)

≅ (Λ/Jac(Λ)[[G/H ′]]♯ ⊗Λ/Jac(Λ) T Kx/Jac(Λ)T Kx)Jx

as finitely generated, projective Z[[Γ]]-module. Choose n large enough, such that
Fnx operates trivially on the finite groups Jx and T Kx/Jac(Λ)T Kx . Then

id − Fnx = (id − Fx)(
n−1

∑
s=0

Fsx)

is an injective endomorphism of P . The same is then also true for id − Fx. We
conclude from the elementary divisor theorem that the cokernel of id−Fx is finite,
as desired. �

In particular, we may extend our previous definition of non-commutative Euler
factors introduced in Section 3.5.

Definition 5.1.12. Assume that F∞/F has ramification prime to ` and T has
projective stalks over F∞ in x. The non-commutative Euler factor of η∗T in x ∈ U
is the element

LF∞/F (x, η∗T ) ∶= [id − Fx⟳ (Λ[[G]]♯ ⊗Λ T )Ix]−1

in K1(Λ[[G]]S). If ` is invertible on U , the non-commutative dual Euler factor in
x ∈ U is the element

L⊛F∞/F (x, η∗T ) ∶= [id − F−1
x ⟳ (Λ[[G]]♯ ⊗Λ T )Ix]L⊛F∞/F (x,β!η

′
∗T )−1

with β∶U ′ → U an open, dense subscheme not containing x such that F∞/F is
unramified over U ′ and η′∶SpecF → U ′ the generic point of U ′.

For the dual non-commutative Euler factor, note that the complex

(Λ[[G]]♯ ⊗Λ T )Ix → D0
x̂(η

′
∗(Λ[[G]]♯ ⊗Λ T ))

id−τ
ÐÐ→ D1

x̂(η
′
∗(Λ[[G]]♯ ⊗Λ T ))

sitting in degrees 0, 1 and 2 is a strictly perfect complex of Λ[[G]]-modules weakly
equivalent to

R Γ(x̂,R i!η∗(Λ[[G]]♯ ⊗Λ T )) ∼ H1(Ix,Λ[[G]]♯ ⊗Λ T )[−2]

for i∶x→ U .
Propositions 3.5.2, 3.5.6, and Parts (2), (3) of Propositions 3.5.4, 3.5.8 extend

verbatimly. Part (1) must be replaced by:
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Proposition 5.1.13. Assume that F∞/F has ramification prime to ` in x. Let
Λ′ be another adic Z`-algebra and let M be a Λ′-Λ[[G]]-bimodule, finitely generated
and projective as Λ′-module. Write M for the finitely ramified GalF -representation
given by M , with g ∈ GalF acting by the image of its inverse in G. If T has
ramification prime to ` in x or if T has projective local cohomology over F∞ in x
or if M is projective as compact Λ-module, then

ΨM[[G]]δ(LF∞/F (x, η∗T )) = LF∞/F (x, η∗(M ⊗Λ T ))

and, if ` ≠ p,

ΨM[[G]]δ(L
⊛
F∞/F (x, η∗T )) = L⊛F∞/F (x, η∗(M ⊗Λ T )).

Proof. This is an easy consequence of Lemma 5.1.10. �

Proposition 3.5.9 does only extend under extra hypotheses.

Proposition 5.1.14. Assume ` ≠ p and that F∞/F has ramification prime to
` in x. Let further OC denote the valuation ring of a finite extension C of Q`.

(1) If T has projective local cohomology over F∞ in x, then

LF∞/F (x, η∗T ∗Λ(1))⊛ = L⊛F∞/F (x, η∗T ).

If Λ = OC and F∞ = Fcyc, then the same is true for any finitely ramified
representation T over OC .

(2) If T has ramification prime to ` in x, then

L⊛F∞/F (x, η∗T ) = [−Fx⟳ R(x̂, i∗η∗(Λ[[G]]♯ ⊗Λ T (−1)))]−1LF∞/F (x, η∗T (−1))−1

If Λ = OC and F∞ = Fcyc, then the same is true if T is a finitely ramified
representation over OC such that the base change of T to C is a semi-
simple Gal(F̄x/Fx)-representation.

Proof. If T has projective local cohomology over F∞ in x, then Λ[[G]]♯⊗Λ T
has projective local cohomology in x and the explicit version of local duality from
Lemma 3.2.1 shows that

♯
((Λop[[G]]♯ ⊗Λop T ∗Λ(1))Ix)∗Λ[[G]] ≅ H1(Ix,Λ[[G]]♯ ⊗Λ T )

Hence,

LF∞/F (x, η∗T ∗Λ(1))⊛ = [id − F−1
x ⟳ H1(Ix,Λ[[G]]♯ ⊗Λ T )] = L⊛F∞/F (x, η∗T ).

If T has ramification prime to ` in x, then the differential in the complex

D0
x̂(η

′
∗(Λ[[G]]♯ ⊗Λ T )) → D1

x̂(η
′
∗(Λ[[G]]♯ ⊗Λ T ))

is trivial, such that

H1(Ix,Λ[[G]]♯ ⊗Λ T ) ≅ Λ[[G]]♯ ⊗Λ T (−1).

Assume now that Λ = OC and F∞ = Fcyc. Then

C ⊗OC (T ∗OC (1)Ix)
∗OC ≅ C ⊗OC H1(OC ,T ).

If the base change of T to C is a semi-simple Gal(F̄x/Fx)-representation, then

C ⊗OC H1(OC ,T ) ≅ C ⊗OC T Ix(−1).

The elements

L⊛Fcyc/F (x, η∗T ),

LFcyc/F (x, η∗T ∗OC (1))⊛,

[−Fx⟳ R(x̂, i∗η∗(OC[[Γ]]♯ ⊗OC T (−1)))]−1LF∞/F (x, η∗T (−1))−1

are then all given by evaluating the reverse characteristic polynomial of F−1
x on

C ⊗OC H1(Ix,T ) at the image γx of Fx in Γ. �
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Example 5.1.15. Assume that the image of GalF in Gl2(OC) coincides with

the image of Gal(F x/Fx) and is generated by

τ ∶= (
1 1
0 1

) ϕ ∶= (
q−1
x 0
0 1

)

with τ generating the image of Ix and ϕ serving as lift of Fx. Write γ for the image
of ϕ in Γ = Gal(Fcyc/F ). Then T has projective local cohomology in x, but the
base change of T to C is not semi-simple. In this example,

L⊛Fcyc/F (x, η∗T ) =

[1−qxγ⟳OC[[Γ]] ][id−ϕ−1γ⟳OC[[Γ]]2 ]−1 [id − (
τ − 1

τ qx − 1
)ϕ−1γ⟳OC[[Γ]]2 ]

= [1 − q−1
x γ],

whereas

[−Fx⟳ R(x̂, i∗η∗(OC[[Γ]]♯ ⊗OC T (−1)))]−1LFcyc/F (x, η∗T (−1))−1 =

[−γ−1 ⟳OC[[Γ]] ]−1[1 − γ−1 ⟳OC[[Γ]] ] = [1 − γ].

5.2. Main Conjectures for Galois Representations

From now on, we fix two open dense subschemes V and W of X such that V ∪W =X
and set

Σ ∶=X −W, T ∶=X − V, U ∶= V ∩W.

We write
j∶U → V, k∶U →W

for the corresponding open immersions and

η∶SpecF → U

for the inclusion of the generic point. We also fix a prime `, an adic Z`-algebra Λ
and a finitely ramified representation T of GalF over Λ.

Proposition 5.2.1. Let Λ be an adic Z`-algebra, T be a finitely ramified rep-
resentation of GalF over Λ. Assume that T Ix is a finitely generated Λ-module for
all x ∈ U . If ` = p, assume that V =X. Then

Hs(V, j!η∗T ) ≅ lim
←Ð
J∈IΛ

Hs(V, j!η∗T /JT ).

for all s ∈ Z.

Proof. Let (KJ)J∈IΛ
and (CJ)J∈IΛ

denote the kernel and cokernel of the nat-
ural morphism of systems

(η∗TJ)J∈IΛ
→ (η∗T /JT )J∈IΛ

of étale sheaves on U . The restriction of (KJ)J∈IΛ
to the complement of

Σ ∶= {x ∈ U ∣ T Ix ≠ T }

in U is 0. For x ∈ Σ the stalk of KJ in the geometric point x̂ is a finite abelian
group for each J ∈ IΛ. From Proposition 5.1.3 we conclude

T Ix = lim
←Ð
J∈IΛ

(η∗TJ)x̂ = lim
←Ð
J∈IΛ

(η∗T /JT )x̂.

Hence, the projective limit of the system ((KJ)x̂)J∈IΛ
is 0. It follows that the

system must be Mittag-Leffler zero in the sense of [Jan88, Def. 1.10]: For each
natural number n there exists a m > n such that the transition maps

(KJac(Λ)m)x̂ → (KJac(Λ)n)x̂
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is the zero map. We conclude that the system of sheaves (KJ)J∈IΛ
are also Mittag-

Leffler zero. The same remains true for (j!KJ)J∈IΛ
. Now [Jan88, Lem. 1.11] implies

Hs(V, (j!KJ)J∈IΛ
) = 0.

The same argumentation also shows

Hs(V, (j!CJ)J∈IΛ
) = 0.

Since the cohomology groups Hs(V, j!η∗T /JT ) are finite if ` ≠ p [Mil06, Rem. after
Thm. II.3.1] or if V =X [Mil80, Cor. VI.2.8] we conclude

Hs(V, j!η∗T ) = lim
←Ð
J∈IΛ

Hs(V, j!η∗T /JT ).

�

Fix an admissible extension F∞/F with Galois group G ≅H ⋊ Γ.

Corollary 5.2.2. Assume that (Λ[[G]]♯⊗Λ T )Ix is finitely generated for each
closed point x in U . If ` = p, assume V =X. Then

Hs(V, j!η∗(Λ[[G]]♯ ⊗Λ T )) = lim
←Ð

F⊂fL⊂F∞
Hs(VL, jL!ηL∗T )

for each s ∈ Z, where L runs through the finite Galois extensions of F inside F∞.

Proof. By Proposition 5.2.1 we have

Hs(V, j!η∗(Λ[[G]]♯ ⊗Λ T )) = lim
←Ð

F⊂fL⊂F∞
Hs(V, j!η∗(Λ[Gal(L/F )]♯ ⊗Λ T )).

Let f ∶VL → V denote the finite morphism of schemes corresponding to the finite
extension L/F . Then

Hs(V, j!η∗(Λ[Gal(L/F )]♯ ⊗Λ T )) = Hs(V, f∗jL!ηL∗T ) = Hs(VL, jL!ηL∗T )

by [Mil80, Cor. II.3.6]. �

Lemma 5.2.3. Assume that Λ[[G]]♯⊗Λ T has projective stalks over U . If ` = p,
then we assume V =X. If p = 0 and ` = 2, we assume that F has no real place.

(1) The complexes

R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) ∼ R Γ(V, j!η∗(Λ[[G]]♯ ⊗Λ T ))

are objects of PDGcont(Λ[[G]]).

(2) If U
j1
Ð→ U ′ j2

Ð→ V are open immersions such that F∞/F has non-torsion
ramification over the complement of U in U ′, then

R Γ(V, j2!(j1 ○ η)∗(Λ[[G]]♯ ⊗Λ T )) → R Γ(V, jU !η∗(Λ[[G]]♯ ⊗Λ T ))

is a weak equivalence in PDGcont(Λ[[G]]).

The same is true for V replaced by V if p > 0.

Proof. The first assertion follows from Proposition 5.1.5 and the fact that
the derived section functors over V and V take objects of PDGcont(V,Λ[[G]]) to
objects of PDGcont(Λ[[G]]).

We prove the second assertion. By Proposition 5.1.5 we have

(j1 ○ η)∗(Λ[[G]]♯ ⊗Λ T )x̂ = 0

for each x ∈ U ′ −U . Hence, the canonical morphism

j1!η∗(Λ[[G]]♯ ⊗Λ T ) → (j1 ○ η)∗(Λ[[G]]♯ ⊗Λ T )

is an isomorphism in PDGcont(U ′,Λ[[G]]). The second assertion is an immediate
consequence. �
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Remark 5.2.4. In particular, by using Lemma 5.2.3, we may exclude without
loss of generality from U all points in which F∞/F has non-torsion ramification.
We will also neglect the remaining points in which F∞/F does not have ramification
prime to ` or T has no projective stalks over F∞, but Λ[[G]]♯ ⊗Λ T has projective
stalks. These points may be considered as degenerate and it is not clear that their
corresponding non-commutative Euler factors are well-behaved.

Remark 5.2.5. The complexes R Γc(W,Rk∗η∗(Λ[[G]]♯⊗Λ T )) may be viewed
as Selmer complexes in the sense of Nekovář [Nek06, §6], with unramified local
conditions for each point x of U where (Λ[[G]]♯ ⊗Λ T ) is ramified, full local con-
ditions in each point of W − U and empty local conditions in each point not in
W .

In the following, we choose an open dense subscheme W ′ ⊂W such that F∞/F
is unramified over U ′ ∶=W ′ ∩U . Set T′ ∶= U −U ′. Write

α∶W ′ →W

β∶U ′ → U

η′∶SpecF → U ′

k′∶U ′ →W ′

γ∶T′ → U

for the inclusion maps.

Theorem 5.2.6. Assume that F is a function field of characteristic p ≠ `.
Further, assume that F∞/F has ramification prime to ` and that T has projective
stalks over F∞ in all closed points of U . Then

(1) The complexes

R Γc(W,Rk∗(Λ[[G]]♯ ⊗Λ T )) ∼ R Γ(V, j!η∗(Λ[[G]]♯ ⊗Λ T ))

are in PDGcont,wH (Λ[[G]]) and the endomorphisms

R Γc(W,Rk∗(Λ[[G]]♯ ⊗Λ T ))
id−FF
ÐÐÐ→ R Γc(W,Rk∗(Λ[[G]]♯ ⊗Λ T ))

R Γ(V , j!η∗(Λ[[G]]♯ ⊗Λ T ))
id−F−1

F
ÐÐÐÐ→ R Γ(V , j!η∗(Λ[[G]]♯ ⊗Λ T ))

are weak equivalences in wHPDGcont(Λ[[G]]).
(2) Set

LF∞/F,Σ,T(T ) ∶= LF∞/F (W,Rk∗η∗T )

∶= [id − FF ⟳ R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))]−1.

L⊛F∞/F,T,Σ(T ) ∶= L⊛F∞/F (V, j!η∗T )

∶= [id − F−1
F ⟳ R Γc(V , j!η∗(Λ[[G]]♯ ⊗Λ T ))].

in K1(Λ[[G]]S). Then

dLF∞/F,Σ,T(T ) = −[R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))],

dL⊛F∞/F,T,Σ(T ) = [R Γ(V, j!η∗(Λ[[G]]♯ ⊗Λ T ))]

in K0(Λ[[G]], S).

Proof. Consider the exact sequence

0→ R Γc(W,Rk∗β!η
′
∗(Λ[[G]]♯ ⊗Λ T )) → R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) →

R Γc(W,Rk∗γ∗γ
∗η∗(Λ[[G]]♯ ⊗Λ T )) → 0.



5.2. MAIN CONJECTURES FOR GALOIS REPRESENTATIONS 99

Further, note that there are weak equivalences

R Γc(W,Rk∗β!η
′
∗(Λ[[G]]♯ ⊗Λ T )) ∼ R Γc(W

′,Rk′∗η
′
∗(Λ[[G]]♯ ⊗Λ T ))

R Γc(W,k∗γ∗γ
∗η∗(Λ[[G]]♯ ⊗Λ T )) ∼ R Γ(Σ′, γ∗η′∗(Λ[[G]]♯ ⊗Λ T )).

Hence, the outer two complexes of the exact sequence are in PDGcont,wH (Λ[[G]])
by Theorem 3.4.1 and by Lemma 5.1.11. We conclude that the complex in the
middle is also in PDGcont,wH (Λ[[G]]). The rest is a consequence of the exact
sequence (4.4.1) and the definition of d. �

Theorem 5.2.7. Assume that ` = p, that F∞/F has ramification prime to p
and T has projective stalks over F∞ in each closed point of U , and that F∞/F and
T have ramification prime to p in each point of T. Then

(1) R Γc(W,k∗η∗(Λ[[G]]♯ ⊗Λ T )) is in PDGcont,wH (Λ[[G]]) and the endo-

morphism id − FF of R Γc(W,k∗η∗(Λ[[G]]♯ ⊗Λ T )) is a weak equivalence
in wHPDGcont(Λ[[G]]).

(2) Set

LF∞/F,Σ,T(T ) ∶= [id − FF ⟳ R Γc(W,k∗η∗(Λ[[G]]♯ ⊗Λ T ))]−1

Q(η∗(Λ[[G]]♯ ⊗Λ T ),1) ∏
x∈T

[id − Fxq
deg(x) ⟳ (Λ[[G]]♯ ⊗Λ T )Ix]

in K1(Λ[[G]]S). Then

dLF∞/F,Σ,T(T ) = −[R Γc(W,k∗η∗(Λ[[G]]♯ ⊗Λ T ))]

Proof. If T = ∅ and hence, W = U , then one proceeds exactly as in the
proof of Theorem 5.2.6. For T ≠ ∅ it remains to notice that id − Fxq

deg(x) is an
automorphism of the finitely generated projective Λ[[G]]-module (Λ[[G]]♯⊗Λ T )Ix

such that its class lies in K1(Λ[[G]]) ⊂ K1(Λ[[G]]S) and hence, has trivial image
under the boundary homomorphism d. �

If F is a totally real field, ` ≠ 2, and T is a finitely ramified representation of
GalF over Λ, we say that T is smooth at ∞ if every complex conjugation in GalF
operates trivially on T . In particular, T is smooth at ∞ if and only if η∗T is smooth
at ∞.

Let F∞/F be a CM-admissible extension. We write as in Section 4.3

LεF∞/F (x, η∗T (1 + n)) ∶= ΨeεΛ[[G]](LF∞/F (x, η∗T (1 + n)))

L⊛,ε
F∞/F (x, η∗T (n)) ∶= ΨeεΛ[[G]](L

⊛
F∞/F (x, η∗T (n)))

for any closed point x ∈ U , any integer n and ε = + if n is even, ε = − if n is odd. If
F∞/F has ramification prime to ` over U , ` is invertible on W , and T has projective
stalks over F∞ in all closed points of U , we set

LεF∞/F,Σ,T(T (1 + n)) ∶= LεF∞/F (W,Rk∗η∗T (1 + n))

∶= LεF∞/F (W ′,Rk′∗η
′
∗T (1 + n)) ∏

x∈T′
Lε(x, η∗T (1 + n))

L⊛,ε
F∞/F,Σ,T(T (n)) ∶= L⊛,ε

F∞/F (W,Rk∗η∗T (n))

∶= L⊛,ε
F∞/F (W ′,Rk′∗η

′
∗T (n)) ∏

x∈T′
L⊛,ε(x, η∗T (n))

Theorem 5.2.8. Assume that F∞/F is a CM-admissible extension of a totally
real field F and ` ≠ 2. Further, assume that F∞/F has ramification prime to ` over
U and that ` is invertible on W . Let T be a finitely ramified GalF -representation
over Λ that is smooth at ∞ and has projective stalks over F∞ in all closed points
of U . Then
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(1) The complexes

eεR Γc(W,Rk∗(Λ[[G]]♯ ⊗Λ T (1 + n))), eεR Γ(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n)))

are in PDGcont,wH (Λ[[G]]).
(2) We have

dLεF∞/F,Σ,T(T (1 + n)) = −[R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n)))],

dL⊛,ε
F∞/F,Σ,T(T (n)) = [R Γ(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n)))]

in K0(Λ[[G]], S).

Proof. For LεF∞/F,Σ,T(T (1 + n)) the argument is essentially the same as for

Theorem 5.2.6. For L⊛,ε
F∞/F,Σ,T(T (n)) we use the exact sequence from Lemma 3.1.9.

�

Note that in all three cases, one can also allow U to contain points x in which
F∞/F has non-torsion ramification. However, by Lemma 5.2.3, the correspond-
ing non-commutative L-function LF∞/F,Σ,T(T ) then agrees with the L-function
LF∞/F,Σ∪Σ0,T(T ) where the Euler factors in the set Σ0 ⊂ U of points in which
F∞/F has non-torsion ramification are removed.

Remark 5.2.9. Let Λ′ be another adic Z`-algebra and let M be a Λ′-Λ[[G]]-
bimodule which is finitely generated and projective as Λ′-module. Assume either
that T has only ramification prime to ` over U or that T has projective local
cohomology over F∞ in all closed points of U or that M is projective as compact
Λop-module. Then

ΨM[[G]]δ(L
◻
F∞/F,Σ,T(T )) = L◻F∞/F,Σ,T(M ⊗Λ T )

for

◻ ∈ {∅,⊛, ε, (⊛, ε)}

by Lemma 5.1.10. Furthermore, since Λ[[G]] is projective as compact Λop-module
for any profinite group G, the formulas (6), (8), and (9) of Corollary 4.2.9 remain
valid.

5.3. Duality for Galois Representations

As before, we will write HomZ,U(F ,G) for the sheaf of morphisms from F to G for
any two étale sheaves F , G of abelian groups on U . Write GmU for the étale sheaf
corresponding to the multiplicative group on U . We set

DU(F ) = R HomZ,U(F ,GmU),

considered as an object in the derived category of étale sheaves of abelian groups
on U . Further, we write

k′∶W →X

for the open immersion of W into X. Recall that T ∨ denotes the Pontryagin dual
of T .

Proposition 5.3.1. Assume that Λ is a finite Z`-algebra with ` invertible on
W and T be any finitely ramified GalF -representation over Λ. Then there exists a
canonical isomorphism

DX(k′! Rk∗η∗T ) ≅ Rk′∗k!η∗T ∨(1)

in the derived category of complexes of étale sheaves of Λop-modules on X.
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Proof. By the adjunction formula for the pair (k′! , k
′∗) we obtain an isomor-

phism

DX(k′! Rk∗η∗T ) ≅ Rk′∗DW (Rk∗η∗T )

in the derived category of complexes of étale sheaves of Λ-modules on X. Since `
is invertible on W , we have an isomorphism

DW (Rk∗η∗T ) ≅ R HomW (Rk∗η∗T ,Q`/Z`(1))

in the derived category of complexes of étale sheaves of Λ-modules on W . From
the biduality theorem [Del77, Dualité, Thm. 1.4] and the adjunction formula for
the pair (k!, k

∗) we then obtain a natural isomorphism

k!DU(η∗T ) ≅ DWDW (k!DU(η∗T )) ≅ DW (Rk∗DUDU(η∗T )) ≅ DW (Rk∗η∗T )

in the derived category of complexes of étale sheaves of Λ-modules on W . Finally
we note that by [Del77, Dualité, Thm 1.3],

DU(η∗T ) ≅ η∗T ∨(1)

if ` is invertible on U . �

Corollary 5.3.2. Assume that Λ is a finite Z`-algebra with ` invertible on
W . Let T be any finitely ramified GalF -representation over Λ.

(1) If F is a function field, there exists a canonical isomorphism

R HomZ(R Γc(W,Rk∗η∗T ∨(1)),Q`/Z`) ≅ R Γ(W,k!η∗T )[2]

in the derived category of complexes of Λ-modules. It is compatible with
the operations of FF on the left-hand complex and F−1

F on the righthand
complex.

(2) Assume that ` ≠ 2 or that F has no real places. Then there exists a
canonical isomorphism

R HomZ(R Γc(W,Rk∗η∗T ∨(1)),Q`/Z`) ≅ R Γ(W,k!η∗T )[3]

in the derived category of complexes of Λ-modules.

Proof. Combine Prop 5.3.1 with Poincaré duality [Del77, Dualité, Thm. 2.2]
and Artin-Verdier duality [Mil06, Prop. II.3.1], respectively. �

Let now Λ be a general adic Z`-algebra. In the following two corollaries, we
consider a complex P ● = (P ●

I )I∈IΛ
of PDGcont(Λ) as objects of the derived category

of complexes of Λ-modules by passing to the projective limit

lim
←Ð
I∈IΛ

P ●
I .

We recall that the projective limit is an exact functor by the construction of
PDGcont(Λ).

Corollary 5.3.3. Assume that Λ is an adic Z`-algebra with ` invertible on
U and that T has projective local cohomology over U . Then T ∗Λ(1) has projective
local cohomology over U . Furthermore:

(1) If F is a function field, there exists a canonical isomorphism

R HomΛop(R Γc(W,Rk∗η∗T ∗Λ(1)),Λop) ≅ R Γ(W,k!η∗T )[2]

in the derived category of complexes of Λ-modules. It is compatible with
the operations of FF on the left-hand complex and F−1

F on the righthand
complex.
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(2) Assume that ` ≠ 2 or that F has no real places. Then there exists a
canonical isomorphism

R HomΛop(R Γc(W,Rk∗η∗T ∗Λ(1)),Λop) ≅ R Γ(W,k!η∗T )[3]

in the derived category of complexes of Λ-modules.

Proof. From our hypothesis and Lemma 3.2.1 it follows easily that

Hs(Ix,T ∗Λ(1)) ≅ H1−s(Ix,T )∗Λ

is finitely generated and projective for s ∈ {0,1}.
For any finitely generated, projective Λ-module P , we have

(Λ∨ ⊗Λ P )
∨
≅ HomΛ(P,Λ)

by the adjunction formula for Hom and ⊗ and by recalling that every homomor-
phism from P to Λ is automatically continuous for the compact topology. Hence,

R HomΛop(P ●,Λop) ≅ R HomZ((Λ
op)

∨
⊗L

Λop P ●,Q`/Z`)
for every perfect complex of Λ-modules P ●. Further,

(Λop)
∨
⊗L

Λop R Γc(W,Rk∗F ●) ≅ lim
Ð→
I∈IΛ

R Γc(W,Rk∗(Λ/Iop)
∨
⊗Λ/Iop F ●

I )

for any F ● in PDGcont(U,Λop). Arguing as in Lemma 5.1.10, we further see that
the natural morphism

lim
Ð→
I∈IΛ

R Γc(W,Rk∗(Λ/Iop)
∨
⊗Λ/Iop (η∗T ∗Λ(1))I)

↓

lim
Ð→
I∈IΛ

R Γc(W,Rk∗η∗((Λ/Iop)
∨
⊗Λ/I (T /IT )∗Λ/I (1)))

is an isomorphism in the derived category of complexes of Λop-modules. The same is
true forW replaced byW . We now apply Corollary 5.3.2 to the GalF -representation
T /IT over Λ/I for each I in IΛ. �

Remark 5.3.4. Even for finite Λ, Corollary 5.3.3 is wrong without the hypoth-
esis that T has projective local cohomology over U . If one merely assumes that T
and T ∗Λ(1) have projective stalks over U and F is a function field, then the cone
of the natural duality morphism

R Γ(W,k!η∗T )[2] → R HomΛop(R Γc(W,Rk∗η∗T ∗Λ(1)),Λop)

is given by the complex

C●∶ ⊕
x∈U0

H1(Ix,T ) → ⊕
x∈U0

(T ∗Λ(1)Ix)∗Λ

sitting in degrees −1 and 0, with

H−1(C●) ≅ ⊕
x∈U0

Ext1
Λop(H1(Ix,T ∗Λ(1)),Λop)

H0(C●) ≅ ⊕
x∈U0

Ext2
Λop(H1(Ix,T ∗Λ(1)),Λop).

Moreover, if T has projective stalks in x, the same does not need to be true for
T ∗Λ(1), and vice versa. For example, the dual of the representation T from Re-
mark 5.1.4 satisfies (T ∗Λ(1))Ix = 0 for the given x.

Corollary 5.3.5. Assume that Λ is an adic Z`-algebra with ` invertible on
U . Let F∞/F be an admissible extension with ramification prime to ` over U and
let T be a finitely ramified representation of GalF over Λ that has projective local
cohomology over F∞ in all closed points of U . Then:
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(1) If F is a function field, there exists a canonical isomorphism

♯
R HomΛop[[G]](R Γc(W,Rk∗η∗(Λ

op[[G]]♯ ⊗Λ T ∗Λ(1))),Λop[[G]]) ≅

R Γ(W,k!η∗Λ[[G]]♯ ⊗Λ T )[2]

in the derived category of complexes of Λ[[G]]-modules. It is compati-
ble with the operations of FF on the left-hand complex and F−1

F on the
righthand complex.

(2) Assume that ` ≠ 2 or that F has no real places. Then there exists a
canonical isomorphism

♯
R HomΛop[[G]](R Γc(W,Rk∗η∗(Λ

op[[G]]♯ ⊗Λ T ∗Λ(1))),Λop[[G]]) ≅

R Γ(W,k!η∗Λ[[G]]♯ ⊗Λ T )[3]

in the derived category of complexes of Λ[[G]]-modules.

Proof. Note that Λ[[G]]♯ ⊗Λ T has projective local cohomology in all closed
points of U and that

♯
(Λ[[G]]♯ ⊗Λ T )∗Λ[[G]] ≅ Λop[[G]]♯ ⊗Λop T ∗Λ .

Then apply Corollary 5.3.3. �

We obtain the following functional equation for LF∞/F,Σ,T(T ) if F is a function
field of characteristic p ≠ `. Recall the global ε-factor from Definition 4.4.2. To ease
notation, we set

εF∞/F,Σ,T(T ) ∶= ε(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T )

= [−FF ⟳ R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T )] ∈ K1(Λ[[G]]).

Theorem 5.3.6. Assume that F is a function field and that ` ≠ p. Let F∞/F
be an admissible extension and T be a finitely ramified GalF -representation over Λ.
Assume that F∞/F has ramification prime to ` and T has projective local cohomol-
ogy over F∞ in all closed points of U . Then

(LF∞/F,T,Σ(T ∗Λ(1)))⊛ = L⊛F∞/F,T,Σ(T ) = εF∞/F,Σ,T(T )−1LF∞/F,Σ,T(T )−1

Proof. Choose a strictly perfect complex P ● of Λop[[G]]-modules, an endo-
morphism f ∶P ● → P ●, and a weak equivalence

α∶P ● → R Γ(W,k!η∗Λop[[G]]♯ ⊗Λop T ∗Λ(1))

such that the diagram

P ● α //

id−f
��

R Γ(W,k!η∗Λop[[G]]♯ ⊗Λop T ∗Λ(1))

id−FF
��

P ● α // R Γ(W,k!η∗Λop[[G]]♯ ⊗Λop T ∗Λ(1))

commutes in the derived category of complexes of Λop[[G]]-modules. In particular,
the diagram commutes up to homotopy in the Waldhausen category of perfect
complexes of Λop[[G]]-modules. By [Wit08, Lem. 3.1.6], this implies

[id − f ⟳ P ●]−1 = LF∞/F,T,Σ(T ∗Λ(1))
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in K1(Λ
op[[G]], S). Applying Corollary 5.3.5 to the representation T over Λ, we

obtain a commutative diagram

♯(P ●)∗Λop[[G]]
β //

id−f⊛
��

R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T )[2]

id−F−1
F

��
♯(P ●)∗Λ[[G]]

β // R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T )[2]

in the derived category of complexes of Λ[[G]]-modules. Hence,

LF∞/F,T,Σ(T ∗Λ(1))⊛ = [id − f∗⟳ ♯(P ●)∗Λop[[G]]]

= [id − F−1
F ⟳ R Γc(W,Rk∗η∗Λ[[G]]♯ ⊗Λ T )]

= L⊛F∞/F,T,Σ(T )

= εF∞/F,Σ,T(T )−1LF∞/F,Σ,T(T )−1

in K1(Λ[[G]], S) �

Remark 5.3.7. In the situation of Theorem 5.2.8, assume that T has projective
local cohomology over F∞ in all closed points of U . Then

LεF∞/F,Σ,T(T ∗Λ(1 − n))⊛ = L⊛,ε
F∞/F,Σ,T(T (n))

holds almost by definition: Using Proposition 5.1.14 one reduces to the case that T
is unramified over U . In this situation, one can refer to Corollary 4.3.3. Similarly,
both this formula and Theorem 5.3.6 also hold if Λ = OC is the valuation ring of a
finite extension C/Q`, F∞ = Fcyc, and T is any finitely ramified GalF -representation.

5.4. Calculation of the Cohomology

In this section, we will give a description of the cohomology groups of the complex
R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )).

Lemma 5.4.1. Let F be a function field and F∞/F an admissible extension with
ramification prime to ` over U . We assume either ` ≠ p or W = U . We further
assume that T has projective stalks over F∞ in each closed point of U . Then

(1) Hs
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) = 0 for s ∉ {1,2,3}.

(2)

H1
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) =

⎧⎪⎪
⎨
⎪⎪⎩

T GalF∞ if W =X and H is finite,

0 else.

(3)

H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) = H1

c(WF∞ ,RkF∞∗ηF∞∗(Λ[[G]]♯ ⊗Λ T )).

If ` ≠ p, then

H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) = H1(WF∞ , kF∞ !ηF∞∗T ∨(1))

∨
.

(4)

H3
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) =

⎧⎪⎪
⎨
⎪⎪⎩

T (−1)GalF∞
if ` ≠ p and W = U ,

0 else.

Proof. In the view of Proposition 5.2.1 we may assume that Λ is a finite ring.
We will first consider the case that H is finite. As R Γc(W,Rk∗(Λ[[G]]♯ ⊗Λ T ))
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has S-torsion cohomology by Theorem 5.2.6 and Theorem 5.2.6, we conclude from
Proposition 2.8.1 and Remark 3.1.4 that

Hs
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) ≅ Hs−1

c (WF∞ ,RkF∞∗ηF∞∗T )

≅ Hs−1(VF∞ , jF∞ !ηF∞∗T )

≅ Hs−1(VFF∞ , jF∞ !ηF∞∗T )Gal(FF∞/F∞).

From the fact that the cohomology of an étale sheaf of Λ-modules on the curve VFF∞
over the algebraically closed field F is concentrated in degrees 0 up to 2 if ` ≠ p and
V = X and up to 1 if ` = p [Mil80, Cor. VI.2.5] or V ≠ X [Mil80, Rem. V.2.4]
we deduce Assertion (1) and the second case of Assertion (4). Assertion (2) for H
finite follows since

H0(VF∞ , jF∞ !ηF∞∗T ) =

⎧⎪⎪
⎨
⎪⎪⎩

T GalF∞ if U = V

0 else.

We now assume ` ≠ p. Assertion (3) is a consequence of Corollary 5.3.2. More-
over, this corollary implies

H3
c(U, η∗(Λ[[G]]♯ ⊗Λ T )) = H0(UF∞ , ηF∞∗T ∨(1))

∨

= ((T ∨(1))GalF∞ )
∨
= T (−1)GalF∞

.

This proves Assertion (4) in the case ` ≠ p.
Finally, we use Corollary 5.2.2 to deduce the assertions for general H. In the

case of Assertion (2) it remains to notice that, since T is finite, there exists a
finite extension L/Fcyc inside F∞ with T = T GalL and such that Gal(F∞/L) is
pro-`. Hence, the norm map NL′′/L′ ∶T → T is multiplication by a power of ` for
L ⊂f L

′ ⊂f L
′′ ⊂ F∞. We conclude that

H1(V, η∗(Λ[[G]]♯ ⊗Λ T )) = lim
←Ð

Fcyc⊂fL⊂F∞
T GalL = 0

if H is infinite. �

Lemma 5.4.2. Let F be a totally real number field and F∞/F be a CM-admissible
extension. Assume that F∞/F has ramification prime to ` ≠ 2 and that T has pro-
jective stalks over F∞ in all closed points of U . Assume moreover that ` is invertible
on W and that T is smooth at ∞. Fix an integer n. Choose ε = + if n is even and
ε = − if n is odd. If Conjecture 3.3.4 is valid, then:

(1) Hs
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n))) = Hs(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n))) = 0

for s ∉ {1,2,3}.
(2)

eεH1
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n))) = 0,

eεH1(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n))) =

⎧⎪⎪
⎨
⎪⎪⎩

T (n)GalF∞ if U =W and H is finite,

0 else.

(3)

eεH2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n))) = eεH1

c(WF∞ ,RkF∞∗ηF∞∗T (1 + n))

= eε(H
1(WF∞ , kF∞ !ηF∞∗T ∨(−n)))

∨

eεH2(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n))) = eεH1(WF∞ , kF∞ !ηF∞∗T (n))

= eεH
1
c(WF∞ ,RkF∞∗ηF∞∗T ∨(1 − n))

∨
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(4)

H3
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n))) =

⎧⎪⎪
⎨
⎪⎪⎩

T (n)GalF∞
if U =W ,

0 else,

H3(W,k!η∗(Λ[[G]]♯ ⊗Λ T (n))) = 0.

Proof. Since ` ≠ 2 and W ≠X, we have

Hs(W,G) = 0

for every `-torsion sheaf G on W and s > 2. If W ≠ U , then V ≠ X and the same
argument shows

Hs
c(W,Rk∗F ) ≅ Hs(V, j!F ) = 0

for every `-torsion sheaf F on U and s > 2. If W = U , then

Hs
c(U,F ) = 0

for s > 3. The rest follows exactly as in Lemma 5.4.1. �

As we will explain in Chapter 6, the following three corollaries may be viewed
as a generalisation of [GP12, Thm. 3.10] and [GP15, Thm. 4.6], respectively.

Corollary 5.4.3. Let F be a function field of characteristic p ≠ `. Assume

(1) F∞/F has ramification prime to ` over U ,
(2) T has projective local cohomology over F∞ in all closed points of U ,
(3) either W ≠X or (T ∗Λ)GalF∞

= 0, and
(4) either W ≠ U or T (−1)GalF∞

= 0.

Then H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) is finitely generated and projective as Λ[[H]]-

module and H2(W,k!η∗(Λ
op[[G]]♯⊗Λop T ∗Λ)(1)) is finitely generated and projective

as Λop[[H]]-module. Moreover, we have

[R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))] = [H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))]

= [
♯
H2(W,k!η∗(Λ

op[[G]]♯ ⊗Λop T ∗Λ)(1))∗Λop[[H]]]

= −[H2(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(1))]⊛

= −[R Γ(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(1))]⊛

in K0(Λ[[G]], S).

Proof. Note that T GalF∞ ≅ HomΛop((T ∗Λ)GalF∞
,Λop). According to Theo-

rem 5.2.6 we may find strictly perfect complexes P ● and Q● of Λ[[G]]-modules
and Λ[[H]]-modules, respectively, which are weakly equivalent to the complex
R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )). By Lemma 5.4.1 and assumptions (3) and (4),

H2(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) is the only cohomology group of these complexes
that does not vanish. Hence,

[R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))] = [H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))]

holds by Remark 2.5.11. Moreover, we may assume that P ● andQ● are concentrated
in degrees less or equal to 2.

Let M be a simple Λ[[G]]op-module. Then M is also simple as module over
(Λ[[G]]/Jac(Λ[[G]]))op. By Schur’s lemma the endomorphism ring of M is divi-
sion ring k. Since k is clearly finite, it is a field. Hence, we may consider M as
k-Λ[[G]]-bimodule, which is finitely generated and projective as k-module. Write
M for the corresponding GalF -representation over k. Under assumptions (1) and
(2), the natural map

ΨM R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))
∼
Ð→ R Γc(W,Rk∗η∗(M ⊗Λ T ))
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is a weak equivalence by Lemma 5.1.10. If W ≠X and hence, V ≠ U , we have

H0
c(W,Rk∗η∗(M ⊗Λ T )) = H0(V, j!η∗(M ⊗Λ T )) = 0.

If W =X and (T ∗Λ)GalF∞
= 0, then

H0
c(W,Rk∗η∗(M ⊗Λ T )) = H0(U, η∗(M ⊗Λ T ))

= (M ⊗Λ T )GalF∞

= (((M ⊗Λ T )∗k)GalF∞
)∗k

= ((M ∗k ⊗Λop T ∗Λ)GalF∞
)∗k

= (M ∗k ⊗Λop (T ∗Λ)GalF∞
)∗k

= 0.

In particular, the flat dimension of H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) over Λ[[G]] is

less or equal to 1 in both cases, such that we may assume that P ● is concen-
trated in degrees 1 and 2. We may then apply Lemma 2.5.1 to conclude that
H2

c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )) is projective over Λ[[H]]. The same reasoning ap-
plies to T ∗Λ(1).

We now apply Corollary 5.3.5 to the GalF -representation T over Λ and obtain

[R Γ(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(1))] = −[R Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))]⊛.

Using Corollary 2.7.6, we conclude

[H2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T ))] = −[H2(W,k!η∗(Λ

op[[G]]♯ ⊗Λop T ∗Λ)(1))]⊛

= [
♯
H2(W,k!η∗(Λ

op[[G]]♯ ⊗Λop T ∗Λ)(1))∗Λop[[H]]],

as desired. �

Corollary 5.4.4. Let F be a function field of characteristic p = `. Assume

(1) F∞/F has ramification prime to p in all closed points of U ,
(2) T has ramification prime to p in all closed points of U , and
(3) either U ≠X or (T ∗Λ)GalF∞

= 0.

Then H2
c(U, η∗(Λ[[G]]♯⊗ΛT )) is finitely generated and projective as Λ[[H]]-module.

Moreover, we have

[R Γc(U, η∗(Λ[[G]]♯ ⊗Λ T ))] = [H2
c(U, η∗(Λ[[G]]♯ ⊗Λ T ))]

in K0(Λ[[G]], S).

Proof. Use Theorem 5.2.7 and proceed as in the first part of the proof of
Corollary 5.4.3. �

Corollary 5.4.5. Fix a prime ` ≠ 2 and an integer n. Choose ε = + if n is
even and ε = − if n is odd. Let F∞/F be a CM-admissible extension of a totally real
number field F . Assume that

(1) F∞/F has ramification prime to ` in all closed points of U ,
(2) T has projective local cohomology in all closed points of U and is smooth

at ∞,
(3) ` is invertible on W ,
(4) either W ≠ U or T (n)GalF∞

= 0, and
(5) Conjecture 3.3.4 is valid.
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Then eεH2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )(1+n)) is finitely generated and projective as

Λ[[H]]-module and eεH2(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(−n)) is finitely generated

and projective as Λop[[H]]-module. Moreover, we have

[eεR Γc(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T )(1 + n))]

= [eεH2
c(W,Rk∗η∗(Λ[[G]]♯ ⊗Λ T (1 + n)))]

= [eε
♯
H2(W,k!η∗(Λ

op[[G]]♯ ⊗Λop T ∗Λ)(1 + n))∗Λop[[H]]]

= −[eεH2(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(1 + n))]⊛

= −[eεR Γ(W,k!η∗(Λ
op[[G]]♯ ⊗Λop T ∗Λ)(−n))]⊛

in K0(Λ[[G]], S).

Proof. This is completely analogous to Corollary 5.4.3. �

5.5. The Main Conjecture for Selmer Groups

In this section we will assume that R is a local, commutative, and regular adic
Z`-algebra. Further, we assume that F has no real primes if ` = 2 and that ` is
different from the characteristic p of F if F is a function field. We fix an open,
dense subscheme U of X with complement Σ and write

k∶U →X ← Σ∶ i

for the associated immersions. Let T be a finitely ramified representation of GalF
over R. For F ⊂ L ⊂ F we may define a Selmer group for T . If L/F is a finite
extension, then

SelΣ(L,T ∨(1)) ∶= ker
⎛

⎝
H1(GalL,T ∨(1)) → ⊕

x∈U0
L

H1(Ix,T ∨(1))
⎞

⎠

Otherwise, one defines

SelΣ(L,T ∨(1)) ∶= lim
Ð→
L′

SelΣ(L′,T ∨(1)),

where L′/F runs through the finite subextensions of L/F . If W =X, then

Sel(L,T ∨(1)) ∶= Sel∅(L,T ∨(1))

corresponds to the Selmer group as in [Gre89, §5] with trivial submodules for the
primes above ` in the number field case. In the function field case, Sel(L,T ∨(1))
is the correct analogue of the classical Selmer group. If Σ ≠ ∅, then SelΣ(L,T ∨(1))
is referred to as imprimitive Selmer group by Greenberg.

Lemma 5.5.1. For any extension L/F inside F ,

SelΣ(L,T ∨(1)) = H1(UL, ηL∗T ∨(1)).

Proof. Without loss of generality we assume that L = F . According to
[AGV72a, VII, Cor. 5.8] we have for every integer s

Hs(GalF ,T ∨(1)) = lim
Ð→
U ′

Hs(U ′, ηU ′∗T ∨(1)).

Here, U ′ runs through the open dense subschemes of U and

ηU ′ ∶SpecF → U ′
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denotes the immersion of the generic point. For any such U ′, the Leray spectral
sequence shows

H1(U, η∗T ∨(1)) ≅ ker(H1(U ′, ηU ′∗T ∨(1)) → ⊕
x∈U−U ′

H0(x, i∗xR1 η∗T ∨(1)))

with ix∶x → U the immersion of the closed point x. Recall that for any discrete
GalF -module M , one has (i∗xη∗M )x̂ = M Ix . By considering an injective resolution
of T ∨(1) we conclude

(i∗xR1 η∗T ∨(1))x̂ = H1(Ix,T ∨(1)).

The equality in the lemma follows after passing to the direct limit over U ′. �

Fix an admissible `-adic Lie extension F∞/F , such that the Galois group G is
an `-adic Lie group. We set

XF∞/F,Σ(T ) ∶= SelΣ(F∞,T ∨(1))
∨
.

Lemma 5.5.2. Assume that ` is invertible on U . Then

H2
c(U, η∗(R[[G]]♯ ⊗R T )) ≅ XF∞/F,Σ(T )

Proof. Note that T [[G]] is a noetherian ring. Hence, T Ix is finitely generated
for all closed points x ∈ X. According to Proposition 5.2.1 and Corollary 5.3.2, we
have

H2
c(U, η∗(R[[G]]♯ ⊗R T )) ≅ lim

←Ð
I∈IR[[G]]

H2
c(U, η∗(R[[G]]♯/I ⊗R T ))

≅ lim
←Ð

I∈IR[[G]]

H1(U, η∗(R[[G]]♯/I ⊗R T
∨
(1)))

∨

By [AGV72a, VII, Prop. 3.3], the étale cohomology of U commutes with direct
limits, such that

lim
←Ð

I∈IR[[G]]

H1(U, η∗(R[[G]]♯/I ⊗R T
∨
(1)))

∨
≅ H1(U, η∗(R[[G]] ⊗R T )

∨
)
∨

≅ XF∞/F,Σ(T )

by Lemma 5.5.1. �

We may thus deduce the following reformulation of the non-commutative main
conjecture in terms of the R[[G]]-module XF∞/F,Σ(T ).

Corollary 5.5.3. Let F∞/F be an admissible `-adic Lie extension of a func-
tion field F of characteristic different from `. Assume that G has no element of
order `. Let Σ0 ⊂ U denote the set of points over which F∞/F has non-torsion
ramification and assume that T is a finitely ramified GalF -representation over T
that has projective stalks over F∞ in all closed points of U −Σ0. Then

(1) XF∞/F,Σ(T ) is in NH(R[[G]]).
(2) In K0(R[[G]], S) we have

dLF∞/F,Σ∪Σ0,∅(T ) = − [XF∞/F,Σ(T )] + [T (−1)GalF∞
]

+

⎧⎪⎪
⎨
⎪⎪⎩

[T GalF∞ ] if Σ = ∅ and H is finite,

0 else.

Proof. Note that

XF∞/F,Σ(T ) = XF∞/F,Σ∪Σ0
(T )
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by Lemma 5.2.3. Moreover, since G has no element of order `, F∞/F has ram-
ification prime to ` over U − Σ0. The rest is a direct consequence of (2.10.1),
Theorem 5.2.6, and Lemma 5.4.1. �

Without the extra interpretation of the cohomology group, we obtain from
Theorem 5.2.7:

Corollary 5.5.4. Let F be a function field of characteristic p and F∞/F be
an admissible p-adic Lie extension. Assume that G has no element of order p. Let
Σ0 ⊂ U denote the set of points over which F∞/F has non-torsion ramification and
assume that T is a finitely ramified GalF -representation over T that has projective
stalks over F∞ in all closed points of U −Σ0. Then

(1) H2
c(U, η∗(R[[G]]♯ ⊗R T )) is in NH(R[[G]]).

(2) In K0(R[[G]], S) we have

dLF∞/F,Σ∪Σ0,∅(T ) = − [H2
c(U, η∗(R[[G]]♯ ⊗R T ))]

+

⎧⎪⎪
⎨
⎪⎪⎩

[T GalF∞ ] if Σ = ∅ and H is finite,

0 else.

Remark 5.5.5.

(1) We recall from Example 5.1.8 that if R has global dimension less or equal
to 2, for example R = Z` or R = Z`[[t]], then T has automatically projec-
tive stalks over F∞ in every closed point of X. We may choose Σ to be
empty in this case.

(2) If G satisfies the premisses of Proposition 2.10.2, then [T (−1)GalF∞
] = 0

in K0(R[[G]], S).

As a special case of Corollary 5.5.3, we can deduce a non-commutative function
field analogue of the most classical formulation of the Iwasawa main conjecture.
We fix an admissible `-adic Lie extension F∞/F with Galois group G = H ⋊ Γ.
Further, we will write Σ0 for the closed subscheme of U where F∞/F has non-
torsion ramification.

Corollary 5.5.6. Let F be a function field of characteristic different from `.
Assume that G does not contain any element of order `. Let M be the maximal
abelian `-extension of F∞ which is unramified outside Σ. Then

(1) Gal(M/F∞) is in NH(Z`[[G]]) and

dLF∞/F,Σ∪Σ0,∅(Z`(1)) = − [Gal(M/F∞)] + [Z`]

+

⎧⎪⎪
⎨
⎪⎪⎩

[Z`(1)] if Σ = ∅, H is finite, and µ` ⊂ F∞

0 else.

in K0(Z`[[G]], S)
(2) Let ρ∶GalF → Gld(OC) be an Artin representation over the valuation ring
OC of a finite extension C of Q` that factors through G. Then

Φρ(LF∞/F,Σ∪Σ0,∅(Z`(1))) = LFcyc/F,Σ∪Σ0,∅(ρ(1)).

Proof. From Lemma 5.4.1 and from the equality

H1(UF∞ ,Q`/Z`) = Gal(M/F∞)
∨
.

we deduce

H2
c(U, η∗Z`[[G]]♯(1)) = XF∞/F,Σ(Z`(1)) = Gal(M/F∞).

We then apply Theorem 5.2.6 and Corollary 5.5.3. Finally, we remark that

Z`(1)GalF∞ = 0
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if F∞ does not contain any `-th root of unity. If F∞ does contain an `-th root
of unity, then it also contains all `n-th roots of unity for any n, and therefore,
Z`(1)GalF∞ = Z`(1) in this case. �

If G does contain elements of order `, then Theorem 5.2.6 applied to Z`(1) is
still a sensible main conjecture if we assume that F∞/F has ramification prime to
` over W ; however, we can no longer replace the class of the complex

[R Γc(U, η∗(Λ[[G]]♯ ⊗Λ Z`(1)))] = −dLF∞/F,Σ,∅(Z`(1))
by the classes of its cohomology modules. One may also apply Theorem 5.2.6 and
Theorem 5.2.7 to Z` resulting in a main conjecture for every `. Main conjectures
of this type have already been discussed in [Bur11].

Corollary 5.5.7. Let F∞/F be a CM-admissible `-adic Lie extension of a
totally real number field F . Assume that G has no element of order `. Let Σ0 ⊂ U
denote the set of points over which F∞/F has non-torsion ramification and assume
that T is a finitely ramified GalF -representation over T that has projective stalks
over F∞ in all closed points of U −Σ0. Assume that T is smooth at ∞ and let n ∈ Z.
Choose ε = + if n is even and ε = −1 if n is odd. If Conjecture 3.3.4 is valid, then

(1) eεXF∞/F,Σ(T (1 + n)) is in NH(R[[G]]).
(2) In K0(R[[G]], S) we have

dLεF∞/F,Σ∪Σ0,∅(T (1 + n)) = −[eεXF∞/F,Σ(T (1 + n))] + [T (n)GalF∞
]

Proof. Use Theorem 5.2.8 and Lemma 5.4.2. �

5.6. The Main Conjecture For Abelian Varieties

Assume that F is a function field of characteristic ` ≠ p. In this section we let A
be an abelian variety over SpecF . We continue to that U is an open dense subset
of X with complement Σ (which may be empty). Our aim is to deduce a precise
function field analogue of the Gl2 main conjecture in [CFK+05].

Let OC be the valuation ring of a finite extension C of Q` and ρ a finitely
ramified representation of GalF over OC . The Σ-truncated L-function of A twisted
by ρ is given by

LΣ(A,ρ, t) ∶= ∏
x∈U0

det(1 − Fxt
deg(x) ⟳ (ρ⊗Z` H1(A ×SpecF SpecF ,Q`))Ix)−1.

If ρ is an Artin representation of GalF , then LΣ(A,ρ, q−s) is the Σ-truncated Hasse-
Weil L-function of A twisted by ρ.

We will write Ǎ for the dual abelian variety,

A(F )n ∶= kerA(F )
n
Ð→ A(F )

for the group of n-torsion points and

T`A ∶= lim
←Ð
k

A(F )`k

for the `-adic Tate module of A. It is well known that T`A is a finitely ramified
representation of GalF over Z`. Moreover, the argument of [Sch82, §1] shows that
for any closed point x ∈X

(η∗(ρ⊗Z` T` Ǎ(−1)))x ⊗Z` Q` ≅ (ρ⊗Z` H1(A ×SpecF SpecF ,Q`))Ix

such that
LΣ(A,ρ, q−1t) = Z(U, η∗ T` Ǎ⊗Z` ρ, t).

Recall that q denotes the number of elements in F and that γF is the image of
the geometric Frobenius FF in Γ.

As an immediate consequence of Theorem 5.2.6 we obtain:
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Corollary 5.6.1. Let F∞/F be an admissible extension. Assume that F∞/F
has ramification prime to ` over U . Then:

(1) We have

dLF∞/F,Σ,∅(T` Ǎ) = −[R Γc(U, η∗(Z`[[G]]♯ ⊗Z` T` Ǎ))]

in K0(Z`[[G]], S).
(2) Let ρ∶GalF → Gld(OC) be a finitely ramified representation over the valu-

ation ring OC of a finite extension C of Q` that factors through G. Then

Φρ(LF∞/F,Σ,∅(T` Ǎ)) = LΣ(A,ρ, q−1γ−1
F ).

For any extension L/F inside F we let

SelΣ(L,A) ∶= lim
Ð→
k

ker H1(GalL,A(F )`k) → ⊕
x∈U0

L

H1(GalFx ,A(F ))

be the Σ-truncated Selmer group of A over L.

Lemma 5.6.2. For every admissible `-adic Lie extension F∞/F we have

SelΣ(F∞,A) ≅ SelΣ(F∞,T`(Ǎ)
∨
(1))

Proof. Let L be an extension of F and let Lx be the completion of L at
x ∈ UL. According to Greenberg’s approximation theorem we have

H1(GalLx ,A(F )) = H1(GalLx ,A(Lx))

[Mil06, Rem. I.3.10] for all finite extensions L/F . Since the points of the formal
group of A form an open pro-p-subgroup of A(Lx) we conclude from the Kummer
sequence that

SelΣ(L,A) = lim
Ð→
k

ker H1(GalL,A(F )`k) → ⊕
x∈U0

L

H1(GalLx ,A(F )`k)

for all extensions L/F inside F . If Fcyc ⊂ L, then Gal(Lnr
x /Lx) is a profinite group

of order prime to ` and the Hochschild-Serre spectral sequence shows that

H1(GalLx ,A(F )`k) → H1(Ix,A(F )`k)

is an injection. Furthermore,

T`(Ǎ)
∨
(1) = lim

Ð→
k

A(F )`k

[Sch82, §1] such that indeed SelΣ(F∞,A) ≅ SelΣ(F∞,T`(Ǎ)
∨
(1)). �

In particular, we deduce the following function field analogue of the Gl2 main
conjecture of [CFK+05] as a special case of Corollary 5.5.3.

Corollary 5.6.3. Let F∞/F be an admissible `-adic Lie extension with Galois
group G, and A an abelian variety over SpecF . We assume that G does not contain
any element of order ` and write Σ0 for the set of points in W in which F∞/F has
non-torsion ramification. Then SelΣ(F∞,A)

∨
is in NH(Z`[[G]]) and

dLF∞/F,Σ∪Σ0,∅(T`(Ǎ)) = −[SelΣ(F∞,A)
∨
] + [T`(Ǎ)(−1)GalF∞

]

+

⎧⎪⎪
⎨
⎪⎪⎩

[T`(Ǎ)GalF∞ ] if Σ = ∅ and H is finite,

0 else.

in K0(Z`[[G]], S).
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The terms [T`(Ǎ)(−1)GalF∞
] and [T`(Ǎ)GalF∞ ] disappear in the following sit-

uation. Recall that by an old result of Grothendieck [Oor73, Thm. 1.1], an abelian

variety over F is of CM-type over a F if and only if it is isogenous to an abelian
variety over a finite field. Moreover, this is the case if the image of GalFcyc in the
automorphism group of T`(A) is finite [Oor73, Last step].

Proposition 5.6.4. Let A be an abelian variety over SpecF of dimension
g ≥ 1 which is not of CM-type over F . Let F∞ be the extension of F obtained by
adjoining the coordinates of all `n-torsion points of A. If ` > 8g2 − 1, then F∞/F
is an admissible `-adic Lie extension, Gal(F∞/F ) does not contain any element of
order ` and

dLF∞/F,Σ,∅(T`(Ǎ)) = −[SelΣ(F∞,A)
∨
].

in K0(Z`[[Gal(F∞/F )]], S).

Proof. It is well known that the group Gal(F∞/F ) is the image of GalF in
AutZ`(T`(Ǎ)), that T`(Ǎ) is a free Z`-module of rank 2g, and that GalF acts on
the determinant of T`(Ǎ) via the cyclotomic character κ. This shows that F∞/F is
an admissible `-adic Lie extension. Since ` − 1 > 2g, the group AutZ`(T`(Ǎ)) does
not contain any element of order `. By a result of Zarhin [Zar77, §4], [Zar14, §6],
the Lie algebra L(G) of G is the direct product

L(G) = g0 × c

of a simi-simple Lie algebra g0 of dimension less or equal to 4g2 − 1 over Q` and a
commutative Lie algebra c of dimension 1. Since any finite extension of F has only
one Z`-extension, g0 necessarily coincides with L(H). Since A is not of CM -type

over F , H is not finite and hence, L(H) is non-trivial. In particular,

[T`(Ǎ(−1))] = 0

in K0(Z`[[Gal(F∞/F )]], S) by Corollary 2.10.3. �

Remark 5.6.5. With F∞ as in Proposition 5.6.4, assume that ` > 2g − 1, such
that G has no elements of order `.

(1) By the above result of Zarhin, one can always find a finite extension F ′/F
inside F∞/F such that

Gal(F∞/F ′) = Gal(F∞/F ′
cyc) ×Gal(F ′

cyc/F
′).

Hence, applying Proposition 2.10.2 to N = Gal(F ′
cyc/F

′), we conclude that

[T`(Ǎ(−1))] = 0

in K0(Z`[[Gal(F∞/F ′)]], S).
(2) One may also try apply the criterion of [FK06, Prop. 4.3.17] to the rep-

resentation T`(Ǎ(−1)). However, one of the requirements is that G has
infinite intersection with the subgroup

Z×` id ⊂ AutZ`(T`(Ǎ)).

Different from the number field case, this condition is not always satisfied
for abelian varieties over F . Zarhin constructs in [Zar07] for every odd
g > 1 examples of abelian varieties of dimension g which are not of CM-
type and such that G has finite intersection with Z×` id independent of the
choice of `.

(3) If g = 1, then one can always take F ′ = F . Indeed, Gal(F∞/F ) must be
open in AutZ`(T`(Ǎ)) = Gl2(Z`) and the intersection of Gal(F∞/Fcyc)
with Sl2(Z`) is open in Sl2(Z`). Otherwise, Gal(F∞/F ) would contain a
commutative open subgroup by the above result of Zarhin, which is not
possible since A is not of CM -type over F (This was also observed in the
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thesis [Sec06], using a different argument). By the assumption on ` we
may write

Gl2(Z`) =H ′ ×Z`
with H ′ not virtually solvable. So we may apply Proposition 2.10.2.



CHAPTER 6

Main Conjectures for Realisations of 1-Motives

In this chapter, we will clarify the relation of the main conjectures in Section 5.2
with the main conjecture for `-adic realisations of Picard 1-motives over function
fields considered in [GP12] and the main conjecture for `-adic realisations of ab-
stract 1-motives over number fields considered in [GP15].

In Section 6.1 we recall the notion of a Picard 1-motive and give a description
of it in terms of étale cohomology. In Section 6.2, we consider the function field case
and formulate a non-commutative generalisation of the main conjecture in [GP12]
as a special case of the main conjecture for Galois representations considered in
Section 5.2. Finally, in Section 6.3, we carry out the same program in the number
field case.

6.1. Picard 1-Motives

We recall the notion of Picard 1-motives introduced by Deligne [Del74]. For this,
we need some more notation. Let GmY denote the group of units of a scheme Y ,
considered as a sheaf on the small étale site of Y . Let i∶Z → Y be a closed immer-
sion. Recalling that the stalk of GmY in a geometric point of Y is given by the units
of the strict henselisation of the local ring in this point [Mil80, Rem. II.2.9.(d)],
we see that

GmY → i∗GmZ

is a surjection. We let GmY,Z denote its kernel.
From now on, we assume that Y is a quasi-compact, excellent, noetherian,

integral, normal scheme of dimension 1 with perfect residue fields at all closed
points of Y and that Z is a finite subscheme of Y . We write K for the function
field of Y . Let η∗GmK denote the étale sheaf of invertible rational functions on Y
and

PZ ∶= ker (η∗GmK → i∗i
∗(η∗GmK/GmY,Z))

its subsheaf of rational functions which are congruent to 1 modulo the effective
divisor on Y corresponding to Z in the sense of [Ser88, Ch. III, §1]. For any locally
closed subscheme Y ′ of Y we let DivY ′ denote the étale sheaf on Y of divisors with
support on Y ′.

115
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Consider the diagram

(6.1.1) 0

��

0

��

0

��
0 // GmY,Z

//

��

GmY
//

��

i∗GmZ
//

��

0

0 // PZ //

div

��

η∗GmK
//

��

i∗i
∗(η∗GmK/GmY,Z) //

��

0

0 // DivY −Z //

��

DivY //

��

DivZ //

��

0

0 0 0

of étale sheaves on Y . One checks easily by taking stalks that all the rows and
columns are exact. By Hilbert 90 in the form of [Mil80, Prop. III.4.9], we have

H1(Y, i∗GmZ) ≅ H1(Z,GmZ) = Pic(Z) = 0.

Hence, the third column is exact even in the category of presheaves. Clearly, this
is also true for the third row. The weak approximation theorem for K implies the
exactness of the second row in the category of presheaves. Hence,

H1(Y,PZ) ⊂ H1(Y, η∗GmK)

and the group on the right-hand side is zero by Hilbert 90 and the Leray spectral
sequence. In particular, we have for any open dense subscheme Y ′ of Y :

H1(Y ′,GmY,Z) = DivY ′−Z(Y
′)/{div(f) ∣ f ∈ PZ(Y ′)}

The group

Pic(Y,Z) ∶= H1(Y,GmY,Z)

is usually called the Picard group of Y relative to the effective divisor corresponding
to Z. If K is a global field, then it is also known as the ray class group of Y for
the modulus Z.

We will now assume that Y is a smooth and proper curve over an algebraically
closed field k of characteristic p ≥ 0. Let Div0

Y denote the kernel of the degree map

DivY → Z. Likewise, we write Pic0(Y,Z) for the kernel of Pic(Y,Z) → Z. It can be
identified with k-valued points of the generalised Jacobian variety of Y with respect
to Z [Ser88, Ch. V, Thm. 1].

Recall from [Mil80, Ex. III.1.9.(c)] that an étale sheaf F on Y is flabby if
Hs(U,F ) = 0 for all s > 0 and all étale schemes U of finite type over Y .

Lemma 6.1.1. Let k be a algebraically closed field, Y be a smooth and proper
curve over k and Z ⊂X be a finite closed subscheme. The complex of étale sheaves

PZ → DivY −Z

is a flabby resolution of GmY,Z on Y .

Proof. Since Z is a scheme of finite type of dimension 0 over the alge-
braically closed field k, all étale sheaves on Z are flabby [Mil80, Rem. III.1.20.(b)].
Since i∗ maps flabby sheaves to flabby sheaves by [Mil80, Lem. III.1.19], the
sheaf (i∗i

∗(η∗GmK/GmY,Z)) is flabby. The sheaf η∗GmK is flabby by [Mil80,
Ex. III.2.22.(d)]. As the second row of the diagram (6.1.1) is exact in the category
of presheaves, PZ must also be flabby. �
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Consider two closed subschemes Z1 and Z2 of Y with empty intersection. The
Picard 1-motive for Z1 and Z2 is defined to be the complex of abelian groups

MZ1,Z2 ∶Div0
Z1

(Y ) → Pic0(Y,Z2)

concentrated in degrees 0 and 1 [GP12, Def. 2.3]. Its group of n-torsion points for
a number n > 0 is given by

MZ1,Z2[n] ∶= H0(MZ1,Z2 ⊗
L
Z Z/(n))

and its `-adic Tate module for a prime number ` is given by

T`MZ1,Z2
∶= lim
←Ð
k>0

MZ1,Z2[`
k]

[Del74, §10.1.5].

Lemma 6.1.2. We have for all numbers n > 0

MZ1,Z2[n] ≅ H0(R Γ(Y −Z1,GmX,Z2
) ⊗L

Z Z/(n))

where R Γ(Y −Z1,GmY,Z2
) denotes the total derived section functor and ⊗L

Z denotes
the total derived tensor product in the derived category of abelian groups.

Proof. Consider the complexes

A●∶DivZ1(Y ) → Pic(Y,Z2),

B●∶DivZ1(Y ) ⊕ PZ2(Y ) → DivY −Z2(Y ),

and

E● ∶=
⎧⎪⎪
⎨
⎪⎪⎩

Z[−1] if Z1 = ∅,

0 else,
F ● ∶=

⎧⎪⎪
⎨
⎪⎪⎩

k× if Z2 = ∅,

0 else.

We obtain two obvious distinguished triangles

MZ1,Z2 → A● → E●, F ● → B● → A●.

Moreover, the obvious map from B● to the complex

PZ2(Y −Z1) → DivY −Z2(Y −Z1)

is a quasi-isomorphism. The latter complex may be identified with the complex
R Γ(Y −Z1,GmY,Z2

). For this, we note that

PZ2 → DivY −Z2

is a flabby resolution of GmY,Z2
by Lemma 6.1.1.

Since k is algebraically closed, the group k× is divisible. Hence,

H0(F ● ⊗L
Z Z/(n)) = H1(F ● ⊗L

Z Z/(n)) = 0.

Since Z is free as Z-module,

H−1(E● ⊗L
Z Z/(n)) = H0(E● ⊗L

Z Z/(n)) = 0.

Hence,

H0(R Γ(Y −Z1,GmX,Z2
) ⊗L

Z Z/(n)) ≅ H0(B● ⊗L
Z Z/(n))

≅ H0(A● ⊗L
Z Z/(n))

≅MZ1,Z2[n].

�

Write j1∶Y −Z1 → Y , j2∶Y −Z2 → Y for the open immersions of the complements
of Z1 and Z2.
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Lemma 6.1.3. If p ∤ n, then

R Γ(Y −Z1,GmY,Z2
) ⊗L

Z Z/(n) ≅ R Γ(Y −Z1, j2!µn)[1]

with µn the sheaf of n-th roots of unity on Y −Z2. In particular,

MZ1,Z2[n] ≅ H1(Y −Z1, j2!µn) ≅ H1(Y −Z2, j1!Z/(n))
∨

Proof. The first statement follows from the Kummer sequences for GmY and
GmZ2

and the exactness of the sequence

0→ j2!µn → µn → i∗2µn → 0

with i2∶Z2 → Y denoting the closed immersion. The second statement follows from
Lemma 6.1.2 and Corollary 5.3.2, which holds equally well over any algebraically
closed field k of characteristic p. �

Lemma 6.1.4. Assume p > 0 and that Z2 is reduced. For all numbers r > 0 the
canonical morphism

R Γ(Y −Z1,GmY,Z2
) ⊗L

Z Z/(pr) → R Γ(Y −Z1,GmY ) ⊗L
Z Z/(pr) ≅ R Γ(Y −Z1, ν

1
r )

is an isomorphism. Here, ν1
r ∶= Wr Ω1

Y,log is the logarithmic De Rham-Witt sheaf
on Y . In particular,

MZ1,Z2[p
r] ≅ H0(Y −Z1, ν

1
r ) ≅ H1

c(Y −Z1,Z/(pr))
∨
.

Proof. Since we assume Z2 to be reduced, we have

R Γ(Z2,GmZ2
) ⊗L

Z Z/(pr) ≅ 0.

This explains the first isomorphism in the first part of the statement. For the second
isomorphism we may use [Gei10, Prop. 2.2] together with the identifications

ZcY ≅ ZY (1)[2] ≅ GmY [1]

in the notation of loc. cit. . The duality statement

H0(Y −Z1, ν
1
r ) ≅ H1

c(Y −Z1,Z/(pr))
∨

can be deduced from [Gei10, Thm. 4.1]:

R Γ(Y −Z1, ν
1
r ) ≅ R Γ(Y −Z1,ZcY ) ⊗L

Z Z/(pr)[−1]

≅ R HomZ,Y −Z1(Z/(pr),ZcY )

≅ R HomZ(R Γc(Y −Z1,Z/(pr)),Z)

≅ R HomZ(R Γc(Y −Z1,Z/(pr)),Q/Z)[−1].

�

6.2. The Iwasawa Main Conjecture for Picard 1-Motives

We now return to our previous setting. Fix a prime number `. Assume that F is
a function field of characteristic p with field of constants F. As before, we consider
an admissible extension F∞/F with Galois group G = H ⋊ Γ. We will assume that
H = Gal(F∞/Fcyc) is finite. Let X be the proper smooth curve over F with function
field F . Fix two open dense subschemes V and W of X such that X = V ∪W and
set U ∶= V ∩W . Further, we let

Σ ∶=X −W, T ∶=X − V

denote the complements with their reduced closed subscheme structure. We write

η∶SpecF → U

for the inclusion of the generic point and

k∶U →W, j∶U → V
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for the open immersions of the subscheme U .
Set Υ ∶= Gal(FF∞/F∞) and note that Υ is of order prime to `. Furthermore,

note that for a commutative adic Z`-algebra R, the GalF -representations R and (if
` ≠ p) R(1) of GalF over R are unramified in all closed points of X. We recall from
Definition 2.7.10 that for a R[[G]]-module M which is finitely generated and free
as R-module, ♯M∗R denotes the R-dual considered as left R[[G]]-module.

Proposition 6.2.1. Let F∞/F be any admissible extension of a function field
F of characteristic p. For an integer r > 0, we set R ∶= Z/(`r).

(1) If ` ≠ p, then Hs(W,k!η∗R[[G]]♯) is a finitely generated free R-module for
every s ∈ Z and

(MTFF∞
,ΣFF∞

[`r])Υ ≅ H2(V, j!η∗R[[G]]♯(1))

≅
♯
H2(W,k!η∗R[[G]]♯)∗R ;

(2) if ` = p, then Hs
c(V, j∗η∗R[[G]]♯) is a finitely generated free R-module for

every s ∈ Z and

(MΣFF∞
,TFF∞

[pr])Υ ≅
♯
H2

c(V, j∗η∗R[[G]]♯)∗R .

Proof. Since H is finite, we may find a finite extension F ′/F inside F∞/F
such that F∞ = F ′

cyc. In the case that ` = p, we may further assume that V = U and
hence, W =X. By Corollary 5.2.2

Hs(W,k!η∗R[[G]]♯) ≅ Hs(WF ′ , kF ′ !ηF ′∗R[[Gal(F ′
cyc/F

′)]])

as R-modules. Hence, we may assume that F∞ = Fcyc. In particular, Fcyc/F is
unramified over all of X. From Lemma 5.4.1 we conclude that Hs(W,k!η∗R[[Γ]]♯)
is a finitely generated and free R-module for s ≠ 2. Moreover, since R-duality and
Pontryagin duality agrees for all finitely generated R-modules, we conclude

♯
H2(W,k!η∗R[[G]]♯)∗R ≅ (MTFF∞

,ΣFF∞
[`n])Υ

from Lemma 6.1.3 and Lemma 6.1.4. It remains to show the freeness for s = 2.
Assume that W ≠ U . If ` = p, we may apply Corollary 5.4.4. If ` ≠ p and V ≠ U ,

we may apply Corollary 5.4.3. We may proceed in the same way if V = U and Fcyc

does not contain µ`. In this case, the image of GalFcyc in the automorphism group
of R(−1) is a non-trivial group of order prime to `, such that R(−1)GalFcyc

= 0.
To settle the remaining case, assume that µ` ⊂ Fcyc and that the complement

of U in V consists of a single point x that does not split in Fcyc/F . Consider the
exact cohomology sequence

→ Hs(VFcyc , jFcyc !
ηFcyc∗R(1)) → Hs(VFcyc , jFcyc∗ηFcyc∗R(1)) → Hs(xFcyc ,R(1)) →

Since

H0(VFcyc , jFcyc∗ηFcyc∗R(1)) ≅ H0(xFcyc ,R(1)) ≅ R(1),

Hs(xFcyc ,R(1)) = 0 for s > 0,

we conclude that

H1(VFcyc , jFcyc !
ηFcyc∗R(1)) ≅ H1(VFcyc , jFcyc∗ηFcyc∗R(1)).

Taking the Pontryagin dual, we conclude from Lemma 5.4.1 that

H2
c(V, j∗η∗R[[Γ]]♯) ≅ H2(W,k!η∗R[[Γ]]♯)

is still finitely generated and free as R-module.
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Similarly, for all `, if the complement of U in W consists of a single point x
that does not split in Fcyc/F , then

H2(W,k∗η∗R[[G]]♯) ≅ H1(WFcyc , kFcyc∗ηFcyc∗R)

≅ H1(WFcyc , kFcyc !
ηFcyc∗R)

≅ H2(W,k!η∗R[[G]]♯)

is finitely generated and free as R-module. This settles the case W = U . �

Corollary 6.2.2. Let F∞/F be any admissible extension of a function field F
of characteristic p.

(1) If ` ≠ p, then Hs(W,k!η∗Z`[[G]]♯) is a finitely generated free Z`-module
for every s ∈ Z and

(T`MTFF∞
,ΣFF∞

)Υ ≅ H2(V, j!η∗Z`[[G]]♯(1))

≅
♯
H2(W,k!η∗Z`[[G]]♯)∗Z` ;

(2) if ` = p, then Hs
c(V, j∗η∗Z`[[G]]♯) is a finitely generated free Z`-module

for every s ∈ Z and

(T`MΣFF∞
,TFF∞

)Υ ≅
♯
H2

c(V, j∗η∗Z`[[G]]♯)∗Z` .

Proof. Use Proposition 6.2.1 and pass to the inverse limit over n ∈ N. �

Remark 6.2.3. Note that the image of Υ in AutZ`(T`MTFF∞
,ΣFF∞

) is finite.

Hence, we can always choose the admissible extension F∞/F large enough such that

(T`MTFF∞
,ΣFF∞

)Υ = T`MTFF∞
,ΣFF∞

.

The following two corollaries are a non-commutative generalisation of Greither’s
and Popescu’s main conjecture for Picard-1-motives [GP12, Cor. 4.13].

Corollary 6.2.4. Assume that ` ≠ p, that H is finite, that both Σ and T are
non-empty, and that F∞/F has ramification prime to ` over U . Then:

(1) The Z`[[G]]-module (T`MTFF∞
,ΣFF∞

)Υ is finitely generated and projec-

tive over Z`[[H]]. In particular, it has a well-defined class in the Grothen-
dieck group K0(Z`[[G]], S).

(2) We have

dLF∞/F,Σ,T(Z`(1)) = − [(T`MTFF∞
,ΣFF∞

)Υ]

in K0(Z`[[G]], S).
(3) Let ρ∶GalF → Gld(OC) be a finitely ramified representation over the valu-

ation ring OC of a finite extension C of Q` that factors through G. Then

Φρ(LF∞/F,Σ,T(Z`(1))) = LF∞/F,Σ,T(ρ(1))

Proof. This follows from Theorem 5.2.6 with T = Z`(1) together with Corol-
lary 5.4.3 and Corollary 6.2.2. �

Corollary 6.2.5. Assume that H is finite and that Σ is not empty. If ` ≠ p
we also assume that T is not empty and that F∞/F has ramification prime to `
over U . If ` = p we assume that F∞/F has ramification prime to p over V . Then:

(1) The Z`[[G]]-module
♯
((T`MΣFF∞

,TFF∞
)Υ)∗Z` is finitely generated and pro-

jective over Z`[[H]]. In particular, it has a well-defined class in the
Grothendieck group K0(Z`[[G]], S).
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(2) We have

dLF∞/F,Σ,T(Z`) = − [
♯
((T`MΣFF∞

,TFF∞
)Υ)∗Z` ]

in K0(Z`[[G]], S).
(3) Let ρ∶GalF → Gld(OC) be a finitely ramified representation over the valu-

ation ring OC of a finite extension C of Q` that factors through G. Then

Φρ(LF∞/F,Σ,T(Z`)) = LF∞/F,Σ,T(ρ).

Proof. This follows from Theorem 5.2.6 and Theorem 5.2.7 with T = Z` to-
gether with Corollary 5.4.3, Corollary 5.4.4, and Corollary 6.2.2. �

6.3. Realisations of Abstract 1-Motives

Assume that F is any number field and let U ⊂W be two open dense subschemes of
X = SpecOF . Write k∶U →W for the corresponding open immersion. Fix a closed
subscheme structure on the complement T of U in W and write i∶T → W for the
closed immersion. Then

H1(W,GmW,T) ≅ coker(PT(W )
div
ÐÐ→ DivU(W ))

is the ray class group of W with respect to the modulus T. If K/F is a possibly
infinite algebraic extension of F , it follows from [AGV72a, VII, Cor. 5.8] that

H1(WK ,GmWK ,TK ) = lim
Ð→
K′⊂K

coker (PTK′ (WK′) → DivUK′ (WK′))

with

lim
Ð→
K′⊂K

DivUK′ (WK′) =⊕
v

Γv,

where v ranges over the places of K lying over the closed points of U and Γv denotes
the value group of the associated, possibly non-discrete valuation.

Assume now that ` is invertible on W . We then obtain an exact 9-diagram

0

��

0

��

0

��
0 // j!µ`n //

��

µ`n //

��

i∗i
∗µ`n //

��

0

0 // GmW,T
//

`n

��

GmW
//

`n

��

i∗GmT
//

`n

��

0

0 // GmW,T
//

��

GmW
//

��

i∗GmT
//

��

0

0 0 0

and in combination with the diagram (6.1.1), an exact sequence

0→ j!µ`n → PT
(`n,div)
ÐÐÐÐ→ PT ⊕DivU

( div
−`n )
ÐÐÐ→ DivU → 0.

We take global sections on W . Since H1(W,PT) = 0 and since multiplication by `n

is injective on DivU(W ), we obtain

H1(W,j!µ`n) = {f ∈ PT(W ) ∣
div(f) = `nD,

D ∈ DivU(W )
}/{g`

n

∣ g ∈ PT(W )}.
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Note that this group does not depend on the subscheme structure of T. So, we
might as well equip it with the reduced scheme structure.

We now assume in addition that F is totally real and fix a CM-admissible
extension F∞/F such that F∞/Fcyc is finite. Passing to the direct limit over all
finite subextensions F ′/F of F∞/F , we obtain

(6.3.1) H1(WF∞ , kF∞ !µ`n) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f

RRRRRRRRRRRRRRRR

f ∈ PTF∞
(WF∞),

div(f) = `nD,

D ∈ DivUF∞ (WF∞)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

/{g`
n

∣ g ∈ PTF∞
(WF∞)}.

Write Σ for the complement of W in X and Σ′ for the complement of W in
SpecOF [ 1

`
]. The Iwasawa-theoretic 1-motive associated to (F∞,ΣF∞ ,TF∞) is the

complex of abelian groups

MF∞
ΣF∞ ,TF∞

∶ DivΣ′
F∞

(XF∞)
δ
Ð→ H1(XF∞ ,GmXF∞ ,TF∞

) ⊗Z Z`

sitting in degrees 0 and 1 [GP15, §3.1]. Its group of `n-torsion points is defined to
be

MF∞
ΣF∞ ,TF∞

[`n] ∶=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(D, c)

RRRRRRRRRRRRRRRRR

D ∈ DivΣ′
F∞

(XF∞),

c ∈ H1(XF∞ ,GmXF∞ ,TF∞
) ⊗Z Z`,

δ(D) = `nc

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

⊗Z Z/(`n)

= H0(MF∞
ΣF∞ ,TF∞

⊗L
Z Z/(`n))

and its `-adic Tate module is given by

T`M
F∞
ΣF∞ ,TF∞

∶= lim
←Ð
n

MF∞
ΣF∞ ,TF∞

[`n]

[GP15, Def. 2.2, Def. 2.3].

Remark 6.3.1. The complex of abelian groups MF∞
ΣF∞ ,TF∞

is an abstract 1-

motive in the sense of [GP15, Def. 2.1] only if H1(XF∞ ,GmXF∞ ,TF∞
) ⊗Z Z` is

divisible of finite corank. The proof of [GP15, Lem. 2.8] shows that this is true

if and only if H1(XF∞ ,GmXF∞
) ⊗Z Z` is divisible of finite corank. By [NSW00,

Thm. 11.1.8 ] this is equivalent to the Galois group Xnr(F∞) of the maximal
abelian unramified pro-`-extension of F∞ being a finitely generated Z`-module. It
suffices that Xnr(F∞(µ`)) is a finitely generated Z`-module. By [Was97, Thm
13.24] the latter statement is equivalent to e−Xnr(F∞(µ`)) being finitely generated
over Z`, which is in turn equivalent to the Galois group of the maximal abelian
pro-`-extension unramified outside the primes over ` of the maximal totally real
subfield F∞(µ`)

+ being finitely generated over Z` [NSW00, Cor. 11.4.4]. Hence,

MF∞
ΣF∞ ,TF∞

is an abstract 1-motive under Conjecture 3.3.4.

Proposition 6.3.2. There is a short exact sequence

0→ H0(XF∞ ,GmXF∞ ,TF∞
) ⊗Z Z/(`n) → H1(WF∞ , kF∞ !µ`n) →M

F∞
ΣF∞ ,TF∞

[`n] → 0.

In particular, there are isomorphisms

e− H1(WF∞ , kF∞ !µ`n) ≅ e−M
F∞
ΣF∞ ,TF∞

[`n],

e− H1(WF∞ , kF∞ !(Z`)WF∞
(1)) ≅ e− T`M

F∞
ΣF∞ ,TF∞

.

Proof. This follows from (6.3.1) and [GP15, Prop. 3.2, Cor. 3.4]. Note that
the proofs of these statements do not make use of the divisibility of the group
H1(XF∞ ,GmXF∞ ,TF∞

) ⊗Z Z`. �
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Corollary 6.3.3. Assume that F∞/F has ramification prime to ` over U .
Under Conjecture 3.3.4, there are isomorphisms

e− H2(W,k!η∗Z/(`n)[[G]]♯(1)) ≅ e−M
F∞
ΣF∞ ,TF∞

[`n],

e− H2(W,k!η∗Z`[[G]]♯(1)) ≅ e− T`M
F∞
ΣF∞ ,TF∞

.

In particular,

dL⊛,−
F∞/F,Σ,T(Z`(1)) = [e− T`M

F∞
ΣF∞ ,TF∞

]

in K0(Z`[[Gal(F∞/F )]], S).

Proof. Combine Proposition 6.3.2 with Lemma 5.4.2 and use Corollary 4.3.3.
�

In particular, [GP15, Thm. 4.6] reduces to the special case T = Z` of Corol-
lary 5.4.5. Moreover, if Gal(F∞/F ) is commutative, we may identify the Fitting

ideal and the characteristic ideal of e− T`M
F∞
ΣF∞ ,TF∞

over Z`[[Gal(F∞/F )]]. The

characteristic ideal may then be viewed as an element of

(Z`[[Gal(F∞/F )]]S)
×/Z`[[Gal(F∞/F )]]× ≅ K0(Z`[[Gal(F∞/F )]], S).

Under this identification, it corresponds to the class [e− T`M
F∞
ΣF∞ ,TF∞

]
−1

. Fur-

thermore, the interpolation property (11) in Corollary 4.3.3 shows that the ele-

ment L⊛,−
F∞/F (W,k!(Z`)U(1))−1 agrees with the element e+ + θ

(∞)
Σ,T with Σ = X −W ,

T =W −U in the notation of [GP15, Def. 5.16]. In particular, we recover the ver-
sion of the equivariant main conjecture formulated in [GP15, Thm. 5.6] as a special
case of Corollary 6.3.3. In the same way, one can also recover its non-commutative
generalisation in [Nic13, Thm. 3.3].





APPENDIX A

Localisation in Polynomial Rings

Let R be any associative ring with 1 and let R[t] be the polynomial ring over R in
one indeterminate t that commutes with the elements of R. Write SP(R[t]) and
P(R[t]) for the Waldhausen categories of strictly perfect and perfect complexes of
R[t]-modules. Consider R as a R-R[t]-bimodule via the augmentation map

R[t] → R, t↦ 0.

We then define full subcategories

SPwt(R[t]) ∶= {P ● ∈ SP(R[t]) ∣R⊗R[t] P
● is acyclic},

Pwt(R[t]) ∶= {P ● ∈ P(R[t]) ∣ P ● is quasi-isomorphic to a complex in SPwt(R[t])}.

These categories are in fact Waldhausen subcategories of SP(R[t]) and P(R[t]),
respectively, since they are closed under shifts and extensions [Wit08, 3.1.1]. We
can then construct new Waldhausen categories wtSP(R[t]) and wtP(R[t]) with
the same objects, morphisms, and cofibrations as SP(R[t]) and P(R[t]), but with
weak equivalences being those morphisms with cone in SPwt(R[t]) and Pwt(R[t]),
respectively. By the Waldhausen approximation theorem [TT90, 1.9.1], the inclu-
sion functor wtSP(R[t]) → wtP(R[t]) induces isomorphisms

Kn(wtSP(R[t])) ≅ Kn(wtP(R[t]))

for all n ≥ 0.
It might be reassuring to know that, if R is noetherian, we can identify these

K-groups for n ≥ 1 with the K-groups of a localisation of R[t]: Set

St ∶= {f(t) ∈ R[t] ∣ f(0) ∈ R×}

Proposition A.1. Assume that R is a noetherian. Then St is a left (and
right) denominator set in the sense of [GW04, Ch. 10] such that the localisation
R[t]St exists and is noetherian. Its Jacobson radical Jac(R[t]St) is generated by
the Jacobson radical Jac(R) of R and t. In particular, if R is semi-local, then so
is R[t]St .

Moreover, the category SPwt(R[t]) consists precisely of those complexes P ● in
SP(R[t]) with St-torsion cohomology. In particular,

Kn(wtSP(R[t])) ≅ Kn(R[t]St)

for n ≥ 1.

Proof. Clearly, the set St consists of non-zero divisors, such that we only need
to check the Ore condition:

∀s ∈ St∶ ∀a ∈ R[t]∶ ∃x ∈ R[t]∶ ∃y ∈ St∶xs = ya.

Moreover, we may assume that s(0) = y(0) = 1. Write

s = 1 −
∞
∑
i=1

sit
i, a =

∞
∑
i=0

ait
i, x =

∞
∑
i=0

xit
i, y = 1 +

∞
∑
i=1

yit
i.
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and assume that si = ai−1 = 0 for i > n. Comparing coefficients, we obtain the
recurrence equation

(∗) xi =
i−1

∑
j=0

xjsi−j +
i

∑
j=1

yjai−j + ai =
i

∑
j=1

yjbi−j + bi

with

bi ∶=
i−1

∑
j=0

bjsi−j + ai.

Write Bi ∶= (bi−n+1, . . . , bi) ∈ R
n with the convention that bi = 0 for i < 0. Then for

i ≥ n

Bi = Bi−1S = Bn−1S
i−n+1

with

S ∶=

⎛
⎜
⎜
⎜
⎝

0 . . . . . . sn
1 ⋱ sn−1

0 ⋱ 0 ⋮
⋮ 1 s1

⎞
⎟
⎟
⎟
⎠

.

Since R was assumed to be noetherian, there exists a m ≥ n and yn, . . . , ym ∈ R
such that

0 =
m

∑
j=n

yjBm−j +Bm =
m

∑
j=n

yjBi−j +Bi

for all i ≥ m. Hence, we can find a solution (xi, yi)i=0,1,2... of equation (∗) with
xi = yi = 0 for i > m and yi = 0 for i < n. This shows that St is indeed a left
denominator set such that R[t]St exists and is noetherian [GW04, Thm. 10.3,
Cor. 10.16].

Let N ⊂ R[t] be the semi-prime ideal of R[t] generated by t and the Jacobson
ideal Jac(R) of R. Then St is precisely the set of elements of Λ[t] which are units
modulo N . In particular, the localisation NSt is a semi-prime ideal of R[t]St such
that

R[t]St/NSt = R[t]/N = R/Jac(R)

[GW04, Thm. 10.15, 10.18]. We conclude Jac(R[t]St) ⊂ NSt . For the other
inclusion it suffices to note that for every s ∈ St and every n ∈ N , the element s + n
is a unit modulo N .

The Nakayama lemma implies that for any noetherian ring R with Jacobson
radical Jac(R), a strictly perfect complex of R-modules P ● is acyclic if and only
if R/Jac(R) ⊗R P

● is acyclic. Hence, if P ● is a strictly perfect complex of R[t]-
modules, then R ⊗R[t] P

● is acyclic if and only if R[t]St ⊗R P
● is acyclic. This

shows that SPwt(R[t]) consists precisely of those complexes P ● in SP(R[t]) with
St-torsion cohomology. From the localisation theorem in [WY92] we conclude that
the Waldhausen exact functor

wtSP(R[t]) → SP(R[t]St), P ● ↦ R[t]St ⊗R[t] P
●

induces isomorphisms

Kn(wtSP(R[t])) ≅

⎧⎪⎪
⎨
⎪⎪⎩

Kn(R[t]St) if n > 0,

im (K0(R[t]) → K0(R[t]St)) if n = 0.

�

The set St fails to be a left denominator set if R = F`⟨⟨x, y⟩⟩ is the power
series ring in two non-commuting indeterminates: a(1 − xt) = by has no solution
with a ∈ R[t], b ∈ St. Note also that a commutative adic ring is always noetherian
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[War93, Cor. 36.35]. In this case, St is the union of the complements of all maximal
ideals of Λ[t] containing t and the determinant provides an isomorphism

K1(wtSP(Λ[t])) ≅ K1(Λ[t]St)
det
ÐÐ→
≅

Λ[t]×St .

For any adic Z`-algebra Λ and any γ ∈ Γ ≅ Z`, we have a ring homomorphism

evγ ∶Λ[t] ↦ Λ[[Γ]], f(t) ↦ f(γ).

inducing homomorphisms Kn(Λ[t]) → Kn(Λ[[Γ]]).

Proposition A.2. Assume that γ ≠ 1. Then the ring homomorphism evγ
induces homomorphisms

evγ ∶Kn(wtP(Λ[[t]])) ≅ Kn(wtSP(Λ[t])) → Kn(Λ[[Γ]]S)

for all n ≥ 0.

Proof. It suffices to show that for any complex P ● in SPwt(Λ[t]), the complex

Q● ∶= Λ[[Γ]] ⊗Λ[t] P
●

is perfect as complex of Λ-modules. We can check this after factoring out the
Jacobson radical of Λ [Wit14, Prop. 4.8]. Hence, we may assume that Λ is simi-
simple, i. e.

Λ =
m

∏
i=1

Mni(ki)

where Mni(ki) is the algebra of ni×ni-matrices over a finite field ki of characteristic
`. By the Morita theorem, the tensor product over Λ with the ∏i ki-Λ-bimodule

m

∏
i=1

knii

induces equivalences of categories

SPwt(Λ[t]) → SPwt (
n

∏
i=1

ki[t]) ,

SPwH (Λ[[Γ]]) → SPwH (
n

∏
i=1

ki[[Γ]]),

with H ⊂ Γ being the trivial subgroup. Hence, we are reduced to the case

Λ =
m

∏
i=1

ki.

In this case, the set S ⊂ Λ[[Γ]] defined in (2.5.1) consists of all non-zero divisors of
Λ[[Γ]], i. e. all elements with non-trivial image in each component ki[[Γ]]. Since
Λ[[Γ]] is commutative, this is trivially a left denominator set. Moreover, the com-
plex Q● is perfect as complex of Λ-modules precisely if its cohomology groups are
S-torsion. On the other hand, as a trivial case of Proposition A.1, we know that
St is a left denominator set and that the cohomology groups of P ● are St-torsion.
Since f(0) is a unit in Λ for each f ∈ St, the element f(γ) has clearly non-trivial
image in each component ki[[Γ]]. Hence, evγ maps St to S and Q● is indeed perfect
as complex of Λ-modules. �
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Inst. Hautes Études Sci. Publ. Math., 1960.

[Gro77] , Cohomologie `-adique et fonctions L (SGA 5), Lecture Notes in Mathemat-

ics, no. 589, Springer, Berlin, 1977.
[GW04] K. R. Goodearl and R. B. Warfield, An introduction to noncommutative noether-

ian rings, 2 ed., London Math. Soc. Student Texts, no. 61, Cambridge Univ. Press,

Cambridge, 2004.
[HK02] A. Huber and G. Kings, Equivariant Bloch-Kato conjecture and non-abelian Iwasawa

main conjecture, Proceedings of the International Congress of Mathematicians, Vol.
II (Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 149–162.

[HK03] , Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet

characters, Duke Mathematical Journal 119 (2003), no. 3, 395–464.
[Iwa71] K. Iwasawa, On some infinite Abelian extensions of algebraic number fields, Actes

du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars,

Paris, 1971, pp. 391–394.
[Iwa73] , On the µ-invariants of Z`-extensions, Number theory, algebraic geometry

and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo, 1973, pp. 1–

11.
[Jan88] U. Jannsen, Continuous étale cohomology, Mathematische Annalen (1988), no. 280,

207–245.
[Kak13] M. Kakde, The main conjecture of Iwasawa theory for totally real fields, Invent. Math.

193 (2013), no. 3, 539–626.
[Kat93] K. Kato, Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via

BdR II, preprint, 1993.

[KKS92] E. Kirkman, J. Kuzmanovich, and L. Small, Finitistic dimensions of Noetherian

rings, J. Algebra 147 (1992), no. 2, 350–364.
[KW01] R. Kiehl and R. Weissauer, Weil conjectures, perverse sheaves and l’adic Fourier

transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 42,
Springer-Verlag, Berlin, 2001.



BIBLIOGRAPHY 131

[Lau87] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et con-

jecture de Weil, Inst. Hautes Études Sci. Publ. Math. (1987), no. 65, 131–210.

[LLTT16] K. F. Lai, I. Longhi, K.-S. Tan, and F. Trihan, The Iwasawa main conjecture for

semistable abelian varieties over function fields, Math. Z. 282 (2016), no. 1-2, 485–
510.
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