Free Product Decomposition of Galois
Groups of Number Fields

by Kay Wingberg at Heidelberg

Let G(k(c)|k) be the Galois group of the maximal pro-¢ extension k(c) of a
number field k, where ¢ is a full class of finite groups which is closed under taking
subgroups, quotients and extensions. If p is a prime of k and P an extension of p
to k(c), then the decomposition group Gy (k(c)|k) with respect to B is isomorphic
to the Galois group G(ky(c)|ky) of the maximal pro-c extension ky(c) of ky, cf. [4]
theorem (9.3.1). In this paper we consider the question whether the decomposi-
tion groups Gy (k(c)|k) or the inertia groups Ti(k(c)|k) for some primes p form
a free pro-c-product inside G(k(c)|k). More precisely, if S(k) and Ty(k) are sets
of primes of k, then

ks(c) is the maximal pro-c extension which is unramified outside S,

kTo(¢) is the maximal pro-c extension which is completely decomposed at T,

and we have canonical homomorphisms

os(0): K Ty(k(Ol) — Gk()lks (o).

of the free pro-c-product of the groups Tig(k(c)|k) into G(k(c)|ks(c)) and, if T is
finite,
¢0(c) sk  Gy(k(c)lk) — G(k(c) k™ (c)),
pETH (k0 (c))

of the free pro-c-products of the groups Tip(k(c)|k) and Gy (k(c)|k), respectively;
here the prime 8 is a fixed extensions of p to k(c). It is known that the answer of
the questions, whether ¢g(c) or ¢7°(¢) are isomorphisms, do not depend on the
choice of the extensions P|p if ¢ is the class of finite p-groups, p a prime number,
but in general it does, see [4] chap.IV §2. Observe further that in general the
sets S(ks(c)) (resp. its complement) and Ty(k™®(c)) are infinite, and we recall the
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definition of free profinite products over profinite spaces in section 1 (see [4]). Let
us collect some known results.

If ¢ is the class of finite p-groups and S(k) is an arbitrary set containing the
set Sp(k) of primes above p, then ¢g is an isomorphism, see [4] theorem (10.5.1)
for the case that p is odd or S(k) contains the set Sg of real places of k and [6]
theorem 2 in the remaining case.

If ¢ is the class of all finite groups (and Tp(k) is finite), then there exist suitable
extensions PB|p such that ¢° is an isomorphism of profinite groups. If Ty = Suo
is the set archimedean primes, this is a result of Fried-Haran-Vélklein [1] and in
general it is proven by Pop [5].

We also would like to mention a result of Neukirch, [3] Satz (12.2), which says
that finitely many decomposition groups Gy (k(p)|k) form a free pro-p-product
inside G (k(p)|k).

In this paper we will prove that ¢'°(c) is an isomorphism if ¢ is the class of
finite p-groups. We get even more: let S, 7T be sets of primes of k such that
Sp U Ssx C S, the density 6(S) of S is equal to 1 and T is a finite subset of S
and let

kgo (p) be the maximal pro-p extension of k which is unramified outside S
and completely decomposed at Ty.

Then we have a canonical isomorphism

Dok GO K TkEI) = GRS k).
peTo(ks® (p)) p¢S(kg® (p))

Observe that Tj may contain the set S, U S (and then the cyclotomic Z,-
extension of k is not contained in k2 (p)). Furthermore we would like to mention
that this result, in the case where S is the set of all places of k, is not an easy con-
sequence of the theorem of Pop, although the proof of that theorem is much more
difficult than this one which is only based on the theorem of Grunwald/Wang.
From Pop’s result it only follows that we have a free pro-p product decomposition
into decomposition groups over the field k7 (the maximal Galois extension of k
which is completely decomposed at all primes of Tj) whereas we show that this
decomposition already exists over the maximal p-extension of k inside k0.

Finally, I would like to thank Alexander Schmidt for many helpful discussions
on this subject.

1 Free Products

We briefly collect some facts on free products of profinite groups. For a more
detailed presentation and proofs we refer the reader to [4], chap. IV and chap. X §1
and [2].



A profinite space is a topological inverse limit of finite discrete spaces and
a pro-c-group is a profinite group which is the inverse limit of groups in a full
class of finite groups ¢ which is closed under taking subgroups, quotients and
extensions.

Definition 1.1 Let T be a profinite space. A bundle of pro-c-groups
G=(G,pr,T)

over T is a group object in the category of profinite spaces over T’ together with a
continuous structure map pr : G — T such that the fibre Gy of G over every point
t €T 1s a pro-c-group.

Example 1. If G is a pro-¢-group and 7" a profinite space, then we always have
the constant bundle (G x T, pr,T), where pr is the projection G x T — T.

Example 2. Let {G;}er be a continuous family of closed subgroups of a pro-
c-group G indexed by the points of a profinite space 7', i.e. it has the property
that for every open subgroup U C G the set T(U) = {t € T |G, C U} is open in
T. Then

G={(g,t) e GxT|ge G}

is in a natural way a bundle of pro-c-groups over 7.

Example 3. Let T = T U {*} be the one-point compactification of a discrete set
T. Let {G;}ier be a (discrete) family of pro-c-groups. Then the bundle G over T'

is defined by

ieT
with the following topology: G; C G (together with its profinite t_opology) is open
in G for all 7, and for every open neighbourhood V' C T of x € T', let

U G U
i€V
be an open neighbourhood of * € G. One checks that the map
p:G—T; Gi2giri, x> x

is continuous. Viewing {*} as the group with one element, we see that the group
operations on the G;’s induce the structure of a bundle of pro-c-groups on the
triple (G, p, T).



Definition 1.2 A morphism of bundles

¢ : (gaprgvT) - (H,p?"H,S)

1s a pair g G — H, ¢r : T — S of continuous maps such that
(i) the diagram b
g — H

prg \L ipTH

T?S

commutes and

(ii) for everyt € T the associated map ¢y : Go — Hep) i a group homomor-
phism.

We say that ¢ is surjective if ¢pg (and hence also ¢r) is surjective.

We will not distinguish between the pro-c-group G and the bundle (G, pr, {*})
over the one point space {*}. In particular, a morphism from a bundle (G, pr, T)
to a group G is a continuous map ¢ : G — G such that the induced maps
¢¢ + Gy — G are group homomorphisms for every ¢t € T'.

Definition 1.3 The free pro-c-product of a bundle (G, pr,T) of pro-c-groups is a
Pro-c-group G=%gG
T

together with a morphism w : G — G, which has the following universal property:
for every morphism f: G — H from G to a pro-c-group H there exists a unique
homomorphism of pro-c-groups ¢ : G — H with f = ¢ ow.

Proposition 1.4 The free pro-c-product of the bundle G of pro-c-groups over T
exists and is unique up to unique isomorphism.

Let G be a bundle of pro-c-groups over a profinite space T and let {G, },er be

its fibers, i.e.
G=J6.

teT
For the free pro-c-product of the bundle (G, pr, T') we often write
T

teT

Proposition 1.5 Let
(gap7 T) = liln(giapia Tz)

i€l
be the inverse limit of the pro-c-group bundles G;. Then

%G =1lim % G,.
T

ier Ti



Let G be a pro-c-group and let {G;},er be a continuous family of closed
subgroups indexed by the points of a profinite space T, and so G = {(g,t) €
G x T|g € G} is a bundle over T. We have a canonical homomorphism

o:%kG—G.
T

Definition 1.6 A pro-c-group G is the free product of the continuous family
{Gihier if ¢ is an isomorphism.

Now we consider the cohomology of a free product in the following case:

Let T = liin)\ T\, where the sets T\ = Ty U {x,} are the one-point compact-
ifications of discrete sets T\. Let G = liﬁl/\ G, be the projective limit of bundles

Gy = U ty €T Gt>\ U {*A}

Let A be an abelian torsion group on which the groups >z, Gy act and assume
that these actions are compatible with respect to the transition maps. Then A
is also a G-module where G = %k G.

T

Proposition 1.7 With the notation and assumptions as above there is an exact
sequence

0— A/AY = lim @D A/A — HY(G, A) = lim @ H'(G,,, A) —0

A T)\ A T)\
and isomorphisms Hi(G, A) = @@Hi(Gtw A), i>2.
ATy

Proof: Using proposition 1.5, we have

HY(G,A) =lim H'(* Gy, A), >0,
A T
and so the result follows from [4], theorem (4.1.4). O

If k£ is a number field, then we denote the one-point compactification of the
set of all places of k by Sp(k). The compactifying point will be denoted by 7.
For an infinite extension K|k, we set

Sp(K) = lim Sp(k'),
k./
where k'|k runs through all finite subextensions of K. Let S be a set of primes
of k and S its closure in Sp(k). The pre-image S(K') of S under the natural



projection Sp(K) — Sp(k) is the closure of the set S(K) of all prolongations of
primes in S to K in Sp(K).

Let M O K 2 k be (possibly infinite) extensions of k such that M|K is a
Galois extension and G(M|K) is a pro-c-group. Let S be a set of primes of k.
For a fixed section s : S(K) — S(M) of the natural projection S(M) — S(K) we
consider the family {G ) (M|K)}yes(x) of decomposition groups and the family
{Tsp)(M|K)}pes(x) of inertia groups, where by convention G,,, = {1}. Since a
finite extension of number fields is ramified only at finitely many primes, the later
is a continuous family of subgroups of G(M|K) indexed by S(K). We obtain a
natural homomorphism

o0 K Ty(M|K)—G(M|K)
S(K)

and, if S(k) is finite, a homomorphism

61 %k Gu(M|K) —G(M|K).
S(K)

If ¢ is the class of p-groups, where p is a prime number, we have the following
well-known

Lemma 1.8 Let f : G' — G be a homomorphism of pro-p-groups. Then [ is
an isomorphism if and only if the induced homomorphism

H'(f): H(G,Z/pZ) — H'(G',Z/pZ)
s an isomorphism for i = 1 and injective for i = 2.

In particular, it follows that the questions whether the homomorphisms ¢ or
 are isomorphisms (in the case of pro-p-groups) do not depend on the section s.
In the following we will omit the chosen section s in the notation.

For the cohomology of a free product with values in a torsion group A (con-
sidered as a module with trivial action) it follows from proposition 1.7 the

Proposition 1.9 With the notation as above let S and Sy be sets of primes of
k where Sy is finite. Then, for v > 1, the following holds:

H'( * Gy(M|K)x * T,(M|K),A)
peS1(K) peSz(K)
—lim @ H(G(M|K), A elim P H(T,(M|K),A).
K pesi(k) K pesa(k)
where k' runs through all finite subextensions of k in K and M' is the mazximal
pro-¢ Galois subextension of M|k' (so M = lim M').
The limits on the right-hand side depend on K and not on k£ and we denote
them by
!/ . / .
@ HGMK),A) and @ H(G,MIK),A)

peSI(K) pES2(K)



2 Galois Groups of large Number Fields

Let k& be a number field and P the set of all primes of k. Let p be a prime
number and S O T sets of primes of k, where S contains the set S, U S, of
archimedean primes and primes above p, and let kg be the maximal extension of
k which is unramified outside S.

We denote the density of a set S of primes of k by 6(S5) and the inertia
subgroup of the decomposition group Gy(k) by T,(k). In the following we write
H'(—) for H(—,Z/pZ).

One version of the theorem of Grunwald/Wang says (see [4], theorem (9.2.2))

Theorem 2.1 Let k be a number field and let S O T be sets of primes of k,
where S O S,USw, (S) =1 and T is finite. Then the canonical homomorphism

H' (ks|k) — @D H' (G, ()
peT

18 surjective.

Corollary 2.2 Let k be a number field, and let T' and Ty be sets of primes such
that Ty is finite, 6(T) = 0 and T N'Ty = &. Then the canonical homomorphism

H (k) — €D H (G (k) & D) H' (T, (k)

peTn peT

18 surjective.

Proof: Let T} = T, U S, U Sy and S = (P\T) U S, U Sw. It follows that
0(S) =1, P\S=T\(S,USx) and Ty C S.
By theorem 2.1, the canonical map

H' (ks|k) — €D H' (G, (k)

T
is surjective. Furthermore, by [4] corollary (10.5.3), we have a canonical isomor-
phism
_ /
H'(klks) = @ H'(Ty(k)),
p¢S(ks)

and so an isomorphism

Hl(];?|k's)G(kS|k) o~ @ H1<Tp<k>)Gp(k)
pgS(k)
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Consider the commutative and exact diagram

H (k|kg)CksIk) = D1\ (s,05.) HY (T, (k))Cr®)

|

H'(k|k) ——= @5, H'(Gp(k)) & Dry(s,us.) H' (Tp(k) "

H' (ks|k) D, H'(Gy(k))

We will show that the vertical upper map on the left-hand side is surjective.
Using the Hochschild-Serre spectral sequence, we have to show that the inflation
map

H?(kg|k) — H*(k|k)

is injective. But this follows from the commutative diagram

o2 (k|k) —— @p H*(Gy(k))

T

H?(ks|k) — @Dg H*(Gy(k))

where the lower horizontal map is injective since §(S) = 1, see [4] theorem (9.1.8).
It follows that the map

H' (k|k) — D H'(Gy(k)) & GB HY(Ty (k) ®

T \(SpUS)
is surjective. Since the maps H(G,(k)) — H(T,(k))® are surjective and the
set T'is contained in (77\7p) U (T'\(S, U S )), the desired result follows. O

For a number field k and sets S, Ty of primes of k recall that

kQ(p) is the maximal p-extension of k& which is unramified outside S
and completely decomposed at Ty.

For a prime p € S and a fixed extension B of p to a number field K|k we denote
the completion of K with respect to ‘B by K,.

Proposition 2.3 Let S,T; be sets of primes of k with Ty U .S, U See € S such
that Ty is finite and §5(S) = 1. Then

ko(p), ifp € S\T,
(k" (0)p =3 krm(p), ifp ¢S,
Ky, if p € Tp.



Proof: Let T"=P\S. For a prime py of k let Py be a fixed extension to k2 (p).
Let K|k be a finite Galois extension inside k°(p) and let B, be the restriction

of Py to K.
Let po € S\Tp. By theorem 2.1, the canonical homomorphism

H'(ks|K) — HY(G o P H' (G

To(K)

is surjective. In particular, for every ag € H 1(G§O(K )) there exists an element
B € H'(kg|K) which is mapped to (0@0,0, ...,0). But § lies in the subgroup
H' (k2 (p)|K) of H'(ks|K). Therefore

H' (ks (0)| ) — H' (G, (K))

is surjective, and so we proved the first assertion.
Now let pg € T. Again by theorem 2.1, the canonical homomorphism

HY (ksupoy | K) — HY( )o @5 H'(

To(K)

is surjective. Therefore, for every
ag, € H' (G, (K) /T, (K)) € H' (G, (K))

there exists 3 € H'(ksugp,}|K) which is mapped to (asg,s 0., 0) and is therefore
contained in H'(k2(p)|K). Thus

H' (k' (p)| K) — H' (G, (K) /T, (K))

is surjective. This proves the second assertion and the third is trivial. 0

Corollary 2.4 Let k be a number field and let S,Ty be sets of primes of k such
that Ty U S, U Sew €S, §(S) =1 and Ty is finite. Then the canonical homomor-
phism

H' (k(p)|kg" (p)) — EB/ HY(Gy(k(p)|k)) ® EB, HY(T,(K(p)[F))
PETY (k5 (p)) p£S (kg (p)
18 bijective and
H?(k(p) ks’ (p)) — L HAG, (kD))
pETo (kg (p))

18 1njective.



Proof: Using corollary 2.2 and taking the inductive limit over all finite subex-
tensions of k. (p)|k, we obtain a surjective homomorphism

HEE @)~ @ HGE)e @ H (TH) .
pETo(kg” () pES(ks (p))
By proposition 2.3, we have
Gy(k(p)lks (p) = Ty(k(p)|k) forp ¢ S,
and so we obtain a surjection
H'(kp)k$p) —» @ H'(Gk@Ik)e @ H'(Tkp)k).
pETo (k3" (p)) pES (ks (p))

Since the groups G, (k(p)|k) for p € Ty and T,,(k(p)|k) for p ¢ S generate the group
G(k(p)|k2 (p)), the map above is injective. Thus we proved the first assertion.
By [4] theorem (9.1.8), we have an injection

H (kS () — P HAGKR)e @ HAGKS @)
PETO(kS" (1)) pETo (k" (1))
Since H?(k|K) = H?*(k(p)|K) and H?*(Gy(K)) = H*(G,(k(p)|K)), see [4] theo-
rem (10.4.8) and theorem (7.5.7), we get an injection
H(k(p)lks' () = @ HAGk@R)e @ H(Gy(kp)k ().
pET0 (kg (p)) pETo (k" (p))
From proposition 2.3 it follows that
H?(Gy(k(p)|ks'(p))) = 0 for p ¢ T,
since G, (k(p)|k&(p)) = 1 for p € S\Tp and cd, G,(k(p)|k&(p)) < 1 for p ¢ S.

This proves the second assertion. 0
Using lemma 1.8 and corollary 2.4, we obtain the following theorem.

Theorem 2.5 Let k be a number field and let S, Ty be sets of primes of k such
that 6(S) = 1, S, U S C S and Ty is a finite subset of S. Then there is a
canonical isomorphism

S0k Gyk(Ik)x ok T(k(p)lk) = G(k(p) kS (p).

PETH (k3 (p)) pES (ks (p))
In particular, if S =P, then
X Gp(k(p)|k) == G(k(p)|E™(p)).

pETo (k™0 (p))
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