On the Embedding Problem with Non-abelian Kernel

by Kay Wingberg at Heidelberg

Version: October 6, 2010

An embedding problem for a profinite group G is a diagram

with an exact sequence of profinite groups and a surjective homomorphism φ . A solution of this problem is a homomorphism $\psi: G \to E$ such that the diagram commutes. A solution is called proper if ψ is surjective. In the following we denote an embedding problem for G only by its exact line.

In this note we consider pro-p groups and problems with not necessarily abelian kernel N and prove a theorem which generalizes a result of Lur'e for the Galois group of the maximal p-extension of a \mathfrak{p} -adic field [1]. We will follow the proof given in [3].

Let G be a pro-p group of finite cohomological dimension $\operatorname{cd}_p G = n$. By d(G) we denote the generator rank $\dim_{\mathbb{F}_p} H^1(G, \mathbb{Z}/p\mathbb{Z})$ of G. We recall the notion of the dualizing module of G, [2] (3.4.4):

$$D(G) = \varinjlim_{\nu \in \mathbb{N}} \varinjlim_{U} H^n(U, \mathbb{Z}/p^{\nu}\mathbb{Z})^{\vee},$$

where $^{\vee}$ denotes the Pontryagin-dual, the second direct limit is taken over all open subgroups U of G and the transition maps are the duals of the corestriction maps. D(G) is a discrete G-module in a natural way. We have a natural isomorphism

$$H^n(G, A)^{\vee} \longrightarrow \operatorname{Hom}_G(A, D(G))$$

for every finite p-primary G-module A.

Theorem 1 Let G be a pro-p group of cohomological dimension $\operatorname{cd}_p G = 2$ with dualizing module D = D(G). Let H be a normal subgroup of G and let E be a pro-p group with d(E) = d(G/H). Assume that one of the following assumptions is fulfilled:

- (i) $D \cong \mathbb{Q}_p/\mathbb{Z}_p$ as abelian group.
- (ii) $D = D^{H}$.

Then the embedding problem

$$(1) 1 \longrightarrow N \longrightarrow E \longrightarrow G/H \longrightarrow 1$$

has a proper solution if and only if the abelian problem

(2),
$$1 \longrightarrow N/N^{p^s}[N, N] \longrightarrow E/N^{p^s}[N, N] \longrightarrow G/H \longrightarrow 1$$

has a proper solution, where p^s is the order of D^H , $s \leq \infty$.

Here we put $N^{p^{\infty}} = 1$. We will need the following

Lemma 2 Let G be a pro-p group of cohomological dimension $\operatorname{cd}_p G = 2$ with dualizing module D. Then the embedding problem

 $1 \longrightarrow A \longrightarrow E \longrightarrow G/H \longrightarrow 1$

with finite p-primary abelian kernel A is solvable if and only if the problem

 $1 \longrightarrow A/B \longrightarrow E/B \longrightarrow G/H \longrightarrow 1$

is solvable, where B is a normal subgroup of E, contained in A, such that

 $\operatorname{Hom}_G(A, D) = \operatorname{Hom}_G(A/B, D).$

Proof: Let $\pi: A \twoheadrightarrow A/B$ be the natural surjection. Then by assumption

$$H^0(G, \operatorname{Hom}(A/B, D)) \xrightarrow{\pi_*} H^0(G, \operatorname{Hom}(A, D)).$$

It follows that $\pi_* \colon H^2(G, A) \xrightarrow{\sim} H^2(G, A/B)$ is an isomorphism. Using [2](3.5.9), the commutative diagram

$$\begin{array}{c} H^{2}(G,A) \xrightarrow{\pi_{*}} H^{2}(G,A/B) \\ \inf & & & & \\ H^{2}(G/H,A) \xrightarrow{\pi_{*}} H^{2}(G/H,A/B) \end{array}$$

gives the result.

Proof of the theorem: Passing to the projective limit by using standard arguments, we may assume that N is a finite p-group.

If $D = D^H$, then $s = \infty$. Otherwise, using the lemma and since

$$\operatorname{Hom}_{G}(N^{ab}, D) = \operatorname{Hom}_{G}(N^{ab}, D^{H}) = \operatorname{Hom}_{G}(N/N^{p^{s}}[N, N], D),$$

the embedding problem (2) is solvable if and only if

$$(3) 1 \longrightarrow N^{ab} \longrightarrow E/[N,N] \longrightarrow G/H \longrightarrow 1$$

is solvable.

In order to show that the solvability of (3) implies the solvability of (1), we use induction on the order of N. Since d(E) = d(G/H), every solution will be proper.

If the dualizing module D is isomorphic to $\mathbb{Q}_p/\mathbb{Z}_p$ as abelian group, then we get for the kernel of the homomorphism

$$\varphi: G \longrightarrow \operatorname{Aut}(D) \cong \mathbb{Z}_p^{\times},$$

which is given by the action of G on D, the inclusion $G/\ker \varphi \subseteq \mathbb{Z}_p^{\times}$. We may assume that $G/\ker \varphi \subseteq 1 + p\mathbb{Z}_p \cong \mathbb{Z}_p$ (for $p \neq 2$ this is always the case) and that $s \geq 2$, if $p \neq 2$, and $s \geq 3$, if p = 2, i.e. $G/\ker \varphi \subseteq 1 + p^2\mathbb{Z}_p$. otherwise we consider the embedding problem

$$1 \longrightarrow N \longrightarrow E' \longrightarrow G/H' \longrightarrow 1,$$

where $E' = E \times \mathbb{Z}/p\mathbb{Z}$ and H' is defined by $D^{H'} = {}_{p^2}D$ if $p \neq 2$ (resp. $E' = E \times (\mathbb{Z}/2\mathbb{Z})^{\varepsilon}$, where $\varepsilon \leq 2$ such that $D^{H'} = {}_{8}D$); hence $G/H' = G/H \times \mathbb{Z}/p\mathbb{Z}$ (resp. $G/H' = G/H \times (\mathbb{Z}/2\mathbb{Z})^{\varepsilon}$); observe that d(E') = d(G/H').

Now we assume that (3) is solvable. Let $\tilde{N} = N^p[N, E]$. If $N \supseteq N' \supseteq \tilde{N}$, then N' is normal in E and we get a commutative and exact diagram

Since the solution of (3) is proper, we get a normal subgroup H' of G contained in H such that $E/N' \cong G/H'$. We consider two cases:

1. Assume that there exists a subgroup $N \supseteq N' \supseteq \tilde{N}$, (N : N') = p such that $D^H = D^{H'}$. Since N/N' is cyclic, we obtain

$$\operatorname{Hom}_{G}((N')^{ab}, D) = \operatorname{Hom}_{G}((N')^{ab}, D^{H'})$$

=
$$\operatorname{Hom}_{G}((N')^{ab}, D^{H})$$

=
$$\operatorname{Hom}_{G}(N'/[N', N], D^{H}) = \operatorname{Hom}_{G}(N'/[N, N], D).$$

Using the lemma, the solvability of (3) implies the solvability of

$$1 \longrightarrow (N')^{ab} \longrightarrow E/[N',N'] \longrightarrow G/H' \longrightarrow 1$$

By the induction hypothesis the result follows. This finishes already the proof of the theorem in the case that $D^H = D$.

2. The assumption of 1. is not fulfilled, i.e. $D^H \neq D^{H'}$ for all subgroups $N \supseteq \tilde{N}' \supseteq \tilde{N}$. Hence we assume that $D \cong \mathbb{Q}_p/\mathbb{Z}_p$ and we have seen above that $\varphi(H) \cong \mathbb{Z}_p$, $\varphi: G \to \operatorname{Aut}(D)$. It follows that $(N:\tilde{N}) = p$. As above let \tilde{H} be obtained via a solution of (3).

Let $N = \langle \beta, \tilde{N} \rangle$, and $f \in \operatorname{Hom}_{G}(\tilde{N}^{ab}, D^{\tilde{H}})$. It follows that $\tilde{N} = \langle \beta^{p}, \tilde{N}^{p}, [N, E] \rangle$.

If $\bar{\alpha}$ denotes the class $\alpha[\tilde{N}, \tilde{N}]$, $\alpha \in \tilde{N}$, then $f(\bar{\beta}^p)^{\beta} = f(\bar{\beta}^p)$, hence $f(\bar{\beta}^p) \in (D^{\tilde{H}})^{<\beta>} = D^H$. Furthermore, $f(\tilde{N}^p) \in (D^{\tilde{H}})^p = D^H$. Since

$$[N, E]^p \subseteq [N^p, E][[N, E], N] \subseteq [N^p[N, E], E] = [\tilde{N}, E],$$

we obtain

$$f([N, E]/[\tilde{N}, \tilde{N}])^p \subseteq f(\tilde{N}^{ab})^{E-1} \subseteq (D^{\tilde{H}})^{G-1} \subseteq (D^{\tilde{H}})^{p^2} = (D^H)^p,$$

(since $s \ge 2$, if $p \ne 2$, and $s \ge 3$, if p = 2), hence $f([N, E]/[\tilde{N}, \tilde{N}]) \subseteq D^{H}$. It follows that

$$\operatorname{Hom}_{G}(\tilde{N}^{ab}, D) = \operatorname{Hom}_{G}(\tilde{N}/[\tilde{N}, N], D^{H}) = \operatorname{Hom}_{G}(\tilde{N}/[N, N], D).$$

As in case 1. the result follows.

References

- Lur'e, B. B.B. Problem of immersion of local fields with non-abelian kernel. J. Soviet Math. 6 (1976), 298-306
- [2] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. 2nd edition, Springer 2008
- [3] Wingberg, K. Eine Bemerkung zum Einbettungsproblem mit nichtabelschem Kern. J. reine u. angew. Math. **331** (1982), 146-150

Mathematisches Institut der Universität Heidelberg Im Neuenheimer Feld 288 69120 Heidelberg Germany

e-mail: wingberg@mathi.uni-heidelberg.de