On the Embedding Problem with Non-abelian Kernel

by Kay Wingberg at Heidelberg

Version: October 6, 2010

An embedding problem for a profinite group G is a diagram

with an exact sequence of profinite groups and a surjective homomorphism φ. A solution of this problem is a homomorphism $\psi: G \rightarrow E$ such that the diagram commutes. A solution is called proper if ψ is surjective. In the following we denote an embedding problem for G only by its exact line.

In this note we consider pro-p groups and problems with not necessarily abelian kernel N and prove a theorem which generalizes a result of Lur'e for the Galois group of the maximal p-extension of a \mathfrak{p}-adic field [1]. We will follow the proof given in [3].

Let G be a pro- p group of finite cohomological dimension $\operatorname{cd}_{p} G=n$. By $d(G)$ we denote the generator rank $\operatorname{dim}_{\mathbb{F}_{p}} H^{1}(G, \mathbb{Z} / p \mathbb{Z})$ of G. We recall the notion of the dualizing module of G, [2] (3.4.4):

$$
D(G)=\underset{\nu \in \mathbb{N}}{\lim } \underset{U}{\lim } H^{n}\left(U, \mathbb{Z} / p^{\nu} \mathbb{Z}\right)^{\vee},
$$

where ${ }^{\vee}$ denotes the Pontryagin-dual, the second direct limit is taken over all open subgroups U of G and the transition maps are the duals of the corestriction maps. $D(G)$ is a discrete G-module in a natural way. We have a natural isomorphism

$$
H^{n}(G, A)^{\vee} \xrightarrow{\sim} \operatorname{Hom}_{G}(A, D(G))
$$

for every finite p-primary G-module A.

Theorem 1 Let G be a pro-p group of cohomological dimension $\operatorname{cd}_{p} G=2$ with dualizing module $D=D(G)$. Let H be a normal subgroup of G and let E be a pro-p group with $d(E)=d(G / H)$. Assume that one of the following assumptions is fulfilled:
(i) $D \cong \mathbb{Q}_{p} / \mathbb{Z}_{p}$ as abelian group.
(ii) $D=D^{H}$.

Then the embedding problem

$$
\begin{equation*}
1 \longrightarrow N \longrightarrow E \longrightarrow G / H \longrightarrow 1 \tag{1}
\end{equation*}
$$

has a proper solution if and only if the abelian problem

$$
\begin{equation*}
1 \longrightarrow N / N^{p^{s}}[N, N] \longrightarrow E / N^{p^{s}}[N, N] \longrightarrow G / H \longrightarrow 1 \tag{2}
\end{equation*}
$$

has a proper solution, where p^{s} is the order of $D^{H}, s \leq \infty$.
Here we put $N^{p^{\infty}}=1$. We will need the following

Lemma 2 Let G be a pro-p group of cohomological dimension $\operatorname{cd}_{p} G=2$ with dualizing module D. Then the embedding problem

$$
1 \longrightarrow A \longrightarrow E \longrightarrow G / H \longrightarrow 1
$$

with finite p-primary abelian kernel A is solvable if and only if the problem

$$
1 \longrightarrow A / B \longrightarrow E / B \longrightarrow G / H \longrightarrow 1
$$

is solvable, where B is a normal subgroup of E, contained in A, such that

$$
\operatorname{Hom}_{G}(A, D)=\operatorname{Hom}_{G}(A / B, D)
$$

Proof: Let $\pi: A \rightarrow A / B$ be the natural surjection. Then by assumption

$$
H^{0}(G, \operatorname{Hom}(A / B, D)) \xrightarrow[\sim]{\pi_{*}} H^{0}(G, \operatorname{Hom}(A, D)) .
$$

It follows that $\pi_{*}: H^{2}(G, A) \xrightarrow{\sim} H^{2}(G, A / B)$ is an isomorphism. Using [2](3.5.9), the commutative diagram

gives the result.

Proof of the theorem: Passing to the projective limit by using standard arguments, we may assume that N is a finite p-group.

If $D=D^{H}$, then $s=\infty$. Otherwise, using the lemma and since

$$
\operatorname{Hom}_{G}\left(N^{a b}, D\right)=\operatorname{Hom}_{G}\left(N^{a b}, D^{H}\right)=\operatorname{Hom}_{G}\left(N / N^{p^{s}}[N, N], D\right),
$$

the embedding problem (2) is solvable if and only if

$$
\begin{equation*}
1 \longrightarrow N^{a b} \longrightarrow E /[N, N] \longrightarrow G / H \longrightarrow 1 \tag{3}
\end{equation*}
$$

is solvable.
In order to show that the solvability of (3) implies the solvability of (1), we use induction on the order of N. Since $d(E)=d(G / H)$, every solution will be proper.

If the dualizing module D is isomorphic to $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ as abelian group, then we get for the kernel of the homomorphism

$$
\varphi: G \longrightarrow \operatorname{Aut}(D) \cong \mathbb{Z}_{p}^{\times}
$$

which is given by the action of G on D, the inclusion $G / \operatorname{ker} \varphi \subseteq \mathbb{Z}_{p}^{\times}$. We may assume that $G / \operatorname{ker} \varphi \subseteq 1+p \mathbb{Z}_{p} \cong \mathbb{Z}_{p}$ (for $p \neq 2$ this is always the case) and that $s \geq 2$, if $p \neq 2$, and $s \geq 3$, if $p=2$, i.e. $G / \operatorname{ker} \varphi \subseteq 1+p^{2} \mathbb{Z}_{p}$. otherwise we consider the embedding problem

$$
1 \longrightarrow N \longrightarrow E^{\prime} \longrightarrow G / H^{\prime} \longrightarrow 1
$$

where $E^{\prime}=E \times \mathbb{Z} / p \mathbb{Z}$ and H^{\prime} is defined by $D^{H^{\prime}}={ }_{p^{2}} D$ if $p \neq 2$ (resp. $E^{\prime}=$ $E \times(\mathbb{Z} / 2 \mathbb{Z})^{\varepsilon}$, where $\varepsilon \leq 2$ such that $\left.D^{H^{\prime}}={ }_{8} D\right)$; hence $G / H^{\prime}=G / H \times \mathbb{Z} / p \mathbb{Z}$ (resp. $\left.G / H^{\prime}=G / H \times(\mathbb{Z} / 2 \mathbb{Z})^{\varepsilon}\right)$; observe that $d\left(E^{\prime}\right)=d\left(G / H^{\prime}\right)$.

Now we assume that (3) is solvable. Let $\tilde{N}=N^{p}[N, E]$. If $N \supseteq N^{\prime} \supseteq \tilde{N}$, then N^{\prime} is normal in E and we get a commutative and exact diagram

Since the solution of (3) is proper, we get a normal subgroup H^{\prime} of G contained in H such that $E / N^{\prime} \cong G / H^{\prime}$. We consider two cases:

1. Assume that there exists a subgroup $N \supseteq N^{\prime} \supseteq \tilde{N},\left(N: N^{\prime}\right)=p$ such that $D^{H}=D^{H^{\prime}}$. Since N / N^{\prime} is cyclic, we obtain

$$
\begin{aligned}
\operatorname{Hom}_{G}\left(\left(N^{\prime}\right)^{a b}, D\right) & =\operatorname{Hom}_{G}\left(\left(N^{\prime}\right)^{a b}, D^{H^{\prime}}\right) \\
& =\operatorname{Hom}_{G}\left(\left(N^{\prime}\right)^{a b}, D^{H}\right) \\
& =\operatorname{Hom}_{G}\left(N^{\prime} /\left[N^{\prime}, N\right], D^{H}\right)=\operatorname{Hom}_{G}\left(N^{\prime} /[N, N], D\right)
\end{aligned}
$$

Using the lemma, the solvability of (3) implies the solvability of

$$
1 \longrightarrow\left(N^{\prime}\right)^{a b} \longrightarrow E /\left[N^{\prime}, N^{\prime}\right] \longrightarrow G / H^{\prime} \longrightarrow 1
$$

By the induction hypothesis the result follows. This finishes already the proof of the theorem in the case that $D^{H}=D$.
2. The assumption of 1 . is not fulfilled, i.e. $D^{H} \neq D^{H^{\prime}}$ for all subgroups $N \supseteq N^{\prime} \supseteq \tilde{N}$. Hence we assume that $D \cong \mathbb{Q}_{p} / Z_{p}$ and we have seen above that $\varphi(H) \cong \mathbb{Z}_{p}, \varphi: G \rightarrow \operatorname{Aut}(D)$. It follows that $(N: \tilde{N})=p$. As above let \tilde{H} be obtained via a solution of (3).

Let $N=<\beta, \tilde{N}>$, and $f \in \operatorname{Hom}_{G}\left(\tilde{N}^{a b}, D^{\tilde{H}}\right)$. It follows that

$$
\tilde{N}=<\beta^{p}, \tilde{N}^{p},[N, E]>
$$

If $\bar{\alpha}$ denotes the class $\alpha[\tilde{N}, \tilde{N}], \alpha \in \tilde{N}$, then $f\left(\bar{\beta}^{p}\right)^{\beta}=f\left(\bar{\beta}^{p}\right)$, hence $f\left(\bar{\beta}^{p}\right) \in$ $\left(D^{\tilde{H}}\right)^{<\beta>}=D^{H}$. Furthermore, $f\left(\tilde{N}^{p}\right) \in\left(D^{\tilde{H}}\right)^{p}=D^{H}$. Since

$$
[N, E]^{p} \subseteq\left[N^{p}, E\right][[N, E], N] \subseteq\left[N^{p}[N, E], E\right]=[\tilde{N}, E]
$$

we obtain

$$
f([N, E] /[\tilde{N}, \tilde{N}])^{p} \subseteq f\left(\tilde{N}^{a b}\right)^{E-1} \subseteq\left(D^{\tilde{H}}\right)^{G-1} \subseteq\left(D^{\tilde{H}}\right)^{p^{2}}=\left(D^{H}\right)^{p}
$$

(since $s \geq 2$, if $p \neq 2$, and $s \geq 3$, if $p=2$), hence $f([N, E] /[\tilde{N}, \tilde{N}]) \subseteq D^{H}$. It follows that

$$
\operatorname{Hom}_{G}\left(\tilde{N}^{a b}, D\right)=\operatorname{Hom}_{G}\left(\tilde{N} /[\tilde{N}, N], D^{H}\right)=\operatorname{Hom}_{G}(\tilde{N} /[N, N], D)
$$

As in case 1. the result follows.

References

[1] Lur'e, B. B.B. Problem of immersion of local fields with non-abelian kernel. J. Soviet Math. 6 (1976), 298-306
[2] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. 2nd edition, Springer 2008
[3] Wingberg, K. Eine Bemerkung zum Einbettungsproblem mit nichtabelschem Kern. J. reine u. angew. Math. 331 (1982), 146-150

Mathematisches Institut der Universität Heidelberg
Im Neuenheimer Feld 288
69120 Heidelberg
Germany
e-mail: wingberg@mathi.uni-heidelberg.de

