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ON CEBOTAREV SETS

KAy WINGBERG

The aim of this paper is to define a topology with good properties on the set
Pk of prime ideals of a number field K. The idea is, roughly speaking, that
open sets are given by so-called Cebotarev sets, i.e. sets of the form

LIK
Prik(0) = {p € Px |p is unramified in L, 0 = (JB), Blp},
where L|K is a finite Galois extension with Galois group G(L|K), 0 € G(L|K)

and (L‘TK) denotes the Frobenius automorphism with respect to 3, P an arbi-

trary extension of p to L. The precise definition of the topology 7x of Pk is
slightly more complicated (see §2) since we want that the natural map

ok (Px, Tx') — Pk, Tx), Pr—PNK,

is continuous if K'|K is a finite extension. We will show that (Pk,7k) is a
strongly zero-dimensional (and so totally disconnected) Hausdorff space with
countable base, and so metrizable, hence normal and completely regular (and not
discrete). In particular, every point of (Pg,7x) has a base of neighbourhoods
consisting of both open and closed sets. Furthermore we will prove the following
theorem (2.8)

Theorem: Let K be a number field, then

(a) the isolated points of (Pk,Tk) are prime ideals whose underlying prime
numbers ramify in the extension K|Q (and so the set of isolated points is
finite),

(b) every open neighbourhood of a prime ideal whose underlying prime number
is completely decomposed in K|Q has positive density.

In section 3 we consider uniform structures on Px inducing the topology 7k .
If Mg is the uniformity defined by finite partitions of Px given by both open
and closed sets, then the completion (P, $lx) of (Pg, k) is a profinite space,
i.e. compact and totally disconnected. Finally we define in section 4 a metric on
Pk (in the case K = Q) inducing the topology 7.

The good properties of this topology are consequences of deep theorems in
algebraic number theory. The Hausdorff property may illustrate this: it follows
easily by considering certain number fields with suitable local behaviour. But
the existence of these fields is a consequence of the theorem of Grunwald/Wang.
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180 KAY WINGBERG

1. Cebotarev Sets

Let K be a number field and let P be the set of all prime ideals p # (0) of
K. For a finite Galois extension L|K with Galois group G(L|K) we denote by

U(L|K) the set of prime ideals of K which are unramified in L,
D(L|K) the set of prime ideals of K which are completely decomposed in L,
R(L|K) the set of prime ideals of K ramifying in L.

For an element o € G(L|K) let

Prx(o) = {p € ULIK) |0 = (L;g() for a prime ideal Blp of L},

where (”TK) denotes the Frobenius automorphism with respect to . Obvi-

ously, this set depends only on the conjugacy class (o)) = {ror1 |7 € G(L|K)}
of 0. We have Pk (0) NPk (1) = @ if (o)) # (7)) and Pr (1) = D(L|K). If
d(S) = 0k (S) denotes the Dirichlet density of a set S of primes of K, then by
Cebotarev’s density theorem

_ #(o)
FC(LIK)

Observe that for a finite Galois extension L|K and a set S(K) of primes of K
we have

O(Ppik (o))

6L(S(L)) = 0x (S(K) N D(L|K))) - [L : K],

where S(L) denotes the set of all extensions of S(K) to L. For sets S; and S
of primes we use the notation

Sl - SQ < 5(51\52) = O,
i.e. S7 is contained in Sy up to a set of primes of density zero, and

Sl fSQ a—— Sl ESQ and 52 gSl

Definition 1.1. A set S of prime ideals of K is called Cebotarev set if there
exist a finite Galois extension L of K and an element o € G(L|K) such that

S = Prik(0).

We set Cx ={S C Pk is a Cebotarev set}.

For a finite extension K'|K let

o'\k Pkt — Pk, PB—p=PNK,
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and we also denote the corresponding map on the set of all subsets of Pgs by
9Kk For a subfield £ C K, a finite Galois extension F|E

K F
Alois
E

and o € G(F|E), let UX(F|E) = o1 gU(F|E), RX(F|E) = o1z R(F|E) and

= PK|E
PRip(o) = ‘PI_(I‘EPF\E(U)'
In the next section we will consider the topology 7x on Pk defined by the
subbase which consists of all sets of the form Pl{f‘ (o). But first we have to prove

some properties of the Cebotarev sets.

Proposition 1.2. Let N|K and L|K be finite Galois extensions with L C N,
and let H=G(N|L) and ¢ € G(L|K). Then

UNIK)NPyx@)= |  Pyx(),

(rhnoH#

where o is a lifting of ¢ to G(N|K); in particular
UNIE)ND(LIK) =[] Pyx(r).

(r)ynH#2

Proof: Let p be a prime ideal of K which is unramified in N|K. Then p €
Py k() if and only if there exists a prime P|p of L such that & = (Ll%), ie. if

there exists a prime PB|p of N such that cH = < %) H. This is equivalent to the

assertion that there exists an element in ¢ H which is contained in the conjugacy

class (1)) of 7 = (MTK> for some prime ideal PB|p of N, i.e. if p € Py (7) for
some 7 € G(N|K) with () NocH # @. ]

Since U(L1|K) NU(L2|K) = U(L1L2|K), we obtain

Corollary 1.3. Let L1|K and Lo| K be finite Galois extensions, H;=G (L1 La|L;)
and 6; € G(L;|K), i = 1,2. Then

(i) Pk (61) N Pr, ik (02) = UJ Prir,x(7),

(rh No1Hy # &
() NooHy # &
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(il) Pr,x(51) N Pryk(d2) # @ if and only if (01)"'(02)? € G(L1La|Li N
Ly) for some p € G(L1Ls|K) (here o; is an arbitrary lifting of &; to
G(L1L2|K)).

If 5 = 1 = g9, then the corollary above is just the assertion D(L;Ls|K) =
D(L1|K) N D(Lz2|K). From part (ii) of the proposition above it follows that all
sets P,k (01) and Pr, x(02) have a non-trivial intersection, if Ly and Lo are
linearly disjoint over K. For an element 7 of a finite group G we denote the
stabilizer of 7 under conjugation by St (7).

Proposition 1.4. Let L1 and Lo be finite Galois extensions of K. For an
element o; € G(L;|K) we denote its restriction to L1 N Ly by @y, i = 1,2. Then
the following assertions are equivalent:

(i) Pr,x(01) S P, k(02),
(i) (@1) = (02)) and #Stg(r,|Kx)(02) = #Sta(rinL.|x)(02)-
In particular, Pr, |k (01) = P, k(02) if and only if (@1)) = (@2)) and

#Sta (. k)(01) = #Sta(LinL, k) (01) = #Sta L,k (02)-

Proof: Let N = L1Ls, H; = G(N|L;), i = 1,2, and H = G(Lz2|L1 N Ly) = H;.
We lift 0; to G(N|K) and denote it again by o;. Assume that (i) holds, i.e.

Pr k(o) = U Py (T) € U Py (T) = Pryk(02).
(rHNo1 Hi#2 {TWNoaHo#D
Since the sets Pyx (7) have positive density, it follows that for every hy € H
there exist hy € Hy and p € G(N|K) such that o1h; = (02)he, and so ((o71)) =

(72)-

If h € H is a fixed element and h a lifting of h to G(N|K), then it follows
thaE for every hy € H; there exist ho € Hy and p € G(N|K) such that o1hy =
(o2h)Phs, and therefore

U Pnig(T) € U P (7).

(rhNo1 H1#2 (rhN(o2h)Ho#o

We obtain Pr, |k (01) € Pr,|k(o2h) for h € H, hence
Prx(01) € () Pryjx(02h).
heH
Since
PLQ‘K(UQ) N PLQ‘K(O'QI’L) # @ if and only if (02)) = (o2h)),

it follows that

Prap, k(ooH) = U Pr, k(o2h) = Pr,k(02),
(oah)),heH
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and therefore
#(ooH) (LN | K) _ #(o2)) (LK)
#G(Ly N Ly|K) #G(Lo|K)

From this equation we get
#Sta(L, k) (02) = #Sta(L, Ly k) (02H).

Conversely, using the arguments above in the other direction, we obtain from
the assertion (ii) that Pr,r,|x(02H) = Pr, |k (02). Since (@1)) = ((72)), we get
Pr,k(01) € Pryar, k(02H) and so (i). This finishes the proof of the proposi-
tion. 0

Corollary 1.5. Let L1 and Lo be finite Galois extensions of K and let o; be
an element of G(L;|K), i = 1,2. Assume that o9 lies in the center of G(Ls|K).
Then the following assertions are equivalent:

(i) Pr,k(o1) S P, k(02),

(11) L2 Q L1 and <<O'2>> = <<O’1 modG(L1]L2)>>
In particular, if o; lies in the center of G(L;|K), i = 1,2, then

Pr,k(01) = Pr,k(02) if and only if Ly = Ly and {(o1)) = {(02)).

Proof: By assumption oy lies in the center of G(L2|K), and so

#Sta (L, 1K)(02) = #Sta(L,nL. k) (02)

if and only if G(La|L1 N Ly) = 1, i.e. Ly C Ly. Now the corollary follows from
proposition 1.4. ]

Taking 091 = 1 = o3 it follows that D(L;|K) = D(Le|K) if and only if L1 = Ls.
Thus the corollary above is a generalization of a theorem of M.Bauer (see [3],
theorem (13.9)).

In the next section we will need the following two lemmas.

Lemma 1.6. Let K|Q be a finite Galois extension and for i = 1,...,n let
E; C K be subfields of K, F;|E; finite Galois extensions and o; € G(F;|E;).
Then

PII(<|Q(1) N ﬂ P}I{\Ei (Ui)
i=1

is empty or has positive density.
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Proof: Let F|E be one of the extensions F;|E;. Then

¢xioPr10() Nk g Prie(0) = ok Pria(l) N ) Prxix(),
(rhNoH#o

where H = G(FK|F). Indeed, let Br € ¢roPrio(1) S Px and let Pr be
an extension of p = Px N E to F and PLri an extension of Ppr to FK. Then
P = Prr N K is conjugated to Px. Since Prk is unramified over K and the

residue degree f(P%|p) = 1, we have (ii'f)w = (%) Now the equality

stated above follows easily. Thus we obtain

PII(<|Q(1) N ﬂ Pp{i\Ei(Ui) =
i=1

erioPrkoN() U Prxx(n) =
=1 <<T1>>00'7H175®

W;(TQPK\Q(UH U U (PF1K|K(7'1)ﬂ"'ﬂPFnK‘K(Tn)).
(mipNo1H1#D {to)Noy Hy#D

From corollary 1.3 (i) it follows that the sets Pg, g |x (71) N - N Pr, ik (Tn)
are empty or have positive density. Since the density of (pI_(I\QPK\Q(l) is equal
to 1, we proved the lemma. O

Lemma 1.7. Let K be a number field and for i = 1,...,n let E; C K be
subfields of K, F;|E; finite Galois extensions, E = (), E; and o; € G(F;|E;).
Then the set

S = ¢ pUK|E)N () PR, (03)

i=1

is empty or infinite.

Proof: Considering the normal closure of KF} --- F,, over £ we may assume
that K = F; = --- = F, and that K|E is a Galois extension. For a set T
of primes of K let (T)g(k|r) be the closure under conjugation by G(K|E).
Obviously, it is sufficient to show that (S)g(x|g) is empty or infinite.

Suppose that ¢ € S and let p = PN E. Then Pg, = PN E; € Pk g, (04), i.e.

there exists an extension ‘Px of Pg, in K such that o; = ({gf ) Since P and

B are conjugated over E;, it follows that there is an element p; € G(K|E;)

such that of* = (%) and we may assume that o; = (%) Since P €
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¢k gU(K|E), we have the element o = (%E) € G(K|E) and it follows that

”— (K\E) _ (K\E)f(%"“) — o Ralp)
B B
where f(PBg,|p) is the inertia degree of Pg, over E. We claim that

SDI_(TEPK|E(U) C (SaxB)-

Indeed, let P’ € ‘P}l‘EPK\E((KTF»- Then there exists a prime " of K which
is conjugated to P’ over E such that (%) = ({gf) Let f(P%,|p) be the
inertia degree of P’ over E. Since G(K|E;) NGy (K|E) = Gy (K|E;), we get

(K’E)f(‘BEilp) B (K‘E)f(‘ﬁp:ilp) B (K‘E}

P B gy

Since Gy (K|E;) is generated by the element <
F(BE,Ip) divides f(PBg,[p). Analogously,
K|ENS®%10)  (K|ENIFEID  K|E;
(m) :<q3~> _(qy/
and so f(PBg,|p) divides f(P,[p). Therefore we obtain

KB (K|E\f®%00  (K|[E\/Rel)  K|EN

(qy/)_(m") _(m) _(f,p>_‘”'
It follows that " € QORI\EiPKIEi(Ui) for all i = 1,...,n, i.e. P” € S, and so
P’ € (S)ak|p)- This proves the claim. Since @}}EPME(U) is an infinite set,

) € Gy (K|E)).

KlEi> B <K|E)f(q3/éilp)
(B// - ﬁB//

)

) € G(K|E),

we proved the lemma. O

We finish this section with a slightly more general version of the theorem of
Grunwald/Wang (see also [4], theorem (9.2.2)).

Let p be a prime number, K a number field and S O T sets of primes of K,
where S contains the set S, U S of archimedean primes and primes above p.
Let Kg be the maximal extension of K which is unramified outside S. By

we denote the group of all p-th roots of unity.
Theorem 1.8. Let K be a number field and let S O T be sets of primes of K,
where S O S, U S, T is finite and
1
6(S N DK (pup)|K)) >~ -
: pIK(pp) : K]

Then the canonical homomorphism
HY(Ks|K,Z/pZ) — @ H" (K, Z/pZ)
peT

18 surjective.
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Proof: Using [4], lemma (9.2.1), it is enough to show that the canonical map
HY(Ks|K,pp) —  []  H'(Kpoip)
PE(S\T)(K)

is injective. Since [K(u,) : K] is prime to p, it is sufficient to show the injectivity
of the homomorphism

HY(Ks|K (kp), 1p) — 11 H' (K (tp)p, 1p)-
PE(S\T) (K (1y)

An element of the kernel corresponds to a Galois extension L|K(p,) of de-
gree p which is unramified outside S(K(y,)) and completely decomposed at
(S\T)(K (1y)). Since
¢ty (SNDE (1)) = Srcuy (S (1)
= Ok (SE) N D(E (up)|K)) - [K (1) - K] > 5,
such an extension has to be trivial. O

2. Topology

In this section we define a topology on the set Py of non-trivial prime ideals
of a number field K.

Definition 2.1. For a number field K let
BK:{PI‘fflE(U) | E C K, F|E a finite Galois extension, o € G(F|E)},

and let Ty be the topology on Py having Bi as a subbase. Obviously, the topology
T has a countable base.

Remarks: 1. From corollary 1.3 (i) it follows that Co U {@} is a base of Tg.

2. If K’|K is a finite extension, then by definition of the topologies 7 and 7k
the map

ot (Px Tw) —(Pk,Tk), P~ PNK,
is continuous.
3. Not quite obvious is that Tk is not the discrete topology on Px. In order
to see this, suppose that 7 is discrete. Then for every point p € Px the set
{p} is open and therefore there exist finite Galois extensions F;|F;, F; C K, and
o; € G(Fz‘El), 1=1,...,n, such thatn

{0} =) PE 5, (00)-

But if p is contained in UX (K|Q), then this equality contradicts lemma 1.7.

For a subset W of Px we denote the closure of W by W.
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Proposition 2.2.
(i) Let P(0) € Bi. Then

Pi\(PRs(@ URK(FIE)) = ) PEs(),
(rn#(o)
and so P}I;ﬁE(J)URK(F‘E) is a closed set. In particular, Plﬁ(lE(a)\Plﬁ{'E(U)
is a finite set.

(ii) Let F|Q be a Galois extension of prime degree and let o € G(F|Q). Then
Prig(o) U R(F|Q) is the closure of Prig(o).

Proof: Assertion (i) follows from the equation

Pic = ) 0xwPrip(r) U o5l R(FIE).

(N
In order to prove (ii), suppose the contrary is true. Then there exists a prime

number p € R(F|Q) and an open neighbourhood U = Prg(7) of p, L|Q a finite
Galois extension, such that U does not meet Pp|g(c). From corollary 1.3 (ii) it
follows that F' and L are not linearly disjoint over Q, and so F C L. But p is
unramified in L and ramifies in F'. This contradiction shows assertion (ii).

O

Remark: In general the set P}[f' 1 (0)URK (F|E) is not necessarily the closure of
P{f‘ (o), since there may be isolated points in the set RX(F|E), see proposition

2.6, or there may exist subextensions of F|E in which elements of R¥(F|E) are
unramified.

Proposition 2.3.
(i) For every two different points p1 and ps of (P, Tk) there exists a both
open and closed neighbourhood W of p1 such that po ¢ W.

(ii) Let p1,...,pn be pairwise different points of (Pk,Tk). Then there exist
both open and closed neighbourhoods U (p;) of p; such that

Ulps) NU(p;) =@ fori#j.

Proof: In order to prove (i) let L|K be a cyclic extension of degree m > 2
such that p; is unramified in L|K and let o € G(L|K) with p1 € Ppx(c). We
denote the open neighbourhood Pr k(o) of p1 by U.

Let N|K be a quadratic extension of K which is unramified at all primes of
U, completely decomposed at R(L|K) U {p2} and inert at py; if V = Py g (7),
where 7 is the non-trivial element of G(N|K), then p; € V and py ¢ V. Such
an extension exists. Indeed, let
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T=5,US5+ UR(L|K) U{pl,pg} and S = (PK\U)UT,

then ) .
og(S)=1——> -
k(5) — >3
and so we can apply theorem 1.8: there exists an element p € H'(Kg|K,Z/27)
such that

resy(¢) =0 € H (K,,7Z/2Z)) for p € T\{p1}
and
0 7& resp, (90) € H7lzr(KP1 ’ Z/QZ) - Hl (KPI7Z/2Z)'
If kero = G(Kg|N), then N is a quadratic extension of K with the desired
properties.

Now W = U NV is an open neighbourhood of p; and pa ¢ W. It remains to
show that W is closed. Let W be the closure of W. Using proposition 2.2(i), we
get

UNVCUNVC(UURLK)N(VUR(NIK))=UNV,
and so W = W. This finishes the proof of (i).

In order to prove (ii) we use induction with respect to n. Assume that we
have found open and closed neighbourhoods W (p;) of p;, i = 1,...,n— 1, which
are pairwise disjoint. By (i) it follows that for every i € {1,...,n — 1} there
exists an open and closed neighbourhood W;(p,,) of p,, such that p; ¢ W;(p,,).
Then

Upa) = () Wilhs)

is an open and closed neighbourhood of p,, such that p; ¢ U(p,) for all i =
1,...,n — 1. Now the open and closed neighbourhoods U(p;) = W (p;)\U (pn),
i=1,...,n—1, and U(p,) have the desired property. O

Recall that a Hausdorff space X is called zero-dimensional if every point of X
has a fundamental system of neighbourhoods which are both open and closed,
and X is called strongly zero-dimensional if for every closed subset A of X and
each neighbourhood U of A there is an open and closed neighbourhood of A
contained in U.

Proposition 2.4. The space (Px,Tk) has the following properties: it is
(i) a Hausdorff space,
) strongly zero-dimensional (and so totally disconnected),

(iii) metrizable (and so normal and completely regular),
)

every point of (Pk,Txk) has a base of neighbourhoods consisting of both
open and closed sets.
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Proof: By proposition 2.3(i) there exists for every two different points z and
y of Pk an open and closed neighbourhood W of = such that y ¢ W. It follows
that Px\W is an open neighbourhood of y being disjoint to W. Therefore Px
is a Hausdorfl space.

Now we prove (iv). Let p € (Pk,7k) and let U = (_, F|E( 0;) be an
open neighbourhood of p. We have to find and open and closed nelghbourhood
of p being contained in U. Obviously we may assume that U = P, E(a). By

proposition 2.3(ii) there exist open und closed, pairwise disjoint neighbourhoods
U(pi) of p; i =0,...,n, where {p1...,pn} = RE(F|E) and py = p. Then

is an open and closed neighbourhood of RX(F|E) not containing p. Let V =
P{f‘ z(0)\UR, then V' is open and contains p. But V' is also closed, since we get

for the closure V of V, using proposition 2.2(i),

F\E( o\Ur = ijﬂ(\E(U) N (Px\Ur)
PE (o) N (P \Ur)
€ (Pgplo) URT(FIE) N (Pk\Ur)

N

= F\E( o)\Uk.
This finishes the proof of (iv). The other assertions follow from [2] IX.6 exercise
2(b) since the considered space has a countable base. O

Proposition 2.5.
(i) Letp € (Pk,7k) be a prime ideal of K such that p=p N Q is completely
decomposed in K. Then every open neighbourhood of p has positive density.

(ii) Letp € (Pk,7k) be a prime ideal of K such that p =p N Q is unramified
in K. Then every open neighbourhood of p has infinitely many points.

Proof: Let p € (Pk,7xk) such that p = p N Q is completely decomposed in K
and let U be an open neighbourhood of p. The prime number p is also completely
decomposed in the normal closure N of K|Q. If 3 is an extension of p to N, then
V= @ETK(U ) is an open neighbourhood of B. Since every open neighbourhood
of a point of (Pn,7Zy) contains a set which is a finite intersection of sets of By,
it follows from lemma 1.6 that V has positive density, and so U has. This proves
assertion (i) and (ii) follows from lemma 1.7. O
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Recall that a point x of a topological space X is called isolated if {x} is an
open set in X.

If G(F|E) is the Galois group of a finite Galois extension F'|E and ‘B a prime of
F, then we denote the decomposition group and the inertia subgroup of G(F|E)
with respect to B by Gog = G(F|E) and Ty = Tip(F'|E), respectively. If £ is a
prime number, then G(¥) is a ¢-Sylow group of a group G.

Proposition 2.6. Let K|Q be a finite extension and let p € @}}Q(R(K\Q)).
(i) Assume that K|Q is normal and that G,(K|Q) has the following property:

there exists a prime number £ such that G (£) is not cyclic and the quotient
Gy (0)/Ty(€) is non-trivial. Then p is an isolated point of (Px, Tk ).
(ii) For every prime ideal B|p of the normal closure N of K|Q there exists a

finite Galois extension LIN such that P and all G(N|Q)-conjugates of B
are inert in L|N and their unique extensions to L are isolated in (Pr,7L).

Proof: Let Ky C K be the fixed field of [G,(£), Gy (¢)]. From our assumptions
it follows that K, has subfields F;, i = 0,1,2, such that Ky = E1Ey, Ey =
El N E2 and

G(Ko|Ey) 2 Z/ZL x 7/VZ.,
and p N Eq is inert and p N Fs is ramified in K. Let E3 be any extension of Ey
in Ky of degree ¢ different to Fy and Fs:

SN

FEy E5 Es

Ey.
The letters ¢ and r indicate whether p N Fy resp. its unique extensions to the
fields E;, i = 1,2,3, are inert or ramify in the considered extensions. Now we
consider the open set

K, K, —1 -1
U= PKOO|E1 (U) N PKOO|E3(7—) = (PK0|E1PKO\E1 (U) N SOKO‘ESPK0|E3(T)

of (Pk,,7k,), where o = (%) and 7 = (%) Observe that o # 1 # 7T
and po=pNKyeU.

Let p’ be a prime ideal contained in U. Since Ky|Fy is not cyclic and p’ N
E; is inert in Ky|Eq, p’ N Ey is completely decomposed or ramifies in F1|FEjp.
In the first case its extensions to E3 would also be completely decomposed in
Ky|Es5, and so p’ can not be contained in 901_(3)|E;>,PK0|E3 (7). Tt follows that
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U C ‘P;(i|EOR(K0|E0)v and so U is finite. Therefore {po} C U is also open (the
finite set U\{po} is closed as (Pk,,7k,) is a Hausdorff space). Therefore pg is
an isolated point of (Pg,,7k,), and so p = SOI_(TKO (po) is an isolated point of
(Pk,Tk). This proves assertion (i).

In order to prove (ii) let 8 be a prime ideal contained in cp;,TQ(R(N |Q)) and
let ¢ be any prime number dividing the order of the inertia subgroup Ty of
Gy = Gp(N|Q). Let Lo|Q be a cyclic extension of ¢-power degree such that
PNQisinert in Lo|Q and Ly & N. Let L = NLj. Then all G(N|Q)-conjugates of
B are inert in L|N and G, (L|Q) fulfills the condition of (i), where P denotes
the unique extension of P to L. It follows that B, is isolated in (Pr, 77.). O

Definition 2.7. Let K be a number field and N the normal closure of K|Q. A
point p € (Pk,7xk) is called potentially isolated if for every Blp of N there
exists a finite Galois extension L|N such that

(i) all G(N|Q)-conjugates of B are unramified in L|N,
(ii) all points of gozllN(‘B) are isolated in (Pr,7r).

We denote the set of all isolated points and the set of all potentially isolated
points of (Px,Tk) by (Pk)iso and (Pk)p.iso » respectively.

Without condition (i) in the definition above, i.e. QD;]TQ(‘BQ@) CU(L|N), all
points of Px would be potentially isolated, since for every p € Pk there exists a
finite Galois extension K'|K in which p ramifies, and we can apply proposition
2.6(ii) to the field K’. Furthermore we would like to mention (although it is
completely trivial) that Pg has no isolated points, since every open set of Pg
has positive density. The following proposition considers the general case.

Theorem 2.8. Let K be a number field. Then the following is true:
(1) (pK)iSO < (pl_{l\Q(R(K|Q)) = (PK)p.i507

every open neighbourhood of p
has infinitely many points

() orleUKIQ) C {p € Pk | 2

every open neighbourhood of p

iii -1
(i) (‘OKIQ(D(K@)) C{p € Pkl has positive density

J3

If K|Q is a Galois extension, then we have equality in (iii).
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Proof: Let N be the normal closure over K over Q. The inclusion

‘P;{}@(R(K’Q)) C (Pk)p.iso

is just proposition 2.6(ii). In order to prove the other inclusion suppose that
p € (Pk)p.iso is not contained in QDI_(-TQ(R(K‘QD. Then the extensions P of p

to N are contained in @&TQ(U(N |Q)). Let Py be one of these extensions and
let L|N be a finite Galois extension such that all G(N|Q)-conjugates of P, are
unramified in L|N and all points Por € cpz‘lN(iBo) are isolated in (Pr,7L).

Then Bor, € 901;|1@( (L|Q)). This contradicts proposition 2.5(ii) and therefore

we proved the equality stated in (i). Assertions (ii) (and so the inclusion in (i))
and the inclusion (iii) follow from proposition 2.5(ii) and (i), respectively.

Now we show that for every point P € cp;ﬁQ(U(N|Q))\<pj_\ﬁQ(D(N|Q)) there
exists an open neighbourhood of density equal to 0. Indeed, let Ny C N be
its decomposition field and observe that by assumption N 7& Ny. Therefore

T = (N‘NO) € G(N|Np) is not equal to 1. Obviously, P € goN‘N PN, (7) and

this open set has density equal to 0 since every prime ideal of Py N, (T) is inert
in the extension N|Ny. So we get

every open neighbourhood of 3
has positive density

PrioPIVIQ) = {P € Pn | h

showing also the last assertion of the theorem. O

Remark: The inclusion in (ii) may be strict (even if K|Q is a Galois extension),
i.e. there may exist ramified primes having only infinite open neighbourhoods,
or with other words, it is possible that there are ramified points which are not
isolated. But one can show that for a number field K|Q there exists a finite
Galois extension L|K such that gozllQ(R(L]Q)) = (PL)iso-

3. Uniformity

In this section we consider uniformities on Py which induce the topology 7k .
First we recall some facts concerning uniform structures on a normal topological
space (X, 7):

The uniformity U°¢ of finite partitions by open and closed subsets of X is
defined by the base

U Vix V) CX xX|V; C(X,7T) open and closed, UV X}.
i=1 i=1
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We denote the completion of (X, U°¢) by (X ,i:l"c). The uniformity $L° of finite
open coverings on X is defined by the base

OUxU JCXxX|neN, U eT, UU X}

=1

The Stone-Cech compactification 3X of (X,7T) is the completion of X with
respect to the coarsest uniformity 45€ on X for which all continuous mappings
of X into [0,1] are uniformly continuous. Concerning these three uniformities
on X we have the

Proposition 3.1. Let (X,7) be a strongly zero-dimensional Hausdorff space.
Then following is true.

(i) The uniform structures U°¢, L° and USC€ on X are equal, now denoted by
. The topology induced by I on X is equal to T .

(ii) The completion (X,ﬁ) of X equipped with the uniformity 34 = 3°° is a
profinite space, i.e. it is compact and totally disconnected.

Proof: Since (X,7) is normal, the uniformity £° is equal to the uniformity
il*f(é and #° = $5C induces the topology 7 on X, see [2] IX.1 ex. 7, IX.4 ex. 17.

By definition $4°¢ is coarser than {° and, since (X, 7) is strongly zero-dimen-
sional, there exists for every open covering |J;_, U; of X a refinement () ", V; =
X where V; C (X, 7) is open and closed. Thus 4°¢ is finer than $(°, and so they
are equal. This proves (i).

From (i) it follows that (X,¢l) = B(X,T) and the compact space B(X,T) is
totally disconnected, see [2] IX.6 ex. 1(b). This proves (ii). O

Proposition 3.2. Let X be a strongly zero-dimensional Hausdorff space and let
i (X, 40) —(X,£)

be the canonical mapping (4 = U°°) and we identify X with i(X). Let OCx and
OC ¢ be the set of both open and closed subsets of X and X, respectively.

(i) The maps
OCx —0Cgx, S—S8, and OCy—0OCx, S—SNX

are bijections, where S is the closure of S in X.

(ii) For the set of isolated points of X and X we have i1(Xiso) = Xiso.
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Proof: It is clear that the second map is well-defined. Let S € OCx. Since
S and X\S are closed sets of X, we get from SU (X\S) = X the partition
SuU X\S = X, see [2] IX.4 ex. 17(c), and so X\§ = X\S. Thus the closed set
S is also open in X , and so also the first map is well-defined.

If S € OCx, then S C SNX. Let z € SN X and suppose that z € X\S.
Then z € X\S = X\S which is a contradiction, and it follows that z € S.
Therefore S = SN X.

IfS§ € OCg,then SNX C S, since S is closed. Since § is also open, S N X
is dense in S, and so SNX = S. This proves that the considered maps are
bijections.

In order to prove (i) let & € Xjs. Then {Z} is open in X. Since i(X) is
dense in X, the set {&} Ni(X) is not empty and so & € i(X). Thus {2} is an
open subset of i(X).

Conversely, let € X;5,. Since the set {x} is open and closed in X, the same is
true, by (i), for its closure {z} in X. Consider the open set U = {z}\{i(z)} C X
(observe that {i(x)} is closed in the Hausdorff space X). Suppose that U is not
empty. Then, using (i), we get the contradiction

@ # UNi(X) = ({a} ni(X))\{i(2)} = {i(x)\{i(2)}.
Therefore U is empty, i.e. {z} = {i(x)}, and so {i(z)} is open in X. O

Now let (X,7) = (Pk,7k). This space is a strongly zero-dimensional Haus-
dorff space by proposition 2.4(ii). If Uy = U9 denotes the uniformity of finite
partitions of Px by both open and closed subsets of (P, 7k ), then we obtain

Theorem 3.3. The Hausdorff uniform space (Pi,x) is pre-compact and
strongly zero-dimensional, and its completion (Pk, k) is a profinite space. The
canonical map

7 (PK,ﬂK) —>(75K711K)

induces an isomorphism of (Pk,8x) onto a dense subspace of (Px, k).

Furthermore the sets (Pk)iso and (75K)iso of isolated points are isomorphic
and finite.

4. A metric for Py

In this section we will define a metric on Pg which induces the topology 7g.
The idea is that two points z,y € Pg are near, if they induce in many fields
with large discriminant the same Frobenius automorphism. We start by defining
another uniformity on Pg: the uniformity of finite open coverings of (Pg, Tg)
defined by the discriminant of finite Galois extensions F|Q.
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Let d € N and let
Sq = {F|Q a finite Galois extension, |D(F|Q)| < d},

where D(F|Q) denotes the discriminant of F. The set Sy is finite by Hermite’s
theorem, see [3] III. (2.16). For z € Py let

Sa,z = {F|Q finite Galois , x € U(F|Q), |D(F|Q)| < d}
and
FIQ))

IF

Va(z) = ﬂ PF|Q((
F‘Qesd,w
where xr is an extension of x to F. Furthermore let
Ri= |J R(FIQ), Ga= ][] GFIQ, Vad)= () Prilorg)
Fl@GSd FlQESd F\QESd

for ¢ = (op|@)rip € Ga. Observe that Vy(6) = Vy(x) for all z € V4(5). We
obtain a finite open covering

Cov®(d):  Pg= |J Va@)u | Val(e)
ceGy a€Ry
of Pg. Finally we define

Va= U (va@ xva@) v |J (Vale) x Va(a)).

6eGq aERg
Obviously, we have Vg C V, for d < d'.

Proposition 4.1. The set ‘II(S ={ V4, d € N} is a base for a uniform structure
Ll(g on Pg inducing the topology Tg.

Proof: Let V; € ‘U(S . By proposition 2.3(ii) we find open (and closed) neigh-
bourhoods U(«) of @ € R4 which are pairwise disjoint and defined by finitely
many extensions of Q (see the proof of 2.3(ii)). Let Vy(a) = Va(a) N U(a)
and Vy(6) = Va(6)\V (Ra), where V(R4) = | 4ep, Va(a) is an open and closed
neighbourhood of the set Ry. Then
Cov(d):  Pog= ) Vu@®)u () Vale)
6eGq acRy

is a partition of Py by open sets which is a refinement of Cov °(d). Furthermore
these open sets are defined by finitely many extensions of Q. Let

d' = mazp{|D(F|Q)|},

where F' runs through all extensions of Q@ which appear in a definition of the
open sets in Cov(d). Then Cov°(d') is a refinement of 6\’0/1)((1). Indeed, let
U € Cov°(d), ie. U = Vy(d) for some ¢ € Gy or U = Vg («) for some
a € Ry. Then U = Vg (z) for some z € Pg. Let V € Cov(d) be the unique
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open set containing z. It follows that U C V, since V is the (finite) union of
open sets of the form (;_; Pr,g(03), where |D(F;|Q)| < d’ for all 4, and at least
one of these sets contains x.

Now we prove that the set %5 = { V4, d € N} is a base for a uniform structure

on Pg. The only axiom, which is not obvious, is the following: for Vg € ‘B(g
2

there exists a Vg € ‘135 such that Vg C V,, where
2

Vi ={(z,y) € Po x Py | (z,2),(z,y) € Vg for some z € Pg}.
But, taking d’ as above, and let

wa= | (vd(&) X vd(&)) u (Vd(a) X Vd(a)>,
ce€Gq a€Ry

then it follows by the consideration above that Vg C Wy=W,; C Vy.

Finally, the topology induced by 116 is obviously coarser than 7gp. On the
other hand, let € Pg and let U(x) € Tgp be an open neighbourhood of z.
We may assume that U(z) = ();_, Pr,g(0i) for some finite Galois extensions
F;|Q and some o; € G(F;|Q). Let d = maz{|D(F;|Q)|,i = 1,...,7} and let
V € Cov(d) be the unique open set containing z, and so V' C U(z). The
neighbourhood of x induced by the entourage Vy with d’ as above is

Vo(@) U | Vala), ifxisunramified in all F € Sy,
a€R ()
U Va(a), otherwise.
a€Ry ()

Up(x) =

where Ry (z) = {a € Rq|x € Vg(a)} and & is given by the condition that
x € Vy(5). Since the covering Cov(d') is a refinement of Cov(d), we obtain
that Uy (x) € V C U(x). Thus the topology induced by il(g is finer than 7g.
This proves the proposition. O

Obviously, 116 is coarser than Hg = U (and it seems unlikely that they are
equal), but this uniformity defines a nice metric on Pg.

Theorem 4.2. The map

1
0: PQXPQ—)[Oal]v (x’y)l—>5(:1’,‘,y):*,
where "
n =sup{d|(z,y) € Vu},

defines an ultra-metric on Pg which induces the uniformity 11,5.

Corollary 4.3. The completion (75(@,116) of (73@,11(8) is a profinite space.
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Proof: Obviously, ¢ is symmetric, d(x,z) = 0, d(x,y) < max(d(x, 2),0(z,y))
for z, y, z € Py and the (quasi-)metric § induces the uniformity 11(8 . Since Ty
is a Hausdorff topology, § is an (ultra-)metric.

Since 115 is coarser than g, we get a surjection (75@,11@) — (75(@,5:15) and
SO (75@,116 ) is compact. Furthermore, the extension of ¢ to (75(@,215 ) is also an
ultra-metric and so the completion is totally disconnected. 0

Remarks: 1. Analogously one can define a uniformity 42 on (Pg,7x) and a
corresponding metric having the properties stated in 4.1, 4.2 and 4.3.

2. It is obvious that the metric § is not easily to calculate (at least if d > 21
when not only quadratic fields are involved). But we do some calculations for
d < 5. We have three non-trivial extensions F|Q with absolute discriminant

|ID(F|Q)| < 5: Q(v=3), Q(v/—1) and Q(v/5). Now we use the notation (a|y)
for Py /aye(): v € G(Q(va)|Q), and we denote the non-trivial element of

G(Q(v/a)|Q) by —1. Then V3 = Pg X Py, for V; we have to use the covering
<(—3\—1) N (—1] 1)) U(=3|1)U(—1|—1) of Pg and for V5 the covering

Po = (8Dn=UnnE-n)u(E8-nnE=1-1)n6)
U ((—3| 1N (5| 1)) U ((—1|—1) N (5\—1)) U ((—3|—1) N (1| 1)).

It follows that for prime numbers z < y < 19
z,y) = i, if (z,y) =(2,7), (2,13), (3,11), (3,19), (7,11), (7,13), (7,19),
(11,19), (13,19),

§(z,y) < L, if (z,y)=(2,19), (3,7), (5,17),

and for all other pairs we have 6(z,y) = %
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