Riemann’s existence theorem and the
K (m,1)-property of rings of integers

by Kay Wingberg at Heidelberg

Preliminary version: December 6, 2007

Let k£ be a number field, S a finite set of nonarchimedean primes of £ and p a
prime number. We assume that p is odd or that k is totally imaginary. Let kg(p)
be the maximal p-extension of k& unramified outside S and Gs(p) = Gal(ks(p)|k).
In geometric terms, we have

Gs(p) =2 m((Spec(Op)\S)L)),

where (Spec((’)k)\S)ef) is the p-completion of the étale homotopy type of the
scheme Spec(Op)\S. If S contains the set S, of primes dividing p (the wild
case), then Gg(p) has cohomological dimension less or equal to 2. Furthermore,
it T'2> .S DS, are sets of primes of k, then the canonical homomorphisms

¢rs: Ok Ty(k(p)lk) — G(kr(p)|ks(p))
PE(T\S) (ks ()

of the free pro-p product of the groups Ty,(k(p)|k) into G(kr(p)|ks(p)); here
To(k(p)|k) is the inertia subgroup of the decomposition group G,(k(p)|k) =
G(ky(p)|ky), where k, is the completion of k with respect to the prime p. We
say that Riemann’s existence theorem holds for k, S, T

In the tame case, i.e. SNS, = &, and in the mized case, i.e. @ # SNS, € S,
until recently not much was known about the group Gg(p): In the tame case
Gs(p) is a finitely presented pro-p-group (Koch), which can be infinite (Golod-
Safarevié), and which is a fab-group, i.e. U is finite for each open subgroup
U Q Gs(p).

In 2005, Labute considered the case k = Q and found finite sets S of prime
numbers (called strictly circular sets) with p ¢ S such that Gg(p) has cohomo-
logical dimension 2. In [S2] A. Schmidt also considered the tame case: he showed
that for a number filed k, which does not contain the group of p-th roots of unity

1



and whose p-part of its ideal class group is trivial, there always exists a finite
set T' of primes with 7'N S, = @&, such that (Spec(Ox)\(S U T))SZ) is a K(m,1)
for p, i.e. the higher étale homotopy groups of (Spec(O)\(S U T))gf) vanish; in
particular, cd, Gsur(p) < 2.

In this paper we will study the relationship of the K (7, 1)-property of the
scheme Spec(Ok)\S and Riemann’s existence theorem for sets 7' D S, where S
is an arbitrary finite set of nonarchimedean primes. We extend results of [5] in
the following way (see also [6]):

Theorem. Let p be a prime number and k a number field where p is odd or k
1s totally imaginary. Let T" O S be finite sets of nonarchimedean primes of k.

Assume that (ks(p))p # ky for all p € (T\S) N S,. Then we have the following
assertions are equivalent:

(i) Spec(Op)\S is a K(m,1) for p and (ks(p))q # kq for all q € (T\(SUS,))min-

(ii) Spec(Op)\T is a K(m, 1) for p and

*  Tp(k) == Glkr(p)|ks(p))-

pET\S(ks(p))

Using this theorem and results of [5], we will show that not only in the tame
case but also in the mixed case one can find finite sets S of primes such that
Cdp GS (p) < 2.

1 Free product decomposition

We introduce some notation. If p is a fixed prime number and G a pro-
p group, then H(G) denotes the cohomology group H(G,Z/pZ) and we put
h'(G) = dimg, H'(G). Furthermore,

n

V@) = SR and (@) = S (-1)H(G)

% =0

denotes the Euler-Poincaré characteristic and partial Euler-Poincaré characteris-
tic of G, respectively. If K|k is a Galois p-extension with Galois group G(K|k),
we sometimes write H'(K|k) for H(G(K|k)).

Let k£ is a number field with absolute Galois group by Gj. If p is a prime
number, then k(p) is the maximal p-extension of k& with Galois group Gy (p) =
G(k(p)|k). If K|k is a Galois p-extension with Galois group G(K|k), we some-
times write H*(K k) for H(G(K|k)).

By S., Sk and Sc¢ we denote the sets of archimedean, real and complex
primes of k and put (k) = #Sg and (k) = #Sc, respectively. We consider
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the extension C|R as ramified. If p is a prime number, then S, is the set of all
primes of K above p.

If p is a prime £, then £, is the completion of k with respect to p with absolute
Galois group Gy, , and U, denotes is group of units.

If K|k is a Galois extension, then we denote the decomposition group and
inertia group of the Galois group G(K|k) with respect to p by G,(K|k) and
To(K|k), respectively. We write Gy = Gy(k) = Go(k(p)|k) = G(kyo(p)|k,) and
Ty = Tp(k) = To(k(p)|k) = T (ky(p)|kp); then G /T, = G(ky" (p)|kp), where ky"(p)
is the maximal unramified p-extension of k.

If S = S(k) is a set of primes and k'|k an algebraic extension of k, then
we denote the set of primes of k" consisting of all prolongations of S by S(k').
Furthermore,

ks is the maximal extension of k£ which is unramified outside S,
ks(p) is the maximal p-extension of k which is unramified outside S,

and by Gg = Gg(k) and Gg(p) = Gs(k)(p) we denote the Galois groups G(ks|k)
and G(ks(p)|k), respectively.

For an arbitrary set S of primes of k we define the Safarevié-Tate groups
I (Gs(p)) = HIY(Gs(p), Z/pZ) and the groups coker'(Gg(p)) by the exactness
of the sequences

0— II'(Gs(p)) — H'(Gs(p)) — | [ H'(G}) — coker'(Gs(p)) — 0.
pes

Let
V(k) = ker (k* k" — T ks /s < [T 0k,
pes p¢S

and Bg(k) = Vs(k)Y. Observe that when p, C k

Bs(k) = ker(H'(Gs(p), ptp) = [lpes H'(Gp, 11))"
= (Cls(k)/p)(=1).

Furthermore, we set

_ 17 /J’pgka _ 17 /J’pgkm
5_{07 /Lpgk7 and 513_{0, Npgkp-

The following primes cannot ramify in a p-extension, and are therefore redun-
dant in S:

1. Complex primes.
2. Real primes if p # 2.
3. Primes p 1 p with N(p) #Z 1 mod p.



Removing all these redundant places from S, we obtain a subset Sy, C S which
has the property that

GS(p) = GSmin (p)

We need some results on the cohomology of a free product in the following
case, see [3] chap.IV: Let T = lim T), where the sets Ty = T\ U {*,} are the

one-point compactifications of dlscré\te sets T). Let G = lim G, be the projective
limit of bundles G, = | ner Gia UJ {*.}, and let G, :71;/}1/\Gtx Let A be an
abelian torsion group considered as a trivial G-module where G = * G. Then
there are isomorphisms !
H'(G, A) =lim @ H (G, A), i>0.
X1

We will use the notation
D H (G, A) = 1lim @) H(G,,, A
T ATy
We need the following

Lemma 1.1 Let

1 B 5 9\ Gy 1

R

1 H g G 1

be an exact and commutative diagram of pro-p-groups and assume that J is a
free pro-p-product of the form

L N S

AES 0eG|Gy

where S is a profinite set, F° is a closed subgroup of J, which is conjugated
to S, under an arbitrary extension of o to 9, and G|G) is a complete system
of representatives of G in G. Assume that cd, 56 <1 and cd, G\ <1 for all
A € S. Then there is an eract sequence

0—HYG,A)— H (¥4, A)— @ H' (4, A

— H*(G,A)— H*(4,A)— @ H*(%\,A) — H*(G, A) — H*(4, A) — 0,

where A is a torsion group (considered as a ¢ -module with trivial action), and
(i) ed, 4 <2 implies cd, G < 3,
(i) ed, G <2 implies cd, 9 < 2.



Proof: Using the results on the cohomology of free products, see [3] chap.IV,
we obtain

(G, HI(#,4) = @) H(G\ (A, A), =1

AeS

These groups can be non-trivial only for ¢ = 0,1 and 7 = 1. Furthermore, we
have

HY(Gy, HY (4, A)) = H* (%), A).

Since cd, 7 < 1, the Hochschild-Serre spectral sequence gives the result. O

Corollary 1.2 Let k be number field and p prime number. Assume that k is
totally imaginary if p = 2. Let T O S be non-empty sets of primes of k. Assume
that S, CT. Assume further that we have a free product decomposition

Ty (k) == G(kr(p)lks(p)),
PE(T\S) (ks (p))

and that (ks(p))p = ky7(p) for allp € (T\S)min- Then
cdy G(ks(p)lk) < 2.

Proof: Since
cdy (k) = 1, edy Gy(k)/Ty(k) = 1, edy Glkr(p)|F) < 2.

we obtain from lemma (1.1), that the vertical left sequence in the commutative
diagram

D H2(G(k)

pes

H*(G(kr(p)|k)) —— @D H*(Gy(k)) > HO(G(kr|k), 1)

peT

P H(Gok) = P H*(G(k))

peT\S peT\S

|

H3(G (ks (p)|k))-



is exact. By the theorem of Poitou-Tate, see [3] (8.6.13), the horizontal sequence
is exact. We obtain H*(G(ks(p)|k)) = 0, hence cd, G(ks(p)|k) < 2. O

Proposition 1.3 Let p be a prime number and let k be the number field.

(i) For an arbitrary set S of primes of k there is a canonical exact and commu-
tative diagram

HY(G(k(p)|k)) ——= D H (Tp(k)® Bs (k)

" ]

HY(G(k(p)|k)) —= H' (G (k(p)|ks(p))) ¥ — IT*(Gs(p)) —=0.

0

(ii) Let T 2 S be sets of primes of k. Assume that

lim Bs(k') =0,
k' Cks(p)

where k' runs through the finite extensions of k inside ks(p). Then the
canonical map

H (G @ksp) = €D H'T(k))%ts®)
peT\S(ks(p))
15 an 1somorphism.

(ili) Let T 2 S D S, U Sy be sets of primes of k. Then the canonical map

H'(Glkr(p)ks(p) = @ H'(Ty(k))

18 an isomorphism.

Proof: Let Ts = G(k(p)|ks(p)). We consider the group extension

1—Ts— Gi(p) — Gs(p) — 1.

From the commutative exact diagram

HY(Gy(p)) —= H'(T5)%s») —— H*(Gs(p)) H*(G(p))

| |

D H(Go(k))— D H*(Gy(K)),

peS p
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where the right-hand vertical map is injective by [3](9.1.10) and (10.4.8), we
obtain the exact sequence

H'(Glp) — H'(T5)%®) — I(Gs(p) — 0.

Furthermore, we consider the commutative exact diagram

()0 D B (1)

pgs
H' (Gy(p) ][ H"(Gy)
p
11 HY(Gy) x [ [ Han(Gy) — H (G, )Y —=Bs (k).
pesS p¢S

H1<Gk7 NP)V

The row in the middle is exact by the Poitou-Tate theorem, see [3] (8.6.10) and
(9.1.10), and the upper map is injective by definition of the group Ts. The
exactness of the bottom row follows from the definition of Bg(k) = (Vs(k))" and
from H} .(Gy)" = k) /Uyky”. This diagram and the exact sequence above imply
that the commutative diagram

HY(Gi(p)) — €D H' (Ty(k))P® Bs(k) 0
p¢s
H'(Gx(p)) H'(Ts)“sW) 1% (G (p)) —=0

is exact. This finishes the proof of (i).
Now let " O S be sets of primes of k. Using (i) and passing to limit, we
obtain .
H' (Gk@ks(p) = @ H'(Tp(k) > E0D,
pES(ks(p))
as @k’gks ®) Bg(k') = 0 by assumption. From this assumption follows that
li_r)nk,gks(p) Br(k') = 0, as Bg(k") surjects onto B7(k’). Thus we also obtain an

isomorphism

HY(G(k(p) kr(p)) S @ks®) = (Y F(T;, (k)% ks )
b (ks ()



Now the the exact sequence
0— HY(G(kr(p)|ks(p))) — HY(G(k(p)|ks(p))) — H (G(k(p)|kr(p)))Ckr@Iks®)

implies assertion (ii).
If S,o US, €S, then we have an isomorphism of finite groups

II*(Gs(p)) = Bs(k)

by [3] (10.4.8) and (8.6.9). Therefore the map

HY(G(k(p)|ks(p)sPP = 5 H'(Ty(k)>®,
S (k)

is an isomorphism. Passing to the limit and observing that G,(ks(p)) = T,(k)
for p ¢ S as kg(p) contains the cyclotomic Z,-extension, we obtain

HY (G ks(p) == @ H'(Ty(k)).
p¢S(ks(p))

By the same argument as in (ii), the last assertion follows. U

Proposition 1.4 Let p be a prime number, k a the number field and T' 2 S sets
of primes of k. Assume that

() lim Bs(k) =0,
k' Cks(p)
(i) the local extensions (ks(p))plky are infinite for all p € Tin\Se, and, if
p =2, then (ks(2)), = C for allp € SN Sx.
Then there is a free product decomposition

X Ty(k) == G(kr(p)|ks(p))-
pET\S(ks (p))

Proof: We may assume that 7' = Ty,;,. Since (kg(p))p|ky is infinite for a prime
p € T\(S U S), the field kg(p), is the maximal unramified p-extension of k.
Using proposition (1.3)(ii), it follows that

H (G ks) = @ H'(T(k).
peT\S(ks(p))

Now we consider the exact sequence

0— I3 (Gr(K)(p)) — H*(G(kr(p)IK) — D H(G(K)),

peT (k')



where £’ is a finite extension of k inside kg(p). Passing to the limit, we obtain
/
0— lim I(Gr(K)(p) — H(Glhr®)ks() — D  H*Gplks®p))).
k' Cks(p) peT (ks (p))
By proposition (1.3)(i), we have an injection
%G (k') (p)) = Br(K),

and the group on the right-hand side is an homomorphic image of Bg(k’). Since

h—H>lk’ng ®) Bg(k') is trivial by assumption, it follows that

lim I (Gr(k)(p)) = 0.
k'Cks(p)

Furthermore, H*(Gy(ks(p))) = H*(G(ky(p)|ks(p)p)) = 0 for all p € T\ Sy as
ks(p)pl|ky is infinite, see [3] (7.1.8)(i), (7.5.8). It follows that

H(Ghr(pks) — @ HGHR)= @ HATK)
PE(ScocN(T\S)) (ks (p)) peT\S (ks (p)

is injective. Thus we proved that

(G (p)lkse) — H( % T,(k)

is an isomorphism for ¢ = 1 and injective for i = 2. By [3](1.6.15), the desired
result follows. O

2 The K(r,1)-property

A locally noetherian scheme Y is called a K (7‘(‘ 1) for a prime number p if the

higher homotopy groups of the p-completion Yet of its etale homotopy type Y.,
vanish, see [5] §2.

Let p a fixed prime number. Let k be a number field and S a finite set of
nonarchimedean primes of k. We assume that k is totally imaginary if p = 2. For
the scheme X = Spec(Ox)\S we have

Gis(p) 2 m((Spec(Op)\S)E),
where we omit the base point. We consider the property
K(Og,S):  Spec(Op)\S is a K(m,1) for p.

If S is infinite, one can extend the notion of being a K (7, 1) for p in an obvious
manner, see [5] §4. In the following we write H',(Spec(O)\S) for the group
H,(Spec(Ox)\S, Z/pZ) and h'(Spec(O)\S) = dimg, H.,(Spec(Ox)\S)
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Proposition 2.1 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Let S be a non-empty set of non-archimedean primes
of k. Then the following assertions are equivalent:

(i) Spec(Op)\S is a K(m,1) for p.
(ii) ed, Gs(p) <2 and the canonical map

H*(Gs(p)) — Hiy(Spec(Op)\S)

18 surjective.

(i) ed, Gs(p) < 2, IT*(Gs(p)) = Bs(k) and dimg, coker®(Gs(p)) = 6.

(iv) ed, Gs(p) < 2. H'(Glhr (p)lks ()0 = @) H'(T(k)>®
peT\S
for some set T containing S U S, and dimg, coker*(Gs(p)) = 0.

If S is finite, then these assertions are equivalent to

(v) cd,Gs(p) <2 and X(Gs(p) =ri(k) +ra(k) — > [ky: Q).

peSNS,

Proof: For the equivalence (i)< (ii) see [5] cor. 3.5. In order to show (ii)< (iii)
we only have to consider the commutative and exact diagram

(G (p))—— H*(Gs [[7@
pesS
B (k)——— HZ(Spec(Op)\S) — [ [ H*( —= I, (Spec(Ok)),
pes

where dimg, H2,(Spec(Oy))) = 9, see [5] thm.3.4 and thm.3.6.
By (1.3)(i), the surjectivity of the map I1I*(Gs(p)) — Bg(k) is equivalent to

HY (G (k(p)|ks(p)) &= = @ H'(T,

pg¢s

Using 7' O S, and (1.3)(iii), we obtain

H (G (k(p)[kr(p))™® = P H'(T,

pgT
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Therefore the commutative and exact diagram

@ Hl Gp )C @Hl )Gp(k) @Hl(T (k))Gp(k)

peT\S pEsS pgT

H' (kr(p)|ks (p)) ¢V —= H' (k(p)|ks (p))“s? —= H' (k(p) |z (p)) 7

shows (iii)< (iv).
Now let S be finite. By [5] prop.3.2,

(Spec(O\S) = 3 (~1)hi(Spec(O\S)

%

= ri(k) +ra(k) — Z [Fp = Q).

pESNS,

Since cd, Gs(p) < 2, we have

x(Gs(p)) = Z(—l)ih"(Gs(p))

= X(Spec(Op)\S) + h*(Gs(p)) — h*(Spec(O)\S).

This shows (ii)<(v).

Remarks:

(i) If S contains S,, then Spec(Op)\S is a K(m, 1) for p. This follows from
the equivalence (i)<(iv) of proposition (2.1) and [3] (8.3.18),(10.4.9), see also [5]

prop.2.3

(ii) Let p be a prime number and k£ a number field where p is odd or k is totally
imaginary. Let S be a non-empty finite set of non-archimedean primes of k.

Assume that Spec(Ox)\S is a K(m,1) for p. Then the sequence

0 — Bg(k) — H*(Gs(p —>HH2 —>H0(Gk,up) —0
pes

is exact, where X is the dual map of the diagonal embedding

H(Gr, i) _’HHO(kavﬂp) = HHZ(GP)V-

peS peS
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This follows from (2.1)(i)<>(iii) and the commutative and exact diagram

H?(Gg HH2 )) — coker®(Gg(p)) —=0
pes J

Hz(GSUSp(p))*) *>H (G, pp)Y —0,
peSUS,

where the lower exact sequence is part of the 9-term exact sequence of the theorem
of Poitou-Tate.

The following proposition is taken from [5] cor.2.2, and the proof presented
here from [1].

Proposition 2.2 Let p be a prime number and k a number field where p is odd or
k is totally imaginary. Let S be a non-empty finite set of non-archimedean primes
of k. Let K'|k be a finite extension inside ks(p). Then the following assertions
are equivalent:

(i) Spec(Op)\S is a K(m,1) for p.
(ii) Spec(Op)\S is a K(m, 1) for p.

Proof: Let R(k,S) = ri(k) + r2(k) — Xpegns, [Fp © Qp]. Since p is odd or k
is totally imaginary, we have R(k',S) = [k’ : k|R(k,S). Therefore, using the
equivalence (i)<(v) of proposition (2.1) and x(Gs(k')(p)) = x(Gs(k)(p))[k" : K],
assertion (i) implies (ii). Conversely, let k”|k be a finite extension inside kg(p)
containing &’. Then, using the implication (i)=-(ii), we obtain

x2(Gs(K")(p)) = x(Gs(K")(p))
= X(Spec(Opr)\S)
= [k : K]x(Spec(Op)\S5)
— 1 1 (xa(Gs(B)p) + B(Gs()p) — W(SpeclONS))
> [K": klx2(Gs(k)(p))
Using [3] (3.3.15) equality follows, and so h*(Gs(k)(p)) = h?(Spec(Ox)\S), and
by [3] (3.3.16), cd, Gs(k)(p) < 2. 0

The following proposition is taken from [5] thm.9.1.
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Proposition 2.3 Let p be a prime number and k a number field where p is
odd or k is totally imaginary. Assume that Spec(Op)\S is a K(m,1) for p and
Gs(p) # 1. Then kg(p) realizes the mazimal p-extension kq(p) of kq where
qe Smin\Sp.

Proof: We have only to show that q ramifies in kg(p)|k. Suppose not, then
ks(p) = ks (p), where S” = S\{q}. By proposmon (2.1)(i)<(v), it follows that
Spec(Op)\S’ is a K(m, 1) for p, and so III*(Gg(p)) = Bg (k). The commutative
and exact diagram

0—= By (k) — H*(Gs (p) —= [ H*(Gy(k))
pes’

0——Bs(k) —> H*(Gs(p) — [[ H*(Gy
peS

shows that Bg (k) = Bg(k). Using [3] (10.7.12), it follows that h'(Gs(p)) =
h'(Gs/(p)) + 1 which is a contradiction. O

Let T' 2 S be sets of nonarchimedean primes of k. We consider the properties

Lo(k,S,T): (ks(p))p#kp, forallpe (T\S)NS,,
Li(k,S,T): (ks(p))g#kq forallqe (T\(SUS,))min,

R(k,S,T) : X To(k) == G(kr(p)|ks(p)).
pET\S(ks(p))

Using the subgroup theorem for free products, see [3](4.2.1), one has
R(k,S,T) = (R(k,U,T) and R(k,S,U)),
where T DU D S.

If T NS, = @, then one part of the following theorem is also proved in [5]
prop.8.1 and cor.8.2.

Theorem 2.4 (Reducing and enlarging the set of primes) Let p be a prime
number and k a number field where p is odd or k is totally imaginary. Let T O S
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be finite sets of monarchimedean primes of k. Assume that Lo(k,S,T) holds.
Then we have the following assertions are equivalent:

(i) Spec(Op)\S is a K(m,1) for p and (ks(p))q # kq for all g € (T\(SUS,))min-

(ii) Spec(Op)\T is a K(m,1) for p and

X Tu(k) == G(kr(p)|ks(p))-
pET\S (ks (p))

The implication (i) =(ii) also holds when S or T is infinite.

Proof: Assume that £,(k,S,T) and IC(O, S) holds. We may further assume
that (T\S)min # @; in particular, Gg(p) # 1. By proposition (2.2), it follows
that (O, S) for all finite extensions k'|k inside kg(p). Thus, using proposition

(2.1) (i) (iil),
lim Bs(k)= lim LAGs(k)(p) C lim H(Gs(kK)(p)) = 0.

k' Ckgs(p) k' Ckgs(p) k' Cks(p)

Using proposition (2.3) and £;(k,S,T), i = 0,1, we see that (ks(p))q # kq for
all g € Tin. By proposition (1.4), it follows that R(k, S,T") holds. The spectral
sequence

H'(Gs(p), H (G(kr(p)|ks(p)) = H™(Gz((p)))

now shows that cd, Gr(p) < 2. Consider the commutative and exact diagram

@ H1<Tp(k))Gp(k)( @Hl( Gp(k @Hl
peT\S pes pgT
T = res

H' (kr (p) ks (p)) 5P H' (k(p)| ks (p))“s® —— H' (k(p)|kr(p)) @),

Since IC(Ok, S) holds, the map res is an isomorphism, and we obtain
H' (k(p)|kr(p))¢r® —>@H )G k),
peET

Using proposition (2.1)(i)<(iv), it follows that K(Og, T") holds.

Conversely, assume that (O, T') and R(k, S, T) hold. Then, by lemma (1.1),
we obtain cd, Gg(p) < 3. It follows exactly in the same way as in the proof of
corollary (1.2), using the remark (ii), that cd, Gg(p) < 2. Furthermore, since
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cd, Gs(p) < 2, cd, Gr(p) < 2 and R(k,S,T) holds, we can apply lemma (1.1)
and obtain

X(Gr(p)) — x(Gs(p)) = > (dimg, H' (T (k)% ®) — dimg, H?(Gy(k)))
pG(T\S)min

= > (dimg, H'(Ty(k)%® — dimg, H*(G,(k)))
pe(T\S)NSp

= Z [k + Q)

pe(T\S)NSy

Using proposition (2.1)(i)<(v), we see that (O, S) holds.

Let ¢ € (T\(S U Sp))min- By proposition (2.3), G4(k) is a subgroup of
G(kr(p)|k). Since cd, G4(k) = 2, it can not be a subgroup of the free pro-p
group G(kr(p)|ks(p)). Therefore G4(ks(p)|k) is non-trivial, and so £(k,S,T)
holds. O]

Using remark (i), theorem (2.4) in the case T'= S U S, and
R(k,S,SUS,) = R(k, SUW,SUS,)
for W C S, we obtain

Corollary 2.5 Let p be a prime number and k a number field where p is odd or
k is totally imaginary. Let S be a finite set of nonarchimedean primes of k with
SNS,=2 and W C S,. Assume that (ks(p))y # ky forp € S,. Then

(i)
K(Oy, S) < R(k,S,SUS,).

(ii) Assume that (O, S) holds. Then also K(Oy, SUW) holds, and in partic-
ular,

Cdp G(]{JWUs(p) |k§) = 2

Corollary 2.6 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Let S be a finite set of nonarchimedean primes of k
with Spec(Ok)\S is a K(m, 1) for p. Then there exists a set T of nonarchimedean
primes with TN S = & and 6(T) = 1, such that there are free product decompo-
sitons
(1)
K TR) =5 Glkrus(o)hs(o)

T (k) == G(k(p)|k ).
pg(TUS)(krus(p)) p( ) ( ( )‘ TUS( ))
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Proof: Since kg(p)|k is infinite, it follows from Cebotarev density theorem that
the set

V' = {q a prime of k| q is completely decomposed in kg(p)|k}

has density zero. Let T be the complement of the set S,, USUV', hence 6(T) = 1.
By theorem (2.4), we obtain that Spec(Ox)\(T'U S) is a K(m, 1) for p and that
there is an isomorphism

% Ty (k) == G(krus(p)|ks(p))-
pe(TUS) (ks (p))

Since §(T'U S) = 1, it follows from [3] (10.5.9) that we have the desired decom-
position (ii). O

Remarks: (1) If S contains S, , then the corollary above is well-known, see [3]
(10.5.1): one can take for 7" all primes not in S.

(2) It is easy to see, that the corollary above implies that the pro-p-group
G(k(p)|ks(p)) is minimal generated by a system of minimal generators of the
inertia groups T,(k), p ¢ S, with defining relations given by the local relations of
the groups G,(k), p e V.

Using a result of A.Schmidt we will give another application of theorem (2.4).
We start with a lemma and introduce the following notation: For a prime number
q with ¢ =1 mod p let L, , be the maximal p-extension of Q inside Q((,), where
(g 1s a primitive g-th root of unity.

Lemma 2.7 Let p be a prime number and k a number field.

(i) Let r € N. Then the set M,.(k) of prime numbers q which are completely
decomposed in k and for which the congruences

¢ =1 mod p* and pqp;rl;élmodq

hold has density 1/[k(Cper) : Q] — 1/[k(Cper, x/D) = QJ.

(ii) The set of prime numbers ¢ = 1 mod p which are completely decomposed in
k and which have the property that (Ly, k), # ky for all p € S, has positive
density.

Proof: (i) Let ¢ be a prime number which is completely decomposed in k(e );
in particular, we have ¢ = 1 mod p?". Let q be a prime of k(Cp2r) above g. Then

NQ@)—

p 7 =1modgq, ie (x/p)N¥=(%/p)modq,
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if and only if q is completely decomposed in k((y2r, ®/p)). Therefore the density
of the set

g—1

=1 mod ¢}

{q is completely decomposed in k, ¢ = 1 mod p*" ,p

is equal to 1/[k(Cper) : Q] 1/[Kk(Cper, A/D) : k(Gp2r)], and the set M, (k) has density
1/[k(Cp2T) : @] ’ (1 - 1/[1{:((;02” p(/l_)) : k(szr)D'

(ii) Let » € N be big enough such that »/p & k((,r) and p" > [k : Q.
Then, by (i), the set M, (k) has positive density. Obviously, if ¢ = 1mod p*
and pqr%l # 1 mod ¢, then the local unramified extension (L,,),|Q, has degree

at least p". Therefore (L, , k), is a non-trivial unramified extension of &, for p|p.
U

Proposition 2.8 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Assume that p, < k and Cliy(p) = 0. Let S be a
finite set of nonarchimedean primes of k with SN S, = & and W C S,,. Let, in
addition, T be a set of primes of Dirichlet density §(T) = 1. Then there exists a
finite subset Ty C T such that K(Ok, W U SUTY) holds and

* Ty(k) == G(ks,usun (p)[kwusor (P))-
PE(S\W) (kwusur, (1)

In particular,

cd, G(kwusur, (p)|k) = 2.

Proof: Obviously we may assume that 7N (S, U Sy) = @ and that the un-
derlying prime numbers of the primes of 7" are completely decomposed in k. We
have to show that there exists a finite subset 77 C T such that (ksur (p))p # ky
for p € S, and that (O, S UT}) holds.

Using lemma (2.7)(ii), there is a prime number ¢ such that S, € 7 and
(ksus,(p))p # kp for p € S,. By a result of A. Schmidt, [5] thm.6.2, we obtain a
finite subset 77 € T' containing S, with the desired properties. U

Remark: The proposition above shows that besides the tame case (W = @) also
in the “mixed case” (W # @ and W # S,) we have examples of Galois groups
with cohomological dimension equal to 2.
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