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Let k be a number field, S a finite set of nonarchimedean primes of k and p a
prime number. We assume that p is odd or that k is totally imaginary. Let kS(p)
be the maximal p-extension of k unramified outside S and GS(p) = Gal(kS(p)|k).
In geometric terms, we have

GS(p) ∼= π1((Spec(Ok)\S)
(p)
et ),

where (Spec(Ok)\S)
(p)
et is the p-completion of the étale homotopy type of the

scheme Spec(Ok)\S. If S contains the set Sp of primes dividing p (the wild
case), then GS(p) has cohomological dimension less or equal to 2. Furthermore,
if T ⊇ S ⊇ Sp are sets of primes of k, then the canonical homomorphisms

φT,S : ∗
p∈(T\S)(kS(p))

Tp(k(p)|k)−→G(kT (p)|kS(p))

of the free pro-p product of the groups Tp(k(p)|k) into G(kT (p)|kS(p)); here
Tp(k(p)|k) is the inertia subgroup of the decomposition group Gp(k(p)|k) ∼=
G(kp(p)|kp), where kp is the completion of k with respect to the prime p. We
say that Riemann’s existence theorem holds for k, S, T .

In the tame case, i.e. S∩Sp = ∅, and in the mixed case, i.e. ∅ 6= S∩Sp 6⊆ Sp,
until recently not much was known about the group GS(p): In the tame case
GS(p) is a finitely presented pro-p-group (Koch), which can be infinite (Golod-
Šafarevič), and which is a fab-group, i.e. Uab is finite for each open subgroup
U ⊆ GS(p).

In 2005, Labute considered the case k = Q and found finite sets S of prime
numbers (called strictly circular sets) with p /∈ S such that GS(p) has cohomo-
logical dimension 2. In [S2] A. Schmidt also considered the tame case: he showed
that for a number filed k, which does not contain the group of p-th roots of unity
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and whose p-part of its ideal class group is trivial, there always exists a finite
set T of primes with T ∩ Sp = ∅, such that (Spec(Ok)\(S ∪ T ))

(p)
et is a K(π, 1)

for p, i.e. the higher étale homotopy groups of (Spec(Ok)\(S ∪ T ))
(p)
et vanish; in

particular, cdpGS∪T (p) ≤ 2.
In this paper we will study the relationship of the K(π, 1)-property of the

scheme Spec(Ok)\S and Riemann’s existence theorem for sets T ⊇ S, where S
is an arbitrary finite set of nonarchimedean primes. We extend results of [5] in
the following way (see also [6]):

Theorem. Let p be a prime number and k a number field where p is odd or k
is totally imaginary. Let T ⊇ S be finite sets of nonarchimedean primes of k.
Assume that (kS(p))p 6= kp for all p ∈ (T\S) ∩ Sp. Then we have the following
assertions are equivalent:

(i) Spec(Ok)\S is a K(π, 1) for p and (kS(p))q 6= kq for all q ∈ (T\(S∪Sp))min.

(ii) Spec(Ok)\T is a K(π, 1) for p and

∗
p∈T\S(kS(p))

Tp(k) −→∼ G(kT (p)|kS(p)).

Using this theorem and results of [5], we will show that not only in the tame
case but also in the mixed case one can find finite sets S of primes such that
cdpGS(p) ≤ 2.

1 Free product decomposition

We introduce some notation. If p is a fixed prime number and G a pro-
p group, then H i(G) denotes the cohomology group H i(G,Z/pZ) and we put
hi(G) = dimFp H

i(G). Furthermore,

χ(G) =
∑
i

(−1)ihi(G) and χn(G) =
n∑
i=0

(−1)ihi(G)

denotes the Euler-Poincaré characteristic and partial Euler-Poincaré characteris-
tic of G, respectively. If K|k is a Galois p-extension with Galois group G(K|k),
we sometimes write H i(K|k) for H i(G(K|k)).

Let k is a number field with absolute Galois group by Gk. If p is a prime
number, then k(p) is the maximal p-extension of k with Galois group Gk(p) =
G(k(p)|k). If K|k is a Galois p-extension with Galois group G(K|k), we some-
times write H i(K|k) for H i(G(K|k)).

By S∞, SR and SC we denote the sets of archimedean, real and complex
primes of k and put r1(k) = #SR and r2(k) = #SC, respectively. We consider
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the extension C|R as ramified. If p is a prime number, then Sp is the set of all
primes of K above p.

If p is a prime k, then kp is the completion of k with respect to p with absolute
Galois group Gkp , and Up denotes is group of units.

If K|k is a Galois extension, then we denote the decomposition group and
inertia group of the Galois group G(K|k) with respect to p by Gp(K|k) and
Tp(K|k), respectively. We write Gp = Gp(k) = Gp(k(p)|k) ∼= G(kp(p)|kp) and
Tp = Tp(k) = Tp(k(p)|k) ∼= T (kp(p)|kp); then Gp/Tp = G(knrp (p)|kp), where knrp (p)
is the maximal unramified p-extension of kp.

If S = S(k) is a set of primes and k′|k an algebraic extension of k, then
we denote the set of primes of k′ consisting of all prolongations of S by S(k′).
Furthermore,

kS is the maximal extension of k which is unramified outside S,
kS(p) is the maximal p-extension of k which is unramified outside S,

and by GS = GS(k) and GS(p) = GS(k)(p) we denote the Galois groups G(kS|k)
and G(kS(p)|k), respectively.

For an arbitrary set S of primes of k we define the Šafarevič-Tate groups
Xi(GS(p)) = Xi(GS(p),Z/pZ) and the groups cokeri(GS(p)) by the exactness
of the sequences

0−→Xi(GS(p))−→H i(GS(p))−→
∏
p∈S

H i(Gp)−→ cokeri(GS(p))−→ 0 .

Let
VS(k) = ker

(
k×/k×p−→

∏
p∈S

k×p /k
×p
p ×

∏
p/∈S

k×p /Upk
×p
p

)
,

and BS(k) = VS(k)∨. Observe that when µp ⊆ k

BS(k) = ker(H1(GS(p), µp)→
∏

p∈S H
1(Gp, µp))

∨

= (ClS(k)/p)(−1) .

Furthermore, we set

δ =

{
1, µp ⊆ k,
0, µp ⊆/ k,

and δp =

{
1, µp ⊆ kp,
0, µp ⊆/ kp.

The following primes cannot ramify in a p-extension, and are therefore redun-
dant in S:

1. Complex primes.
2. Real primes if p 6= 2.
3. Primes p - p with N(p) 6≡ 1 mod p.
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Removing all these redundant places from S, we obtain a subset Smin ⊆ S which
has the property that

GS(p) = GSmin
(p).

We need some results on the cohomology of a free product in the following
case, see [3] chap.IV: Let T = lim

←− λ
T̄λ, where the sets T̄λ = Tλ ∪ {∗λ} are the

one-point compactifications of discrete sets Tλ. Let G = lim
←− λ

Gλ be the projective

limit of bundles Gλ =
⋃.

tλ∈Tλ Gtλ

⋃. {∗λ}, and let Gt = lim
←− λ

Gtλ . Let A be an

abelian torsion group considered as a trivial G-module where G = ∗
T
G. Then

there are isomorphisms

H i(G,A) = lim−→
λ

⊕
Tλ

H i(Gtλ , A), i ≥ 0.

We will use the notation⊕′

T

H i(Gt, A) := lim−→
λ

⊕
Tλ

H i(Gtλ , A).

We need the following

Lemma 1.1 Let

1 // Hλ� _

��

// Gλ� _

��

// Gλ� _

��

// 1

1 // H // G // G // 1

be an exact and commutative diagram of pro-p-groups and assume that H is a
free pro-p-product of the form

∗
λ∈S
∗

σ∈G|Gλ
H σ

λ −→∼ H ,

where S is a profinite set, H σ
λ is a closed subgroup of H , which is conjugated

to Hλ under an arbitrary extension of σ to G , and G|Gλ is a complete system
of representatives of Gλ in G. Assume that cdp Hλ ≤ 1 and cdp Gλ ≤ 1 for all
λ ∈ S. Then there is an exact sequence

0→H1(G,A)→H1(G , A)→
⊕′

λ

H1(Hλ, A)Gλ

→H2(G,A)→H2(G , A)→
⊕′

λ

H2(Gλ, A)→H3(G,A)→H3(G , A)→ 0,

where A is a torsion group (considered as a G -module with trivial action), and

(i) cdp G ≤ 2 implies cdp G ≤ 3,
(ii) cdp G ≤ 2 implies cdp G ≤ 2.
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Proof: Using the results on the cohomology of free products, see [3] chap.IV,
we obtain

H i(G,Hj(H , A)) ∼=
⊕′

λ∈S

H i(Gλ, H
j(Hλ, A)), j ≥ 1.

These groups can be non-trivial only for i = 0, 1 and j = 1. Furthermore, we
have

H1(Gλ, H
1(Hλ, A)) ∼= H2(Gλ, A).

Since cdp H ≤ 1, the Hochschild-Serre spectral sequence gives the result. �

Corollary 1.2 Let k be number field and p prime number. Assume that k is
totally imaginary if p = 2. Let T ⊇ S be non-empty sets of primes of k. Assume
that Sp ⊆ T . Assume further that we have a free product decomposition

∗
p∈(T\S)(kS(p))

Tp(k) −→∼ G(kT (p)|kS(p)),

and that (kS(p))p = knrp (p) for all p ∈ (T\S)min. Then

cdp G(kS(p)|k) ≤ 2.

Proof: Since

cdp Tp(k) = 1, cdpGp(k)/Tp(k) = 1, cdpG(kT (p)|k) ≤ 2,

we obtain from lemma (1.1), that the vertical left sequence in the commutative
diagram

⊕
p∈S

H2(Gp(k))

� _

��
%% %%LLLLLLLLLLLLLLL

H2(G(kT (p)|k))

��

//
⊕
p∈T

H2(Gp(k))

����

Σ // // H0(G(kT |k), µp)
∨

⊕
p∈T\S

H2(Gp(k))

����

⊕
p∈T\S

H2(Gp(k))

H3(G(kS(p)|k)).
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is exact. By the theorem of Poitou-Tate, see [3] (8.6.13), the horizontal sequence
is exact. We obtain H3(G(kS(p)|k)) = 0, hence cdp G(kS(p)|k) ≤ 2. �

Proposition 1.3 Let p be a prime number and let k be the number field.

(i) For an arbitrary set S of primes of k there is a canonical exact and commu-
tative diagram

H1(G(k(p)|k)) //
⊕
p/∈S

H1(Tp(k))Gp(k) // BS(k) // 0

H1(G(k(p)|k)) // H1(G(k(p)|kS(p)))GS(p)
?�

OO

// X2(GS(p))
?�

OO

// 0.

(ii) Let T ⊇ S be sets of primes of k. Assume that

lim−→
k′⊆kS(p)

BS(k′) = 0 ,

where k′ runs through the finite extensions of k inside kS(p). Then the
canonical map

H1(G(kT (p)|kS(p))) −→∼
⊕′

p∈T\S(kS(p))

H1(Tp(k))Gp(kS(p))

is an isomorphism.

(iii) Let T ⊇ S ⊇ Sp ∪ S∞ be sets of primes of k. Then the canonical map

H1(G(kT (p)|kS(p))) −→∼
⊕′

p∈T\S(kS(p))

H1(Tp(k))

is an isomorphism.

Proof: Let TS = G(k(p)|kS(p)). We consider the group extension

1−→TS −→Gk(p)−→GS(p)−→ 1 .

From the commutative exact diagram

H1(Gk(p)) // H1(TS)GS(p) // H2(GS(p)) //

��

H2(Gk(p))� _

��⊕
p∈S

H2(Gp(k)) � � //
⊕

p

H2(Gp(k)),
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where the right-hand vertical map is injective by [3](9.1.10) and (10.4.8), we
obtain the exact sequence

H1(Gk(p))−→H1(TS)GS(p)−→X2(GS(p))−→ 0 .

Furthermore, we consider the commutative exact diagram

H1(TS)GS(p) � � //
⊕
p/∈S

H1(Tp)
Gp

H1(Gk(p))

OO

� � //
∏

p

H1(Gp)

OOOO

// // H1(Gk, µp)
∨

∏
p∈S

H1(Gp)×
∏
p/∈S

H1
nr(Gp)

?�

OO

// H1(Gk, µp)
∨ // // BS(k) .

The row in the middle is exact by the Poitou-Tate theorem, see [3] (8.6.10) and
(9.1.10), and the upper map is injective by definition of the group TS. The
exactness of the bottom row follows from the definition of BS(k) = (VS(k))∨ and
from H1

nr(Gp)
∨ = k×p /Upk

×p
p . This diagram and the exact sequence above imply

that the commutative diagram

H1(Gk(p)) //
⊕
p/∈S

H1(Tp(k))Gp(k) // BS(k) // 0

H1(Gk(p)) // H1(TS)GS(p)

OO

// X2(GS(p)) // 0

is exact. This finishes the proof of (i).
Now let T ⊇ S be sets of primes of k. Using (i) and passing to limit, we

obtain
H1(G(k(p)|kS(p))) −→∼

⊕′

p/∈S(kS(p))

H1(Tp(k))Gp(kS(p)),

as lim−→k′⊆kS(p)
BS(k′) = 0 by assumption. From this assumption follows that

lim−→k′⊆kS(p)
BT (k′) = 0, as BS(k′) surjects onto BT (k′). Thus we also obtain an

isomorphism

H1(G(k(p)|kT (p)))G(kT (p)|kS(p)) −→∼
⊕′

p/∈T (kS(p))

H1(Tp(k))Gp(kS(p))
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Now the the exact sequence

0→H1(G(kT (p)|kS(p)))→H1(G(k(p)|kS(p)))→H1(G(k(p)|kT (p)))G(kT (p)|kS(p)).

implies assertion (ii).
If S∞ ∪ Sp ⊆ S, then we have an isomorphism of finite groups

X2(GS(p)) ∼= BS(k)

by [3] (10.4.8) and (8.6.9). Therefore the map

H1(G(k(p)|kS(p)))GS(k)(p) −→∼
⊕

p/∈S(k)

H1(Tp(k))Gp(k),

is an isomorphism. Passing to the limit and observing that Gp(kS(p)) = Tp(k)
for p /∈ S as kS(p) contains the cyclotomic Zp-extension, we obtain

H1(G(k(p)|kS(p))) −→∼
⊕′

p/∈S(kS(p))

H1(Tp(k)).

By the same argument as in (ii), the last assertion follows. �

Proposition 1.4 Let p be a prime number, k a the number field and T ⊇ S sets
of primes of k. Assume that

(i) lim−→
k′⊆kS(p)

BS(k′) = 0,

(ii) the local extensions (kS(p))p|kp are infinite for all p ∈ Tmin\S∞, and, if
p = 2, then (kS(2))p = C for all p ∈ S ∩ S∞.

Then there is a free product decomposition

∗
p∈T\S(kS(p))

Tp(k) −→∼ G(kT (p)|kS(p)).

Proof: We may assume that T = Tmin. Since (kS(p))p|kp is infinite for a prime
p ∈ T\(S ∪ S∞), the field kS(p)p is the maximal unramified p-extension of kp.
Using proposition (1.3)(ii), it follows that

H1(G(kT (p)|kS(p))) −→∼
⊕′

p∈T\S(kS(p))

H1(Tp(k)).

Now we consider the exact sequence

0−→X2(GT (k′)(p))−→H2(G(kT (p)|k′))−→
⊕

p∈T (k′)

H2(Gp(k
′)),
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where k′ is a finite extension of k inside kS(p). Passing to the limit, we obtain

0−→ lim−→
k′⊆kS(p)

X2(GT (k′)(p))−→H2(G(kT (p)|kS(p)))−→
⊕′

p∈T (kS(p))

H2(Gp(kS(p))).

By proposition (1.3)(i), we have an injection

X2(GT (k′)(p)) ↪→ BT (k′),

and the group on the right-hand side is an homomorphic image of BS(k′). Since
lim−→k′⊆kS(p)

BS(k′) is trivial by assumption, it follows that

lim−→
k′⊆kS(p)

X2(GT (k′)(p)) = 0.

Furthermore, H2(Gp(kS(p))) ∼= H2(G(kp(p)|kS(p)p)) = 0 for all p ∈ T\S∞ as
kS(p)p|kp is infinite, see [3] (7.1.8)(i), (7.5.8). It follows that

H2(G(kT (p)|kS(p)))−→
⊕′

p∈(S∞∩(T\S))(kS(p))

H2(Tp(k)) =
⊕′

p∈T\S(kS(p)

H2(Tp(k))

is injective. Thus we proved that

H i(G(kT (p)|kS(p)))−→H i( ∗
p∈T\S(kS(p))

Tp(k))

is an isomorphism for i = 1 and injective for i = 2. By [3](1.6.15), the desired
result follows. �

2 The K(π, 1)-property

A locally noetherian scheme Y is called a K(π, 1) for a prime number p if the

higher homotopy groups of the p-completion Y
(p)
et of its etale homotopy type Yet

vanish, see [5] §2.
Let p a fixed prime number. Let k be a number field and S a finite set of

nonarchimedean primes of k. We assume that k is totally imaginary if p = 2. For
the scheme X = Spec(Ok)\S we have

GS(p) ∼= π1((Spec(Ok)\S)
(p)
et ),

where we omit the base point. We consider the property

K(Ok, S) : Spec(Ok)\S is a K(π, 1) for p.

If S is infinite, one can extend the notion of being a K(π, 1) for p in an obvious
manner, see [5] §4. In the following we write H i

et(Spec(Ok)\S) for the group
H i
et(Spec(Ok)\S,Z/pZ) and hi(Spec(Ok)\S) = dimFp H

i
et(Spec(Ok)\S)
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Proposition 2.1 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Let S be a non-empty set of non-archimedean primes
of k. Then the following assertions are equivalent:

(i) Spec(Ok)\S is a K(π, 1) for p.

(ii) cdpGS(p) ≤ 2 and the canonical map

H2(GS(p)) ↪→ H2
et(Spec(Ok)\S)

is surjective.

(iii) cdpGS(p) ≤ 2, X2(GS(p))→∼ BS(k) and dimFp coker2(GS(p)) = δ.

(iv) cdpGS(p) ≤ 2, H1(G(kT (p)|kS(p)))GS(p) −→∼
⊕

p∈T\S

H1(Tp(k))Gp(k)

for some set T containing S ∪ Sp and dimFp coker2(GS(p)) = δ.

If S is finite, then these assertions are equivalent to

(v) cdpGS(p) ≤ 2 and χ(GS(p)) = r1(k) + r2(k)−
∑

p∈S∩Sp

[kp : Qp].

Proof: For the equivalence (i)⇔ (ii) see [5] cor. 3.5. In order to show (ii)⇔ (iii)
we only have to consider the commutative and exact diagram

X2(GS(p))� _

��

� � // H2(GS(p)) //
� _

��

∏
p∈S

H2(Gp(k))

BS(k) � � // H2
et(Spec(Ok)\S) //

∏
p∈S

H2(Gp(k)) // // H3
et(Spec(Ok)),

where dimFp H
3
et(Spec(Ok))) = δ, see [5] thm.3.4 and thm.3.6.

By (1.3)(i), the surjectivity of the map X2(GS(p))→BS(k) is equivalent to

H1(G(k(p)|kS(p)))GS(p) −→∼
⊕
p/∈S

H1(Tp(k))Gp(k).

Using T ⊇ Sp and (1.3)(iii), we obtain

H1(G(k(p)|kT (p)))GT (p) −→∼
⊕
p/∈T

H1(Tp(k))Gp(k).
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Therefore the commutative and exact diagram

⊕
p∈T\S

H1(Tp(k))Gp(k) � � //
⊕
p/∈S

H1(Tp(k))Gp(k) // //
⊕
p/∈T

H1(Tp(k))Gp(k)

H1(kT (p)|kS(p))GS(p) � � //
?�

OO

H1(k(p)|kS(p))GS(p) //
?�

OO

H1(k(p)|kT (p))GT (p)

∼=
OO

shows (iii)⇔ (iv).
Now let S be finite. By [5] prop.3.2,

χ(Spec(Ok)\S) :=
∑
i

(−1)ihi(Spec(Ok)\S)

= r1(k) + r2(k)−
∑

p∈S∩Sp

[kp : Qp].

Since cdpGS(p) ≤ 2, we have

χ(GS(p)) =
2∑
i=0

(−1)ihi(GS(p))

= χ(Spec(Ok)\S) + h2(GS(p))− h2(Spec(Ok)\S).

This shows (ii)⇔(v).
�

Remarks:
(i) If S contains Sp , then Spec(Ok)\S is a K(π, 1) for p. This follows from
the equivalence (i)⇔(iv) of proposition (2.1) and [3] (8.3.18),(10.4.9), see also [5]
prop.2.3
(ii) Let p be a prime number and k a number field where p is odd or k is totally
imaginary. Let S be a non-empty finite set of non-archimedean primes of k.
Assume that Spec(Ok)\S is a K(π, 1) for p. Then the sequence

0−→BS(k)−→H2(GS(p))−→
∏
p∈S

H2(Gp)
∑
−→H0(Gk, µp)

∨−→ 0

is exact, where Σ is the dual map of the diagonal embedding

H0(Gk, µp)→
∏
p∈S

H0(Gkp , µp)
∼=
∏
p∈S

H2(Gp)
∨.
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This follows from (2.1)(i)⇔(iii) and the commutative and exact diagram

H2(GS(p)) //

��

∏
p∈S

H2(Gp(k))

� _

��

//

%% %%JJJJJJJJJJJJJJJ

coker2(GS(p))

����

// 0

H2(GS∪Sp(p)) //
∏

p∈S∪Sp

H2(Gp(k))
∑

// H0(Gk, µp)
∨ // 0,

where the lower exact sequence is part of the 9-term exact sequence of the theorem
of Poitou-Tate.

The following proposition is taken from [5] cor.2.2, and the proof presented
here from [1].

Proposition 2.2 Let p be a prime number and k a number field where p is odd or
k is totally imaginary. Let S be a non-empty finite set of non-archimedean primes
of k. Let k′|k be a finite extension inside kS(p). Then the following assertions
are equivalent:

(i) Spec(Ok)\S is a K(π, 1) for p.

(ii) Spec(Ok′)\S is a K(π, 1) for p.

Proof: Let R(k, S) = r1(k) + r2(k) −
∑

p∈S∩Sp [kp : Qp]. Since p is odd or k

is totally imaginary, we have R(k′, S) = [k′ : k]R(k, S). Therefore, using the
equivalence (i)⇔(v) of proposition (2.1) and χ(GS(k′)(p)) = χ(GS(k)(p))[k′ : k],
assertion (i) implies (ii). Conversely, let k′′|k be a finite extension inside kS(p)
containing k′. Then, using the implication (i)⇒(ii), we obtain

χ2(GS(k′′)(p)) = χ(GS(k′′)(p))

= χ(Spec(Ok′′)\S)

= [k′′ : k]χ(Spec(Ok)\S)

= [k′′ : k]
(
χ2(GS(k)(p)) + h2(GS(k)(p))− h2(Spec(Ok)\S)

)
≥ [k′′ : k]χ2(GS(k)(p))

Using [3] (3.3.15) equality follows, and so h2(GS(k)(p)) = h2(Spec(Ok)\S), and
by [3] (3.3.16), cdpGS(k)(p) ≤ 2. �

The following proposition is taken from [5] thm.9.1.
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Proposition 2.3 Let p be a prime number and k a number field where p is
odd or k is totally imaginary. Assume that Spec(Ok)\S is a K(π, 1) for p and
GS(p) 6= 1. Then kS(p) realizes the maximal p-extension kq(p) of kq where
q ∈ Smin\Sp.

Proof: We have only to show that q ramifies in kS(p)|k. Suppose not, then
kS(p) = kS′(p), where S ′ = S\{q}. By proposition (2.1)(i)⇔(v), it follows that
Spec(Ok)\S ′ is a K(π, 1) for p, and so X2(GS′(p))→∼ BS′(k). The commutative
and exact diagram

0 // BS′(k) // H2(GS′(p)) //
∏
p∈S′

H2(Gp(k))

0 // BS(k) // H2(GS(p)) //
∏
p∈S

H2(Gp(k)),

shows that BS′(k) →∼ BS(k). Using [3] (10.7.12), it follows that h1(GS(p)) =
h1(GS′(p)) + 1 which is a contradiction. �

Let T ⊇ S be sets of nonarchimedean primes of k. We consider the properties

L0(k, S, T ) : (kS(p))p 6= kp for all p ∈ (T\S) ∩ Sp ,

L1(k, S, T ) : (kS(p))q 6= kq for all q ∈ (T\(S ∪ Sp))min ,

R(k, S, T ) : ∗
p∈T\S(kS(p))

Tp(k) −→∼ G(kT (p)|kS(p)).

Using the subgroup theorem for free products, see [3](4.2.1), one has

R(k, S, T )⇒
(
R(k, U, T ) and R(k, S, U)

)
,

where T ⊇ U ⊇ S.

If T ∩ Sp = ∅, then one part of the following theorem is also proved in [5]
prop.8.1 and cor.8.2.

Theorem 2.4 (Reducing and enlarging the set of primes) Let p be a prime
number and k a number field where p is odd or k is totally imaginary. Let T ⊇ S
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be finite sets of nonarchimedean primes of k. Assume that L0(k, S, T ) holds.
Then we have the following assertions are equivalent:

(i) Spec(Ok)\S is a K(π, 1) for p and (kS(p))q 6= kq for all q ∈ (T\(S∪Sp))min.

(ii) Spec(Ok)\T is a K(π, 1) for p and

∗
p∈T\S(kS(p))

Tp(k) −→∼ G(kT (p)|kS(p)).

The implication (i)⇒(ii) also holds when S or T is infinite.

Proof: Assume that L1(k, S, T ) and K(Ok, S) holds. We may further assume
that (T\S)min 6= ∅; in particular, GS(p) 6= 1. By proposition (2.2), it follows
that K(Ok′ , S) for all finite extensions k′|k inside kS(p). Thus, using proposition
(2.1) (i)⇔(iii),

lim−→
k′⊆kS(p)

BS(k′) = lim−→
k′⊆kS(p)

X2(GS(k′)(p)) ⊆ lim−→
k′⊆kS(p)

H2(GS(k′)(p)) = 0.

Using proposition (2.3) and Li(k, S, T ), i = 0, 1, we see that (kS(p))q 6= kq for
all q ∈ Tmin. By proposition (1.4), it follows that R(k, S, T ) holds. The spectral
sequence

H i(GS(p), Hj(G(kT (p)|kS(p)))⇒ H i+j(GT ((p)))

now shows that cdpGT (p) ≤ 2. Consider the commutative and exact diagram

⊕
p∈T\S

H1(Tp(k))Gp(k) � � //
⊕
p/∈S

H1(Tp(k))Gp(k) // //
⊕
p/∈T

H1(Tp(k))Gp(k)

H1(kT (p)|kS(p))GS(p) � � //

∼=
OO

H1(k(p)|kS(p))GS(p) //
?�

res
OO

H1(k(p)|kT (p))GT (p),
?�

OO

Since K(Ok, S) holds, the map res is an isomorphism, and we obtain

H1(k(p)|kT (p))GT (p) −→∼
⊕
p/∈T

H1(Tp(k))Gp(k).

Using proposition (2.1)(i)⇔(iv), it follows that K(Ok, T ) holds.
Conversely, assume that K(Ok, T ) andR(k, S, T ) hold. Then, by lemma (1.1),

we obtain cdpGS(p) ≤ 3. It follows exactly in the same way as in the proof of
corollary (1.2), using the remark (ii), that cdpGS(p) ≤ 2. Furthermore, since
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cdpGS(p) ≤ 2, cdpGT (p) ≤ 2 and R(k, S, T ) holds, we can apply lemma (1.1)
and obtain

χ(GT (p))− χ(GS(p)) =
∑

p∈(T\S)min

(
dimFp H

1(Tp(k))Gp(k) − dimFp H
2(Gp(k))

)
=

∑
p∈(T\S)∩Sp

(
dimFp H

1(Tp(k))Gp(k) − dimFp H
2(Gp(k))

)
=

∑
p∈(T\S)∩Sp

[kp : Qp]

Using proposition (2.1)(i)⇔(v), we see that K(Ok, S) holds.
Let q ∈ (T\(S ∪ Sp))min. By proposition (2.3), Gq(k) is a subgroup of

G(kT (p)|k). Since cdpGq(k) = 2, it can not be a subgroup of the free pro-p
group G(kT (p)|kS(p)). Therefore Gq(kS(p)|k) is non-trivial, and so L1(k, S, T )
holds. �

Using remark (i), theorem (2.4) in the case T = S ∪ Sp, and

R(k, S, S ∪ Sp)⇒ R(k, S ∪W,S ∪ Sp)

for W ⊆ Sp, we obtain

Corollary 2.5 Let p be a prime number and k a number field where p is odd or
k is totally imaginary. Let S be a finite set of nonarchimedean primes of k with
S ∩ Sp = ∅ and W ⊆ Sp. Assume that (kS(p))p 6= kp for p ∈ Sp. Then

(i)
K(Ok, S)⇔ R(k, S, S ∪ Sp).

(ii) Assume that K(Ok, S) holds. Then also K(Ok, S ∪W ) holds, and in partic-
ular,

cdpG(kW∪S(p)|k) = 2.

Corollary 2.6 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Let S be a finite set of nonarchimedean primes of k
with Spec(Ok)\S is a K(π, 1) for p. Then there exists a set T of nonarchimedean
primes with T ∩ S = ∅ and δ(T ) = 1, such that there are free product decompo-
sitions

(i)

∗
p∈T (kS(p))

Tp(k) −→∼ G(kT∪S(p)|kS(p)),

(ii)

∗
p/∈(T∪S)(kT∪S(p))

Tp(k) −→∼ G(k(p)|kT∪S(p)).
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Proof: Since kS(p)|k is infinite, it follows from Čebotarev density theorem that
the set

V = {q a prime of k | q is completely decomposed in kS(p)|k}

has density zero. Let T be the complement of the set S∞∪S∪V , hence δ(T ) = 1.
By theorem (2.4), we obtain that Spec(Ok)\(T ∪ S) is a K(π, 1) for p and that
there is an isomorphism

∗
p∈(T∪S)(kS(p))

Tp(k) −→∼ G(kT∪S(p)|kS(p)).

Since δ(T ∪ S) = 1, it follows from [3] (10.5.9) that we have the desired decom-
position (ii). �

Remarks: (1) If S contains Sp , then the corollary above is well-known, see [3]
(10.5.1): one can take for T all primes not in S.
(2) It is easy to see, that the corollary above implies that the pro-p-group
G(k(p)|kS(p)) is minimal generated by a system of minimal generators of the
inertia groups Tp(k), p /∈ S, with defining relations given by the local relations of
the groups Gp(k), p ∈ V .

Using a result of A.Schmidt we will give another application of theorem (2.4).
We start with a lemma and introduce the following notation: For a prime number
q with q ≡ 1 mod p let Lq,p be the maximal p-extension of Q inside Q(ζq), where
ζq is a primitive q-th root of unity.

Lemma 2.7 Let p be a prime number and k a number field.

(i) Let r ∈ N. Then the set Mr(k) of prime numbers q which are completely
decomposed in k and for which the congruences

q ≡ 1 mod p2r and p
q−1
pr 6≡ 1 mod q

hold has density 1/[k(ζp2r) : Q]− 1/[k(ζp2r , pr
√
p) : Q].

(ii) The set of prime numbers q ≡ 1 mod p which are completely decomposed in
k and which have the property that (Lq,p k)p 6= kp for all p ∈ Sp has positive
density.

Proof: (i) Let q be a prime number which is completely decomposed in k(ζp2r);
in particular, we have q ≡ 1 mod p2r. Let q be a prime of k(ζp2r) above q. Then

p
N(q)−1
pr ≡ 1 mod q , i.e. ( pr

√
p)N(q) ≡ ( pr

√
p) mod q ,
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if and only if q is completely decomposed in k(ζp2r , pr
√
p)). Therefore the density

of the set

{q is completely decomposed in k, q ≡ 1 mod p2r , p
q−1
pr ≡ 1 mod q}

is equal to 1/[k(ζp2r) : Q] ·1/[k(ζp2r , pr
√
p) : k(ζp2r)], and the set Mr(k) has density

1/[k(ζp2r) : Q] · (1− 1/[k(ζp2r , pr
√
p) : k(ζp2r)]).

(ii) Let r ∈ N be big enough such that pr
√
p /∈ k(ζp2r) and pr > [k : Q].

Then, by (i), the set Mr(k) has positive density. Obviously, if q ≡ 1 mod p2r

and p
q−1
pr 6≡ 1 mod q, then the local unramified extension (Lq,p)p|Qp has degree

at least pr. Therefore (Lq,p k)p is a non-trivial unramified extension of kp for p|p.
�

Proposition 2.8 Let p be a prime number and k a number field where p is odd
or k is totally imaginary. Assume that µp 6⊆ k and Clk(p) = 0. Let S be a
finite set of nonarchimedean primes of k with S ∩ Sp = ∅ and W ⊆ Sp. Let, in
addition, T be a set of primes of Dirichlet density δ(T ) = 1. Then there exists a
finite subset T1 ⊆ T such that K(Ok,W ∪ S ∪ T1) holds and

∗
p∈(Sp\W )(kW∪S∪T1

(p))
Tp(k) −→∼ G(kSp∪S∪T1(p)|kW∪S∪T1(p)).

In particular,
cdpG(kW∪S∪T1(p)|k) = 2.

Proof: Obviously we may assume that T ∩ (Sp ∪ S∞) = ∅ and that the un-
derlying prime numbers of the primes of T are completely decomposed in k. We
have to show that there exists a finite subset T1 ⊆ T such that (kS∪T1(p))p 6= kp

for p ∈ Sp and that K(Ok, S ∪ T1) holds.
Using lemma (2.7)(ii), there is a prime number q such that Sq ⊆ T and

(kS∪Sq(p))p 6= kp for p ∈ Sp. By a result of A. Schmidt, [5] thm.6.2, we obtain a
finite subset T1 ⊆ T containing Sq with the desired properties. �

Remark: The proposition above shows that besides the tame case (W = ∅) also
in the “mixed case” (W 6= ∅ and W 6= Sp) we have examples of Galois groups
with cohomological dimension equal to 2.
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