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In this article we are considering the structure of the Galois group

GS = G(kS(p)|k)

of the maximal p-extension kS(p) of an algebraic number field k which is unrami-
fied outside a finite set S of primes of k. Here p is a prime number and we assume
that S contains the set Σ = S∞ ∪ Sp of archimedean primes and primes above p.
More precisely, we are interested in the arithmetical question about the relation
between the group GS and its decomposition groups

Gp = G((kS(p))p|kp) ⊆ GS

with respect to the non-archimedean primes p ∈ S. ∗) If Gp = G(kp(p)|kp) denotes
the Galois group of the maximal p-extension kp(p) of the local field kp, then Gp

is obviously a quotient of Gp. In some (rare) cases it can happen that there exists
a prime p ∈ S such that Gp is almost equal to GS.

Definition. GS is of local type, if there exists a prime p ∈ S such that Gp = GS.
GS is potentially of local type, if an open subgroup of GS is of local type, and
otherwise GS is called of global type.

Furthermore, we say that GS is (potentially) of maximal local type, if GS is
(potentially) of local type with respect to some prime p ∈ S and the natural map
Gp ³ Gp is bijective.

In the first paragraph we will characterize the cases where GS is of (maximal)
local type in terms of invariants of the base field k. In the following sections we
deal with the question whether the group GS is a free pro-p-group or a Demuškin
group, i.e. a Poincaré group of dimension 2. If k contains the group µp of p-th
roots of unity, we will see that this only can happen if GS is potentially of local
type. In contrast to this, if µp ⊆/ k, then there are number fields k such that GΣ

is a free pro-p-group of global type. But it is not known whether there are Galois
groups of global type being Demuškin groups.

∗)Actually one should denote this group by GP where P is an extension of p to kS(p).
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1 The group GS

Let p be a prime number and let µp be the group of p -th roots of unity. For an
algebraic number field k and a finite set S of primes of k containing Σ = S∞∪Sp

we introduce the following notations:

Sf the set of finite primes in S,
SIR, SC the set of real and complex primes of k,
r1, r2 the number of real and complex primes of k,
np the local degree [kp : Q`] of a non-archimedean prime p|` of k,
ClS(k) the S-ideal class group of k,
CS the S-idèle class group CS(kS(p)),
CSf the Sf -idèle class group of kS(p),
GS the Galois group G(kS(p)|k) of the maximal p-extension kS(p) of k

which is unramified outside S,
Gp the decomposition group of GS with respect to the prime p,
Tp the inertia subgroup of Gp,
Gp the full local group G(kp(p)|kp),
Tp the inertia subgroup of Gp,
torpA the p-torsion subgroup of an abelian group A.

Furthermore we set

δ =

{
1, µp ⊆ k,
0, µp

⊆/ k
and δp =

{
1, µp ⊆ kp,
0, µp

⊆/ kp,

where p is a prime of k. Assume that we are given a subset S0 ⊆ S, then we put

V S
S0

= {a ∈ k× | a ∈ k×p
p for p ∈ S0; a ∈ Upk

×p
p for p ∈/ S}/k×p,

where Up is the unit group of the local field kp (by convention Up = k×p if p is

archimedean). The dual group is denoted by BS
S0

= Hom(V S
S0

, ZZ/pZZ).

Observe that we have canonical inclusions

V S
S

⊆ V S0
S0

⊆ V S
S0

and that
V S

S0
= ker (H1(kS|k, µp) −→

∏

p∈S0

H1(kp, µp)).

where kS is the maximal extension of k which is unramified outside S.

First we will see that the question whether GS is of local or global type
depends (i.g.) only on the decomposition groups Gp for p|p.
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Proposition 1.1. For p0 ∈ SrSp the canonical homomorphism

Gp0 −→ GS

is injective. The image is not open, i.e. of infinite index in GS, except in the
following cases:
k is totally real, p is odd,

∑
Sf\{p0} δp = 0, BΣ

Σ = 0 and
either δp0 = 0 (then GS

∼= ZZp)
or δp0 = 1 and p0 does not split in the cyclotomic ZZp-extension k∞ of k

(then Gp0 = GS is a Demuškin group of rank 2).

Proof: By [1] th. 10.6.1 the map is injective and if k is not totally real, then the
image is of infinite index in GS. If p = 2, then GS(k) is potentially of local type
with respect to p0 if and only if GS(k(i)) has this property. But this is impossible
by the cited theorem. Now let p be odd and k totally real.

If δp0 = 0, then Gp0
∼= ZZp is open in GS if and only if GS = G(k∞|k). But the

last assertion is equivalent to
∑

Sf δp = 0 and BΣ
Σ = 0.

If δp0 = 1, then Gp0 is a Demuškin group of rank 2 and this group is open in
GS if and only if GS has the same structure. Assuming this, it follows that GΣ

is isomorphic to ZZp, thus
∑

Sp
δp = 0, BΣ

Σ = 0 and GΣ = G(k∞|k). From [1] th.
10.5.1 we obtain the exact sequence

1−→ ∗
p∈Sf (k∞)

Tp−→GS −→GΣ−→ 1 .

It follows that
∑

Sf\{p0} δp = 0 and p0 does not split in k∞|k.
Conversely, from the conditions given in the theorem it follows that GΣ =

G(k∞|k) and that we have the exact sequence

1−→Tp0 −→GS −→G(k∞|k)−→ 1 ,

which shows that GS is equal to the Demuškin group Gp0 , since p0 does not split
in k∞|k. This completes the proof of the theorem. 2

Remark: k = Q, p = 3, S = {3, 7,∞} gives an example for the exceptional case
with δ7 = 1. In this situation we have GS = G7.

Furthermore we want to mention that in the case p 6= 2 and k totally imagi-
nary GS is potentially of local type if and only if it is of local type. More generally
we have by [1] th. 10.6.2

Proposition 1.2. Let k be totally imaginary and let p ∈ S. Suppose that Gp is
open in GS. Then p ∈ Sp and either

Gp = GS or p = 2 and (GS : Gp) = 2, #Sf (k) = 1, Sf (kS(2)) = 2.
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If the base field k contains the group µp, then we have the following assertion
concerning the structure of GS, see [2] or [1] ch.X §7 and ch.III §4 for the notion
of a (virtual) duality group.

Theorem 1.3. If µp ⊆ k, then the group GS is of one of the following forms.

(i) If BS
{p0} = 0 for a prime p0 ∈ Sf , then GS is of local type and it exists a

finite set of primes T ⊇ S, such that the canonical homomorphism

∗
p∈S\{p0}

Gp ∗ ∗
p∈T\S

Gp/Tp −→ GS

is an isomorphism.

(ii) Assume BS
{p} 6= 0 for all primes p ∈ Sf .

If p 6= 2, then GS is of global type and it is a duality group of dimension 2
with dualizing module torpCSf .

For p = 2 the following cases occur:
If #Sf (kS(2)) > 2, then GS is of global type and it is a virtual duality
group of dimension 2 with dualizing module tor2CSf .
If #Sf (kS(2)) = 2, then GS is potentially of maximal local type and it is a
virtual Poincaré group of dimension 2 with dualizing module µ2∞ .

Remarks: 1. In (i) the prime p0 is unique but the set T is not.
2. We use the opportunity here to mention that the corollary to theorem A in
[2] is only correct if we assume that µ2p ⊆ k (see below). Furthermore, there is
a mistake in the subsequent paper to [2] which appeared in J. reine u. angew.
Math. 416 (1991). The question whether GS is a duality group in the case that
µp

⊆/ k remains open.

The theorem above gives us a complete characterization for GS to be (poten-
tially) of local or global type if µp ⊆ k. Without this assumption we at least can
describe the situation when GS is a free product of (full) decomposition groups
and a free group (see [2] th. 6).

Theorem 1.4. For a subset S0 ⊆ Sf the following assertions are equivalent.

(i) It exists a finite set of primes T ⊇ S, such that the canonical homomorphism

∗
p∈S\S0

Gp ∗ ∗
p∈T\S

Gp/Tp −→ GS

is an isomorphism.

(ii) BS
S0

= 0 and
∑

p∈S0

δp = δ.

If µp ⊆ k, then (i) and (ii) are equivalent to

(ii)’ S0 = {p0} and Gp0 = GS.
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Furthermore, if (i) and (ii) hold, then

#(T\S) = 1 +
∑

p∈S0∩Sp

[kp : Qp]−#(S\S0).

Corollary 1.5. The group GS is of maximal local type if and only if k is totally
imaginary if p = 2 and there exists a prime p0 ∈ Sf such that

∑

Sf\{p0}
δp = δ , BS

S\{p0} = 0 and r2 =

{
np0 , p0 | p ,
0, p0 - p .

Proof: We have Gp0 →∼ GS if and only if in (i) of the theorem above S\S0 = {p0}
and #(T\S) = 0. Thus S0 = Sf\{p0} and k has to be totally imaginary if p = 2.
Furthermore, the assertion #(T\S) = 0 is now equivalent to

#(S\S0) = r1 + r2 + 1 = 1 +
∑

p∈Sp\{p0}
np = 1 + r1 + 2r2 −

{
np0 , p0 | p ,
0, p0 - p .

Finally, for p 6= 2 or k totally imaginary we have BS
Sf\{p0} = BS

S\{p0}. 2

Now we give a characterization for GS being of local type.

Theorem 1.6. The group GS is of local type if and only if there exists a prime
p0 ∈ Sf such that

∑

Sf\{p0}
δp − δ + dimIFp B

S
S\{p0} + r2 =

{
np0 , p0 | p ,
0, p0 - p .

Proof: Let p0 be a prime of Sf . Consider the following commutative and exact
diagram����

res

�����	
res p0


������
00

BS
S\{p0}H1(Gp0)H1(GS)ker(res p0)0

0BS
SH1(kS|k, µp)

∗∏

S

H1(Gp)H1(GS)(ClS/p)∗0

∏

S\{p0}
H1(kp, µp)

∗∏

S\{p0}
H1(Gp)

0
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where the missing coefficients of the cohomology groups are ZZ/pZZ and the hori-
zontal sequence in the middle is obtained from the global duality theorem of
Tate/Poitou, see [1] ch.VIII §7. The snake lemma implies the exact sequences

(ClS/p)∗ ↪→ ker(res p0)→
∏

S\{p0}
H1(Gp)→ coker(res ) ³ coker(res p0) ,

0−→ coker(res )→H1(kS|k, µp)
∗→BS

S −→ 0 ,

0−→ coker(res p0)−→BS
S\{p0}−→BS

S −→ 0 .

Since

dimIFp H1(kS|k, µp) = dimIFp O×
S /p + dimIFp pClS = #S − 1 + δ + dimIFp ClS/p

and

dimIFp H1(Gp) = 1 + δp +

{
np, p | p ,
0, p - p ,

we obtain counting dimensions

dimIFp ker(res p0) =
∑

S\{p0}
δp − δ + dimIFp B

S
S\{p0} −

{
np0 , p0 | p ,
0, p0 - p .

Now GS is of local type if and only if there exists a prime p0 ∈ Sf such that
ker(res p0) = 0. This proves the theorem. 2

If k is not totally real and GS is of global type, then we will see that the
decomposition groups Gp(K), p ∈ S(K), can not generate the whole group GS(K)
for every finite extension K|k inside kS(p). Even more is true:

Theorem 1.7. Assume that k is not totally real and that GS is of global type.
If d ∈ IN is given, then there exists a finite Galois extension K of k inside kS(p)
such that

dimIFp ClS(K)/p ≥ d .

Proof: Let K|k be a finite Galois extension inside kS(p). We put G = GS(K)
and Gp = Gp(K) for short and denote the Frattini subgroup of G by G∗. From
the Hochschild-Serre spectral sequence

0−→H1(G/G∗) −→∼ H1(G)−→H1(G∗)G−→H2(G/G∗)−→H2(G)
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with coefficients ZZ/pZZ we obtain with hi = dimIFp H i(G)

dimIFp H1(G∗)G ≥ dimIFp H2(G/G∗)− dimIFp H2(G)

= 1
2
h1(h1 + 1)− h2

≥ 1
2
h1(h1 − 1)

≥ 1
2
(r2)

2

where we used the Künneth formula for the p-elementary abelian group G/G∗.
Furthermore we have the exact sequence

0−→Hom(ClS(K ′), ZZ/pZZ)G−→H1(G∗)G−→ ∏

p∈S(K)

H1(G∗ ∩Gp)
Gp

where K ′ is the fixed field of G∗. Obviously

dimIFp H1(G∗ ∩Gp)
Gp = 1 + δp

for the finite primes p - p. In order to calculate the dimensions of the local terms
for p|p we consider the exact sequence

0−→H1((G∗ ∩Gp)/G
∗
p)−→H1(G∗ ∩Gp)

Gp −→H1(G∗
p)

Gp

which gives us with hp = dimIFp H1(Gp) ≤ np + 2

dimIFp H1(G∗ ∩Gp)
Gp ≤ dimIFp H1((G∗ ∩Gp)/G

∗
p) + dimIFp H1(G∗

p)
Gp

≤ dimIFp H1(Gp/G
∗
p) + dimIFp H1(G∗

p)
Gp

≤ dimIFp H1(Gp) + dimIFp H2(Gp/G
∗
p)

= hp + 1
2
hp(hp + 1)

≤ 1
2
(np + 2)(np + 5) .

It follows that

dimIFp ClS(K ′)/p ≥ dimIFp Hom(ClS(K ′), ZZ/pZZ)G

≥ 1
2
(r2(K))2 − ∑

p∈Sf\Sp(K)

(1+δp)−
∑

p∈Sp(K)

1
2
(np(K)+2)(np(K)+5)

≥ 1
2
(r2(K))2 − ∑

p∈Sp(K)

1
2
(np(K))2 − c(K)
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where c(K) =
∑

Sf\Sp(K)(1+ δp)+
∑

Sp(K)
7
2
np(K)+5. If L|K is a finite extension

inside kS(p), then c(L) ≤ [L : K]c(K). Therefore, since k is not totally real, there
exists a finite extension K|k inside kS(p) such that for the maximal p-elementary
abelian extension K ′ of K inside kS(p) the inequality

dimIFp ClS(K ′)/p ≥ 1
4
(r2(K))2 − ∑

p∈Sp(K)

1
2
(np(K))2 .

holds (and we have this inequality for all finite extensions of K inside kS(p)).
Since GS is of global type, the decomposition groups Gp for p|p are of infinite
index in GS. Therefore, for every m ∈ IN and every prime p|p of K there exists an
extension inside kS(p) in which p decomposes in at least m primes. The normal
closure L of the compositum of all these fields has the property that every prime
p|p of K has at least m extensions. It follows for the maximal p-elementary
extension L′ of L inside kS(p) that

dimIFp ClS(L′)/p ≥ 1
4
(r2(L))2 − ∑

p∈Sp(L)

1
2
(np(L))2

= [L:K]2

4
(r2(K))2 − 1

2

∑

p∈Sp(K)

∑

P|p
[LP : Kp]

2(np(K))2

≥ [L:K]2

4
(r2(K))2 − 1

2

∑

p∈Sp(K)

[L:K]2

m
(np(K))2

= [L:K]2

m2 ·
(

m2

4
(r2(K))2 − m

2

∑

p∈Sp(K)

(np(K))2
)
.

Since [L : K] ≥ m and m can be chosen as large as one wants, the p-rank of the
S-ideal class group of L′ = L′(m) exceeds every given bound. 2

Together with proposition 1.2 the theorem above implies the

Corollary 1.8. Assume that p 6= 2 and k is totally imaginary. Then GS is of
global type if and only if there exists a finite Galois extension K of k inside kS(p)
such that ClS(K)(p) 6= 0.

We do not know whether this is also true for number fields having real primes.

2 Free pro-p-groups

In this section we consider the case where GS is a free pro-p-group. The
following proposition is well known, see [1] th. 8.8.10:

Proposition 2.1. GS is free if and only if k is totally imaginary if p = 2 and
∑

p∈Sf

δp = δ and BS
S = 0 .
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Therefore we assume in the following that k is totally imaginary if p = 2. Two
cases occur

Corollary 2.2.
(i) Assume there exists a prime p ∈ Sf such that µp ⊆ kp. Then GS is free if

and only if µp ⊆ k, Sf = Sp = {p} and BS
S = 0 (hence ClS(p) = 0).

In particular, GS is of local type in this case.

(ii) Assume that µp ⊆/ kp for all p ∈ Sf . Then GS is free if and only if BS
S = 0.

In the following we will show that in case (ii) of the corollary above the group
GS can be of local or of global type.

Let k = Q and p 6= 2. Then Gp surjects onto GΣ
∼= ZZp. Hence this group is of

local type.

It is more difficult to find an example where GΣ is free and of global type. We
need the following

Lemma 2.3. Let p be an odd prime number, k a number field and let S = {l}∪Σ,
where l is a non-archimedean prime of k not above p. Assume that

µp
⊆/ kp for all p|p, µp ⊆ kl and BS

Σ = 0 .

Then there is an isomorphism

Gl(k) ∗Fr2 −→∼ GS(k) ,

where Fr2 is a free pro-p-group of rank r2 = r2(k).

If K|k is a Galois extension inside kS(p) of degree p which is ramified at l, then

Gl(K) ∗Fp r2 −→∼ GS(K)

and
GΣ(K) −→∼ Fp r2+1 .

If in addition K is totally imaginary and ClΣ(K)(p) 6= 0, then GΣ(K) is free and
of global type.

Proof: Using theorem 1.4 the assumptions imply the statement for GS(k). The
subgroup theorem for free pro-p-product, see [1] th. 4.2.1, gives us the second
assertion and the third follows by definition of the group GΣ(K). Finally, if
ClΣ(K)(p) 6= 0, then the decomposition groups of GΣ(K) with respect to the
primes above p have an index greater than 2. Hence GΣ(K) is of global type by
proposition 1.2. 2
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Now we give an example of a number field for which we can apply lemma 2.3.
Let k0 = Q(i) and let p and ` be odd prime numbers such that p | `− 1. Let k be

the unique subfield of k0(ζ`) of degree p over k0. By k
(1)
0 and k(1) we denote the

first layers of the cyclotomic ZZp-extensions of k0 and k, respectively. We have
the following diagram of fields:����

p

���
p

�
k0

k

k0(ζ`)K

k
(1)
0

k(1)

KΣ(p)

where K is some extension of k0 inside k(1) of degree p and different to k
(1)
0 and

k. Then K is totally imaginary and has the property that µp ⊆/ Kp for p|p and
µp ⊆ K`.

Now we assume in addition that

p2 - `− 1, ` is inert in k0, i.e. ` ≡ 3 mod 4, and p
`−1

p ≡ 1 mod ` .

The prime numbers p = 5 and ` = 31 give an example for this situation.

We will show that

ClΣ(K)(p) 6= 0 and BS
Σ(K) = 0 .

In order to show the first assertion we first observe that the extension k(1)|K is at
most ramified at the primes above p and above `. Since ` is ramified in k|k0 and

unramified in k
(1)
0 |k0, the field k

(1)
0 is the inertia field for the extension k(1)|k0 with

respect to `. Hence k(1)|K is unramified at `. With the same argumentation one
sees that this extension is unramified at Sp, too: The extension k(1)|Q is abelian
and k is the inertia field of the extension k(1)|k0 with respect to the primes above

p. From the assumption that p
`−1

p ≡ 1 mod ` follows that p decomposes in in the
extension Q(ζ`)|Q in d primes with p|d. Hence the primes above p decompose
in the extension k|k0 and therefore in the extension k(1)|K, too. Thus k(1)|K is
unramified and split at Sp. From class field theory follows that ClΣ(K)(p) 6= 0.

In order to prove the second assertion we first show that V S
Σ (k0) = 0. Since

Cl(k0) = 0 and the 4-th roots of unity form the group of units of k0, an element
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of V S
Σ (k0) is of the form x = `a k×p

0 , a ∈ ZZ. Since p2 - `− 1, the element ` is not
a p-power in (k0)p for p|p. Hence p|a and therefore V S

Σ (k0) = 0.

Finally, with G = G(K|k0) the commutative and exact diagram������ !"
(

∏

p∈Σ(K)

H1(Gp(K), µp))
GH1(GS(K), µp)

G(V S
Σ (K))G0

∏

p∈Σ(k0)

H1(Gp(k0), µp)H1(GS(k0), µp)V S
Σ (k0)0

shows that (V S
Σ (K))G ∼= V S

Σ (k0) = 0, hence V S
Σ (K) = 0 and therefore BS

Σ(K) = 0.

3 Demuškin groups

In this paragraph we want to classify number fields k and sets of primes S
(containing Σ) such that GS is a Demuškin group.

Proposition 3.1. If GS is a Demuškin group, then either

BS
S = 0 and

∑

p∈S\SC

δp − δ = 1 ,

or
dimIFp B

S
S = 1 and

∑

p∈S\SC

δp − δ = 0 .

Proof: This is clear, since a Demuškin group is a one relator group, i.e.
dimIFp H2(GS, ZZ/pZZ) = 1, see [1] cor. 8.8.9. 2

By the proposition above k must be totally imaginary if p = 2 and GS is a
Demuškin group, since every open subgroup of GS is again a Demuškin group.
We will assume this in the following.

Theorem 3.2. Let p 6= 2 and assume that µp ⊆ k. Then the following assertions
are equivalent:

(i) GS is a Demuškin group.

(ii) GS is a Demuškin group of maximal local type.

(iii) S = Σ = S∞ ∪ {p1, p2}, BS
{p1} = 0 and r2 = np1 .

(iv) #Sf (kS(p)) = 2.

Let p = 2 and assume that k is totally imaginary. Then the following assertions
are equivalent:

(i) GS is a Demuškin group.
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(ii) GS is a Demuškin group potentially of maximal local type.

(iii) S = Σ = S∞ ∪ {p1, p2}, BS
{p1} = 0 and r2 = np1 or

S = Σ = S∞ ∪ {p} and there exists a quadratic extension k′|k in which p

splits, say p = p1p2 such that BS
{p1}(k

′) = 0.

(iv) #Sf (kS(2)) = 2.

Proof: The assertion (iv) obviously implies that

S = Σ = S∞ ∪ {p1, p2} and BS
{p1} = 0 = BS

{p2} or (if p = 2)

S = Σ = S∞ ∪ {p} and there exists a quadratic extension k′|k in which p

splits, say p = p1p2 such that BS
{p1}(k

′)=0=BS
{p2}(k

′) ,

since µp ⊆ k and by Kummer theory BS
{p} is non-zero if and only if there exists a

subextension of k in kS(p), in which p splits.

Using theorem 1.4 these assertions imply for GS(k) (resp. for GS(k′) in the second
case) free product decompositions

Gp1 = GS
∼= Gp2 ∗ (other terms) and Gp2 = GS

∼= Gp1 ∗ (other terms).

But
rkGpi

≥ rk Gpi
, i = 1, 2.

Hence the other terms are not present and GS = Gp1 = Gp2 and r2 = np1 . Thus
(iv) implies (iii).

Similar the assertion (iii) implies (ii): Using theorem 1.4 in the first case and the
argument above in the second (if p = 2) we see that GS is a Demuškin group
of maximal local type in the first case and a virtual Demuškin group which is
potentially of maximal local type in the second. But, since k is totally imaginary,
GS is torsion free and therefore it is itself a Demuškin group.

Obviously (ii) implies (i). Now we assume that GS is a Demuškin group. The
fact that torpCSf is the dualizing module of GS, see [1] lemma 10.7.10, which has
to be isomorphic to Qp/ZZp as abelian group, and the exact sequence

0−→µp∞ −→
∏

p∈Sf

IndGS
Gp

µp∞ −→ torp CSf −→ 0 ,

loc.cit. prop. 10.2.1, imply that #Sf (kS(p)) = 2. This finishes the proof of the
theorem. 2

The situation becomes not really more difficult if we drop the assumption that
µp ⊆ k but assume that there exists a prime p0 ∈ S such that µp ⊆ kp0 .

12



Theorem 3.3. Assume that µp
⊆/ k and that there exists a prime p0 ∈ S such

that µp ⊆ kp0 . Then the following assertions are equivalent:

(i) GS is a Demuškin group.

(ii) GS is a Demuškin group of local type.

(iii) µp
⊆/ kp for all primes p in S0 := Sf\{p0},

BS
S = 0 and r2 + dimIFp B

S
S0

=

{
np0 , p0 | p ,
0, p0 - p .

Proof: Let GS be a Demuškin group. Since µp∞(kS(p)) = 0, we have an
injection # torp CSfIndGS

Gp0
µp∞

where torp CSf is isomorphic to Qp/ZZp as abelian group, we obtain GS = Gp0 ,
hence GS is of local type.

From (ii) follows, since GS is a Demuškin group,

1 = dimIFp H2(GS, ZZ/pZZ) = dimIFp B
S
S +

∑

p∈S0

δp + 1

hence BS
S = 0 and µp ⊆/ kp for all primes p ∈ S0. Since GS is of local type we

conclude by theorem 1.6 the last condition of (iii).

Now we assume (iii). Then GS is a one relator group, i.e. dimIFp H2(GS, ZZ/pZZ)
= 1. Furthermore, using again theorem 1.6, we obtain that GS is of local type,
i.e. GS = Gp0 . Thus p0 does not split in kS(p)|k and therefore

dimIFp H2(GS(K), ZZ/pZZ) = dimIFp B
S
S(K) + 1

for every finite Galois extension K|k inside kS(p). Since BS
S(K)G(K|k) = BS

S(k)
as µp ⊆/ k, it follows that dimIFp H2(GS(K), ZZ/pZZ) = 1. Now we obtain (i) from
from the following lemma. 2

Lemma 3.4. Let G be a finitely generated pro-p-group of cohomological dimen-
sion equal to 2 such that

dimIFp H2(N, ZZ/pZZ) = 1

for every normal open subgroup N of G. Then G is a Demuškin group.

For a proof see [1] cor. 3.7.3. As an application of the last two theorems we
now consider totally real fields and CM-fields k|k+, i.e. k is totally imaginary
and a quadratic extension of its maximal totally real subfield k+.
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Theorem 3.5. Assume that k is totally real (and p 6= 2). Then GS is a Demuškin
group if and only if one of the following assertions hold:

(i) There exists a exactly one prime p0 ∈ Sf such that µp ⊆ kp0 . If p0 - p, then
BS

S\{p0} = 0. If p0|p, then BΣ
Σ = 0 and dimIFp B

Σ
Σ\{p0} = 1.

(ii) For all primes p ∈ Sf hold µp
⊆/ kp and dimIFp B

Σ
Σ(kn) = 1 for all n ∈ IN,

where kn is the n-th layer of the cyclotomic ZZp-extension k∞ of k.

Remarks: 1. In both cases GS is not of global type, if we assume in the second
case that the Greenberg conjecture holds, i.e. the maximal unramified abelian
p-extension of the the cyclotomic ZZp-extension k∞ of k is finite.
2. In (ii) it is sufficient that dimIFp B

Σ
Σ(kn) = 1 for one n which is large enough.

3. Equivalent to the statements in the theorem are the assertions that the Iwa-
sawa λ-invariant of the ZZp[[G(k∞|k)]]-module G(kS|k∞)ab is equal to 1 and its
µ-invariant is zero.

Proof: If there exists a prime p0 ∈ Sf such that µp ⊆ kp0 , then it follows from
theorem 3.3 that GS is a Demuškin group (of local type) if and only if the con-
ditions of (i) are fulfilled (see also proposition 1.1 for an equivalent description).
Furthermore, in this case the dualizing module of GS is equal to µp∞ , hence
G(k∞|k) acts non-trivially on G(kS(p)|k∞) ∼= ZZp(1) which shows the remark 3.

If µp
⊆/ kp for all primes p ∈ Sf , then GS = GΣ and

dimIFp H2(GΣ(kn), ZZ/pZZ) = dimIFp B
Σ
Σ(kn) .

Thus, if GS is a Demuškin group, then condition (ii) holds.

Conversely, from (ii) follows that dimIFp H1(GΣ(kn), ZZ/pZZ) = 2 for all n ≥ 1,
hence the group (G(kΣ(p)|k∞)ab/p)Γn is generated by one element, where Γn =
G(k∞|kn). Since G(kΣ(p)|k∞)ab is a ZZp[[Γ ]]-torsion module, there exists an n
such that Γn acts trivially on G(kΣ(p)|k∞)ab/p. Therefore this group is generated
by one element and it follows that the same is true for the group G(kΣ(p)|k∞).
(For the Iwasawa theory we used here, see [1] ch.XI §3.) Thus GΣ is a Demuškin
group, loc.cit. th. 3.7.4. Also in this case GΣ is (potentially) of local type, if we
assume that the Greenberg conjecture holds, because then Gp is of finite index
in GΣ. 2

Examples:
1. Case (i), p0 - p: p = 3, k = Q, S = {3, 7,∞}.

Then GS(Q) = G7.
p0 | p: p = 3, k = Q(

√
6), S = {3,∞}.

Then GS(k) is a Demuškin group of rank 2.
2. Case (ii): p = 37, k = Q(ζ37 + ζ−1

37 ), S = {3,∞}.
Then GS(k) is a Demuškin group of rank 2.
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In the second example we have µ3 ⊆ k3. The Iwasawa µ-invariant of G(kS(3)|k∞)ab

is zero by the theorem of Ferrero and Washington and its λ-invariant is equal
to the λ-invariant of the maximal abelian unramified 3-extension of k′∞, where
k′ = Q(

√−2). But this invariant is equal to 1.

Also in the third example the Iwasawa λ-invariant of G(kS(3)|k∞)ab is equal to 1
and its µ-invariant is zero.

Since GS = GS′ , where S ′ = {p ∈ Sf\Sp |µp ⊆ kp} ∪ Σ ⊆ S, we assume for the
following theorem that S = S ′.

Theorem 3.6. Let p 6= 2 and let k|k+ be a CM-field. Assume that there exists
a prime p0 ∈ Sf such that µp ⊆ kp0 . Let p̃0 be the underlying prime of p0 of k+.

Then GS(k) is a Demuškin group if and only if the following conditions are
fulfilled:

1. #Sf (k) = 1 + δ and Sf (k+) = {p̃0},
2. GS(k+) is a Demuškin group and µp ⊆ k+

p̃0
,

3. ClS(k)− = 0.

In this case GS is of local type (with respect to the prime p0 which lies over p)
and of maximal local type, if µp ⊆ k.

Proof: Let GS(k) be a Demuškin group. Then by the theorems 3.2 and 3.3
GS(k) is of local type with respect to p0, which has to lie over p. Furthermore
BS

S(k) = 0 and #Sf (k) = 1+δ (by our convention that Sf contains only relevant
primes). Hence BS

S(k+) = 0.

The action of G(k|k+) on the 1-dimensional IFp-vector space H2(GS(k), ZZ/pZZ)
must be trivial. Indeed, otherwise H2(GS(k+), ZZ/pZZ) = 0 and therefore GS(k+)
would be isomorphic to ZZp, since k+ is totally real. Furthermore the sub-
spaces H1(GS(k), ZZ/pZZ)± would be totally isotropic with respect to the non-
degenerated pairing

H1(GS(k), ZZ/pZZ)×H1(GS(k), ZZ/pZZ)
∪−→H2(GS(k), ZZ/pZZ) .

It would follow that

r2(k) + 2 = dimIFp H1(GS(k), ZZ/pZZ) = 2 · dimIFp H1(GS(k+), ZZ/pZZ) = 2

which is absurd. Thus dimIFp H2(GS(k+), ZZ/pZZ) = 1.

Since this argument is true for all finite CM-extensions K|K+ of k|k+ inside
kS(p), we obtain from 3.4 that GS(k+) is a Demuškin group. Furthermore the
equality 1 = dimIFp H2(GS(k+), ZZ/pZZ) = δp̃0 shows that µp ⊆ kp̃0 . Thus we
obtain condition 2. Finally, condition 3 holds, because GS is of local type.

Conversely, let us assume that the conditions 1 to 3 are fulfilled. First we
consider the case that µp ⊆ k. Let p̃0 = p1p2 in k by our assumption. Hence
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r2 = np1 = np2 and
∑

p∈Sf\{p1} δp = δ. We will show that BS
S\{p1} = 0.

Suppose the contrary. Then by Kummer theory there exists a Galois extension
K|k of degree p inside kS(p) in which p2 decomposes. If this extension is Ga-
lois over k+, then p1 decomposes, too. Since ClS(k)− = 0 by condition 3 and
ClS(k)+ = 0 by condition 2 and the remark 1 following theorem 3.5, we obtain
a contradiction. Thus K is not Galois over k+ and we denote by K̃ the normal
closure of K over k+, hence G(K̃|k) ∼= (ZZ/pZZ)2. Let K̃+ be the fixed field of
G(K̃|k)− ∼= ZZ/pZZ. Since ClS(k)+ = 0, both primes, p1 and p2, do not split in
K̃+, but each of them decomposes in p primes in K̃. Thus the extension K̃|K̃+

is unramified and all primes of Sp split, hence G(K̃|K̃+) ∼= ClS(k)−. Again we
obtain a contradiction. This proves that BS

S\{p1} = 0.
It follows from theorem 1.5 that GS(k) is of maximal local type, i.e. GS(k) =
Gp1(k) = Gp2(k) and therefore GS(k) is a Demuškin group.

Now let µp
⊆/ k. Since p̃0 does not split in the extension k|k+, the group

G(k|k+) acts on Gp0(k)ab. Using condition 3 we obtain the commutative diagram$%&'()*
GS(k+)abGp0(k

+)ab

GS(k)abGp0(k)ab

GS(k)ab−Gp0(k)ab−

where the map at the bottom is surjective, since GS(k+) is of local type by
condition 2 and the remark 1 to theorem 3.5. Thus GS(k) is of local type.
Since H2(GS(k), Qp/ZZp)

− = 0 and GS(k)ab,− is ZZp-torsion free (because µp ⊆ k+
p̃0

and Gp0(k)ab− ∼= GS(k)ab,−), we obtain H2(GS(k), ZZ/pZZ)− = 0 and therefore
dimIFp H2(GS(k), ZZ/pZZ) = dimIFp H2(GS(k+), ZZ/pZZ) = 1 and BS

S(k) = 0.

Since µp
⊆/ k, it follows that BS

S(K) = 0 for all finite Galois extension K|k
inside kS(p), and since GS(k) is of local type, we have #Sf (K) = 1. Thus
dimIFp H2(GS(K), ZZ/pZZ) = 1 for all these extensions K|k. Now lemma 3.4 gives
the desired result. 2

Examples:
Case 1. µp ⊆ k: p = 3, k = Q(

√
6,
√−3), S = {3,∞}.

Then GS(k) is a Demuškin group of rank 4.
Case 2. µp

⊆/ k: p = 3, k = Q(
√

6,
√−1), S = {3,∞}.

Then GS(k) is a Demuškin group of rank 4.

We know already that GS(k+), where k+ = Q(
√

6), is a Demuškin group of
rank equal to 2, see the examples for totally real fields. Furthermore we have
ClS(k)− ∼= ClS(Q(

√−6)) ⊕ ClS(Q(
√

d)), where d = −3 or d = −1 according to
we are in case 1 or 2. Thus ClS(k)− = 0.

16



It remains to classify number fields k and sets of primes S such that GS is a
Demuškin group, k is not totally real and µp

⊆/ kp for all primes p ∈ Sf . We do
not know any example of this case. Moreover, does there exists a situation where
GS is a Demuškin group of global type? By the considerations above this can
only happen in the just mentioned case.
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