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Let k be a number field, p a prime number and S a finite set of primes
of k. The Galois group G(kS(p)|k) of the maximal p-extension of k which is
unramified outside S is an important object in order to study the arithmetic of
k. If all primes dividing p are in S, then a lot is known about the structure of
G(kS(p)|k), in particular, it is of cohomological dimension less or equal to 2 (if
p = 2 one has to require that k is totally imaginary).

If S is disjoint to the set Sp of primes above p, the group G(kS(p)|k) is very
mysterious. By a famous theorem of Golod and Šafarevič, it is in general infinite,
but on the other hand it is a so-called fab pro-p-group, i.e. the maximal abelian
quotient of every open subgroup of G(kS(p)|k) is finite. Furthermore, nothing
was known on the cohomological dimension of G(kS(p)|k) so far.

Recently, J. Labute [2] showed that pro-p-groups who have a presentation in
terms of generators and relations of a certain type, so-called mild pro-p-groups,
are of cohomological dimension equal to 2. A special case are pro-p-groups of
Koch type, with certain further conditions on the relations (the linking diagram
of the considered group has to be a non-singular circuit, see the definitions in the
next section).

If k = Q, then the group G(QS(p)|Q), S ∩ Sp = ∅, is of Koch type, see
H. Koch [1]. Labute used these results on the relation structure of G(QS(p)|Q)
and ended up with a criterion on the set S for the group G(QS(p)|Q) to be of
cohomological dimension 2. A. Schmidt [5] extended the result of Labute by
arithmetic methods and weakened Labute’s condition on S.

There is another case when the Galois group G(kS(p)|k), S ∩ Sp = ∅, is
of Koch type: k has to be an imaginary quadratic number field not containing
the p-th roots of unity and its class number is not divisible by p. Therefore, if
the linking diagram of G(kS(p)|k) is a non-singular circuit, then this group is of
cohomological dimension equal to 2, see the paper of D. Vogel [6]. It seems that
there are no other algebraic number fields k and sets S as the cases mentioned
above such that the Galois group G(kS(p)|k) is of Koch type.

In this paper we will consider the maximal p-extension kT
S (p) of the number

field k with restricted ramification at a finite set S containing Sp, which, in
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addition, is completely decomposed at the finite set T . The groups G(kT
S (p)|k)

are a rich source of pro-p-groups of Koch type. Under certain conditions on T
and S (and conditions on k) we will show that G(kT

S (p)|k) is a pro-p Schur group
(i.e. has as many generators as relations), is of Koch type, its maximal abelian
quotient is finite, and the cohomological dimension is equal to 2. Moreover, if p
is odd and k is totally real, and assuming that the Leopoldt conjecture holds for
totally real number fields, then G(kT

S (p)|k) is a fab pro-p-group.
The author wants to thank J. Gärtner and A. Schmidt for helpful conversa-

tions concerning this paper.

1 Pro-p-groups of Koch type

Let p be a prime number and let G be a pro-p-group. We denote the coho-
mology groups H i(G,Z/pZ) by H i(G), and put hi(G) = dimFp H i(G) and

χ2(G) =
2∑

i=0

(−1)i hi(G).

Let Gn be the n-th term in the lower p-central series defined recursively by G1 = G
and Gn+1 = (Gn)p[Gn, G]. We recall some definitions.

Definition 1.1 A pro-p-group G is called Schur group if h1(G) = h2(G).

Definition 1.2 A pro-p-group G is called fab if Uab is finite for all open sub-
groups U of G.

For the notion of a pro-p duality group we refer to [4] III §4.

Proposition 1.3 Let G be a fab pro-p-group of cohomological dimension equal
to 2. Then G is a duality group. Furthermore, the strict cohomological dimension
of G is equal to 3.

Proof: In order to prove the first part of the proposition it suffices to show that
the terms

Di(G,Z/pZ) = lim−→
U

H i(U)∨

are trivial for i = 0, 1; here U runs through the open subgroups of G, and the
transition maps are the duals of the corestriction maps, see [4] (3.4.6). For i = 0
this is clear, since G is infinite. For i = 1 we have

D1(G,Z/pZ) = lim−→
U

Uab/p.
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Since Uab is finite for all open subgroups U of G, it follows from the group
theoretical form of the principal ideal theorem, see [3] VI. (7.6), that

D1(G,Z/pZ) = 0.

Suppose that scdp G = 2, i.e. H2(U,Qp/Zp) = 0 for all open subgroups U

of G. From the exact sequence 0→Z/pZ→Qp/Zp
p→Qp/Zp→ 0, we obtain the

exact sequence

0→(pU
ab)∨→H2(U)→ pH

2(U,Qp/Zp)→ 0.

Since G is fab, we obtain

h1(U) = dimFp(U
ab/p) = dimFp(pU

ab) = h2(U),

i.e. χ2(U) = 1. Since cdp G = 2, we have χ2(U) = (G : U)χ2(G). This contradic-
tion finishes the proof of the proposition. ¤

Let G be a finitely represented pro-p-group and let 1→R→F →G→ 1 be a
minimal presentation, where F is the free pro-p-group on the generators x1, . . . , xd

and R = (w1, . . . , wr) is the normal subgroup of F generated by the elements wi,
i = 1, . . . , r.

Definition 1.4 The minimal presentation < x1, . . . , xd|w1, . . . , wr > of the pro-
p-group G is said to be of Koch type if r ≤ d and the relations wi satisfy a
congruence of the form

wi ≡ xp ai

i

∏

i 6=j

[xi, xj]
aij mod F3

with ai, aij ∈ Z. The group G is of Koch type if it has a presentation of Koch
type.

Examples: 1. Let p be an odd prime and S a finite set of prime numbers
not containing p. Let G = G(QS(p)|Q) be the Galois group of the maximal p-
extension of Q unramified outside S. We can assume that S = {q1, · · · , qd} with
qi ≡ 1 mod p. Work of Koch [1] shows that G =< x1, . . . , xd|w1, . . . , wd > where

wi ≡ xqi−1
i

∏

i6=j

[xi, xj]
bij mod F3,

and qi ≡ g
bij

j mod qj, where gj is a primitive root for the prime qj.Observe that
r = d.

2. Let p be an odd prime number and k an imaginary quadratic number field
whose class number is not divisible by p, and which is different from Q(

√−3) if

3



p = 3. Let S be a set of primes of k whose norm is congruent to 1 mod p. If
G = G(kS(p)|k) is the Galois group of the maximal p-extension of k unramified
outside S, then G has a presentation of Koch type with r = d, see [1] or [6].

Let G be a pro-p-group of Koch type. Following Labute, we associate to
G =< x1, . . . , xd|w1, . . . , wr > and S = {x1, . . . , xd} a directed graph, denoted by
ΓS(p), with vertices the elements of S and a directed edge xixj from xi to xj if

l(xi, xj) := aij mod p 6= 0.

The graph ΓS(p), together with the l(xi, xj) ∈ Z/pZ, i, j ≤ d, is called the
linking diagram of (G,S).

Definition 1.5 Let G =< x1, . . . , xd|w1, . . . , wr > be a pro-p-group of Koch type
and let ΓS(p) be the associated linking diagram of (G,S). The set S is called
strictly circular with respect to p (and ΓS(p) a non-singular circuit) if there
exists an ordering S = {v1, . . . , vd} of the elements in S such that the following
conditions are fulfilled:

(1) The vertices v1, . . . , vd of ΓS(p) form a circuit v1v2 . . . vdv1.

(2) If i, j are both odd, then vivj is not an edge of ΓS(p).

(3) If lij = l(vi, vj), then l12l23 · · · ld−1,dld1 − l1dl21l32 · · · ld,d−1 6= 0.

We remark that condition (2) implies that d is even and d ≥ 4 and that
condition (3) is satisfied if there exists an edge vivj of the circuit v1v2 · · · vdv1

such that vjvi is not an edge ΓS(p).

Theorem 1.6 (Labute [2], Thm. 1.6.) Let G be a pro-p-group of Koch type on
the minimal set of generators S. If S is strictly circular with respect to p, then
cd G = 2.

2 Galois extensions of number fields which are

completely decomposed at given primes

We will use the following notation. Let S, T be sets of primes of k. Then

kS(p) is the maximal p-extension of k which is unramified outside S,

kT
S (p) is the maximal p-extension of k which is unramified outside S

and completely decomposed at T .
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Furthermore, k(p) denotes the maximal p-extension of k. For a prime p of
k, let kp be the completion of k with respect to p, Up the group of units and
µ(kp) the group of roots of unity in kp. We denote the decomposition group
and inertia group of G(k(p)|k) with respect to p by Gp(k) = Gp(k(p)|k) and
Tp(k) = Tp(k(p)|k), respectively.

Considering the extension kS(p)|k, the following primes cannot ramify in a
p-extension, and are therefore redundant in S:

1. Complex primes.
2. Real primes if p 6= 2.
3. Primes p - p with N(p) 6≡ 1 mod p.

Removing all these redundant places from S, we obtain a subset Smin ⊆ S which
has the property that G(kS(p)|k) = G(kSmin

(p)|k). Let

S̃ = S\(Sp ∪ S∞)

the subset of finite primes of S not above p, and let

nS =
∑

p∈Sp∩S

np, δS =
∑

p∈Sp∩S

δp − δ,

where np = [kp : Qp],

δ =

{
1, µp ⊆ k,
0, µp ⊆/ k,

and δp =

{
1, µp ⊆ kp,
0, µp ⊆/ kp.

Furthermore, θ = θ(S) is equal to 1 if µp ⊆ k and Smin = ∅, and zero in all other
cases. Finally, BS(k) denotes the dual of the Kummer group

VS(k) = {a ∈ k× | a ∈ k×p
p for p ∈ S and a ∈ Upk

×p
p for p /∈ S}/k×p .

Proposition 2.1 Let p be a prime number and assume that the number field k
is totally imaginary if p = 2. Let T and S = Smin be finite sets of primes of k
such that T ∩ S = ∅. Then

χ2(G(kT
S (p)|k)) ≤ θ + r1 + r2 − nS + #T,

h1(G(kT
S (p)|k)) ≥ 1 + #S̃ + δS + nS + dimFp BS − r1 − r2 −#T.

Proof: Since T ∩ S = ∅, we have a surjection

⊕
p∈T

Gp(k)/Tp(k) ³
(
G(kS(p)|kT

S (p))ab
)

G(kT
S (p)|k)
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(here MG denotes the G-coinvariants of a G-module M). Thus we obtain

dimFp H1(G(kS(p)|kT
S (p)))G(kT

S (p)|k) ≤ #T.

Using [4] (8.7.11), the exact 5-term sequence

0−→H1(G(kT
S (p)|k))−→H1(G(kS(p)|k))−→H1(G(kS(p)|kT

S (p)))G(kT
S (p)|k)

−→H2(G(kT
S (p)|k))−→H2(G(kS(p)|k))

gives us the inequalities

h2(G(kT
S (p)|k))− h1(G(kT

S (p)|k))

≤ h2(G(kS(p)|k))− h1(G(kS(p)|k)) + dimFp H1(G(kS(p)|kT
S (p)))G(kT

S (p)|k)

≤ θ − 1 + r1 + r2 − nS + #T

and

h1(G(kT
S (p)|k)) ≥ h1(G(kS(p)|k))−#T = 1+#S̃+δS+nS+dimFp BS−r1−r2−#T.

¤

Corollary 2.2 With the assumptions of proposition (2.1) let

c(S, T ) = max{0, θ + r1 + r2 − nS + #T}.

Assume that

#S̃ ≥ (
1 +

√
c(S, T )

)2 − (δS + dimFp BS + θ).

Then the group G(kT
S (p)|k) is infinite.

Proof: Let G = G(kT
S (p)|k) and suppose that this group is finite. Then, by the

Golod Safarevič inequality, see [4] (3.9.7),

h2(G) >
h1(G)2

4
.

From proposition (2.1) it follows that

c(S, T )− 1 ≥ θ − 1 + r1 + r2 − nS + #T ≥ h2(G)− h1(G) > h1(G)2/4− h1(G),

hence

#S̃ + (δS + dimFp BS + θ)− c(S, T ) + 1 ≤ h1(G) < 2 + 2
√

c(S, T ),
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which contradicts the assumption on #S̃. ¤

Let K1, . . . , Kρ be independent Zp-extensions of k such that k̃ =
⋃ρ

i=1 Ki is

the compositum of all Zp-extensions of k. Recall that k̃ ⊆ kS(p), if Sp ⊆ S. We
say that a finite set T of primes of k has the property (∗) if the following holds:

Property (∗): The cardinality of T is equal to ρ, and if T = {p1, . . . , pρ}, then

pi does not decompose in Ki|k, i.e. Gpi
(Ki|k) = G(Ki|k), i = 1, . . . , ρ.

If S is a finite set of primes of k such that S ∩ T = ∅, then it follows that the
homomorphism

∗
p∈T

Gp(k(p)|k)/Tp(k(p)|k)−→G(kS(p)|k)−→G(k̃ ∩ kS(p)|k)

is surjective, and, in particular, G(kT
S (p)|k)ab is finite.

Proposition 2.3 Let p be a prime number and assume that the number field k
is totally imaginary if p = 2. Let T and Sp ⊆ S = Smin be finite sets of primes of
k such that T ∩ S = ∅.
(i) If #T = r2 + 1, then

χ2(G(kT
S (p)|k)) ≤ 1.

(ii) Assume that the Leopoldt conjecture holds for k and p, and that T has the
property (∗). Then

h1(G(kT
S (p)|k)) = h2(G(kT

S (p)|k))

and
G(kT

S (p)|k)ab ∼= Tor G(kS(p)|k)ab.

In particular, G(kT
S (p)|k)ab is finite. If #S\Sp ≥ 4, then G(kT

S (p)|k) is

infinite.

(iii) Assume in addition to the assumptions of (ii) that

dimFp BS = 0 and
∑
p∈Sp

δp = δ.

Then
h1(G(kT

S (p)|k)) = h2(G(kT
S (p)|k)) = #S\Sp.
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Proof: Let G = G(kT
S (p)|k). By proposition (2.1), we have

χ2(G) ≤ 0 + r1 + r2 − [k : Q] + #T = 1

proving (i).

From the exact sequence 0→Z/pZ→Qp/Zp
p→Qp/Zp→ 0, we obtain the ex-

act sequence
0→(pG

ab)∨→H2(G)→ pH
2(G,Qp/Zp)→ 0.

By assumption, the Leopoldt conjecture holds, i.e. ρ = rankZpG(k̃|k) = r2 + 1.
Therefore, as T has the property (∗), Gab is finite. It follows that

h1(G) = dimFp pG
ab ≤ h2(G).

Since h1(G) ≥ h2(G) by (i), we get equality. The commutative and exact diagram

Tor G(kS(p)|k)ab

&&NNNNNNNNNNNNNNNNÄ _

²²⊕
p∈T

Gp(k(p)|k)/Tp(k(p)|k) //

∼=

((RRRRRRRRRRRRRR

G(kS(p)|k)ab //

²²²²

G(kT
S (p)|k)ab // 0

G(k̃|k)

shows Tor G(kS(p)|k)ab →∼ G(kT
S (p)|k)ab. Furthermore, it follows from c(S, T ) = 1

and corollary (2.2), that G(kT
S (p)|k) is infinite, if #S\Sp ≥ 4. This proves (ii).

From proposition (2.1) it follows that h1(G) ≥ #S̃, and using [4] (8.7.11), we
have h2(G) ≤ #S̃. This proves (iii). ¤

Theorem 2.4 Let p be a prime number and assume that the number field k is
totally imaginary if p = 2. Let T and Sp ⊆ S = Smin be finite sets of primes of k
such that T ∩ S = ∅. Assume that

(a) T has the property (∗).
(b) dimFp BSp = 0 and

∑
p∈Sp

δp = δ.

Then the following holds:

(i) The canonical homomorphism

∗
p∈S\Sp

Tp(k(p)|k) ³ G(kT
S (p)|k)

is surjective.
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(ii) There is an isomorphism

⊕

p∈S\Sp

µ(kp)(p) −→∼ G(kT
S (p)|k)ab.

(iii) The map

H2(G(kT
S (p)|k)) ↪→

⊕

p∈S\Sp

H2(Gp)

is injective.

(iv) The pro-p-group G(kT
S (p)|k) is of Koch type and

h1(G(kT
S (p)|k)) = h2(G(kT

S (p)|k)) = #S\Sp.

(v) G(kT
S (p)|k)ab is finite. If #S\Sp ≥ 4, then G(kT

S (p)|k) is infinite.

Proof: Since dimFp BSp = 0 and
∑

p∈Sp
δp = δ, the pro-p-group G(kSp(p)|k) is

free, see [4] (8.7.10). Therefore Leopoldt’s conjecture holds for k and p. Further-
more BS = 0 as BSp surjects onto BS. From proposition (2.3) it follows that the
assertion on the dimensions in (iv) and assertion (v) are true.

The cokernel of the canonical homomorphism

∗
p∈S\Sp

Tp(k(p)|k)−→G(kT
S (p)|k)

is the Galois group G(kT
Sp

(p)|k). Since G(kSp(p)|k) is a free pro-p-group of rank

r2 + 1, we have G(kSp(p)|k)ab ∼= Z r2+1
p . Using the assumption (∗) for T , we get

G(kT
Sp

(p)|k)ab = 0,

hence G(kT
Sp

(p)|k) = 1, i.e. we proved (i).
Since the Leopoldt’s conjecture holds for k and p, we have

(Tor G(kS(p)|k)ab)∨ ∼= H2(G(kS(p)|k),Z/prZ)

for r ∈ N big enough. The exact sequence

H2(G(kS(p)|k),Z/prZ)→
⊕
p∈S

H2(Gp(k),Z/prZ)→H0(G(kS(p)|k), µpr)∨→ 0

implies that we obtain a surjection

H2(G(kS(p)|k),Z/prZ) ³
⊕

p∈S\Sp

H2(Gp(k),Z/prZ) ∼=
⊕

p∈S\Sp

µ(kp)(p)∨.
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Using proposition (2.3)(ii), it follows that we obtain an injection

⊕

p∈S\Sp

µ(kp)(p) ↪→ G(kT
S (p)|k)ab.

On the other hand, by (i) the map

⊕

p∈S\Sp

µ(kp)(p) ∼=
⊕

p∈S\Sp

Tp(k)/[Tp(k), Gp(k)] ³ G(kT
S (p)|k)ab

is surjective. This proves (ii).
In order to prove (iii), we consider the exact sequence

1−→K−→ ∗
p∈S\Sp

Gp(k)−→G(kT
S (p)|k)−→ 1,

where K is the kernel of the natural map ∗p∈S\SpGp(k)→G(kT
S (p)|k) which is

surjective by (i). For an abelian group A we obtain (using (i) again) the commu-
tative and exact diagram

⊕

p∈S\Sp

H1
nr(Gp(k), A)

Ä _

²²

· t

''NNNNNNNNNNNNNNNNN

0 // H1(G(kT
S (p)|k), A) //

⊕

p∈S\Sp

H1(Gp(k), A) res //

²²²²

H1(K, A)G(kT
S (p)|k)

H1(G(kT
S (p)|k), A) Â Ä //

⊕

p∈S\Sp

H1(Tp(k), A)Gp(k).

If A = Qp/Zp, then lower map is an isomorphism by (ii). Furthermore, since
the Leopoldt’s conjecture holds, we have H2(G(kT

S (p)|k),Qp/Zp) = 0, and so the
map res is surjective. If follows that

⊕

p∈S\Sp

H1
nr(Gp(k),Qp/Zp) ∼= H1(K,Qp/Zp)

G(kT
S (p)|k),

hence
⊕

p∈S\Sp

H1
nr(Gp(k),Z/pZ) ∼= H1(K,Z/pZ)G(kT

S (p)|k).
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Considering the diagram above with A = Z/pZ, we obtain the desired injection
H2(G(kT

S (p)|k)) ↪→ ⊕
p∈S\Sp

H2(Gp(k)).

Let S̃ = {q1, . . . , qd} and let τi be a generator of the cyclic group Tqi
(k), i =

1, . . . , d. Then by (i) and (iv) the set {τ1, . . . , τd} is a minimal set of generators of
the group G(kT

S (p)|k). Let F be the free pro-p-group on the generators x1, . . . , xd,
and let

1−→R−→F
π−→G(kT

S (p)|k)−→ 1

be a minimal presentation of the group G(kT
S (p)|k), where π maps xi to τi, i =

1, . . . , d. From (iv) and [4] (7.5.2) it follows that a set of defining relations is
given by

wi = x
N(qi)−1
i [xi, yi], i = 1, . . . , d,

where yi ∈ F denotes a pre-image of the Frobenius automorphism σi with respect
to qi, see [1],§11.4. Let

yi ≡
∏

i 6=j

x
lij
j mod F2

with lij ∈ Z/pZ. Then we obtain

wi = x
N(qi)−1
i [xi, yi] ≡ x

N(qi)−1
i [xi,

∏

i6=j

x
lij
j ] ≡ x

N(qi)−1
i

∏

i6=j

[xi, xj]
lij mod F3.

Thus G(kT
S (p)|k) is a pro-p-group of Koch type. ¤

From theorem (2.4) and Labute’s theorem (1.6) we obtain

Theorem 2.5 Let p be a prime number and assume that the number field k is
totally imaginary if p = 2. Let T and Sp ⊆ S = Smin be finite sets of primes of k
such that T ∩ S = ∅. Assume that

(a) T has the property (∗),

(b) dimFp BSp = 0 and
∑

p∈Sp
δp = δ,

(c) ΓS\Sp(p) is a non-singular circuit.

Then G(kT
S (p)|k) is a pro-p Schur group, G(kT

S (p)|k)ab is finite and

cdp G(kT
S (p)|k) = 2.

Corollary 2.6 With the notation and assumptions of theorem (2.5) assume in
addition, that p is odd and k is totally real. Assume further that the Leopoldt
conjecture holds for totally real number fields.

Then G(kT
S (p)|k) is a fab pro-p-group, and a duality group of dimension 2 and

strict cohomological dimension equal to 3.
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Proof: If K|k is a finite Galois extension inside kT
S (p), then K is also totally

real as p 6= 2. Since the Leopoldt conjecture holds for K and p, there is only
one Zp-extension of K, the cyclotomic one. The prolongations of the only prime
q ∈ T (k) are inert in this extension. Therefore G(kT

S (p)|K)ab is finite. The second
assertion follows from (1.3). ¤

It seems that among the conditions of (2.6) the assumption that k is totally
real in order to show that G(kT

S (p)|k) is fab is not necessary but we can not prove
it. The next results show that theorem (2.5) is not empty. The idea of the proof
is inspired by [2] prop. 6.1.

Proposition 2.7 Let k be a number field and let p be a prime number such that
µp ⊆/ k. Let T and S = Smin be finite disjoint sets of primes of k with Sp ⊆ S.
Assume that conditions (a) and (b) of (2.5) hold, and let

∗
p∈S̃

Tp(k(p)|k) ³ G(kT
S (p)|k)

be a minimal presentation of the pro-p-group G(kT
S (p)|k) of Koch type, where

S̃ = S\Sp = {q1, . . . , qm}. Let qi = qi ∩Q, i = 1, . . . , m, be the underlying prime
numbers, and assume that for all i

(i) qi ≡ 1 mod p and qi 6= qj if i 6= j,

(ii) the prime number qi is unramified in k|Q,

(iii) the image of qi in the p-primary part Clk(p) of the ideal class group of k is
trivial.

Then a prime qm+1 can be found satisfying (i)-(iii) such that the additional edges
of the linking diagram ΓS̃∪{q}(p) of (G(kT

S∪{q}(p)|k), S̃ ∪ {q}) are arbitrarily pre-
scribed.

Remark: Often we identify the sets {q1, . . . , qm} and {τq1 , . . . , τqm} of primes of
k and generators of G(kT

S (p)|k), respectively, and denote them by the same letter.

Proof: First we observe that, if q /∈ T ∪S is a prime of k with Nk|Q q ≡ 1 mod p,
then by theorem (2.4) the group G(kT

S∪{q}(p)|k) is also of Koch type and

∗
p∈S̃∪{q}

Tp(k(p)|k) ³ G(kT
S∪{q}(p)|k)

is a minimal presentation of G(kT
S∪{q}(p)|k).

If k̄ is the maximal abelian p-extension of k(µp) and q a non-archimedean
prime of k(µp) not lying above p, then

Gq(k̄|k(µp)) =< σq, τq >⊆ G(k̄|k(µp)),
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where < τq > is the inertia subgroup of the decomposition group Gq(k̄|k(µp)) of
G(k̄|k(µp)) with respect to q, and σq is a Frobenius lift.

By (i) and (ii) there is a unique extension Ei of k(µp) contained in k(µpqi
)

of degree p, i.e. G(Ei|k(µp)) ∼= Z/pZ. By (iii), there exists a natural number hi

prime to p such that qhi
i = (πqi

) is a principal ideal of k. Let

Fi = k(µp, p
√

πqi
)

with Galois group G(Fi|k(µp)) ∼= Z/pZ, and let Hk be the p-elementary Hilbert
field of k, i.e. the maximal p-elementary abelian unramified extension of k, with
Galois group G(Hk(µp)|k(µp)) ∼= Z/pZ ε for some ε ≥ 0. The fields

E1, . . . , Em, F1, . . . , Fm, Hk(µp)

are linearly disjoint over k(µp), and let K be the composite of these fields. The
field K is Galois over k and the subgroup H = G(K|k(µp)) of G(K|k) is the
direct product of the Galois groups of these fields over k(µp).

If σQ ∈ G(K|k) is the Frobenius automorphism at the unramified prime Q

of K and Q lies above the prime q of k, then σQ ∈ G(K|k(µp)) if and only if
Nk|Q q ≡ 1 mod p. Furthermore, the restriction of σQ to Hk(µp) is the identity if
and only if the image of q in Clk(p) is trivial.

Assume a prime qm+1 of k is given such that the underlying prime number qm+1

is unramified in K, qm+1 ≡ 1 mod p (and so Nk|Q qm+1 ≡ 1 mod p), qm+1 6= qj

for j = 1, . . . , m, and the image of qm+1 in Clk(p) is trivial. Then we choose a
prolongation of qm+1 to k(µp), which we also denote by qm+1. Let Q|qm+1 be a
prime of K; we denote σQ by σqm+1 = σqm+1|K as H is abelian. Let h ∈ N be
prime to p such that (qm+1)

h = (πqm+1) is a principal ideal of k. Since

G(Ei|k(µp)) =< τqi
G(k̄|Ei) >∼= Z/pZ,

we get
σqm+1|Ei

≡ (τqi
|Ei

)lm+1,i mod G(k̄|Ei),

where lm+1,i ∈ Z/pZ. Therefore the restriction of σqm+1 to Ei is the identity
if and only if the restriction of (σqm+1)

h to Ei is the identity (recall that h is
prime to p), and this is the case if and only if πqm+1 is a p-th power mod qi. If
Fi = k(µp, p

√
πqi

), then

σqm+1|Fi
( p
√

πqi
) = σqm+1|(Fi)qm+1

( p
√

πqi
) =

( πqi

qm+1

)
p
√

πqi
,

where
(

πqi

qm+1

)
∈ µp ⊆ (Fi)qm+1 is the Hilbert symbol, see [3] §8. We have

( πqi

qm+1

)
= 1 if and only if πqi

≡ αp mod qm+1

13



for some α ∈ k(µp), i.e. the restriction of σqm+1 to Fi is the identity if and only if
πqi

is a p-th power mod qm+1. Let G = G(kT
S∪{qm+1}(p)|k), then

σqm+1 ≡
∏

1≤j≤m

(τqj
)lm+1,j mod G2

and
σqi

≡
∏

1≤j≤m+1
j 6=i

(τqj
)lij mod G2

with lij ∈ Z/pZ. By the considerations above, lm+1,j = 0 if and only if πqm+1 is a
p-th power modulo qj and this is the case if and only if the restriction of σqm+1 to
Ej is the identity, and li,m+1 = 0 if and only if πqi

is a p-th power modulo qm+1

and this is the case if and only if the restriction of σqm+1 to Fi is the identity.
By the Čebotarev density theorem, for every g ∈ H there exist infinitely many

primes q of k of degree equal to 1 such that σq = g. Thus we may assume that
q = qm+1 is not in T , that the underlying prime number qm+1 is different to qi,
i = 1, . . . , m, and that qm+1 is unramified in K|Q. Since σqm+1 ∈ H, it follows
that qm+1 = Nk|Q qm+1 ≡ 1 mod p. Thus qm+1 satisfies (i) and (ii). Furthermore,
choosing the element g ∈ H suitable, we can extend the directed graph ΓS̃(p) by a
single prime qm+1 /∈ T ∪S satisfying (i), (ii) and, in addition, (iii) with prescribed
edges joining the primes of S̃ to qm+1 and qm+1 to the primes of S̃. ¤

Corollary 2.8 With the notation and assumptions of (2.7) let #S̃ ≥ 2. Then S̃
can be extended to a set S̃ ′ with #S̃ ′ = 2#S̃ such that the linking diagram ΓS̃′(p)
of (G(kT

S̃′∪Sp
(p)|k), S̃ ′) is a non-singular circuit.

Proof: Let S̃ = {q1, . . . , qm}. We extend S̃ by a single prime r1 so that q1r1,
r1q2 are edges with r1q1 not an edge. Now extend the new graph ΓS̃∪{r1}(p) by
another prime r2 so that q2r2 and r2q2 are the only new edges. Continuing in
this way, we see that we can extend ΓS̃(p) to a non-singular circuit ΓS̃′(p) having
2m vertices. If 1 ≤ i ≤ m, let v2i−1 = ri and v2i = qi. Then v1 · · · v2mv1 is the
required non-singular circuit. ¤

Example: Let k = Q(ζp + ζ−1
p ), where p is an odd regular prime number and

ζp a primitive p-root of unity. Then k has property (b) of theorem (2.5). Let
T = {p0} where p0 is a prime of k which is inert in first step of the cyclotomic
Zp-extension of k. Then T has the property (∗). Let S̃ = {q1, . . . , qm}, m ≥ 2, be
a set of primes of k lying over pairwise different prime numbers q1, . . . , qm such
that qi ≡ 1 mod p, and p0 /∈ S̃. By (2.8), we can extend S̃ to a set S̃ ′ such that
the linking diagram ΓS̃′(p) of (G(kT

S̃′∪Sp
(p)|k), S̃ ′) is a non-singular circuit.
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