Arithmetical Koch Groups

by Kay Wingberg at Heidelberg

Version: November 23, 2007

Let k be a number field, p a prime number and S a finite set of primes of k. The Galois group $G\left(k_{S}(p) \mid k\right)$ of the maximal p-extension of k which is unramified outside S is an important object in order to study the arithmetic of k. If all primes dividing p are in S , then a lot is known about the structure of $G\left(k_{S}(p) \mid k\right)$, in particular, it is of cohomological dimension less or equal to 2 (if $p=2$ one has to require that k is totally imaginary).

If S is disjoint to the set S_{p} of primes above p, the group $G\left(k_{S}(p) \mid k\right)$ is very mysterious. By a famous theorem of Golod and Šafarevič, it is in general infinite, but on the other hand it is a so-called $f a b$ pro- p-group, i.e. the maximal abelian quotient of every open subgroup of $G\left(k_{S}(p) \mid k\right)$ is finite. Furthermore, nothing was known on the cohomological dimension of $G\left(k_{S}(p) \mid k\right)$ so far.

Recently, J. Labute [2] showed that pro- p-groups who have a presentation in terms of generators and relations of a certain type, so-called mild pro-p-groups, are of cohomological dimension equal to 2 . A special case are pro- p-groups of Koch type, with certain further conditions on the relations (the linking diagram of the considered group has to be a non-singular circuit, see the definitions in the next section).

If $k=\mathbb{Q}$, then the group $G\left(\mathbb{Q}_{S}(p) \mid \mathbb{Q}\right), S \cap S_{p}=\varnothing$, is of Koch type, see H. Koch [1]. Labute used these results on the relation structure of $G\left(\mathbb{Q}_{S}(p) \mid \mathbb{Q}\right)$ and ended up with a criterion on the set S for the group $G\left(\mathbb{Q}_{S}(p) \mid \mathbb{Q}\right)$ to be of cohomological dimension 2. A. Schmidt [5] extended the result of Labute by arithmetic methods and weakened Labute's condition on S.

There is another case when the Galois group $G\left(k_{S}(p) \mid k\right), S \cap S_{p}=\varnothing$, is of Koch type: k has to be an imaginary quadratic number field not containing the p-th roots of unity and its class number is not divisible by p. Therefore, if the linking diagram of $G\left(k_{S}(p) \mid k\right)$ is a non-singular circuit, then this group is of cohomological dimension equal to 2 , see the paper of D. Vogel [6]. It seems that there are no other algebraic number fields k and sets S as the cases mentioned above such that the Galois group $G\left(k_{S}(p) \mid k\right)$ is of Koch type.

In this paper we will consider the maximal p-extension $k_{S}^{T}(p)$ of the number field k with restricted ramification at a finite set S containing S_{p}, which, in
addition, is completely decomposed at the finite set T. The groups $G\left(k_{S}^{T}(p) \mid k\right)$ are a rich source of pro- p-groups of Koch type. Under certain conditions on T and S (and conditions on k) we will show that $G\left(k_{S}^{T}(p) \mid k\right)$ is a pro- p Schur group (i.e. has as many generators as relations), is of Koch type, its maximal abelian quotient is finite, and the cohomological dimension is equal to 2 . Moreover, if p is odd and k is totally real, and assuming that the Leopoldt conjecture holds for totally real number fields, then $G\left(k_{S}^{T}(p) \mid k\right)$ is a fab pro- p-group.

The author wants to thank J. Gärtner and A. Schmidt for helpful conversations concerning this paper.

1 Pro-p-groups of Koch type

Let p be a prime number and let G be a pro- p-group. We denote the cohomology groups $H^{i}(G, \mathbb{Z} / p \mathbb{Z})$ by $H^{i}(G)$, and put $h^{i}(G)=\operatorname{dim}_{\mathbb{F}_{p}} H^{i}(G)$ and

$$
\chi_{2}(G)=\sum_{i=0}^{2}(-1)^{i} h^{i}(G)
$$

Let G_{n} be the n-th term in the lower p-central series defined recursively by $G_{1}=G$ and $G_{n+1}=\left(G_{n}\right)^{p}\left[G_{n}, G\right]$. We recall some definitions.

Definition 1.1 A pro-p-group G is called Schur group if $h^{1}(G)=h^{2}(G)$.
Definition 1.2 A pro-p-group G is called $\mathbf{f a b}$ if $U^{a b}$ is finite for all open subgroups U of G.

For the notion of a pro-p duality group we refer to [4] III §4.
Proposition 1.3 Let G be a fab pro-p-group of cohomological dimension equal to 2. Then G is a duality group. Furthermore, the strict cohomological dimension of G is equal to 3 .

Proof: In order to prove the first part of the proposition it suffices to show that the terms

$$
D_{i}(G, \mathbb{Z} / p \mathbb{Z})=\underset{U}{\lim } H^{i}(U)^{\vee}
$$

are trivial for $i=0,1$; here U runs through the open subgroups of G, and the transition maps are the duals of the corestriction maps, see [4] (3.4.6). For $i=0$ this is clear, since G is infinite. For $i=1$ we have

$$
D_{1}(G, \mathbb{Z} / p \mathbb{Z})=\underset{U}{\lim } U^{a b} / p
$$

Since $U^{a b}$ is finite for all open subgroups U of G, it follows from the group theoretical form of the principal ideal theorem, see [3] VI. (7.6), that

$$
D_{1}(G, \mathbb{Z} / p \mathbb{Z})=0
$$

Suppose that $s c d_{p} G=2$, i.e. $H^{2}\left(U, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=0$ for all open subgroups U of G. From the exact sequence $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \xrightarrow{p} \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow 0$, we obtain the exact sequence

$$
0 \rightarrow\left({ }_{p} U^{a b}\right)^{\vee} \rightarrow H^{2}(U) \rightarrow{ }_{p} H^{2}\left(U, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow 0
$$

Since G is fab, we obtain

$$
h^{1}(U)=\operatorname{dim}_{\mathbb{F}_{p}}\left(U^{a b} / p\right)=\operatorname{dim}_{\mathbb{F}_{p}}\left({ }_{p} U^{a b}\right)=h^{2}(U),
$$

i.e. $\chi_{2}(U)=1$. Since $c d_{p} G=2$, we have $\chi_{2}(U)=(G: U) \chi_{2}(G)$. This contradiction finishes the proof of the proposition.

Let G be a finitely represented pro- p-group and let $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$ be a minimal presentation, where F is the free pro- p-group on the generators x_{1}, \ldots, x_{d} and $R=\left(w_{1}, \ldots, w_{r}\right)$ is the normal subgroup of F generated by the elements w_{i}, $i=1, \ldots, r$.

Definition 1.4 The minimal presentation $<x_{1}, \ldots, x_{d} \mid w_{1}, \ldots, w_{r}>$ of the pro-p-group G is said to be of Koch type if $r \leq d$ and the relations w_{i} satisfy a congruence of the form

$$
w_{i} \equiv x_{i}^{p a_{i}} \prod_{i \neq j}\left[x_{i}, x_{j}\right]^{a_{i j}} \quad \bmod F_{3}
$$

with $a_{i}, a_{i j} \in \mathbb{Z}$. The group G is of Koch type if it has a presentation of Koch type.

Examples: 1. Let p be an odd prime and S a finite set of prime numbers not containing p. Let $G=G\left(\mathbb{Q}_{S}(p) \mid \mathbb{Q}\right)$ be the Galois group of the maximal p extension of \mathbb{Q} unramified outside S. We can assume that $S=\left\{q_{1}, \cdots, q_{d}\right\}$ with $q_{i} \equiv 1 \bmod p$. Work of Koch [1] shows that $G=<x_{1}, \ldots, x_{d} \mid w_{1}, \ldots, w_{d}>$ where

$$
w_{i} \equiv x_{i}^{q_{i}-1} \prod_{i \neq j}\left[x_{i}, x_{j}\right]^{b_{i j}} \quad \bmod F_{3},
$$

and $q_{i} \equiv g_{j}^{b_{i j}} \bmod q_{j}$, where g_{j} is a primitive root for the prime q_{j}. Observe that $r=d$.
2. Let p be an odd prime number and k an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if
$p=3$. Let S be a set of primes of k whose norm is congruent to $1 \bmod p$. If $G=G\left(k_{S}(p) \mid k\right)$ is the Galois group of the maximal p-extension of k unramified outside S, then G has a presentation of Koch type with $r=d$, see [1] or [6].

Let G be a pro-p-group of Koch type. Following Labute, we associate to $G=<x_{1}, \ldots, x_{d} \mid w_{1}, \ldots, w_{r}>$ and $S=\left\{x_{1}, \ldots, x_{d}\right\}$ a directed graph, denoted by $\Gamma_{S}(p)$, with vertices the elements of S and a directed edge $x_{i} x_{j}$ from x_{i} to x_{j} if

$$
l\left(x_{i}, x_{j}\right):=a_{i j} \bmod p \neq 0 .
$$

The graph $\Gamma_{S}(p)$, together with the $l\left(x_{i}, x_{j}\right) \in \mathbb{Z} / p \mathbb{Z}, i, j \leq d$, is called the linking diagram of (G, S).

Definition 1.5 Let $G=<x_{1}, \ldots, x_{d} \mid w_{1}, \ldots, w_{r}>$ be a pro-p-group of Koch type and let $\Gamma_{S}(p)$ be the associated linking diagram of (G, S). The set S is called strictly circular with respect to p (and $\Gamma_{S}(p)$ a non-singular circuit) if there exists an ordering $S=\left\{v_{1}, \ldots, v_{d}\right\}$ of the elements in S such that the following conditions are fulfilled:
(1) The vertices v_{1}, \ldots, v_{d} of $\Gamma_{S}(p)$ form a circuit $v_{1} v_{2} \ldots v_{d} v_{1}$.
(2) If i, j are both odd, then $v_{i} v_{j}$ is not an edge of $\Gamma_{S}(p)$.
(3) If $l_{i j}=l\left(v_{i}, v_{j}\right)$, then $l_{12} l_{23} \cdots l_{d-1, d} l_{d 1}-l_{1 d} l_{21} l_{32} \cdots l_{d, d-1} \neq 0$.

We remark that condition (2) implies that d is even and $d \geq 4$ and that condition (3) is satisfied if there exists an edge $v_{i} v_{j}$ of the circuit $v_{1} v_{2} \cdots v_{d} v_{1}$ such that $v_{j} v_{i}$ is not an edge $\Gamma_{S}(p)$.

Theorem 1.6 (Labute [2], Thm. 1.6.) Let G be a pro-p-group of Koch type on the minimal set of generators S. If S is strictly circular with respect to p, then $\operatorname{cd} G=2$.

2 Galois extensions of number fields which are completely decomposed at given primes

We will use the following notation. Let S, T be sets of primes of k. Then
$k_{S}(p)$ is the maximal p-extension of k which is unramified outside S,
$k_{S}^{T}(p)$ is the maximal p-extension of k which is unramified outside S and completely decomposed at T.

Furthermore, $k(p)$ denotes the maximal p-extension of k. For a prime \mathfrak{p} of k, let $k_{\mathfrak{p}}$ be the completion of k with respect to $\mathfrak{p}, U_{\mathfrak{p}}$ the group of units and $\mu\left(k_{\mathfrak{p}}\right)$ the group of roots of unity in $k_{\mathfrak{p}}$. We denote the decomposition group and inertia group of $G(k(p) \mid k)$ with respect to \mathfrak{p} by $G_{\mathfrak{p}}(k)=G_{\mathfrak{p}}(k(p) \mid k)$ and $T_{\mathfrak{p}}(k)=T_{\mathfrak{p}}(k(p) \mid k)$, respectively.

Considering the extension $k_{S}(p) \mid k$, the following primes cannot ramify in a p-extension, and are therefore redundant in S :

1. Complex primes.
2. Real primes if $p \neq 2$.
3. Primes $\mathfrak{p} \nmid p$ with $N(\mathfrak{p}) \not \equiv 1 \bmod p$.

Removing all these redundant places from S, we obtain a subset $S_{\min } \subseteq S$ which has the property that $G\left(k_{S}(p) \mid k\right)=G\left(k_{S_{\text {min }}}(p) \mid k\right)$. Let

$$
\tilde{S}=S \backslash\left(S_{p} \cup S_{\infty}\right)
$$

the subset of finite primes of S not above p, and let

$$
n_{S}=\sum_{\mathfrak{p} \in S_{p} \cap S} n_{\mathfrak{p}}, \quad \delta_{S}=\sum_{\mathfrak{p} \in S_{\mathfrak{p}} \cap S} \delta_{\mathfrak{p}}-\delta,
$$

where $n_{\mathfrak{p}}=\left[k_{\mathfrak{p}}: \mathbb{Q}_{p}\right]$,

$$
\delta=\left\{\begin{array}{ll}
1, & \mu_{p} \subseteq k, \\
0, & \mu_{p} \nsubseteq k,
\end{array} \quad \text { and } \quad \delta_{\mathfrak{p}}= \begin{cases}1, & \mu_{p} \subseteq k_{\mathfrak{p}}, \\
0, & \mu_{p} \nsubseteq k_{\mathfrak{p}} .\end{cases}\right.
$$

Furthermore, $\theta=\theta(S)$ is equal to 1 if $\mu_{p} \subseteq k$ and $S_{\min }=\varnothing$, and zero in all other cases. Finally, $\mathrm{D}_{S}(k)$ denotes the dual of the Kummer group

$$
V_{S}(k)=\left\{a \in k^{\times} \mid a \in k_{\mathfrak{p}}^{\times p} \text { for } \mathfrak{p} \in S \text { and } a \in U_{\mathfrak{p}} k_{\mathfrak{p}}^{\times p} \text { for } \mathfrak{p} \notin S\right\} / k^{\times p} .
$$

Proposition 2.1 Let p be a prime number and assume that the number field k is totally imaginary if $p=2$. Let T and $S=S_{\min }$ be finite sets of primes of k such that $T \cap S=\varnothing$. Then

$$
\begin{aligned}
\chi_{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) & \leq \theta+r_{1}+r_{2}-n_{S}+\# T \\
h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) & \geq 1+\# \tilde{S}+\delta_{S}+n_{S}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{D}_{S}-r_{1}-r_{2}-\# T .
\end{aligned}
$$

Proof: Since $T \cap S=\varnothing$, we have a surjection

$$
\bigoplus_{\mathfrak{p} \in T} G_{\mathfrak{p}}(k) / T_{\mathfrak{p}}(k) \rightarrow\left(G\left(k_{S}(p) \mid k_{S}^{T}(p)\right)^{a b}\right)_{G\left(k_{S}^{T}(p) \mid k\right)}
$$

(here M_{G} denotes the G-coinvariants of a G-module M). Thus we obtain

$$
\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G\left(k_{S}(p) \mid k_{S}^{T}(p)\right)\right)^{G\left(k_{S}^{T}(p) \mid k\right)} \leq \# T
$$

Using [4] (8.7.11), the exact 5 -term sequence

$$
\begin{array}{r}
0 \longrightarrow H^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \longrightarrow H^{1}\left(G\left(k_{S}(p) \mid k\right)\right) \longrightarrow H^{1}\left(G\left(k_{S}(p) \mid k_{S}^{T}(p)\right)\right)^{G\left(k_{S}^{T}(p) \mid k\right)} \\
\longrightarrow H^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \longrightarrow H^{2}\left(G\left(k_{S}(p) \mid k\right)\right)
\end{array}
$$

gives us the inequalities

$$
\begin{aligned}
& h^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)-h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \\
\leq & h^{2}\left(G\left(k_{S}(p) \mid k\right)\right)-h^{1}\left(G\left(k_{S}(p) \mid k\right)\right)+\operatorname{dim}_{\mathbb{F}_{p}} H^{1}\left(G\left(k_{S}(p) \mid k_{S}^{T}(p)\right)\right)^{G\left(k_{S}^{T}(p) \mid k\right)} \\
\leq & \theta-1+r_{1}+r_{2}-n_{S}+\# T
\end{aligned}
$$

and
$h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \geq h^{1}\left(G\left(k_{S}(p) \mid k\right)\right)-\# T=1+\# \tilde{S}+\delta_{S}+n_{S}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{E}_{S}-r_{1}-r_{2}-\# T$.

Corollary 2.2 With the assumptions of proposition (2.1) let

$$
c(S, T)=\max \left\{0, \theta+r_{1}+r_{2}-n_{S}+\# T\right\}
$$

Assume that

$$
\# \tilde{S} \geq(1+\sqrt{c(S, T)})^{2}-\left(\delta_{S}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{E}_{S}+\theta\right)
$$

Then the group $G\left(k_{S}^{T}(p) \mid k\right)$ is infinite.

Proof: Let $G=G\left(k_{S}^{T}(p) \mid k\right)$ and suppose that this group is finite. Then, by the Golod Safarevič inequality, see [4] (3.9.7),

$$
h^{2}(G)>\frac{h^{1}(G)^{2}}{4}
$$

From proposition (2.1) it follows that

$$
c(S, T)-1 \geq \theta-1+r_{1}+r_{2}-n_{S}+\# T \geq h^{2}(G)-h^{1}(G)>h^{1}(G)^{2} / 4-h^{1}(G)
$$

hence

$$
\# \tilde{S}+\left(\delta_{S}+\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{~B}_{S}+\theta\right)-c(S, T)+1 \leq h^{1}(G)<2+2 \sqrt{c(S, T)}
$$

which contradicts the assumption on $\# \tilde{S}$.

Let K_{1}, \ldots, K_{ρ} be independent \mathbb{Z}_{p}-extensions of k such that $\tilde{k}=\bigcup_{i=1}^{\rho} K_{i}$ is the compositum of all \mathbb{Z}_{p}-extensions of k. Recall that $\tilde{k} \subseteq k_{S}(p)$, if $S_{p} \subseteq S$. We say that a finite set T of primes of k has the property $(*)$ if the following holds: Property (*): The cardinality of T is equal to ρ, and if $T=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{\rho}\right\}$, then \mathfrak{p}_{i} does not decompose in $K_{i} \mid k$, i.e. $G_{\mathfrak{p}_{i}}\left(K_{i} \mid k\right)=G\left(K_{i} \mid k\right), \quad i=1, \ldots, \rho$.

If S is a finite set of primes of k such that $S \cap T=\varnothing$, then it follows that the homomorphism

$$
\underset{\mathfrak{p} \in T}{*} G_{\mathfrak{p}}(k(p) \mid k) / T_{\mathfrak{p}}(k(p) \mid k) \longrightarrow G\left(k_{S}(p) \mid k\right) \longrightarrow G\left(\tilde{k} \cap k_{S}(p) \mid k\right)
$$

is surjective, and, in particular, $G\left(k_{S}^{T}(p) \mid k\right)^{a b}$ is finite.
Proposition 2.3 Let p be a prime number and assume that the number field k is totally imaginary if $p=2$. Let T and $S_{p} \subseteq S=S_{\min }$ be finite sets of primes of k such that $T \cap S=\varnothing$.
(i) If $\# T=r_{2}+1$, then

$$
\chi_{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \leq 1
$$

(ii) Assume that the Leopoldt conjecture holds for k and p, and that T has the property (*). Then

$$
h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)=h^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)
$$

and

$$
G\left(k_{S}^{T}(p) \mid k\right)^{a b} \cong \operatorname{Tor} G\left(k_{S}(p) \mid k\right)^{a b}
$$

In particular, $G\left(k_{S}^{T}(p) \mid k\right)^{a b}$ is finite. If $\# S \backslash S_{p} \geq 4$, then $G\left(k_{S}^{T}(p) \mid k\right)$ is infinite.
(iii) Assume in addition to the assumptions of (ii) that

$$
\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{E}_{S}=0 \text { and } \sum_{\mathfrak{p} \in S_{p}} \delta_{\mathfrak{p}}=\delta .
$$

Then

$$
h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)=h^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)=\# S \backslash S_{p}
$$

Proof: Let $G=G\left(k_{S}^{T}(p) \mid k\right)$. By proposition (2.1), we have

$$
\chi_{2}(G) \leq 0+r_{1}+r_{2}-[k: \mathbb{Q}]+\# T=1
$$

proving (i).
From the exact sequence $0 \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \xrightarrow{p} \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow 0$, we obtain the exact sequence

$$
0 \rightarrow\left({ }_{p} G^{a b}\right)^{\vee} \rightarrow H^{2}(G) \rightarrow{ }_{p} H^{2}\left(G, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow 0
$$

By assumption, the Leopoldt conjecture holds, i.e. $\rho=\operatorname{rank}_{\mathbb{Z}_{p}} G(\tilde{k} \mid k)=r_{2}+1$. Therefore, as T has the property ($*$), $G^{a b}$ is finite. It follows that

$$
h^{1}(G)=\operatorname{dim}_{\mathbb{F}_{p} p} G^{a b} \leq h^{2}(G) .
$$

Since $h^{1}(G) \geq h^{2}(G)$ by (i), we get equality. The commutative and exact diagram

shows $\operatorname{Tor} G\left(k_{S}(p) \mid k\right)^{a b} \xrightarrow{\simeq} G\left(k_{S}^{T}(p) \mid k\right)^{a b}$. Furthermore, it follows from $c(S, T)=1$ and corollary (2.2), that $G\left(k_{S}^{T}(p) \mid k\right)$ is infinite, if $\# S \backslash S_{p} \geq 4$. This proves (ii).

From proposition (2.1) it follows that $h^{1}(G) \geq \# \tilde{S}$, and using [4] (8.7.11), we have $h^{2}(G) \leq \# \tilde{S}$. This proves (iii).

Theorem 2.4 Let p be a prime number and assume that the number field k is totally imaginary if $p=2$. Let T and $S_{p} \subseteq S=S_{\min }$ be finite sets of primes of k such that $T \cap S=\varnothing$. Assume that
(a) T has the property (*).
(b) $\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{E}_{S_{p}}=0$ and $\sum_{\mathfrak{p} \in S_{p}} \delta_{\mathfrak{p}}=\delta$.

Then the following holds:
(i) The canonical homomorphism

$$
\underset{\mathfrak{p} \in S \backslash S_{p}}{*} T_{\mathfrak{p}}(k(p) \mid k) \rightarrow G\left(k_{S}^{T}(p) \mid k\right)
$$

is surjective.
(ii) There is an isomorphism

$$
\bigoplus_{\mathfrak{p} \in S \backslash S_{p}} \mu\left(k_{\mathfrak{p}}\right)(p) \xrightarrow{\sim} G\left(k_{S}^{T}(p) \mid k\right)^{a b} .
$$

(iii) The map

$$
H^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \hookrightarrow \bigoplus_{\mathfrak{p} \in S \backslash S_{p}} H^{2}\left(G_{\mathfrak{p}}\right)
$$

is injective.
(iv) The pro-p-group $G\left(k_{S}^{T}(p) \mid k\right)$ is of Koch type and

$$
h^{1}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)=h^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right)=\# S \backslash S_{p}
$$

(v) $G\left(k_{S}^{T}(p) \mid k\right)^{a b}$ is finite. If $\# S \backslash S_{p} \geq 4$, then $G\left(k_{S}^{T}(p) \mid k\right)$ is infinite.

Proof: Since $\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{5}_{S_{p}}=0$ and $\sum_{\mathfrak{p} \in S_{p}} \delta_{\mathfrak{p}}=\delta$, the pro- p-group $G\left(k_{S_{p}}(p) \mid k\right)$ is free, see [4] (8.7.10). Therefore Leopoldt's conjecture holds for k and p. Furthermore $\mathrm{E}_{S}=0$ as $\mathrm{E}_{S_{p}}$ surjects onto E_{S}. From proposition (2.3) it follows that the assertion on the dimensions in (iv) and assertion (v) are true.

The cokernel of the canonical homomorphism

$$
\underset{\mathfrak{p} \in S \backslash S_{p}}{*} T_{\mathfrak{p}}(k(p) \mid k) \longrightarrow G\left(k_{S}^{T}(p) \mid k\right)
$$

is the Galois group $G\left(k_{S_{p}}^{T}(p) \mid k\right)$. Since $G\left(k_{S_{p}}(p) \mid k\right)$ is a free pro-p-group of rank $r_{2}+1$, we have $G\left(k_{S_{p}}(p) \mid k\right)^{a b} \cong \mathbb{Z}_{p}^{r_{2}+1}$. Using the assumption (*) for T, we get

$$
G\left(k_{S_{p}}^{T}(p) \mid k\right)^{a b}=0
$$

hence $G\left(k_{S_{p}}^{T}(p) \mid k\right)=1$, i.e. we proved (i).
Since the Leopoldt's conjecture holds for k and p, we have

$$
\left(\operatorname{Tor} G\left(k_{S}(p) \mid k\right)^{a b}\right)^{\vee} \cong H^{2}\left(G\left(k_{S}(p) \mid k\right), \mathbb{Z} / p^{r} \mathbb{Z}\right)
$$

for $r \in \mathbb{N}$ big enough. The exact sequence

$$
H^{2}\left(G\left(k_{S}(p) \mid k\right), \mathbb{Z} / p^{r} \mathbb{Z}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S} H^{2}\left(G_{\mathfrak{p}}(k), \mathbb{Z} / p^{r} \mathbb{Z}\right) \rightarrow H^{0}\left(G\left(k_{S}(p) \mid k\right), \mu_{p^{r}}\right)^{\vee} \rightarrow 0
$$

implies that we obtain a surjection

$$
H^{2}\left(G\left(k_{S}(p) \mid k\right), \mathbb{Z} / p^{r} \mathbb{Z}\right) \rightarrow \bigoplus_{\mathfrak{p} \in S \backslash S_{p}} H^{2}\left(G_{\mathfrak{p}}(k), \mathbb{Z} / p^{r} \mathbb{Z}\right) \cong \bigoplus_{\mathfrak{p} \in S \backslash S_{p}} \mu\left(k_{\mathfrak{p}}\right)(p)^{\vee}
$$

Using proposition (2.3)(ii), it follows that we obtain an injection

$$
\bigoplus_{\mathfrak{p} \in S \backslash S_{p}} \mu\left(k_{\mathfrak{p}}\right)(p) \hookrightarrow G\left(k_{S}^{T}(p) \mid k\right)^{a b}
$$

On the other hand, by (i) the map

$$
\bigoplus_{\mathfrak{p} \in S \backslash S_{p}} \mu\left(k_{\mathfrak{p}}\right)(p) \cong \bigoplus_{\mathfrak{p} \in S \backslash S_{p}} T_{\mathfrak{p}}(k) /\left[T_{\mathfrak{p}}(k), G_{\mathfrak{p}}(k)\right] \rightarrow G\left(k_{S}^{T}(p) \mid k\right)^{a b}
$$

is surjective. This proves (ii).
In order to prove (iii), we consider the exact sequence

$$
1 \longrightarrow \mathcal{K} \longrightarrow \underset{p \in S \backslash S_{p}}{*} G_{\mathfrak{p}}(k) \longrightarrow G\left(k_{S}^{T}(p) \mid k\right) \longrightarrow 1,
$$

where \mathcal{K} is the kernel of the natural map $\boldsymbol{*}_{\mathfrak{p} \in S \backslash S_{p}} G_{\mathfrak{p}}(k) \rightarrow G\left(k_{S}^{T}(p) \mid k\right)$ which is surjective by (i). For an abelian group A we obtain (using (i) again) the commutative and exact diagram

If $A=\mathbb{Q}_{p} / \mathbb{Z}_{p}$, then lower map is an isomorphism by (ii). Furthermore, since the Leopoldt's conjecture holds, we have $H^{2}\left(G\left(k_{S}^{T}(p) \mid k\right), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=0$, and so the map res is surjective. If follows that

$$
\bigoplus_{\mathfrak{p} \in S \backslash S_{p}} H_{n r}^{1}\left(G_{\mathfrak{p}}(k), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cong H^{1}\left(\mathcal{K}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{G\left(k_{S}^{T}(p) \mid k\right)}
$$

hence

$$
\bigoplus_{\mathfrak{p} \in S \backslash S_{p}} H_{n r}^{1}\left(G_{\mathfrak{p}}(k), \mathbb{Z} / p \mathbb{Z}\right) \cong H^{1}(\mathcal{K}, \mathbb{Z} / p \mathbb{Z})^{G\left(k_{S}^{T}(p) \mid k\right)}
$$

Considering the diagram above with $A=\mathbb{Z} / p \mathbb{Z}$, we obtain the desired injection $H^{2}\left(G\left(k_{S}^{T}(p) \mid k\right)\right) \hookrightarrow \bigoplus_{\mathfrak{p} \in S \backslash S_{p}} H^{2}\left(G_{\mathfrak{p}}(k)\right)$.

Let $\tilde{S}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{d}\right\}$ and let τ_{i} be a generator of the cyclic group $T_{\mathfrak{q}_{i}}(k), i=$ $1, \ldots, d$. Then by (i) and (iv) the set $\left\{\tau_{1}, \ldots, \tau_{d}\right\}$ is a minimal set of generators of the group $G\left(k_{S}^{T}(p) \mid k\right)$. Let F be the free pro- p-group on the generators x_{1}, \ldots, x_{d}, and let

$$
1 \longrightarrow R \longrightarrow F \xrightarrow{\pi} G\left(k_{S}^{T}(p) \mid k\right) \longrightarrow 1
$$

be a minimal presentation of the group $G\left(k_{S}^{T}(p) \mid k\right)$, where π maps x_{i} to $\tau_{i}, i=$ $1, \ldots, d$. From (iv) and [4] (7.5.2) it follows that a set of defining relations is given by

$$
w_{i}=x_{i}^{N\left(\mathfrak{q}_{i}\right)-1}\left[x_{i}, y_{i}\right], \quad i=1, \ldots, d,
$$

where $y_{i} \in F$ denotes a pre-image of the Frobenius automorphism σ_{i} with respect to \mathfrak{q}_{i}, see [1],§11.4. Let

$$
y_{i} \equiv \prod_{i \neq j} x_{j}^{l_{i j}} \quad \bmod F_{2}
$$

with $l_{i j} \in \mathbb{Z} / p \mathbb{Z}$. Then we obtain

$$
w_{i}=x_{i}^{N\left(q_{i}\right)-1}\left[x_{i}, y_{i}\right] \equiv x_{i}^{N\left(q_{i}\right)-1}\left[x_{i}, \prod_{i \neq j} x_{j}^{l_{i j}}\right] \equiv x_{i}^{N\left(q_{i}\right)-1} \prod_{i \neq j}\left[x_{i}, x_{j}\right]^{l_{i j}} \quad \bmod F_{3} .
$$

Thus $G\left(k_{S}^{T}(p) \mid k\right)$ is a pro- p-group of Koch type.

From theorem (2.4) and Labute's theorem (1.6) we obtain
Theorem 2.5 Let p be a prime number and assume that the number field k is totally imaginary if $p=2$. Let T and $S_{p} \subseteq S=S_{\min }$ be finite sets of primes of k such that $T \cap S=\varnothing$. Assume that
(a) T has the property (*),
(b) $\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{E}_{S_{p}}=0$ and $\sum_{\mathfrak{p} \in S_{p}} \delta_{\mathfrak{p}}=\delta$,
(c) $\Gamma_{S \backslash S_{p}}(p)$ is a non-singular circuit.

Then $G\left(k_{S}^{T}(p) \mid k\right)$ is a pro-p Schur group, $G\left(k_{S}^{T}(p) \mid k\right)^{a b}$ is finite and

$$
\operatorname{cd}_{p} G\left(k_{S}^{T}(p) \mid k\right)=2 .
$$

Corollary 2.6 With the notation and assumptions of theorem (2.5) assume in addition, that p is odd and k is totally real. Assume further that the Leopoldt conjecture holds for totally real number fields.

Then $G\left(k_{S}^{T}(p) \mid k\right)$ is a fab pro-p-group, and a duality group of dimension 2 and strict cohomological dimension equal to 3 .

Proof: If $K \mid k$ is a finite Galois extension inside $k_{S}^{T}(p)$, then K is also totally real as $p \neq 2$. Since the Leopoldt conjecture holds for K and p, there is only one \mathbb{Z}_{p}-extension of K, the cyclotomic one. The prolongations of the only prime $\mathfrak{q} \in T(k)$ are inert in this extension. Therefore $G\left(k_{S}^{T}(p) \mid K\right)^{a b}$ is finite. The second assertion follows from (1.3).

It seems that among the conditions of (2.6) the assumption that k is totally real in order to show that $G\left(k_{S}^{T}(p) \mid k\right)$ is fab is not necessary but we can not prove it. The next results show that theorem (2.5) is not empty. The idea of the proof is inspired by [2] prop. 6.1.

Proposition 2.7 Let k be a number field and let p be a prime number such that $\mu_{p} \nsubseteq k$. Let T and $S=S_{\min }$ be finite disjoint sets of primes of k with $S_{p} \subseteq S$. Assume that conditions (a) and (b) of (2.5) hold, and let

$$
\underset{\mathfrak{p} \in \tilde{S}}{*} T_{\mathfrak{p}}(k(p) \mid k) \rightarrow G\left(k_{S}^{T}(p) \mid k\right)
$$

be a minimal presentation of the pro-p-group $G\left(k_{S}^{T}(p) \mid k\right)$ of Koch type, where $\tilde{S}=S \backslash S_{p}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}\right\}$. Let $q_{i}=\mathfrak{q}_{i} \cap \mathbb{Q}, i=1, \ldots, m$, be the underlying prime numbers, and assume that for all i
(i) $q_{i} \equiv 1 \bmod p$ and $q_{i} \neq q_{j}$ if $i \neq j$,
(ii) the prime number q_{i} is unramified in $k \mid \mathbb{Q}$,
(iii) the image of \mathfrak{q}_{i} in the p-primary part $C l_{k}(p)$ of the ideal class group of k is trivial.

Then a prime \mathfrak{q}_{m+1} can be found satisfying (i)-(iii) such that the additional edges of the linking diagram $\Gamma_{\tilde{S} \cup\{\mathfrak{q}\}}(p)$ of $\left(G\left(k_{S \cup\{\mathfrak{q}\}}^{T}(p) \mid k\right), \tilde{S} \cup\{\mathfrak{q}\}\right)$ are arbitrarily prescribed.

Remark: Often we identify the sets $\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}\right\}$ and $\left\{\tau_{\mathfrak{q}_{1}}, \ldots, \tau_{\mathfrak{q}_{m}}\right\}$ of primes of k and generators of $G\left(k_{S}^{T}(p) \mid k\right)$, respectively, and denote them by the same letter.

Proof: First we observe that, if $\mathfrak{q} \notin T \cup S$ is a prime of k with $N_{k \mid \mathbb{Q}} \mathfrak{q} \equiv 1 \bmod p$, then by theorem (2.4) the group $G\left(k_{S \cup\{\mathfrak{q}\}}^{T}(p) \mid k\right)$ is also of Koch type and

$$
\underset{\mathfrak{p} \in \tilde{S} \cup\{\mathfrak{q}\}}{*} T_{\mathfrak{p}}(k(p) \mid k) \rightarrow G\left(k_{S \cup\{\mathfrak{q}\}}^{T}(p) \mid k\right)
$$

is a minimal presentation of $G\left(k_{S \cup\{q\}}^{T}(p) \mid k\right)$.
If \bar{k} is the maximal abelian p-extension of $k\left(\mu_{p}\right)$ and \mathfrak{q} a non-archimedean prime of $k\left(\mu_{p}\right)$ not lying above p, then

$$
G_{\mathfrak{q}}\left(\bar{k} \mid k\left(\mu_{p}\right)\right)=<\sigma_{\mathfrak{q}}, \tau_{\mathfrak{q}}>\subseteq G\left(\bar{k} \mid k\left(\mu_{p}\right)\right)
$$

where $<\tau_{\mathfrak{q}}>$ is the inertia subgroup of the decomposition group $G_{\mathfrak{q}}\left(\bar{k} \mid k\left(\mu_{p}\right)\right)$ of $G\left(\bar{k} \mid k\left(\mu_{p}\right)\right)$ with respect to \mathfrak{q}, and $\sigma_{\mathfrak{q}}$ is a Frobenius lift.

By (i) and (ii) there is a unique extension E_{i} of $k\left(\mu_{p}\right)$ contained in $k\left(\mu_{p q_{i}}\right)$ of degree p, i.e. $G\left(E_{i} \mid k\left(\mu_{p}\right)\right) \cong \mathbb{Z} / p \mathbb{Z}$. By (iii), there exists a natural number h_{i} prime to p such that $\mathfrak{q}_{i}^{h_{i}}=\left(\pi_{\mathfrak{q}_{i}}\right)$ is a principal ideal of k. Let

$$
F_{i}=k\left(\mu_{p}, \sqrt[p]{\pi_{\mathfrak{q}_{i}}}\right)
$$

with Galois group $G\left(F_{i} \mid k\left(\mu_{p}\right)\right) \cong \mathbb{Z} / p \mathbb{Z}$, and let H_{k} be the p-elementary Hilbert field of k, i.e. the maximal p-elementary abelian unramified extension of k, with Galois group $G\left(H_{k}\left(\mu_{p}\right) \mid k\left(\mu_{p}\right)\right) \cong \mathbb{Z} / p \mathbb{Z}^{\epsilon}$ for some $\epsilon \geq 0$. The fields

$$
E_{1}, \ldots, E_{m}, F_{1}, \ldots, F_{m}, H_{k}\left(\mu_{p}\right)
$$

are linearly disjoint over $k\left(\mu_{p}\right)$, and let K be the composite of these fields. The field K is Galois over k and the subgroup $H=G\left(K \mid k\left(\mu_{p}\right)\right)$ of $G(K \mid k)$ is the direct product of the Galois groups of these fields over $k\left(\mu_{p}\right)$.

If $\sigma_{\mathfrak{Q}} \in G(K \mid k)$ is the Frobenius automorphism at the unramified prime \mathfrak{Q} of K and \mathfrak{Q} lies above the prime \mathfrak{q} of k, then $\sigma_{\mathfrak{Q}} \in G\left(K \mid k\left(\mu_{p}\right)\right)$ if and only if $N_{k \mid \mathbb{Q}} \mathfrak{q} \equiv 1 \bmod p$. Furthermore, the restriction of $\sigma_{\mathfrak{Q}}$ to $H_{k}\left(\mu_{p}\right)$ is the identity if and only if the image of \mathfrak{q} in $C l_{k}(p)$ is trivial.

Assume a prime \mathfrak{q}_{m+1} of k is given such that the underlying prime number q_{m+1} is unramified in $K, q_{m+1} \equiv 1 \bmod p\left(\right.$ and so $\left.N_{k \mid \mathbb{Q}} \mathfrak{q}_{m+1} \equiv 1 \bmod p\right), q_{m+1} \neq q_{j}$ for $j=1, \ldots, m$, and the image of \mathfrak{q}_{m+1} in $C l_{k}(p)$ is trivial. Then we choose a prolongation of \mathfrak{q}_{m+1} to $k\left(\mu_{p}\right)$, which we also denote by \mathfrak{q}_{m+1}. Let $\mathfrak{Q} \mid \mathfrak{q}_{m+1}$ be a prime of K; we denote $\sigma_{\mathfrak{Q}}$ by $\sigma_{\mathfrak{q}_{m+1}}=\left.\sigma_{\mathfrak{q}_{m+1}}\right|_{K}$ as H is abelian. Let $h \in \mathbb{N}$ be prime to p such that $\left(\mathfrak{q}_{m+1}\right)^{h}=\left(\pi_{\mathfrak{q}_{m+1}}\right)$ is a principal ideal of k. Since

$$
G\left(E_{i} \mid k\left(\mu_{p}\right)\right)=<\tau_{\mathfrak{q}_{i}} G\left(\bar{k} \mid E_{i}\right)>\cong \mathbb{Z} / p \mathbb{Z}
$$

we get

$$
\left.\sigma_{\mathfrak{q}_{m+1}}\right|_{E_{i}} \equiv\left(\left.\tau_{\mathfrak{q}_{i}}\right|_{E_{i}}\right)^{l_{m+1, i}} \bmod G\left(\bar{k} \mid E_{i}\right),
$$

where $l_{m+1, i} \in \mathbb{Z} / p \mathbb{Z}$. Therefore the restriction of $\sigma_{\mathfrak{q}_{m+1}}$ to E_{i} is the identity if and only if the restriction of $\left(\sigma_{\mathfrak{q}_{m+1}}\right)^{h}$ to E_{i} is the identity (recall that h is prime to p), and this is the case if and only if $\pi_{\mathfrak{q}_{m+1}}$ is a p-th power $\bmod \mathfrak{q}_{i}$. If $F_{i}=k\left(\mu_{p}, \sqrt[p]{\pi_{\mathrm{q}_{i}}}\right)$, then

$$
\left.\sigma_{\mathfrak{q}_{m+1}}\right|_{F_{i}}\left(\sqrt[p]{\pi_{\mathfrak{q}_{i}}}\right)=\left.\sigma_{\mathfrak{q}_{m+1}}\right|_{\left(F_{i}\right)_{\mathfrak{q}_{m+1}}}\left(\sqrt[p]{\pi_{\mathfrak{q}_{i}}}\right)=\left(\frac{\pi_{\mathfrak{q}_{i}}}{\mathfrak{q}_{m+1}}\right) \sqrt[p]{\pi_{\mathfrak{q}_{i}}}
$$

where $\left(\frac{\pi_{\mathfrak{q}_{i}}}{\mathfrak{q}_{m+1}}\right) \in \mu_{p} \subseteq\left(F_{i}\right)_{\mathfrak{q}_{m+1}}$ is the Hilbert symbol, see [3] $\S 8$. We have

$$
\left(\frac{\pi_{\mathfrak{q}_{i}}}{\mathfrak{q}_{m+1}}\right)=1 \text { if and only if } \pi_{\mathfrak{q}_{i}} \equiv \alpha^{p} \bmod \mathfrak{q}_{m+1}
$$

for some $\alpha \in k\left(\mu_{p}\right)$, i.e. the restriction of $\sigma_{\mathfrak{q}_{m+1}}$ to F_{i} is the identity if and only if $\pi_{\mathfrak{q}_{i}}$ is a p-th power $\bmod \mathfrak{q}_{m+1}$. Let $G=G\left(k_{S \cup\left\{\mathfrak{q}_{m+1}\right\}}^{T}(p) \mid k\right)$, then

$$
\sigma_{\mathfrak{q}_{m+1}} \equiv \prod_{1 \leq j \leq m}\left(\tau_{\mathfrak{q}_{j}}\right)^{l_{m+1, j}} \quad \bmod G_{2}
$$

and

$$
\sigma_{\mathfrak{q}_{i}} \equiv \prod_{\substack{1 \leq j \leq m+1 \\ j \neq i}}\left(\tau_{\mathfrak{q}_{j}}\right)^{l_{i j}} \bmod G_{2}
$$

with $l_{i j} \in \mathbb{Z} / p \mathbb{Z}$. By the considerations above, $l_{m+1, j}=0$ if and only if $\pi_{\mathfrak{q}_{m+1}}$ is a p-th power modulo \mathfrak{q}_{j} and this is the case if and only if the restriction of $\sigma_{\mathfrak{q}_{m+1}}$ to E_{j} is the identity, and $l_{i, m+1}=0$ if and only if $\pi_{\mathfrak{q}_{i}}$ is a p-th power modulo \mathfrak{q}_{m+1} and this is the case if and only if the restriction of $\sigma_{\mathfrak{q}_{m+1}}$ to F_{i} is the identity.

By the Cebotarev density theorem, for every $g \in H$ there exist infinitely many primes \mathfrak{q} of k of degree equal to 1 such that $\sigma_{\mathfrak{q}}=g$. Thus we may assume that $\mathfrak{q}=\mathfrak{q}_{m+1}$ is not in T, that the underlying prime number q_{m+1} is different to q_{i}, $i=1, \ldots, m$, and that q_{m+1} is unramified in $K \mid \mathbb{Q}$. Since $\sigma_{\mathfrak{q}_{m+1}} \in H$, it follows that $q_{m+1}=N_{k \mid \mathbb{Q}} \mathfrak{q}_{m+1} \equiv 1 \bmod p$. Thus \mathfrak{q}_{m+1} satisfies (i) and (ii). Furthermore, choosing the element $g \in H$ suitable, we can extend the directed graph $\Gamma_{\tilde{S}}(p)$ by a single prime $\mathfrak{q}_{m+1} \notin T \cup S$ satisfying (i), (ii) and, in addition, (iii) with prescribed edges joining the primes of \tilde{S} to \mathfrak{q}_{m+1} and \mathfrak{q}_{m+1} to the primes of \tilde{S}.

Corollary 2.8 With the notation and assumptions of (2.7) let $\# \tilde{S} \geq 2$. Then \tilde{S} can be extended to a set \tilde{S}^{\prime} with $\# \tilde{S}^{\prime}=2 \# \tilde{S}$ such that the linking diagram $\Gamma_{\tilde{S}^{\prime}}(p)$ of $\left(G\left(k_{\tilde{S}^{\prime} \cup S_{p}}^{T}(p) \mid k\right), \tilde{S}^{\prime}\right)$ is a non-singular circuit.

Proof: Let $\tilde{S}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}\right\}$. We extend \tilde{S} by a single prime \mathfrak{r}_{1} so that $\mathfrak{q}_{1} \mathfrak{r}_{1}$, $\mathfrak{r}_{1} \mathfrak{q}_{2}$ are edges with $\mathfrak{r}_{1} \mathfrak{q}_{1}$ not an edge. Now extend the new graph $\Gamma_{\tilde{S} \cup\left\{\mathfrak{r}_{1}\right\}}(p)$ by another prime \mathfrak{r}_{2} so that $\mathfrak{q}_{2} \mathfrak{r}_{2}$ and $\mathfrak{r}_{2} \mathfrak{q}_{2}$ are the only new edges. Continuing in this way, we see that we can extend $\Gamma_{\tilde{S}}(p)$ to a non-singular circuit $\Gamma_{\tilde{S}^{\prime}}(p)$ having $2 m$ vertices. If $1 \leq i \leq m$, let $v_{2 i-1}=\mathfrak{r}_{i}$ and $v_{2 i}=\mathfrak{q}_{i}$. Then $v_{1} \cdots v_{2 m} v_{1}$ is the required non-singular circuit.

Example: Let $k=\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$, where p is an odd regular prime number and ζ_{p} a primitive p-root of unity. Then k has property (b) of theorem (2.5). Let $T=\left\{\mathfrak{p}_{0}\right\}$ where \mathfrak{p}_{0} is a prime of k which is inert in first step of the cyclotomic \mathbb{Z}_{p}-extension of k. Then T has the property $(*)$. Let $\tilde{S}=\left\{\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}\right\}, m \geq 2$, be a set of primes of k lying over pairwise different prime numbers q_{1}, \ldots, q_{m} such that $q_{i} \equiv 1 \bmod p$, and $\mathfrak{p}_{0} \notin \tilde{S}$. By (2.8), we can extend \tilde{S} to a set $\tilde{S}^{\prime \prime}$ such that the linking diagram $\Gamma_{\tilde{S}^{\prime}}(p)$ of $\left(G\left(k_{\tilde{S}^{\prime} \cup S_{p}}^{T}(p) \mid k\right), \tilde{S}^{\prime}\right)$ is a non-singular circuit.

References

[1] Koch, H. Galoissche Theorie der p-Erweiterungen. Deutscher Verlag der Wissenschaften (1970), English translation: Springer 2002
[2] Labute, J. Mild Pro-p-Groups and Galois Groups of p-Extensions of \mathbb{Q}. J. Reine u. Angew. Math. 596 (2006), 155-182
[3] Neukirch, J. Algebraische Zahlentheorie. Springer 1992, English translation: Algebraic Number Theory. Springer 1999
[4] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. Springer 2000
[5] Schmidt, A. Circular sets of prime numbers and p-extensions of the rationals. J. Reine u. Angew. Math. 596 (2006), 115-130
[6] Vogel, D. Circular sets of primes of imaginary quadratic number fields. Preprints der Forschergruppe Algebraische Zykel und L-Funktionen Regensburg/Leipzig Nr. 5, 2006.
http://www.mathematik.uni-regensburg.de/FGAlgZyk

Mathematisches Institut
der Universität Heidelberg
Im Neuenheimer Feld 288
69120 Heidelberg
Germany
e-mail: wingberg@mathi.uni-heidelberg.de

