Arithmetical Koch Groups

by Kay Wingberg at Heidelberg
Version: November 23, 2007

Let £ be a number field, p a prime number and S a finite set of primes
of k. The Galois group G(ks(p)|k) of the maximal p-extension of & which is
unramified outside S is an important object in order to study the arithmetic of
k. If all primes dividing p are in S, then a lot is known about the structure of
G(ks(p)|k), in particular, it is of cohomological dimension less or equal to 2 (if
p = 2 one has to require that & is totally imaginary).

If S is disjoint to the set S, of primes above p, the group G(ks(p)|k) is very
mysterious. By a famous theorem of Golod and Safarevi¢, it is in general infinite,
but on the other hand it is a so-called fab pro-p-group, i.e. the maximal abelian
quotient of every open subgroup of G(ks(p)|k) is finite. Furthermore, nothing
was known on the cohomological dimension of G(ks(p)|k) so far.

Recently, J. Labute [2] showed that pro-p-groups who have a presentation in
terms of generators and relations of a certain type, so-called mild pro-p-groups,
are of cohomological dimension equal to 2. A special case are pro-p-groups of
Koch type, with certain further conditions on the relations (the linking diagram
of the considered group has to be a non-singular circuit, see the definitions in the
next section).

If £ = Q, then the group G(Qs(p)|Q), SN S, = @, is of Koch type, see
H. Koch [1]. Labute used these results on the relation structure of G(Qgs(p)|Q)
and ended up with a criterion on the set S for the group G(Qs(p)|Q) to be of
cohomological dimension 2. A. Schmidt [5] extended the result of Labute by
arithmetic methods and weakened Labute’s condition on S.

There is another case when the Galois group G(ks(p)|k), SN S, = @, is
of Koch type: k has to be an imaginary quadratic number field not containing
the p-th roots of unity and its class number is not divisible by p. Therefore, if
the linking diagram of G(ks(p)|k) is a non-singular circuit, then this group is of
cohomological dimension equal to 2, see the paper of D. Vogel [6]. It seems that
there are no other algebraic number fields k& and sets S as the cases mentioned
above such that the Galois group G(kg(p)|k) is of Koch type.

In this paper we will consider the maximal p-extension k% (p) of the number
field k& with restricted ramification at a finite set S containing S,, which, in



addition, is completely decomposed at the finite set 7. The groups G(k%(p)|k)
are a rich source of pro-p-groups of Koch type. Under certain conditions on T’
and S (and conditions on k) we will show that G(k%(p)|k) is a pro-p Schur group
(i.e. has as many generators as relations), is of Koch type, its maximal abelian
quotient is finite, and the cohomological dimension is equal to 2. Moreover, if p
is odd and k is totally real, and assuming that the Leopoldt conjecture holds for
totally real number fields, then G(k%(p)|k) is a fab pro-p-group.

The author wants to thank J. Gartner and A. Schmidt for helpful conversa-
tions concerning this paper.

1 Pro-p-groups of Koch type

Let p be a prime number and let G be a pro-p-group. We denote the coho-
mology groups H'(G,Z/pZ) by H'(G), and put h*(G) = dimg, H*(G) and
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x2(G) = (—1)' 1 (G).

1=0

Let GG, be the n-th term in the lower p-central series defined recursively by G; = G
and G411 = (G,)P|Gp, G]. We recall some definitions.

Definition 1.1 A pro-p-group G is called Schur group if h*(G) = h*(G).

Definition 1.2 A pro-p-group G is called fab if U is finite for all open sub-
groups U of G.

For the notion of a pro-p duality group we refer to [4] III §4.

Proposition 1.3 Let G be a fab pro-p-group of cohomological dimension equal
to 2. Then G s a duality group. Furthermore, the strict cohomological dimension
of G is equal to 3.

Proof: In order to prove the first part of the proposition it suffices to show that
the terms
RT i\
D.(G.2/y7) = iy /1)
are trivial for ¢+ = 0, 1; here U runs through the open subgroups of G, and the
transition maps are the duals of the corestriction maps, see [4] (3.4.6). For i =0
this is clear, since G is infinite. For ¢ = 1 we have

Dy(G,Z/pZ) =lim U™ /p.
U

2



Since U® is finite for all open subgroups U of G, it follows from the group
theoretical form of the principal ideal theorem, see [3] VI. (7.6), that

D\(G,Z/pZ) = 0.

Suppose that scd, G = 2, i.e. H*(U,Q,/Z,) = 0 for all open subgroups U

of G. From the exact sequence 0 —Z/pZ — Q,/Z, LR Qp/Z,— 0, we obtain the
exact sequence

0 H(pUab)v - HQ(U) - pH2(U7 Qp/Zp) — 0.
Since G is fab, we obtain
h'(U) = dimg, (U /p) = dimg, (,U*") = h*(U),

i.e. x2(U) = 1. Since cd, G = 2, we have x2(U) = (G : U)x2(G). This contradic-
tion finishes the proof of the proposition. O

Let G be a finitely represented pro-p-group and let 1 = R— F — G — 1 be a
minimal presentation, where F' is the free pro-p-group on the generators x1,..., x4
and R = (wy,...,w,) is the normal subgroup of F' generated by the elements w;,
1=1,...,7.

Definition 1.4 The minimal presentation < x1,...,x4wy,...,w, > of the pro-
p-group G is said to be of Koch type if r < d and the relations w; satisfy a
congruence of the form

w; = x’?aiH[mi,xj]““ mod Fj
1#]
with a;,a;; € Z. The group G is of Koch type if it has a presentation of Koch
type.

Examples: 1. Let p be an odd prime and S a finite set of prime numbers
not containing p. Let G = G(Qs(p)|Q) be the Galois group of the maximal p-
extension of Q unramified outside S. We can assume that S = {qy,- - , ¢4} with
¢; = 1mod p. Work of Koch [1] shows that G =< xy, ..., z4lwy,...,ws > where

w; = xf H[xi,xj]b” mod Fj,
i#]

and ¢; = gjb“ mod ¢;, where g; is a primitive root for the prime g;.Observe that
r=d.

2. Let p be an odd prime number and k£ an imaginary quadratic number field
whose class number is not divisible by p, and which is different from Q(v/—3) if

3



p = 3. Let S be a set of primes of & whose norm is congruent to 1 mod p. If
G = G(ks(p)|k) is the Galois group of the maximal p-extension of k unramified
outside S, then G has a presentation of Koch type with r = d, see [1] or [6].

Let G be a pro-p-group of Koch type. Following Labute, we associate to
G =<ux,...,x4\wy,...,w. >and S = {x1,..., x4} adirected graph, denoted by
I's(p), with vertices the elements of S and a directed edge x;z; from z; to z; if

l(z;,z;) = a;; mod p # 0.
The graph I's(p), together with the I(z;,x;) € Z/pZ, i,j < d, is called the
linking diagram of (G, S).

Definition 1.5 Let G =< z1,...,z4|wy, ..., w, > be a pro-p-group of Koch type
and let U's(p) be the associated linking diagram of (G,S). The set S is called
strictly circular with respect to p (and I's(p) a non-singular circuit) if there

exists an ordering S = {vy,...,vq4} of the elements in S such that the following
conditions are fulfilled:
(1) The vertices vy, ...,vq of T's(p) form a circuit vivs ... vqvy.

(2) Ifi,j are both odd, then vv; is not an edge of I's(p).
(3) If l;j = l(vi,vj), then lialos- - li—1alar — lialaalsa - - - lga—1 # 0.

We remark that condition (2) implies that d is even and d > 4 and that
condition (3) is satisfied if there exists an edge v;v; of the circuit vjvg - - - v40q
such that v;v; is not an edge I's(p).

Theorem 1.6 (Labute [2], Thm. 1.6.) Let G be a pro-p-group of Koch type on
the minimal set of generators S. If S is strictly circular with respect to p, then

cdG = 2.

2 (Galois extensions of number fields which are
completely decomposed at given primes

We will use the following notation. Let S, T be sets of primes of k. Then

ks(p) is the maximal p-extension of k& which is unramified outside S,

k%L(p) is the maximal p-extension of k which is unramified outside S
and completely decomposed at T



Furthermore, k(p) denotes the maximal p-extension of k. For a prime p of
k, let k, be the completion of k with respect to p, U, the group of units and
p(ky) the group of roots of unity in k,. We denote the decomposition group
and inertia group of G(k(p)|k) with respect to p by Gy(k) = Gy(k(p)|k) and
Ty(k) = T,(k(p)|k), respectively.

Considering the extension kg(p)|k, the following primes cannot ramify in a
p-extension, and are therefore redundant in S:

1. Complex primes.
2. Real primes if p # 2.
3. Primes p 1 p with N(p) # 1 mod p.

Removing all these redundant places from S, we obtain a subset S,;, C S which
has the property that G(ks(p)|k) = G(ks,,.(p)|k). Let

S =S\(S,U Sx)

the subset of finite primes of S not above p, and let

ns= Y my Odg= Y 0=

peS,NS peS,NS

where n, = [k, : Q]

L pp Ck L pp Ck
=4 0 M= and g, =4 0 M=
{ 07 ”pgka P { 07 Mpgkp-

Furthermore, § = 6(5) is equal to 1 if y, C k and Syin = &, and zero in all other
cases. Finally, Gg(k) denotes the dual of the Kummer group

Vs(k) ={a€k™|a €k Pforpe Sandac Uk, forp¢g S}/k™P.

Proposition 2.1 Let p be a prime number and assume that the number field k
is totally tmaginary if p = 2. Let T and S = Sy be finite sets of primes of k
such that T NS = @. Then

X2(G(RE(P)IK) < 0 +r1 412 —ng+ #T,

M (G(ES(p)k) > 1+ #S + s+ ns + dimp, Bg — 11 — 19 — #T.

Proof: Since TN S = @, we have a surjection

B Go(k) /Ty (k) - (G(ks(p)|7<55T*(P))ab)a(k§(p)|k)

peT



(here Mg denotes the G-coinvariants of a G-module ). Thus we obtain
dims, H'(G(ks(p) [KL(p)))SH5 O < 4.
Using [4] (8.7.11), the exact 5-term sequence
0 — H'(G(k§(p)Ik)) — H'(G(ks(p)|k) — H'(G(ks(p)| kS (p))) "=
— H*(G (ks (p) k) — H*(G(ks(p)|F))
gives us the inequalities

W2 (G ks (p)[k)) — W1 (G (k5 (p)IF))
W (G(ks(p)|k)) — (G (ks(p)|k)) + dimg, H'(G(ks(p)[k (p)))Fhs @b
< O—14r+ro—ng+#T

IA

and
W (G(KE(p)|k)) = B (G(ks(p)|k))—#T = 14+4#S+0s+ns+dimg, Bg—ri—ro—#T.

O

Corollary 2.2 With the assumptions of proposition (2.1) let
c(S,T) = max{0,0 + 11 + 12, — ng + #7T'}.
Assume that
#5 > (14 /c(S,T))" — (J5 + dimg, Bs + 6).
Then the group G(kL(p)|k) is infinite.
Proof: Let G = G(k%(p)|k) and suppose that this group is finite. Then, by the
Golod Safarevi¢ inequality, see [4] (3.9.7),

hl (G)Q

R(G) > I

From proposition (2.1) it follows that
c(S,T)—=1>0—1+r +ry—ng+#T > h*G) — hYG) > h'(G)?/4 — b (G),
hence

#S + (65 + dimp, Bg 4+ 0) — ¢(S,T) +1 < h'(G) < 2+ 2+/¢(S, T),
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which contradicts the assumption on #5' . 0

Let Ki,..., K, be independent Z,-extensions of k such that k= Ui, K is
the compositum of all Z,-extensions of k. Recall that k¥ C ks(p), if S, C S. We
say that a finite set T" of primes of k has the property (x) if the following holds:

Property (x): The cardinality of 7" is equal to p, and if T = {py,...,p,}, then
p; does not decompose in K;|k, i.e. Gy, (K;|k) = G(K;lk), i=1,...,p.

If S is a finite set of primes of k such that SNT = &, then it follows that the
homomorphism

k Gy(k(p)|k)/Ty(k(p)|k) — G(ks(p)|k) — G(k N ks(p)|k)

peT
is surjective, and, in particular, G(k%(p)|k)® is finite.

Proposition 2.3 Let p be a prime number and assume that the number field k
is totally tmaginary if p = 2. Let T and S, € S = Swin be finite sets of primes of
k such that T NS = @.
(i) If #T =ra+ 1, then
X2(G (k& (p)|F)) < 1.

(ii) Assume that the Leopoldt conjecture holds for k and p, and that T has the
property (x). Then

I (G(ks (p)|k)) = h*(G(kg (p)|k))

and

G (K (p)|k)™ = Tor G(ks(p)|k)™.
In particular, G(kL(p)|k)® is finite. If #S\S, > 4, then G(kL(p)|k) is

infinite.

(i) Assume in addition to the assumptions of (ii) that
dimp, Bg = 0 and Z dp = 0.
peSH

Then
W (G(ks(p)|k)) = h*(G(k5 (p)[k)) = #S\S,.



Proof: Let G = G(k(p)|k). By proposition (2.1), we have
XQ(G) <O0+7r+7ry— [k@]+#T: 1

proving (i).
From the exact sequence 0 — Z/pZ — Q,/Z, %> Q,/Z, — 0, we obtain the ex-
act sequence
0 %(pGab)v — H*(G) — ,H*(G,Q,/Z,) —0.

By assumption, the Leopoldt conjecture holds, i.e. p = ranksz(lﬂk) =1y + 1.
Therefore, as T has the property (%), G% is finite. It follows that

W'(G) = dimg, ,G* < h2(G).

Since h' (G) > h%(G) by (i), we get equality. The commutative and exact diagram

Tor G(ks ()k)\
B Go(k(p) k) /Ty (k(p) k) —— G (ks(p) k)™ —— G(KE (p)|k)® —0
G(k|k)

shows Tor G (ks(p)|k)® = G(kL (p)|k)®. Furthermore, it follows from ¢(S,T) = 1

and corollary (2.2), that G(k%(p)|k) is infinite, if #S5\S, > 4. This proves (ii).
From proposition (2.1) it follows that h'(G) > #8, and using [4] (8.7.11), we

have h*(G) < #S. This proves (iii). O

Theorem 2.4 Let p be a prime number and assume that the number field k is
totally imaginary if p = 2. LetT" and S, C S = Swin be finite sets of primes of k
such that T NS = @. Assume that

(a) T has the property (x).
(b) dimg, Bg, =0 and } g 6 = 9.
Then the following holds:

(i) The canonical homomorphism

R COIRE AR

18 surjective.



(ii) There is an isomorphism

D nlky)(p) = Gk (p)[k)™

PES\Sp

(iii) The map

HA(G (k5 (p) k) — D H(G,)

peS\Sp
18 1njective.
(iv) The pro-p-group G(kL(p)|k) is of Koch type and
h'(G (ks (p)|k)) = h*(G(k5 (p)|k)) = #S\S,.

(v) G(kL(p)|k)® is finite. If #S\S, > 4, then G(kL(p)|k) is infinite.

Proof: Since dimp, Bs, = 0 and }_ g d, = 9, the pro-p-group G(ks,(p)|k) is
free, see [4] (8.7.10). Therefore Leopoldt’s conjecture holds for k& and p. Further-
more Bg = 0 as Bg, surjects onto Bg. From proposition (2.3) it follows that the
assertion on the dimensions in (iv) and assertion (v) are true.

The cokernel of the canonical homomorphism

pe;k\s To(k(p)|k) — G (k5 (p)[k)

is the Galois group G(k§ (p)[k). Since G(ks,(p)|k) is a free pro-p-group of rank
T2 + 1, we have G(kg, (p)|k:)“b = 7,**'. Using the assumption (x) for T', we get

G(ks, (p)|k)™ =

hence G(k§ (p)|k) = 1, i.e. we proved (i).
Since the Leopoldt’s conjecture holds for £ and p, we have

(Tor G(ks(p)[k)*)" = H*(G(ks(p)|k), Z/p"Z)
for r € N big enough. The exact sequence

H*(G (ks (p)|k), Z/p' Z) — D H*(Gy(k), Z/p Z) — H(G (ks (p)[k), )" — 0
peS

implies that we obtain a surjection

H*(G(ks(p)|k), Z/p'Z) — €D H*Gy(k),Z/p'Z)= P ulk

peS\Sp peS\Sp



Using proposition (2.3)(ii), it follows that we obtain an injection

B wk)(p) = GEE(p) k)™
peS\Sp
On the other hand, by (i) the map
D uk)0) = @ To(k)/[Tp(k), Go(k)] — Gk (p)[k)™

peS\Sp peS\Sp

is surjective. This proves (ii).
In order to prove (iii), we consider the exact sequence

1—K— % Gylk)— G5 (p)[k) — 1,
peS\S,

where K is the kernel of the natural map ka5, Gp(k) — G(k§ (p)|k) which is
surjective by (i). For an abelian group A we obtain (using (i) again) the commu-
tative and exact diagram

peS\Sp

0 — HY(G(k5(p)[k), A)

HY(K, A)S G(kE (p)Ik)

HY(G(EE(p)|k), AA—= €D H'(Ty(k), A)%®).
peS\Sp

If A= Q,/Z,, then lower map is an isomorphism by (ii). Furthermore, since
the Leopoldt’s conjecture holds, we have H?(G (kL (p)|k), Q,/Z,) = 0, and so the
map res is surjective. If follows that

P = k), Qp/Zy) = H'(K,Q,/Z,) s M),
peS\Sp
hence
P = k), Z/pZ) = H'(K,Z/pZ)**s )
peS\Sp
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Considering the diagram above with A = Z/pZ, we obtain the desired injection
H*(G(ks(P)|k)) = Dyesys, H(Gp(k)).

Let S = {q1,...,q4} and let 7; be a generator of the cyclic group Ty, (k), i =
1,...,d. Then by (i) and (iv) the set {m,..., 74} is a minimal set of generators of
the group G(kL(p)|k). Let F be the free pro-p-group on the generators w1, . . ., 4,
and let

l— R— F Gk (p)|k) — 1

be a minimal presentation of the group G(k%(p)|k), where m maps z; to 7, i =
1,...,d. From (iv) and [4] (7.5.2) it follows that a set of defining relations is

given by
w; = xf-v(qi)_l[xi, vil, i=1,....d,

where y; € F' denotes a pre-image of the Frobenius automorphism o; with respect
to q;, see [1],§11.4. Let
Y = H:Ué” mod F,
i#]
with l;; € Z/pZ. Then we obtain

w; = xz.v(qi)_l[mi, vl = va(qi)_l[a:i, H xé“] = o (@)1 H[xl, z;]"  mod Fy.

(2 3

1#] i#]
Thus G(kL(p)|k) is a pro-p-group of Koch type. O

From theorem (2.4) and Labute’s theorem (1.6) we obtain

Theorem 2.5 Let p be a prime number and assume that the number field k is
totally tmaginary if p= 2. LetT and S, C S = Sy be finite sets of primes of k
such that T NS = @. Assume that

(a) T has the property (x),
(b) dimg, Bg, =0 and }_,cq 6 =9,

(c) T's\s,(p) is a non-singular circuit.

Then G(kL(p)|k) is a pro-p Schur group, G(k%(p)|k)™ is finite and
ey GRE () k) = 2.

Corollary 2.6 With the notation and assumptions of theorem (2.5) assume in
addition, that p is odd and k is totally real. Assume further that the Leopoldt
congecture holds for totally real number fields.

Then G(kL(p)|k) is a fab pro-p-group, and a duality group of dimension 2 and
strict cohomological dimension equal to 3.

11



Proof: If K|k is a finite Galois extension inside k%(p), then K is also totally
real as p # 2. Since the Leopoldt conjecture holds for K and p, there is only
one Z,-extension of K, the cyclotomic one. The prolongations of the only prime
g € T(k) are inert in this extension. Therefore G(k% (p)|K)® is finite. The second
assertion follows from (1.3). O

It seems that among the conditions of (2.6) the assumption that k is totally
real in order to show that G (k% (p)|k) is fab is not necessary but we can not prove
it. The next results show that theorem (2.5) is not empty. The idea of the proof
is inspired by [2] prop. 6.1.

Proposition 2.7 Let k be a number field and let p be a prime number such that
ppy L k. Let T and S = Spin be finite disjoint sets of primes of k with S, C S.
Assume that conditions (a) and (b) of (2.5) hold, and let

pngp(k(p)lk) — G(ks (p)|k)

be a minimal presentation of the pro-p-group G(kL(p)|k) of Koch type, where
S=9\S, ={aq1,---,qm}. Let ¢ =9,NQ, i =1,...,m, be the underlying prime
numbers, and assume that for all i

(i) ¢ =1mod p and ¢; # q; if i # j,

(ii) the prime number q; is unramified in k|Q,
(iii) the image of q; in the p-primary part Cli(p) of the ideal class group of k is

trivial.

Then a prime .1 can be found satisfying (i)-(iil) such that the additional edges
of the linking diagram Ug ¢, (p) of (G(k:gu{q}(pﬂk:), SU{q}) are arbitrarily pre-
scribed.

Remark: Often we identify the sets {qi,...,q,} and {7, ..., 7y, } of primes of
k and generators of G(k% (p)|k), respectively, and denote them by the same letter.

Proof: First we observe that, if ¢ ¢ T'US is a prime of k with Nyg q = 1 mod p,
then by theorem (2.4) the group G(kf (qy(P)|K) is also of Koch type and

*  Ty(k(p)|k) - G(k§yq (0)]F)
peSu{q}

is a minimal presentation of G(k§ o (p)[F).
If k is the maximal abelian p-extension of k(x,) and q a non-archimedean
prime of k(u,) not lying above p, then

Gq(%‘k(/‘p)) =< 0q,Tqg >C G(]%‘k(,up))v
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where < 74 > is the inertia subgroup of the decomposition group Gq(k|k(x,)) of
G (k|k(u,)) with respect to g, and a4 is a Frobenius lift.

By (i) and (ii) there is a unique extension E; of k(u,) contained in k(i)
of degree p, i.e. G(E;|k(pp)) = Z/pZ. By (iii), there exists a natural number h;
prime to p such that g/ = (mq,) is a principal ideal of k. Let

F; = k(ﬂp? Y qu‘)

with Galois group G(F;|k(u,)) = Z/pZ, and let Hy be the p-elementary Hilbert
field of k, i.e. the maximal p-elementary abelian unramified extension of k, with
Galois group G(Hy(up)|k(1y)) = Z/pZ© for some € > 0. The fields

El, ce 7Em7F1; .. .,Fm,Hk(,up)

are linearly disjoint over k(u,), and let K be the composite of these fields. The
field K is Galois over k and the subgroup H = G(K|k(u,)) of G(K|k) is the
direct product of the Galois groups of these fields over k(s,).

If oq € G(K]|k) is the Frobenius automorphism at the unramified prime
of K and 9 lies above the prime q of k, then oq € G(K|k(u,)) if and only if
Nijgq = 1mod p. Furthermore, the restriction of og to Hy(y,) is the identity if
and only if the image of q in Cli(p) is trivial.

Assume a prime ¢, 1 of k is given such that the underlying prime number ¢, 1
is unramified in K, ¢n+1 = 1mod p (and so Nyg Gms1 = 1mod p), Gmy1 # g;
for j = 1,...,m, and the image of q,,1 in Cl(p) is trivial. Then we choose a
prolongation of q,,11 to k(u,), which we also denote by ¢,,4+1. Let Q|qmm41 be a
prime of K; we denote oq by 0q,.., = 0q,.,,|k as H is abelian. Let h € N be
prime to p such that (qm,41)" = (7,.,,) is a principal ideal of k. Since

G(Eilk(1y)) =< 14,G (k| Ei) >= Z/pL,
we get -
0‘1m+1|Ei = (TqilEi)lmH’i mod G(MEZ)?

where ln,41; € Z/pZ. Therefore the restriction of o, ., to E; is the identity
if and only if the restriction of (o, ,)" to E; is the identity (recall that h is
prime to p), and this is the case if and only if 7y, ,, is a p-th power mod q;. If

F; = k(up, ¢/7y;), then

Ta.
Fi(\p/ Trqi) = Oqm41 |(Fi)qm+1 ( v/ ﬂ-CIi) = ( . ) v/ Ta; 5

qm+1

O-q’m«l»l

where <L> € tp C (F})qm.. is the Hilbert symbol, see [3] §8. We have

A
qm+1

(_”qi ) = 1if and only if 7, = o mod gy 1
Um+1
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for some a € k(j1p), i.e. the restriction of oq,, , to Fj is the identity if and only if
g is a p-th power mod ¢,,41. Let G = G(kgu{qmﬂ}(p)\k), then

— Im+1,5
P H (7q;)™ 7 mod Gy

1<j<m

and
o= T () modG,
1<j<mt1
J#i

with [;; € Z/pZ. By the considerations above, l,,11; = 0 if and only if Tgmyr 15 @
p-th power modulo q; and this is the case if and only if the restriction of o4, | to
E; is the identity, and [; ,,11 = 0 if and only if 7y, is a p-th power modulo q;,1;
and this is the case if and only if the restriction of oy, ., to F; is the identity.

By the Cebotarev density theorem, for every g € H there exist infinitely many
primes q of £ of degree equal to 1 such that o4 = g. Thus we may assume that
q = Q1 1s not in 7', that the underlying prime number ¢, is different to g;,
i =1,...,m, and that g,,41 is unramified in K|Q. Since o, , € H, it follows
that ¢m41 = Nigjg gm+1 = 1mod p. Thus g, satisfies (i) and (ii). Furthermore,
choosing the element g € H suitable, we can extend the directed graph I's(p) by a
single prime q,,+1 ¢ T'US satisfying (i), (ii) and, in addition, (iii) with prescribed
edges joining the primes of S to g1 and g1 to the primes of S. U

Corollary 2.8 With the notation and assumptions of (2.7) let #S>92. Then S
can be extended to a set S" with #£S" = 24£S such that the linking diagram I'g, (p)
of (G(KL, 4 (p)|k),S") is a non-singular circuit,

Proof: Let S = {qi,...,qm}. We extend S by a single prime t; so that qit;,
t1qy are edges with t1q; not an edge. Now extend the new graph I'g . ,(p) by
another prime t, so that gt and toqe are the only new edges. Continuing in
this way, we see that we can extend I'5(p) to a non-singular circuit I'g, (p) having
2m vertices. If 1 <1 < m, let vy;_; = v; and vy; = q;. Then vy - - - vy, vy is the
required non-singular circuit. U

Example: Let £ = Q((, + ¢, D), where p is an odd regular prime number and
¢, a primitive p-root of unity. Then k has property (b) of theorem (2.5). Let
T = {po} where py is a prime of k£ which is inert in first step of the cyclotomic
Zy-extension of k. Then T has the property (x). Let S = {91, -,qm}, m > 2, be
a set of primes of k£ lying over pairwise different prime numbers ¢y, ..., ¢, such
that ¢; = 1mod p, and py ¢ S. By (2.8), we can extend S to a set S’ such that

the linking diagram T'g, (p) of (G(KL,  (p)Ik), S is a non-singular circuit.
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