Free quotients of Demuškin groups with operators

by Kay Wingberg at Heidelberg

This paper concerns the problem of the existence of Galois extensions of a local number field k whose Galois groups are free pro-p groups.

If k is a p-adic field, then the Galois group G(k(p)|k) of the maximal pextension of k is a free pro-p group if k does not contain the group of p-th roots of unity, and otherwise G(k(p)|k) is a Demuškin group, i.e. a pro-p Poincaré group of dimension 2. These groups are defined as follows: a pro-p group G is called a Demuškin group if its cohomology has the following properties:

$$\dim_{\mathbb{F}_p} H^1(G, \mathbb{Z}/p\mathbb{Z}) < \infty,$$

$$\dim_{\mathbb{F}_p} H^2(G, \mathbb{Z}/p\mathbb{Z}) = 1, \quad \text{and the cup-product}$$

$$H^1(G, \mathbb{Z}/p\mathbb{Z}) \times H^1(G, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\cup} H^2(G, \mathbb{Z}/p\mathbb{Z}) \quad \text{is non-degenerate.}$$

In the following we exclude the exceptional case that $G \cong \mathbb{Z}/2\mathbb{Z}$. Then the dualizing module I of G is isomorphic to $\mathbb{Q}_p/\mathbb{Z}_p$ as an abelian group and we have a canonical action of G on I.

Demuškin groups occur not only as Galois groups of the maximal p-extension of \mathfrak{p} -adic number fields (if these fields contain the group of p-th roots of unity) but also as the p-completion of the fundamental group of a compact oriented Riemann surface. In the first case the action of G on I is non-trivial whereas in the second case G acts trivially on I. We will only consider Demuškin groups acting nontrivially on its dualizing module and we are interested in free pro-p quotients of these groups. Possible ranks of such free quotients were first calculated in [7], [6] and [2].

In many cases of interest a finite group Δ of order prime to p acts on a Demuškin group. As an example consider the local field $k = \mathbb{Q}_p(\zeta_p)$, where p is an odd prime number. Then $G(k|\mathbb{Q}_p) \cong \mathbb{Z}/(p-1)\mathbb{Z}$ acts on the Demuškin group G(k(p)|k). Of particular interest is the case where Δ is generated by

an involution, e.g. $G(k|\mathbb{Q}_p(\zeta_p + \zeta_p^{-1})) \cong \mathbb{Z}/2\mathbb{Z}$ acts on G(k(p)|k); see [8] where Demuškin groups with involution were considered.

In this paper we are interested in free pro-p quotients F of a Demuškin group G which are invariant under a given action of Δ on G and where the maximal abelian factor group $F^{ab} = F/[F, F]$ of F has a prescribed action of Δ .

In particular, we will show the following: if p is odd and $\Delta \cong \mathbb{Z}/2\mathbb{Z}$ acts on a p-Demuškin group G of rank n+2, then there exists a Δ -invariant free quotient F of G such that rank_{Z_p} $(F^{ab})^+ = 1$ and rank_{Z_p} $(F^{ab})^- = n/2$ (here the (\pm) -eigenspaces of a Z_p[Δ]-module M are denoted by M^{\pm}). This situation occurs as the following example shows: Let p be an odd regular prime number and consider the CMfield $k = \mathbb{Q}(\zeta_p)$ with maximal totally real subfield $k^+ = \mathbb{Q}(\zeta_p + \zeta_p^{-1})$. Then the Galois group $G(k|k^+) \cong \mathbb{Z}/2\mathbb{Z}$ acts on the Galois group $G(k_{S_p}|k)$ of the maximal p-extension k_{S_p} of k which is unramified outside p. Let k_p be the completion of k with respect to the unique prime \mathfrak{p} of k above p and let $k_{\mathfrak{p}}(p)$ its maximal p-extension. Since we assume that k has no unramified p-extension, we have a surjection

$$G(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}}) \twoheadrightarrow G(k_{S_p}|k)$$

of the Demuškin group $G(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}})$ of rank p+1 onto the free pro-p group $G(k_{S_p}|k)$ of rank (p+1)/2 (see [5] X.6 example 2) and

$$\operatorname{rank}_{\mathbb{Z}_p}(G(k_{S_p}|k)^{ab})^+ = 1, \quad \operatorname{rank}_{\mathbb{Z}_p}(G(k_{S_p}|k)^{ab})^- = (p-1)/2,$$

since $(G(k_{S_p}|k)^{ab})^+ \cong G((k^+)_{S_p}|k^+)^{ab} \cong \mathbb{Z}_p$.

It would be of interest under which conditions there exist large free quotients of $G(k_{S_p}(p)|k)$ for an arbitrary CM-field k. If we assume that no prime **p** above p splits in the extension $k|k^+$, such a quotient should be defined by free quotients of the local groups $G(k_{\mathfrak{p}}(p)|k_{\mathfrak{p}})$, $\mathfrak{p}|p$, with an acting of $G(k_{\mathfrak{p}}|k_p^+) \cong G(k|k^+)$ as above.

1 Pro-*p* **Operator Groups**

Let p be a prime number. For a pro-p group G we denote its Frattini subgroup by $G^* = G^p[G, G]$ and its descending p-central series by

$$G^{(1)} = G$$
 and $G^{(i+1)} = (G^{(i)})^p [G^{(i)}, G], \quad i \ge 1.$

For the cohomology groups of G with coefficients in $\mathbb{Z}/p\mathbb{Z}$ we often set $H^i(G) = H^i(G, \mathbb{Z}/p\mathbb{Z})$. If A is an abelian group, then A^{\vee} denotes its Pontryagin dual.

Let

$$1 \longrightarrow H \longrightarrow \mathcal{H} \longrightarrow \mathcal{\Delta} \longrightarrow 1$$

be an exact sequence of profinite groups where H is a pro-p group and the (supernatural) order of Δ is prime to p. Let G be a pro-p- \mathcal{H} operator group (see [5] IV.3 ex.3).

Proposition 1.1 With the notation as above the following is true:

(i) Let $A \subseteq G/G^*$ be a $\mathbb{F}_p[[\mathcal{H}]]$ -submodule which is free as a $\mathbb{F}_p[[\mathcal{H}]]$ -module. Then there exists a pro-p- \mathcal{H} operator subgroup U of G such that the canonical map

$$U/U^* \longrightarrow G/G^*$$

is injective with image equal to A.

(ii) Let $B \subseteq G^{ab}$ be a $\mathbb{Z}_p[[\mathcal{H}]]$ -submodule which is free as a $\mathbb{Z}_p[[\mathcal{H}]]$ -module. Then there exists a pro-p- \mathcal{H} operator subgroup V of G such that the canonical map

 $V^{ab} \longrightarrow G^{ab}$

is injective with image equal to B.

If $\mathcal{H} = \Delta$ is finite of order prime to p and G is a finitely generated pro-p group with an action by Δ , then case (i) is a result of N. Boston, see [1], prop. (2.3).

Proof: We only prove case (i), since the proof of case (ii) is completely analogously. Let

$$\mathcal{U} = \{ U \subseteq G \mid U \text{ is an } \mathcal{H}\text{-invariant subgroup, } UG^*/G^* = A \}.$$

Then \mathcal{U} is not empty since the full pre-image of A under the canonical \mathcal{H} -invariant map $G \twoheadrightarrow G/G^*$ is an element of \mathcal{U} . Furthermore, if $\{U_{\lambda}, \lambda \in I\}$ is a totally ordered subset of \mathcal{U} , then $V = \bigcap U_{\lambda}$ is an \mathcal{H} -invariant subgroup of G and

$$VG^*/G^* = \lim U_\lambda G^*/G^* = A,$$

and so $V \in \mathcal{U}$. By Zorn's lemma there exists a minimal element $U_0 \in \mathcal{U}$. The \mathcal{H} -invariant map

$$U_0/U_0^* \twoheadrightarrow U_0G^*/G^* = A$$

has an \mathcal{H} -invariant splitting s. Indeed, by assumption, A is projective as a $\mathbb{F}_p[\![H]\!]$ -module, and so A is a projective $\mathbb{F}_p[\![\mathcal{H}]\!]$ -module, see [5] V.2 ex. 7). Let W be the full pre-image of $s(A) \subseteq U_0/U_0^*$ under the canonical map $U_0 \twoheadrightarrow U_0/U_0^*$. Then W is \mathcal{H} -invariant, $W/U_0^* = s(A)$ and we have the commutative diagram

Since $WG^*/G^* = A$, it follows that $W \in \mathcal{U}$, and so $W = U_0$ because of the minimality of U_0 . We obtain that $U_0/U_0^* = W/U_0^* \xrightarrow{\sim} U_0G^*/G^* = A$ which finishes the proof of the proposition.

If k is a field and Δ a finite group of order prime to the characteristic of k, then by Maschke's theorem the category of $k[\Delta]$ -modules is semi-simple. If Δ is abelian und k is splitting field for Δ , then every simple $k[\Delta]$ -module has k-dimension equal to 1; one has a decomposition into eigenspaces

$$M = \prod_{\chi \in \Delta^{\vee}} M^{\chi} \, ,$$

where $M^{\chi} = \{x \in M \mid x^{\sigma} = x^{\chi(\sigma)} \text{ for all } \sigma \in \Delta\}$ is the isotypic component of a $k[\Delta]$ -module M with respect to the character χ of Δ

Corollary 1.2 Let p be an odd prime number and let Δ be a finite abelian group of exponent p-1 with character group Δ^{\vee} . Let G be a pro-p- Δ operator group and let

$$G/G^* = \prod_{\chi \in \Delta^{\vee}} (G/G^*)^{\chi},$$

be the decomposition of G/G^* in χ -eigenspaces. Then there exist subsets M_{χ} of G such that

- (i) $\bigcup_{\chi \in \Delta^{\vee}} M_{\chi}$ is a minimal set of generators of G,
- (ii) $\overline{M}_{\chi} = \{x \mod G^* \mid x \in M_{\chi}\}$ is a basis of $(G/G^*)^{\chi}$ for all $\chi \in \Delta^{\vee}$,
- (iii) $x^{\sigma} = x^{\chi(\sigma)}$ for $x \in M_{\chi}$ and $\sigma \in \Delta$.

Proof: This follows directly from proposition (1.1)(i) with H = 1 and A a 1-dimensional subspace of an eigenspace $(G/G^*)^{\chi}$.

Let Δ be a finite group of order prime to p and G a pro-p- Δ operator group which is finitely generated as a pro-p group. Let

$$1 \longrightarrow R \longrightarrow E \stackrel{\varphi}{\longrightarrow} G \longrightarrow 1$$

be an exact sequence of pro-p groups such that the surjection φ induces an isomorphism $E/E^* \longrightarrow G/G^*$. A lemma, which we will need later, is the following. **Lemma 1.3** With the notation and assumptions as above there exists a continuous action of Δ on E extending the action on G, i.e. the surjection $E \twoheadrightarrow G$ is Δ -invariant and R is a Δ -operator group.

Proof: We consider the natural homomorphism

$$\operatorname{Aut}_R(E) \longrightarrow \operatorname{Aut}(G)$$

where $\operatorname{Aut}_R(E) \subseteq \operatorname{Aut}(E)$ denotes the group of automorphisms θ of E such that $\theta(R) \subseteq R$. Recall that the kernel of the homomorphism $\operatorname{Aut}(G) \to \operatorname{Aut}(G/G^*)$ is a pro-p group, cf. [4] 5.5. Therefore the commutative diagram

shows that the image of the prime-to-p group Δ in Aut(G) is contained in the image of Aut_R(E) \rightarrow Aut(G). Since the kernel of Aut(E) \rightarrow Aut(E/E^*) is a pro-p group, and Aut(E/E^*) $\xrightarrow{\sim}$ Aut(G/G^*) is an isomorphism, it follows that the kernel of Aut_R(E) \rightarrow Aut(G) is a pro-p group. Using again that Δ is a prime-to-p group, we get a commutative diagram

$$\operatorname{Aut}_{R}(E) \longrightarrow \operatorname{Aut}(G).$$

This proves the lemma.

Let p be a prime number and let

$$1 \longrightarrow G \longrightarrow \mathcal{G} \longrightarrow \Delta \longrightarrow 1,$$

be a split exact sequence of profinite groups where G is a pro-p group and Δ is a finite group of order prime to p. Thus \mathcal{G} is the semi-direct product of Δ by Gand G is a pro-p- Δ operator group where the action of Δ on G is defined via the splitting s. Conversely, given a pro-p- Δ operator group G, we get a semi-direct product $\mathcal{G} = G \rtimes \Delta$ where the action of Δ on G is the given one.

Let $\mathcal{G}(p)$ be the maximal pro-*p* quotient of \mathcal{G} and let G_{Δ} be the maximal quotient of *G* with trivial Δ -action. Observe that G_{Δ} is well-defined.

Proposition 1.4 With the notation and assumptions as above there is a canonical isomorphism

$$G_{\Delta} \xrightarrow{\sim} \mathcal{G}(p)$$
.

Furthermore, if Δ_0 is a subgroup of Δ such that $H^2(G, \mathbb{Z}/p\mathbb{Z})^{\Delta_0} = 0$, then G_{Δ_0} is a free pro-p group.

Proof: Consider the exact commutative diagram

where N is the kernel of the canonical surjection $\mathcal{G} \twoheadrightarrow \mathcal{G}(p)$ and \tilde{G} denotes the quotient $G/N \cap G$. Since Δ acts on $N \cap G$ via s, we obtain an induced action on \tilde{G} . This action is trivial because

$$g^{s(\sigma)-1} = [s(\sigma), g] \in N \cap G$$
 for $g \in G$ and $\sigma \in \Delta$,

and so we get a surjection

$$\varphi: G_{\Delta} \twoheadrightarrow \tilde{G}$$

Consider the exact commutative diagram

where the map inf_1 is bijective and inf_2 is injective because $\operatorname{Hom}(N, \mathbb{Z}/p\mathbb{Z}) = 0$. Therefore $H^1(\ker \varphi)^{G_{\Delta}} = 0$, and so by the Frattini argument, see [5] (1.7.4), $\ker \varphi = 1$, i.e. $G_{\Delta} \cong \tilde{G} \cong \mathcal{G}(p)$. Furthermore, it follows that

 $H^2(G_{\Delta}) \xrightarrow{inf} H^2(G)^{\Delta}$

is injective. Therefore, if $H^2(G)^{\Delta} = 0$, then $H^2(G_{\Delta}) = 0$, and so G_{Δ} is a free pro-p group.

For a subgroup Δ_0 of Δ let \mathcal{G}_0 be the semi-direct product $G \rtimes \Delta_0$. Replacing in the proof above Δ by Δ_0 and \mathcal{G} by \mathcal{G}_0 , we obtain the assertion for every subgroup.

2 Demuškin Groups with Operators

In this section we assume that

- Δ is a finite group of order prime to p and
- G is a p-Demuškin group of rank $n+2, n \ge 0$, with dualizing module I and an action by Δ .

Let \mathcal{G} be the semi-direct product of Δ by G, i.e. the sequence

$$1 \longrightarrow G \longrightarrow \mathcal{G} \longrightarrow \varDelta \longrightarrow 1$$

is split-exact.

The dualizing module I of G is defined as

$$I = \varinjlim_{m} \varinjlim_{U} H^{2}(U, \mathbb{Z}/p^{m}\mathbb{Z})^{\vee},$$

where the second limit is taken over the maps cor^{\vee} , the dual to the corestriction, and U runs through the open normal subgroups of G; the first limit is taken with respect to the multiplication by p.

Let

$$\chi: G \longrightarrow \operatorname{Aut}(I) \cong \mathbb{Z}_p^{\times}$$

be the character given by the action of G on I. We denote the canonical quotient $G/\ker(\chi)$ by Γ , i.e.

$$\chi_0: \Gamma \hookrightarrow \operatorname{Aut}(I) \,.$$

In the following we assume that

G acts non-trivially on I

(thus $\Gamma \cong \mathbb{Z}_p$), and we define the (finite) invariant q of G by

$$q = \#(I^G).$$

Then we have a Δ -invariant isomorphism

$$H^2(G, \mathbb{Z}/q\mathbb{Z}) \cong \operatorname{Hom}(I^G, \mathbb{Z}/q\mathbb{Z}) \quad (\cong \mathbb{Z}/q\mathbb{Z} \text{ as an abelian group})$$

and a Δ -invariant non-degenerate pairing

$$H^1(G, \mathbb{Z}/q\mathbb{Z}) \times H^1(G, \mathbb{Z}/q\mathbb{Z}) \xrightarrow{\cup} H^2(G, \mathbb{Z}/q\mathbb{Z}).$$

From the exact sequence $0 \to \mathbb{Z}/q\mathbb{Z} \xrightarrow{q} \mathbb{Z}/q^2\mathbb{Z} \to \mathbb{Z}/q\mathbb{Z} \to 0$, we get the Bockstein homomorphism

$$B: H^1(G, \mathbb{Z}/q\mathbb{Z}) \longrightarrow H^2(G, \mathbb{Z}/q\mathbb{Z})$$

which is surjective and Δ -invariant.

Let P be a pro-p group. In this section we denote by P^i , $i \ge 1$, the descending q-central series, i.e.

$$P^1 = P$$
 and $P^{i+1} = (P^i)^q [P^i, P]$ for $i \ge 1$.

Let

$$1 \longrightarrow F \longrightarrow \mathcal{F} \longrightarrow \varDelta \longrightarrow 1$$

be an exact sequence of profinite groups where F is a finitely generated pro-p group. Obviously, G^i and F^i are normal open subgroups of \mathcal{G} and \mathcal{F} respectively.

Proposition 2.1 With the notation as above let q > 2 and $m \ge 2$. Assume that there exists a surjection

$$\varphi_{m+1}: \mathcal{G} \longrightarrow \mathcal{F}/F^{m+1}.$$

Then there exists a surjection

 $\varphi: \mathcal{G} \longrightarrow \mathcal{F}$

inducing the surjection $\varphi_m : \mathcal{G} \xrightarrow{\varphi_{m+1}} \mathcal{F}/F^{m+1} \xrightarrow{\operatorname{can}} \mathcal{F}/F^m$.

Proof: Assume that we have already found a surjection

$$\varphi_{i+1}: \mathcal{G} \longrightarrow \mathcal{F}/F^{i+1}$$

for $i \ge m$ which induces φ_m , and let $\varphi_i : \mathcal{G} \xrightarrow{\varphi_{i+1}} \mathcal{F}/F^{i+1} \xrightarrow{can} \mathcal{F}/F^i$.

Let γ, x_0, \ldots, x_n be a minimal system of generators of G such that $x_k \in \ker(\chi)$ for $k \ge 0$ and $\chi(\gamma) = 1 - q$.

Claim: The group F^{i+1}/F^{i+2} is generated by elements of the form

$$w^{q}[w, \bar{\gamma}] \mod F^{i+2}, \quad [w, \bar{x}_{k}] \mod F^{i+2}, \quad k \ge 0, \quad w \in F^{i},$$

where $\bar{\gamma}, \bar{x}_k \in F$ are lifts of the images of γ, x_k in F/F^2 under the surjection $G \twoheadrightarrow F/F^2$.

This shown in [3] prop. 5(i) (observe, that we have a surjection $G/G^{i+1} \rightarrow F/F^{i+1}$, and so the group F/F^{i+1} is generated by the elements $\bar{\gamma}, \bar{x}_k \mod F^{i+1}$).

Consider the diagram with exact line

Since $i \ge m \ge 2$, we have

$$[F^i, F^i] \subseteq F^{2i} \subseteq F^{i+2},$$

and so the group F^i/F^{i+2} is abelian; we consider F^i/F^{i+2} as a \mathcal{G} -module via φ_i . The canonical exact sequence

$$0 \longrightarrow F^{i+1}/F^{i+2} \longrightarrow F^i/F^{i+2} \longrightarrow F^i/F^{i+1} \longrightarrow 0$$

induces a Δ -invariant exact sequence

$$0 \longrightarrow \operatorname{Hom}_{G}(F^{i}/F^{i+1}, I) \longrightarrow \operatorname{Hom}_{G}(F^{i}/F^{i+2}, I) \longrightarrow \operatorname{Hom}_{G}(F^{i+1}/F^{i+2}, I)$$

Let $f \in \operatorname{Hom}_G(F^i/F^{i+2}, I)$. Then

$$\begin{aligned} f([w, \bar{x}_k] \mod F^{i+2}) &= f(w \mod F^{i+2})^{x_k-1} = 0 \quad \text{for } k \ge 0, \\ f(w^q[w, \bar{\gamma}] \mod F^{i+2}) &= f(w \mod F^{i+2})q + f(w \mod F^{i+2})^{\gamma-1} \\ &= f(w \mod F^{i+2})(q-q) = 0. \end{aligned}$$

Using the claim, we see that f vanishes on F^{i+1}/F^{i+2} , and so

$$\operatorname{Hom}_G(F^i/F^{i+1}, I) \xrightarrow{\sim} \operatorname{Hom}_G(F^i/F^{i+2}, I)$$

By duality, cf. [5](3.7.6), (3.7.1), (3.4.6), we get

$$H^2(G, F^i/F^{i+2}) \xrightarrow{\sim} H^2(G, F^i/F^{i+1}),$$

and so

$$H^2(G, F^i/F^{i+2})^{\varDelta} \xrightarrow{\sim} H^2(G, F^i/F^{i+1})^{\varDelta}$$

Since the order of Δ is prime to p, the Hochschild-Serre spectral sequence

$$H^{i}(\Delta, H^{j}(G, -)) \Rightarrow H^{i+j}(\mathcal{G}, -)$$

degenerates, i.e. $H^{j}(G, -)^{\Delta} \cong H^{j}(\mathcal{G}, -)$. Therefore we obtain the isomorphism

$$H^2(\mathcal{G}, F^i/F^{i+2}) \longrightarrow H^2(\mathcal{G}, F^i/F^{i+1}).$$

Now we prove that the embedding problem (\ast) is solvable. For this we have to show that the 2-class

$$[\beta_i] \in H^2(\mathcal{F}/F^i, F^i/F^{i+2})$$

is mapped to zero under the inflation map $inf = \varphi_i^*$,

$$H^2(\mathcal{F}/F^i, F^i/F^{i+2}) \xrightarrow{inf} H^2(\mathcal{G}, F^i/F^{i+2}),$$

where β_i is the 2-cocycle corresponding to the group extension in (*), see [5] (9.4.2). From the commutative exact diagram

we get a commutative diagram

$$\begin{array}{c} H^{2}(\mathcal{F}/F^{i},F^{i}/F^{i+2}) \xrightarrow{\varphi_{i}^{*}} H^{2}(\mathcal{G},F^{i}/F^{i+2}) \\ can_{*} \downarrow & can_{*} \downarrow \sim \\ H^{2}(\mathcal{F}/F^{i},F^{i}/F^{i+1}) \xrightarrow{\varphi_{i}^{*}} H^{2}(\mathcal{G},F^{i}/F^{i+1}) \end{array}$$

Since there exists the solution φ_{i+1} for the embedding problem α_i , we have $\varphi_i^*([\alpha_i]) = 0$, and so

$$can_* \circ \varphi_i^*([\beta_i]) = \varphi_i^* \circ can_*([\beta_i]) = \varphi_i^*([\alpha_i]) = 0.$$

From the injectivity of the map can_* on the right-hand side of the diagram above it follows that $\varphi_i^*([\beta_i]) = 0$, and so there exists a solution

$$\varphi_{i+2}: \mathcal{G} \longrightarrow \mathcal{F}/F^{i+2}$$

of the embedding problem corresponding to β_i . This homomorphism is necessarily surjective and induces φ_m , because φ_i has these properties, cf. [5] (3.9.1).

Using a compactness argument, we get in the limit a surjection $\varphi : \mathcal{G} \twoheadrightarrow \mathcal{F}$ inducing φ_m . This finishes the proof of the proposition.

In the following let p be an odd prime number and let $\Delta = \langle \sigma \rangle \cong \mathbb{Z}/2\mathbb{Z}$ be cyclic of order 2. We denote, as usual, the (\pm) -eigenspaces of a $\mathbb{Z}_p[\Delta]$ -module M by M^{\pm} .

Proposition 2.2 Let p be an odd prime number and let G be a p-Demuškin group of rank n + 2, $n \ge 0$, with dualizing module I and invariant $q = \#(I^G) < \infty$. Assume that $\Delta \cong \mathbb{Z}/2\mathbb{Z}$ acts on G. Then the following holds:

- (i) If $H^2(G, \mathbb{Z}/p\mathbb{Z}) = H^2(G, \mathbb{Z}/p\mathbb{Z})^-$, then G_{Δ} is a free pro-p group of rank n/2 + 1.
- (ii) If H²(G, Z/pZ) = H²(G, Z/pZ)⁺, then G_∆ is a p-Demuškin group of rank m+2, 0 ≤ m ≤ n, with invariant q and dualizing module I.

Proof: We start with the following remark. Since $\operatorname{Aut}(I) \cong \mathbb{Z}_p^{\times}$ is abelian, the surjection $G \twoheadrightarrow \Gamma$ factors through G_{Δ} . With the notation of the proof of proposition (1.4), it follows that $N \cap G$ has infinite index in G and therefore $cd_p(N) = cd_p(N \cap G) \leq 1$, cf. [5] III.7 ex.3. Using the Hochschild-Serre spectral sequence and the fact that $\operatorname{Hom}(N, \mathbb{Z}/p\mathbb{Z}) = 0$, we see that inf_2 is an isomorphism, and so the commutative diagram in the proof of (1.4) shows the surjectivity of the map $H^2(G_{\Delta}) \hookrightarrow H^2(G)^{\Delta}$, hence

$$H^2(G_{\Delta}) \cong H^2(G)^{\Delta}.$$

(i) By proposition (1.4) and $H^2(G_{\Delta}) = 0$, G_{Δ} is a free pro-*p* group. Since the non-degenerate pairing

$$H^1(G) \times H^1(G) \xrightarrow{\cup} H^2(G) \cong \mathbb{Z}/p\mathbb{Z}$$

is Δ -invariant, it follows from $H^2(G) = H^2(G)^-$ that

$$\dim_{\mathbb{F}_p} H^1(G)^{\pm} = n/2 + 1.$$

Therefore

$$\dim_{\mathbb{F}_p} H^1(G_{\Delta}) = \dim_{\mathbb{F}_p} H^1(G)^{\Delta} = n/2 + 1$$

(ii) If $H^2(G) = H^2(G)^+$, then $H^2(G_{\Delta}) \cong H^2(G)$, and we obtain a non-degenerate pairing

$$H^1(G_\Delta) \times H^1(G_\Delta) \xrightarrow{\cup} H^2(G_\Delta) \cong \mathbb{Z}/p\mathbb{Z}$$

showing that G_{Δ} is a *p*-Demuškin group. Finally, since G_{Δ} is non-trivial and its rank has to be even, it follows that $\dim_{\mathbb{F}_p} H^1(G_{\Delta}) \geq 2$, and since $\ker(G \twoheadrightarrow G_{\Delta})$ acts trivially on *I*, we have $\#(I^{G_{\Delta}}) = \#(I^G) = q$ and *I* is also the dualizing module of G_{Δ} .

3 Free Quotients of Demuškin Groups

As before, let G be a p-Demuškin group of rank n + 2 with dualizing module I and assume that $2 < q < \infty$. We are interested in quotients of G which are free pro-p groups. First we calculate the possible ranks of such quotients.

Proposition 3.1 Let G be a Demuškin group of rank n + 2 with finite invariant q > 2 and let F be a free quotient of G. Then

- (i) $H^1(F, \mathbb{Z}/q\mathbb{Z})$ lies in the kernel of the Bockstein homomorphism and
- (ii) H¹(F, Z/qZ) is a totally isotropic free Z/qZ-submodule of H¹(G, Z/qZ) with respect to the pairing given by the cup-product.

In particular,

$$\operatorname{rank} F \leq \frac{n}{2} + 1$$

Proof: Since F is free, $H^1(F, \mathbb{Z}/q\mathbb{Z})$ is a free $\mathbb{Z}/q\mathbb{Z}$ -module. The commutative diagram

$$\begin{array}{c} H^{1}(G, \mathbb{Z}/q\mathbb{Z}) \times H^{1}(G, \mathbb{Z}/q\mathbb{Z}) \xrightarrow{\cup} H^{2}(G, \mathbb{Z}/q\mathbb{Z}) \\ (inf, inf) \\ & \uparrow \\ H^{1}(F, \mathbb{Z}/q\mathbb{Z}) \times H^{1}(F, \mathbb{Z}/q\mathbb{Z}) \xrightarrow{\cup} H^{2}(F, \mathbb{Z}/q\mathbb{Z}) = 0 \end{array}$$

shows that $H^1(F, \mathbb{Z}/q\mathbb{Z})$ is a totally isotropic $\mathbb{Z}/q\mathbb{Z}$ -submodule of $H^1(G, \mathbb{Z}/q\mathbb{Z})$, and so $\dim_{\mathbb{F}_p} H^1(F, \mathbb{Z}/p\mathbb{Z}) = \operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}} H^1(F, \mathbb{Z}/q\mathbb{Z}) \leq n/2 + 1$. From the commutative diagram

$$H^{1}(G, \mathbb{Z}/q\mathbb{Z}) \xrightarrow{B} H^{2}(G, \mathbb{Z}/q\mathbb{Z})$$

$$\inf \int f = f = H^{1}(F, \mathbb{Z}/q\mathbb{Z}) \xrightarrow{B} H^{2}(F, \mathbb{Z}/q\mathbb{Z}) = H^{2}(F, \mathbb{Z}/q\mathbb{Z}) = H^{2}(F, \mathbb{Z}/q\mathbb{Z})$$

0

follows that $H^1(F, \mathbb{Z}/q\mathbb{Z}) \subseteq \ker(B)$.

Recall that Γ is the canonical quotient $G/\ker(\chi)$ of G, where $\chi: G \longrightarrow \operatorname{Aut}(I)$ is the character given by the action of G on I, i.e. $\Gamma \hookrightarrow \operatorname{Aut}(I)$.

Lemma 3.2 The submodules $H^1(\Gamma, \mathbb{Z}/q\mathbb{Z})$ and ker B of $H^1(G, \mathbb{Z}/q\mathbb{Z})$ are orthogonal to each other, more precisely

$$H^1(\Gamma, \mathbb{Z}/q\mathbb{Z}) = (\ker B)^{\perp}$$
.

Proof: Consider the commutative diagram of non-degenerate pairings

$$\begin{array}{cccc} H^1(G,{}_qI) & \times & H^1(G,\mathbb{Z}/q\mathbb{Z}) \overset{\cup}{\longrightarrow} H^2(G,{}_qI) \overset{\longrightarrow}{\longrightarrow} \mathbb{Z}/q\mathbb{Z} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\$$

which is induced by the exact sequences

$$0 \longrightarrow \mathbb{Z}/q\mathbb{Z} \xrightarrow{q} \mathbb{Z}/q^2\mathbb{Z} \longrightarrow \mathbb{Z}/q\mathbb{Z} \longrightarrow 0 \quad \text{and} \quad 0 \longrightarrow_q I \longrightarrow_{q^2} I \xrightarrow{q} {}_q I \longrightarrow 0.$$

The image of $H^0(G, {}_qI) = H^0(\Gamma, {}_qI)$ under δ is contained in $H^1(\Gamma, {}_qI)$, and from $({}_{q^2}I)^{\Gamma} = {}_qI$ it follows that im $\delta = H^1(\Gamma, {}_qI)$. Since the pairings above are non-degenerated, $H^1(\Gamma, \mathbb{Z}/q\mathbb{Z}) = H^1(\Gamma, {}_qI)$ is orthogonal to ker B. Since rank $_{\mathbb{Z}/q\mathbb{Z}}$ ker $B = \operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}}H^1(G, Z/q\mathbb{Z}) - 1$, and so $\operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}}(\ker B)^{\perp} = 1$, we prove the lemma.

Proposition 3.3 Let G be a p-Demuškin group of rank n+2 with finite invariant q > 2 and let F be a free factor of G of rank n/2+1. Then the canonical surjection $G \twoheadrightarrow \Gamma$ factors through F, i.e. there is a commutative diagram

Proof: Suppose the contrary. Then there exists an open subgroup G' of G which has a surjection

$$(G')^{ab} \twoheadrightarrow (F')^{ab} \times \Gamma',$$

where F' is the image of G' in F under the projection $G \to F$ and Γ' is the image of G' under the projection $G \to \Gamma$. Let $q' = \#(I^{G'}) = \#(I^{\Gamma'})$ and let

$$B': H^1(G', Z/q'\mathbb{Z}) \longrightarrow H^2(G', Z/q'\mathbb{Z})$$

be the corresponding Bockstein map. Since F' is free, it follows that $H^1(F', \mathbb{Z}/q'\mathbb{Z})$ is a totally isotropic submodule of $H^1(G', \mathbb{Z}/q'\mathbb{Z})$ and contained in ker B' by proposition (3.1). From lemma (3.2) we know that $H^1(\Gamma', \mathbb{Z}/q'\mathbb{Z})$ is orthogonal to ker B', and so also to $H^1(F', \mathbb{Z}/q'\mathbb{Z})$. Thus $H^1(F', \mathbb{Z}/q'\mathbb{Z}) \oplus H^1(\Gamma', \mathbb{Z}/q'\mathbb{Z})$ is totally isotropic. But $H^1(F', \mathbb{Z}/q'\mathbb{Z})$ is a maximal totally isotropic $\mathbb{Z}/q'\mathbb{Z}$ submodule of $H^1(G', \mathbb{Z}/q'\mathbb{Z})$ of rank $d \cdot n/2 + 1$, where d = (G : G'). This contradiction proves the proposition. \Box

For the existence of free quotients of Demuškin groups we have the following

Theorem 3.4 Let G be a p-Demuškin group of rank n + 2 with finite invariant q > 2 and let Δ be a finite abelian group of exponent p - 1 acting on G. Let V be a $\mathbb{Z}/q\mathbb{Z}$ -submodule of $H^1(G, \mathbb{Z}/q\mathbb{Z})$ such that

- (i) V is $\mathbb{Z}/q\mathbb{Z}$ -free and Δ -invariant,
- (ii) V is totally isotropic with respect to the pairing given by the cup-product,
- (iii) V lies in the kernel of the Bockstein map $B: H^1(G, \mathbb{Z}/q\mathbb{Z}) \to H^2(G, \mathbb{Z}/q\mathbb{Z})$.

Then there exists a Δ -invariant surjection

 $G \longrightarrow F$

onto a free quotient F of G such that $H^1(F, \mathbb{Z}/q\mathbb{Z}) = V$.

Proof: Let

$$1 \longrightarrow R \longrightarrow F_{n+2} \longrightarrow G \longrightarrow 1$$

be a minimal presentation of G, where F_{n+2} is a free pro-p group of rank n+2. Using lemma (1.3), we extend the action of Δ to F_{n+2} . Let γ, x_0, \ldots, x_n be a basis of F_{n+2} such that

- (i) each element of the basis of F_{n+2} generates a Δ -invariant subgroup isomorphic to \mathbb{Z}_p on which Δ acts by some character $\psi : \Delta \to \mu_{p-1}$,
- (ii) R, as a normal subgroup of F_{n+2} , is generated by the element

$$w = (x_0)^q [x_0, \gamma] [x_1, x_2] [x_3, x_4] \cdots [x_{n-1}, x_n] \cdot f$$
, where $f \in (F_{n+2})^3$,

(iii) $V^{\vee} = \operatorname{Hom}(V, \mathbb{Z}/q\mathbb{Z})$ has a basis $\{v_i \mod (F_{n+2})^2, 1 \le i \le r = \operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}}V\}$ such that

 $\{v_1, \ldots, v_r\}$ is a subset of $\{\gamma, x_1, \ldots, x_n\}$

and, if $v_i = x_{j(i)}$, then $x_{j(i)+1} \notin \{v_1, \ldots, v_r\}$ or $x_{j(i)-1} \notin \{v_1, \ldots, v_r\}$ according to whether j(i) is odd or even.

Such a basis exists: by corollary (1.2), we find a basis of F_{n+2} with the property (i). Let $\psi_0 : \Delta \longrightarrow \mu_{p-1}$ be the character such that $H^2(G, \mathbb{Z}/q\mathbb{Z}) = H^2(G, \mathbb{Z}/q\mathbb{Z})^{\psi_0}$. The Δ -invariance of the cup-product gives us the perfect pairing

$$H^{1}(G, \mathbb{Z}/q\mathbb{Z})^{\psi} \times H^{1}(G, \mathbb{Z}/q\mathbb{Z})^{\psi^{-1}\psi_{0}} \xrightarrow{\cup} H^{2}(G, \mathbb{Z}/q\mathbb{Z})$$

for every character $\psi\in\varDelta^{\vee}$ and the Bockstein homomorphism restricts to a surjection

$$H^1(G, \mathbb{Z}/q\mathbb{Z})^{\psi_0} \twoheadrightarrow H^2(G, \mathbb{Z}/q\mathbb{Z}).$$

Applying the usual procedure in order to get a basis with property (ii), see [5] (3.9.16), on the eigenspaces $H^1(G, \mathbb{Z}/q\mathbb{Z})^{\psi}, \psi \in \Delta^{\vee}$, we find a basis satisfying (i) and (ii). Using the assumptions on V, we can also satisfy (iii).

Let N be the normal subgroup of F_{n+2} generated by the set

$$\{\gamma, x_k, 0 \le k \le n\} \smallsetminus \{v_1, \dots, v_r\},\$$

then $F := F_{n+2}/N$ is a free pro-p group of rank r, N is Δ -invariant and we have

$$R \subseteq N(F_{n+2})^3$$

by the properties (ii) and (iii) of the basis γ, x_0, \ldots, x_n . Thus the Δ -invariant surjection

$$F_{n+2} \longrightarrow F/F^3 = F_{n+2}/N(F_{n+2})^3$$

factors through a Δ -invariant surjection $G \longrightarrow F/F^3$. Applying proposition (2.1), we get a Δ -invariant surjection from G onto a free pro-p group F which induces a surjection $G \longrightarrow F/F^2 \cong F_{n+2}/N(F_{n+2})^2$.

By construction, we have $F/F^2 \cong V^{\vee}$, and so $H^1(F, \mathbb{Z}/q\mathbb{Z}) = V$. This finishes the proof of the theorem. \Box

Now we consider free quotients of a Demuškin group G which are invariant under a given Δ -action of G, where Δ is a group of order 2.

Corollary 3.5 Let p be an odd prime number and let G be a p-Demuškin group of rank n + 2, $n \ge 0$, with finite invariant q. Let $\Delta \cong \mathbb{Z}/2\mathbb{Z}$ acting on G such that $H^2(G, \mathbb{Z}/q\mathbb{Z}) = H^2(G, \mathbb{Z}/q\mathbb{Z})^-$. Let

 $u^+, u^- \ge 0$ be integers such that $u^+ + u^- = n/2$.

Then there exists a Δ -invariant surjection

$$\varphi: G \longrightarrow F$$

such that

- (i) F is a free pro-p group of rank n/2 + 1,
- (ii) $\operatorname{rank}_{\mathbb{Z}_p}(F^{ab})^+ = u^+ + 1 \text{ and } \operatorname{rank}_{\mathbb{Z}_p}(F^{ab})^- = u^-.$

Proof: Since $H^2(G, \mathbb{Z}/q\mathbb{Z}) = H^2(G, \mathbb{Z}/q\mathbb{Z})^-$, the submodules $H^1(G, \mathbb{Z}/q\mathbb{Z})^{\pm}$ are maximal totally isotropic with respect to the cup-product pairing, and so

$$\operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}} H^1(G, \mathbb{Z}/q\mathbb{Z})^{\pm} = n/2 + 1.$$

Let

$$V = V^+ \oplus V^-,$$

where V^+ is a free $\mathbb{Z}/q\mathbb{Z}$ -submodule of $H^1(G, \mathbb{Z}/q\mathbb{Z})^+ \subseteq \ker B$ of rank $1 + u^+$ containing $H^1(\Gamma, \mathbb{Z}/q\mathbb{Z})$, and V^- is defined as follows. By lemma (3.2)

$$H^1(\Gamma, \mathbb{Z}/q\mathbb{Z}) \subseteq (\ker B^-)^{\perp},$$

and since

$$\operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}}H^{1}(G,\mathbb{Z}/q\mathbb{Z})^{+} - \operatorname{rank}_{\mathbb{Z}/q\mathbb{Z}}V^{+} = n/2 + 1 - (1+u^{+}) = u^{-},$$

there exists a free $\mathbb{Z}/q\mathbb{Z}$ -submodule V^- of $(\ker B)^-$ of rank u^- which is orthogonal to V^+ . It follows that V is maximal totally isotropic and contained in ker B.

By theorem (3.4), we obtain a free Δ -invariant quotient F of G of rank n/2+1 such that

$$H^{1}(F, \mathbb{Z}/q\mathbb{Z}) = V \cong (\mathbb{Z}/q\mathbb{Z}[\Delta]^{+})^{u^{+}+1} \oplus (\mathbb{Z}/q\mathbb{Z}[\Delta]^{-})^{u^{-}}.$$

Since F^{ab} is a free \mathbb{Z}_p -module, we obtain assertion (ii).

Remark: Explicitly, we get a submodule V with the properties as above in the following way: let

$$1 \longrightarrow R \longrightarrow F_{n+2} \longrightarrow G \longrightarrow 1$$

be a minimal presentation of G, where F_{n+2} is a free pro-p group of rank n+2 with the extended action of Δ . Let γ, x_0, \ldots, x_n be a basis of F_{n+2} such that R is generated by the element

$$w = (x_0)^q [x_0, \gamma] [x_1, x_2] [x_3, x_4] \cdots [x_{n-1}, x_n] \cdot f$$

 $f \in (F_{n+2})^3$, and

$$\gamma^{\sigma} = \gamma \cdot a, \qquad x_i^{\sigma} = x_i \cdot a_i \qquad \text{for } i = 2, 4, \dots, n, \\ x_0^{\sigma} = x_0^{-1} \cdot b, \qquad x_i^{\sigma} = x_i^{-1} \cdot b_i \qquad \text{for } i = 1, 3, 5, \dots, n-1.$$

with $a, b, a_i, b_i \in (F_{n+2})^2$. Such a basis exists by the Δ -invariance of the cupproduct and the Bockstein homomorphism, cf. [8] lemma 3. If we put

$$\begin{aligned} \gamma' &:= \gamma \cdot a^{\frac{1}{2}}, & x'_i &:= x_i \cdot a^{\frac{1}{2}}_i & \text{for } i = 2, 4, \dots, n, \\ x'_0 &:= b^{-\frac{1}{2}} \cdot x_0, & x'_i &:= b^{-\frac{1}{2}}_i \cdot x_i & \text{for } i = 1, 3, 5, \dots, n-1, \end{aligned}$$

then

$$\begin{array}{ll} (\gamma')^{\sigma} \,=\, \gamma'\,, & (x'_i)^{\sigma} \,=\, x'_i & \text{ for } i \geq 2 \text{ even}, \\ (x'_0)^{\sigma} \,=\, (x'_0)^{-1}, & (x'_i)^{\sigma} \,=\, (x'_i)^{-1} & \text{ for } i \geq 1 \text{ odd}, \end{array}$$

and

$$w = (x'_0)^q [x'_0, \gamma'] [x'_1, x'_2] [x'_3, x'_4] \cdot \dots \cdot [x'_{n-1}, x'_n] \cdot f'$$

where $f' \in (F_{n+2})^3$. Let $u = 2u^+ - 1$. If we denote $x \mod F^2$ by \bar{x} , then the dual of

$$V^{\vee} := \mathbb{Z}/q\mathbb{Z} \cdot \bar{\gamma} \oplus \bigoplus_{i=1,3,\dots,u} \mathbb{Z}/q\mathbb{Z} \cdot \bar{x}_{i+1} \oplus \bigoplus_{i=u+3,\dots,n} \mathbb{Z}/q\mathbb{Z} \cdot \bar{x}_{i-1}$$
$$\cong (\mathbb{Z}/q\mathbb{Z}[\Delta]^+)^{u^++1} \oplus (\mathbb{Z}/q\mathbb{Z}[\Delta]^-)^{u^-}$$

gives an example for a submodule with the properties (i)-(iii) in the proof of corollary (3.5). The free quotient of G is obtained in the following way: if

$$N = (x'_0, x'_1, x'_3, \dots, x'_u, x'_{u+3}, \dots, x'_n) \trianglelefteq F_{n+2},$$

$$\underbrace{x'_{u+3}, \dots, x'_n}_{u^{-\text{times}}} (x'_1, x'_2, \dots, x'_n)$$

then $F = F_{n+2}/N$ is a free pro-*p* group of rank n/2 + 1, *N* is Δ -invariant, $R \subseteq N(F_{n+2})^3$ and $V^{\vee} = F/F^2$. Using proposition (2.1) we get the desired quotient of *G*.

With the notation and assumptions of corollary (3.5), we make for a Δ -invariant free quotient F of G of rank n/2 + 1 the following

Definition 3.6 We call the tuple (u^+, u^-) the signature of F, if

$$F/F^2 \cong (\mathbb{Z}/q\mathbb{Z}[\Delta]^+)^{u^++1} \oplus (\mathbb{Z}/q\mathbb{Z}[\Delta]^-)^{u^-}$$

One can show that in general the signature of a maximal free quotient F of G does not determine F. But if the signature is equal to (n/2, 0), then we have the following proposition.

Proposition 3.7 Let p be an odd prime number and let Δ be of order 2. Let G be a p-Demuškin group of rank n + 2 with finite invariant q on which Δ acts such that $H^2(G, \mathbb{Z}/p\mathbb{Z})^{\Delta} = 0$. Let F be a free Δ -invariant quotient of G of rank n/2 + 1, i.e. the canonical surjection

$$G \longrightarrow F$$

is Δ -invariant. If the induced action of Δ on F/F^2 is trivial, i.e. F has signature (n/2, 0), then F is equal to the maximal quotient G_{Δ} of G with trivial Δ -action. In particular, a free quotient of G with the properties above is unique.

Proof: As in the remark after the proof of corollary (3.5), we find generators of F on which Δ acts trivially, and so F has a trivial Δ -action. Thus we have a surjection $\varphi: G_{\Delta} \longrightarrow F$. Since G_{Δ} is free of rank $n/2+1 = \dim_{\mathbb{F}_p} H^1(F, \mathbb{Z}/p\mathbb{Z})$ by proposition (2.2)(i), it follows that φ is an isomorphism. Thus F is the maximal quotient of G with trivial Δ -action.

References

- Boston, N. Explicit deformation of Galois representations. Invent. Math. 103 (1991), 181-196.
- [2] Jannsen, U., Wingberg, K. Einbettungsprobleme und Galoisstruktur lokaler Körper. J. reine u. angew. Math. **319** (1980) 196-212
- [3] Labute, J.,P. Classification of Demuškin groups. Can. J. Math. 19 (1967) 106-132.
- [4] Lubotzky, A. Combinatorial group theory for pro-p-groups. J. of Pure and Appl. Algebra 25 (1982) 311-325.
- [5] Neukirch, J., Schmidt, A., Wingberg, K. Cohomology of Number Fields. Springer 2000
- [6] Nguyen-Quand-Do, T. Sur la structure galoisienne des corps locaux et la théorie d'Iwasawa. Compos. Math. 46 (1982) 85-119.
- [7] Sonn, J. Epimorphisms of Demushkin Groups. Israel J. Math. 17 (1974) 176-190.
- [8] Wingberg, K. On Demuškin groups with involution. Ann. Sci. Éc. Norm. Sup. 4^e série 22 (1989) 555-567.

Mathematisches Institut der Universität Heidelberg Im Neuenheimer Feld 288 69120 Heidelberg Germany

e-mail: wingberg@mathi.uni-heidelberg.de