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This paper concerns the problem of the existence of Galois extensions of a
local number field & whose Galois groups are free pro-p groups.

If k£ is a p-adic field, then the Galois group G(k(p)|k) of the maximal p-
extension of k is a free pro-p group if k does not contain the group of p-th roots
of unity, and otherwise G (k(p)|k) is a Demuskin group, i.e. a pro-p Poincaré group
of dimension 2. These groups are defined as follows: a pro-p group G is called a
Demuskin group if its cohomology has the following properties:

dimp, H'(G,Z/pZ) < o0,
dimg, H*(G,Z/pZ) =1, and the cup-product
HYG,Z/pZ) x H\(G, Z/pZ) — H*(G,Z/pZ) is non-degenerate.

In the following we exclude the exceptional case that G = 7Z/27Z. Then the
dualizing module [ of G is isomorphic to Q,/Z, as an abelian group and we have
a canonical action of G on I.

Demuskin groups occur not only as Galois groups of the maximal p-extension
of p-adic number fields (if these fields contain the group of p-th roots of unity) but
also as the p-completion of the fundamental group of a compact oriented Riemann
surface. In the first case the action of GG on [ is non-trivial whereas in the second
case GG acts trivially on I. We will only consider Demuskin groups acting non-
trivially on its dualizing module and we are interested in free pro-p quotients of
these groups. Possible ranks of such free quotients were first calculated in [7], [6]
and [2].

In many cases of interest a finite group A of order prime to p acts on a
Demuskin group. As an example consider the local field & = Q,((,), where p

is an odd prime number. Then G(k|Q,) = Z/(p — 1)Z acts on the Demuskin
group G(k(p)|k). Of particular interest is the case where A is generated by



an involution, e.g. G(k|Q,((, + (")) = Z/2Z acts on G(k(p)|k); see [8] where
Demuskin groups with involution were considered.

In this paper we are interested in free pro-p quotients F' of a Demuskin group
G which are invariant under a given action of A on G and where the maximal
abelian factor group F% = F/[F, F] of F has a prescribed action of A.

In particular, we will show the following: if p is odd and A = Z /27 acts on a p-
Demuskin group G of rank n+2, then there exists a A-invariant free quotient F' of
G such that rankz, (F**)* = 1 and rankg, (F*)~ = n/2 (here the (£)-eigenspaces
of a Z,[A]-module M are denoted by M*). This situation occurs as the following
example shows: Let p be an odd regular prime number and consider the CM-
field & = Q(¢p) with maximal totally real subfield k¥ = Q((, + ¢, '). Then the
Galois group G(k|k™) = Z /27 acts on the Galois group G(kg, |k) of the maximal
p-extension kg, of k& which is unramified outside p. Let k, be the completion
of k with respect to the unique prime p of k above p and let k,(p) its maximal
p-extension. Since we assume that k& has no unramified p-extension, we have a
surjection

G (ky(p)[ky) = G(ks, |F)
of the Demuskin group G'(k,(p)|k;) of rank p+1 onto the free pro-p group G(ks, |k)
of rank (p+1)/2 (see [5] X.6 example 2) and

rankz (G(ks, |k)®)" =1, rankg (G(ks,|k)™)” = (p—1)/2,

since (G(kg, |k)®) " = G((k1)s, |kT)® = Z,,.

It would be of interest under which conditions there exist large free quotients
of G(ks,(p)|k) for an arbitrary CM-field k. If we assume that no prime p above p
splits in the extension k|k™, such a quotient should be defined by free quotients
of the local groups G(ky(p)|ky), plp, with an acting of G(k,|k)) = G(k[k™) as
above.

1 Pro-p Operator Groups

Let p be a prime number. For a pro-p group G we denote its Frattini subgroup
by G* = G?[G, G] and its descending p-central series by

GY =G and GUY =(GYPGED. G, i>1.
For the cohomology groups of G with coeffients in Z/pZ we often set H'(G) =

HY(G,Z/pZ). Tf A is an abelian group, then AY denotes its Pontryagin dual.

Let
l—H—H—>A—1



be an exact sequence of profinite groups where H is a pro-p group and the (su-
pernatural) order of A is prime to p. Let G be a pro-p-H operator group (see [5]
IV.3 ex.3).

Proposition 1.1 With the notation as above the following is true:

(i) Let A C G/G* be aF,[H]-submodule which is free as a F,[H]-module. Then
there exists a pro-p-H operator subgroup U of G such that the canonical map

U/us— G/G*

18 injective with 1mage equal to A.

(ii) Let B C G be a Z,[H]-submodule which is free as a Z,[H]-module. Then

there exists a pro-p-H operator subgroup V of G such that the canonical map
Vab N Gab
18 1njective with image equal to B.

If H = A is finite of order prime to p and G is a finitely generated pro-p group
with an action by A, then case (i) is a result of N. Boston, see [1], prop. (2.3).

Proof: We only prove case (i), since the proof of case (ii) is completely analo-
gously. Let

U ={U C G|U is an H-invariant subgroup, UG*/G* = A}.

Then U is not empty since the full pre-image of A under the canonical H-invariant
map G — G/G* is an element of Y. Furthermore, if {Uy, A € I} is a totally
ordered subset of U, then V' = (U, is an H-invariant subgroup of G and

VG /G =1lm U,G*/G* = A,

and so V € U. By Zorn’s lemma there exists a minimal element Uy € U. The
‘H-invariant map

has an H-invariant splitting s. Indeed, by assumption, A is projective as a F,[H]-
module, and so A is a projective F,[H]-module, see [5] V.2 ex. 7). Let W be the
full pre-image of s(A) C Uy/U; under the canonical map Uy — Uy/U;. Then W
is H-invariant, W/U} = s(A) and we have the commutative diagram

| |

Up— W —=W/U;




Since WG*/G* = A, it follows that W € U, and so W = U, because of the
minimality of Uy. We obtain that Uy /U = W/U; = UyG*/G* = A which
finishes the proof of the proposition. O

If £k is a field and A a finite group of order prime to the characteristic of
k, then by Maschke’s theorem the category of k[A]-modules is semi-simple. If
A is abelian und k is splitting field for A, then every simple k[A]-module has
k-dimension equal to 1; one has a decomposition into eigenspaces

where MX = {x € M |z° = 2X() for all o € A} is the isotypic component of a
k[A]-module M with respect to the character y of A

Corollary 1.2 Let p be an odd prime number and let A be a finite abelian group
of exponent p — 1 with character group AY. Let G be a pro-p-A operator group

and let
GG =[] /ey,

XEAY

be the decomposition of G/G* in x-eigenspaces. Then there exist subsets M, of
G such that

(i) UXEAV M, is a minimal set of generators of G,
(ii) M, = {x mod G*|x € M,} is a basis of (G/G*)X for all x € AV,

(iii) 27 = 2X) for x € M, and o € A.

Proof: This follows directly from proposition (1.1)(i) with H = 1 and A a
1-dimensional subspace of an eigenspace (G/G*)X. O

Let A be a finite group of order prime to p and G a pro-p-A operator group
which is finitely generated as a pro-p group. Let

l1—R—E-25G—1

be an exact sequence of pro-p groups such that the surjection ¢ induces an iso-
morphism E/E* = G/G*. A lemma, which we will need later, is the following.



Lemma 1.3 With the notation and assumptions as above there exists a contin-
uous action of A on E extending the action on G, i.e. the surjection E — G is
A-invariant and R is a A-operator group.

Proof: We consider the natural homomorphism
Autp(F) — Aut(G)

where Autg(E) C Aut(FE) denotes the group of automorphisms 6 of E such that
6(R) C R. Recall that the kernel of the homomorphism Aut(G) — Aut(G/G*)

is a pro-p group, cf. [4] 5.5. Therefore the commutative diagram

|
Autp(E) Aut(G)
Aut(E/E*) —= Aut(G/G*)

shows that the image of the prime-to-p group A in Aut(G) is contained in the
image of Auty(EF) — Aut(G). Since the kernel of Aut(E) — Aut(E/E*)is a pro-p
group, and Aut(E/E*) = Aut(G/G*) is an isomorphism, it follows that the
kernel of Autg(FE)— Aut(G) is a pro-p group. Using again that A is a prime-to-
p group, we get a commutative diagram

Autg(FE) — Aut(G).
This proves the lemma. U

Let p be a prime number and let

1 G g A 1,
~__

s

be a split exact sequence of profinite groups where G is a pro-p group and A is
a finite group of order prime to p. Thus G is the semi-direct product of A by G
and G is a pro-p-A operator group where the action of A on G is defined via the
splitting s. Conversely, given a pro-p-A operator group G, we get a semi-direct
product G = G x A where the action of A on G is the given one.

Let G(p) be the maximal pro-p quotient of G and let G be the maximal
quotient of G with trivial A-action. Observe that G 4 is well-defined.



Proposition 1.4 With the notation and assumptions as above there is a canon-
1cal isomorphism

Ga = G(p).

Furthermore, if Ag is a subgroup of A such that H*(G,Z/pZ)?° = 0, then G 4,
is a free pro-p group.

Proof: Consider the exact commutative diagram

S

VRS
1—=NNOG N A 1
| ]
1 j G A 1
G—=>G(p).

where N is the kernel of the canonical surjection G — G(p) and G denotes the
quotient G/N NG. Since A acts on N NG via s, we obtain an induced action on
G. This action is trivial because

g @1 = [s(0),g] e NNG forge Gando e A,

and so we get a surjection .
@ GA — G

Consider the exact commutative diagram

0—— H'(G) —— H'(Ga) — H'(ker )74 —— H*(G) — H*(G )

~ L nf l nf

res |~ Hl(G)A res |~ HZ(G)A
HY(G(p) 2~ H'(G) H2(G(p)) L2 H2(G),

where the map inf; is bijective and inf5 is injective because Hom(N, Z/pZ) = 0.
Therefore H'(ker )4 = 0, and so by the Frattini argument, see [5] (1.7.4),
kerp =1,1e. Gao = G = G(p). Furthermore, it follows that

H*(G) s ()2
is injective. Therefore, if H?(G)? = 0, then H*(G4) = 0, and so G, is a free
pro-p group.
For a subgroup Aq of A let Gy be the semi-direct product G x 4y. Replacing

in the proof above A by Ay and G by Gy, we obtain the assertion for every
subgroup. 0



2 Demuskin Groups with Operators

In this section we assume that

A is a finite group of order prime to p and
G is a p-Demuskin group of rank n + 2,n > 0, with dualizing module
and an action by A.

Let G be the semi-direct product of A by G, i.e. the sequence
l—G—G—A—1

is split-exact.
The dualizing module I of G is defined as

I =l liny F°(U, Z/p"Z)",
m U

where the second limit is taken over the maps cor ¥, the dual to the corestriction,
and U runs through the open normal subgroups of GG; the first limit is taken with
respect to the multiplication by p.

Let
X:G—Aut(l) =Z;

be the character given by the action of G on I. We denote the canonical quotient

G/ ker(x) by I, i.e.

Xo: I — Aut(!).

In the following we assume that
G acts non-trivially on [

(thus I" = Z,), and we define the (finite) invariant ¢ of G by
q = #(I°).

Then we have a A-invariant isomorphism

H*(G,Z/qZ) = Hom(I°,Z/qZ) (= Z/qZ as an abelian group)

and a A-invariant non-degenerate pairing

HY(G,Z/qZ) x H(G,Z/qZ) — H*(G, Z/qZ.) .



From the exact sequence 0 — Z/qZ % 7./ ¢*Z — 7.]qZ — 0, we get the Bockstein
homomorphism

B: HYG,Z/qZ) — H*(G,7/qZ)
which is surjective and A-invariant.

Let P be a pro-p group. In this section we denote by P?, i > 1, the descending
g-central series, i.e.

P'=P and P =(PYP,P] fori>1.

Let
l—F—F—A—1

be an exact sequence of profinite groups where F' is a finitely generated pro-p
group. Obviously, G* and F* are normal open subgroups of G and F respectively.

Proposition 2.1 With the notation as above let ¢ > 2 and m > 2. Assume that
there exists a surjection

(perl : g—>>.F/Fm+1 .
Then there exists a surjection

p:G—F

inducing the surjection @, : Qﬂ;]‘"/l‘?wrl == F/F™.

Proof: Assume that we have already found a surjection

S0i+11g—>>‘7‘—/FiH

for i > m which induces ¢,,, and let  @; : G —= F/Fitl % F/pi
Let 7, zg, . . ., x, be a minimal system of generators of G such that xj € ker(y)
for k>0 and x(v) =1—g¢.

Claim: The group F't'/F™? is generated by elements of the form
wiw,y] mod F'"?, [w,Z;] mod F'"? k>0, wecF",

where 7,7, € F are lifts of the images of v,z in F/F? under the surjection
G —» F/F?



This shown in [3] prop.5(i) (observe, that we have a surjection G/G"! —
F/F™! and so the group F//F! is generated by the elements 4, Z, mod F1).

Consider the diagram with exact line

(*) G

1—=F/F*? s F/F"? = F/F——1
Since i > m > 2, we have
[, FY| C F* CF™2,

and so the group F*/F*? is abelian; we consider F/F"™ as a G-module via ;.
The canonical exact sequence

0 — FiHL/pit2 _y piypit2 _ pifpitl
induces a A-invariant exact sequence
0 — Homg(F'/F"™ I) — Homg(F'/F"*? I) — Homg (F" /F™2 . 1).
Let f € Homg(F"/F*2,I). Then

f([w, 7] mod F'*?) = f(w mod F*3)*~1 =0 fork >0,
f(ww,”] mod F©*?) = f(w mod F"*?)q+ f(w mod Fit2?)1~1
= f(w mod F"*?)(qg—q)=0.

Using the claim, we see that f vanishes on F™/Fi*2 and so
Homg (F'/F™, I) == Homg(F'/F™2.1).

By duality, cf. [5] (3.7.6), (3.7.1), (3.4.6), we get

HY(G, F'/Fi*?) =~ g2(Q, F'/Fi*YY
and so

H*(G,F'/F™*)2 = H*(G, F'/F")2.
Since the order of A is prime to p, the Hochschild-Serre spectral sequence
HY (A H (G, —)) = H(G,—)

degenerates, i.e. H(G,—)? = H’(G, —). Therefore we obtain the isomorphism

HY(G, F'Fi+?) =~ H(G, F'/F'*+) .

Now we prove that the embedding problem (%) is solvable. For this we have
to show that the 2-class



6:] € H*(F/F', F'/F™?)
is mapped to zero under the inflation map nf = ¢,
HQ(I/F17Fi/Fi+2) ﬂ)HQ(g’Fi/Fi+2>7

where (3; is the 2-cocycle corresponding to the group extension in (%), see [5]
(9.4.2). From the commutative exact diagram

g

%’-s—l/ i%‘
1——F'/F'? ]—"/F”:/ F/F ——1 Pi

1 — Fi/Fitl F/Fi+ FIFi—=1 o

we get a commutative diagram

H2<.F/Fl, Fz/Fz+2> L;k_IJQ(g7 Fz/FH-2)
H2(.F/Fi,Fi/Fi+l) @l HQ(Q,F"/F"“) .

Since there exists the solution ;.1 for the embedding problem «;, we have
o ([au]) = 0, and so

can, o i ([Ai]) = ¢; o can([i]) = ¢ ([a]) = 0.

From the injectivity of the map can, on the right-hand side of the diagram above
it follows that 7 ([5;]) = 0, and so there exists a solution

gpi+2:g—>./7/Fi+2

of the embedding problem corresponding to ;. This homomorphism is necessarily
surjective and induces ¢,,, because ¢; has these properties, cf. [5] (3.9.1).

Using a compactness argument, we get in the limit a surjection ¢ : G — F
inducing ¢,,. This finishes the proof of the proposition. 0

In the following let p be an odd prime number and let A = () = Z /27 be
cyclic of order 2. We denote, as usual, the (£)-eigenspaces of a Z,[A]-module M
by M*.

10



Proposition 2.2 Let p be an odd prime number and let G be a p-Demuskin group
of rank n + 2, n > 0, with dualizing module I and invariant ¢ = #(1¢) < .
Assume that A = 7./27 acts on G. Then the following holds:

(i) If H*(G,Z/pZ) = H*(G,Z/pZ)~, then G, is a free pro-p group of rank
n/2+ 1.

(ii) If H*(G,Z/pZ) = H*(G,Z/pZ)", then G A is a p-Demuskin group of rank
m+ 2, 0 < m < n, with invariant q and dualizing module I.

Proof: We start with the following remark. Since Aut(l) = Z) is abelian,
the surjection G — I’ factors through G,. With the notation of the proof
of proposition (1.4), it follows that N N G has infinite index in G and there-
fore c¢d,(N) = cd,(N NG) < 1, cf. [5] IIL.7 ex.3. Using the Hochschild-Serre
spectral sequence and the fact that Hom(N,Z/pZ) = 0, we see that infs is an
isomorphism, and so the commutative diagram in the proof of (1.4) shows the
surjectivity of the map H%(GA) — H?(G)?, hence

H*(Ga) = H(G)™.

(i) By proposition (1.4) and H*(GA) = 0, G4 is a free pro-p group. Since the
non-degenerate pairing

HY(G) x HY(G) = H*(G) = Z/pZ
is A-invariant, it follows from H*(G) = H*(G)~ that
dimp, H'(G)* =n/2+1.

Therefore
dimp, H'(G4) = dimg, H'(G)* =n/2 + 1.

(ii) If H*(G) = H*(G)*, then H*(G ) = H?*(G), and we obtain a non-degenerate
pairing

HYGL) x HY(GL) — HX(GL) = Z/pZ
showing that G4 is a p-Demuskin group. Finally, since G4 is non-trivial and its
rank has to be even, it follows that dimg, H'(GA) > 2, and since ker(G — G,)

acts trivially on I, we have #(I193) = #(I%) = ¢ and I is also the dualizing
module of G . L]

11



3 Free Quotients of Demuskin Groups

As before, let G be a p-Demuskin group of rank n + 2 with dualizing module
I and assume that 2 < ¢ < co. We are interested in quotients of G which are
free pro-p groups. First we calculate the possible ranks of such quotients.

Proposition 3.1 Let G be a Demuskin group of rank n+ 2 with finite invariant
q > 2 and let F' be a free quotient of G. Then

(i) HY(F,Z/qZ) lies in the kernel of the Bockstein homomorphism and

(i) HY(F,Z/qZ) is a totally isotropic free Z/qZ-submodule of H (G, Z/qZ) with
respect to the pairing given by the cup-product.
In particular,
rank F' < g +1.

Proof: Since F is free, H'(F,Z/qZ) is a free Z/qZ-module. The commutative
diagram
H'(G,Z/qZ)x H'(G, Z/qZ) — H*(G,Z/qZ)
(inf yinf ) Tinf
HYF,Z/qZ)x HY(F,Z/qZ) —— H*(F,Z/qZ) = 0

shows that H'(F,Z/qZ) is a totally isotropic Z/qZ-submodule of H'(G,Z/qZ),
and so dimg, H'(F,Z/pZ) = rankzz H'(F,Z/qZ) < n/2+ 1. From the commu-
tative diagram

HY(G,Z/qZ) -2~ H*(G,Z/qZ)

H'(F,2/qZ) == H*(F,Z/qZ) = 0
follows that H'(F,Z/qZ) C ker(B). O

Recall that I is the canonical quotient G/ ker(x) of G, where x : G — Aut([)
is the character given by the action of G on I, i.e. I' — Aut([).

Lemma 3.2 The submodules H (I',Z/qZ) and ker B of H(G,Z/qZ) are ortho-
gonal to each other, more precisely

HYI',Z/qZ) = (ker B)™*.

12



Proof: Consider the commutative diagram of non-degenerate pairings

HY G, I) x HYG,Z/qZ)—~ H*(G, ) == 7./qZ

A

HY(G,,I) x H*G,Z/qZ)—~ H*(G, ) == Z7./qZ
which is induced by the exact sequences

0—Z/¢Z-57)¢*7—7/qZ—0 and 00— ,J— 15 ,1—0.

The image of H°(G,,I) = H°(I',,I) under § is contained in H'(I',,I), and
from (,1)" = ,I it follows that imd = H'(I,,I). Since the pairings above
are non-degenerated, H'(I',Z/qZ) = H*(I',,I) is orthogonal to ker B. Since
rankz,z ker B = rankg s H' (G, Z/qZ) — 1, and so rankg,.z(ker B)t =1, we
prove the lemma. O

Proposition 3.3 Let G be a p-Demuskin group of rank n+2 with finite invariant
q > 2 and let F be a free factor of G of rankn/2+1. Then the canonical surjection
G — I factors through F, i.e. there is a commutative diagram

F

G r

Proof: Suppose the contrary. Then there exists an open subgroup G’ of G
which has a surjection

(G/>ab s (F/)ab X F/7
where F” is the image of G’ in F’ under the projection G — F and I is the image
of G’ under the projection G — I'. Let ¢/ = #(I¢") = #(I"") and let

B+ H\G', Z)q7) —s H*(G', Z/q7)

be the corresponding Bockstein map. Since F” is free, it follows that H'(F', Z/q'7Z)
is a totally isotropic submodule of H'(G',Z/q'Z) and contained in ker B’ by
proposition (3.1). From lemma (3.2) we know that H'(I"",Z/q'Z) is orthogonal
to ker B’, and so also to H'(F',Z/qZ). Thus H'(F',Z/qZ) ® H(I"',Z/q'Z)
is totally isotropic. But H'(F’',Z/q¢'Z) is a maximal totally isotropic Z/q'Z-
submodule of H'(G',Z/q'Z) of rank d - n/2 + 1, where d = (G : G'). This
contradiction proves the proposition. 0

For the existence of free quotients of Demuskin groups we have the following
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Theorem 3.4 Let G be a p-Demuskin group of rank n + 2 with finite invariant
q > 2 and let A be a finite abelian group of exponent p — 1 acting on G. Let V
be a Z/qZ-submodule of H (G, Z/qZ) such that

(1) V is Z/qZ-free and A-invariant,
(ii) V' is totally isotropic with respect to the pairing given by the cup-product,
(iii) V lies in the kernel of the Bockstein map B : HY(G,Z/qZ) — H*(G,Z/qZ).

Then there exists a A-invariant surjection

G—=F

onto a free quotient F of G such that H'(F,Z/qZ) =V .

Proof: Let
l—R—F, . 0—G—1

be a minimal presentation of GG, where F}, .5 is a free pro-p group of rank n + 2.
Using lemma (1.3), we extend the action of A to F,.s. Let v,x¢,...,x, be a
basis of Fj, 5 such that

(i) each element of the basis of F,, o generates a A-invariant subgroup isomor-
phic to Z, on which A acts by some character v : A — p,, 1,

(ii) R, as a normal subgroup of F, ,, is generated by the element
w = (0) [z, V][21, T2][T3, 4] - - - - - (o1, 0] - f,  where f € (Foi2)®,

(iif) V¥ = Hom(V,Z/qZ) has a basis {v; mod (F,42)?,1 <1 <r =rankz,;zV'}
such that
{v1,...,v.} isasubset of {v,z1,...,2,}
and, if v; = x;(), then x40 & {v1,..., v} or Tj-1 € {v1,..., v} accord-
ing to whether j(7) is odd or even.
Such a basis exists: by corollary (1.2), we find a basis of F}, .5 with the property (i).
Let vy : A—> p,—1 be the character such that H*(G,Z/qZ) = H*(G,Z/qZ)".
The A-invariance of the cup-product gives us the perfect pairing

HY(G,Z/qZ)" x H'(G,Z/qZ)" " — H*(G,Z/qZ)

for every character ¢» € AY and the Bockstein homomorphism restricts to a
surjection

HY(G,Z/qZ)" - H*(G,Z/q7Z).

14



Applying the usual procedure in order to get a basis with property (ii), see [5]
(3.9.16), on the eigenspaces H'(G,Z/qZ)¥, ¢ € AV, we find a basis satisfying (i)
and (ii). Using the assumptions on V', we can also satisfy (iii).

Let N be the normal subgroup of F),,5 generated by the set

{’yaxka 0<Fk< ’I’L} N {Ula ce 77]7“}7
then F' := F,,5/N is a free pro-p group of rank r, N is A-invariant and we have
R C N(Fup)

by the properties (ii) and (iii) of the basis =, zo,...,z,. Thus the A-invariant
surjection
Fopg—=F/F® = F 5 /N(Fpi2)°

factors through a A-invariant surjection G ——= F/F?. Applying proposition

(2.1), we get a A-invariant surjection from G onto a free pro-p group F' which
induces a surjection G — F/F?* 2~ F, .5 /N (F,2)°.

By construction, we have F//F? =2 VY and so H'(F,Z/qZ) = V. This finishes
the proof of the theorem. 0

Now we consider free quotients of a Demuskin group G which are invariant
under a given A-action of G, where A is a group of order 2.

Corollary 3.5 Let p be an odd prime number and let G be a p-Demuskin group
of rank n+ 2, n > 0, with finite invariant q. Let A = 7./27 acting on G such
that H*(G,Z/qZ) = H*(G,Z/qZ)~. Let

ut,u” >0 be integers such that u +u” = n/2.
Then there exists a A-invariant surjection
p:G—=F

such that
(i) F is a free pro-p group of rank n/2+ 1,
(ii) rankzp(F“b)+ =ut+1 and rankZP(F“b)— = u .

Proof: Since H?(G,Z/qZ) = H*(G,Z/qZ)~, the submodules H*(G,Z/qZ)*
are maximal totally isotropic with respect to the cup-product pairing, and so

rankzzH' (G, Z/qZ)* = n/2 + 1.
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Let
V=VteV"-,

where VT is a free Z/qZ-submodule of H'(G,Z/qZ)" C ker B of rank 1 + u™
containing H*(I',Z/qZ), and V~ is defined as follows. By lemma (3.2)

HYI',Z/qZ) C (ker B~)*,
and since
rankz 2 H' (G, Z/qZ)" —rankz)zV =n/2+1 - (1+u)=u",

there exists a free Z/qZ-submodule V'~ of (ker B)~ of rank «~ which is orthogonal
to V. It follows that V' is maximal totally isotropic and contained in ker B.

By theorem (3.4), we obtain a free A-invariant quotient F' of G of rank n/2+1
such that

H\(F.Z/qZ) = V = (Z/qZIA]")" ' & (Z/qZ]A] )"

Since F® is a free Z,-module, we obtain assertion (ii). O

Remark: Explicitly, we get a submodule V' with the properties as above in the
following way: let
l—R—F, . 0—G—1

be a minimal presentation of GG, where F) ;5 is a free pro-p group of rank n + 2
with the extended action of A. Let v, xy,...,z, be a basis of F, 5 such that R
is generated by the element

w = (x0)" [0, Y[1, wollws, xa] - - - [Tn, 0] - f

f € (Fn+2)37 and

g

=94, T
o _ .1
xy =x5 - b, x

=x;-a; fori=2,4,...,n,
=a;t-b;  fori=1,3,5...,n—1.

©.q = Q

with a, b, a;, b; € (F,12)% Such a basis exists by the A-invariance of the cup-
product and the Bockstein homomorphism, cf. [8] lemma 3. If we put

N|=

/

0l ::'y-a%, x
=b"

/
)

- a fori=2,4,...,n,

Z; i
_1
b, * - x; fort=1,3,5,...,n—1,

/
i
/
i

1
2 -2g, X

then
for ¢ > 2 even,

7= (z})7! fori>1odd,



and
w = (20)"[zo, ][z}, 5] [ag, 2] - (1, 2] - f
where f' € (F,2)%. Let u=2u" — 1. If we denote x mod F? by Z, then the dual
of
VY o= ZjgZ-ye P Z/4Z-znm® @ Z/4Z-7i
1=1,3,...,u i=u+3,...,n

= (Z/qZIAV)H @ (Z/qZ]A])"

gives an example for a submodule with the properties (i)-(iii) in the proof of
corollary (3.5). The free quotient of G is obtained in the following way: if

SN ro /
N = (xg, @), 2%, ..., 20, 0y g, ., 2) D Fnyo,

- -~

ut-times u~-times
then F' = F,,5/N is a free pro-p group of rank n/2 + 1, N is A-invariant,
R C N(F,.5)* and VV = F/F? Using proposition (2.1) we get the desired
quotient of G.

With the notation and assumptions of corollary (3.5), we make for a A-
invariant free quotient F' of G of rank n/2 + 1 the following

Definition 3.6 We call the tuple (u™,u™) the signature of F, if
F/F* = (Z/qZ|A]")" ' & (Z/qZ]A] )" .

One can show that in general the signature of a maximal free quotient £’ of
G does not determine F'. But if the signature is equal to (n/2,0), then we have
the following proposition.

Proposition 3.7 Let p be an odd prime number and let A be of order 2. Let
G be a p-Demuskin group of rank n + 2 with finite invariant ¢ on which A acts
such that H*(G,Z/pZ)* = 0. Let F be a free A-invariant quotient of G of rank
n/2+ 1, i.e. the canonical surjection

G—=F

is A-invariant. If the induced action of A on F/F? is trivial, i.e. F has signature
(n/2,0), then F is equal to the mazximal quotient G5 of G with trivial A-action.
In particular, a free quotient of G with the properties above is unique.

Proof: As in the remark after the proof of corollary (3.5), we find generators
of F on which A acts trivially, and so F' has a trivial A-action. Thus we have a
surjection ¢ : Go —= F. Since G, is free of rank n/2+1 = dimg, H'(F, Z/pZ)
by proposition (2.2)(i), it follows that ¢ is an isomorphism. Thus F' is the maxi-
mal quotient of G with trivial A-action. O
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