On the Fontaine-Mazur Conjecture for
CM-Fields

by Kay Wingberg at Heidelberg

In [3] Fontaine and Mazur conjecture (as a consequence of a general principle)
that a number field £ has no infinite unramified Galois extension such that its
Galois group is a p-adic analytic pro-p-group. A counter-example to this conjec-
ture would produce an unramified Galois representation with infinite image, that
could not “come from geometry”. Some evidence for this conjecture is shown in
[1] and [4].

Since every p-adic analytic pro-p-group contains an open powerful resp. uni
form subgroup one is led to the question whether a given number field possesses an
infinite unramified Galois p-extension with powerful resp. uniform Galois group.
With regard to this problem, we would like to mention a result of Boston [1]:

Let p be a prime number and let k|kqy be a finite cyclic Galois extension
of degree prime to p such that p does not divide the class number of ky.
Then, if the Galois group G(M|k) of an unramified Galois p-extension
M of k, Galois over kg, is powerful, it is finite.

In this paper we will prove a statement which is in some sense weaker as the
above and in another sense stronger (and in view of the general conjecture very
weak):

Let p be odd and let k be a CM-field with maximal totally real subfield
k™ containing the group p, of p-th roots of unity. Let M = L(p) be
the maximal unramified p-extension of k. Assume that the p-rank of
the ideal class group CU(kT) of kT is not equal to 1. Then, if the
Galois group G(L(p)|k) is powerful, it is finite.

If the p-rank of Cl(kT) is equal to 1, we have two weaker results. First,
replacing the word powerful by uniform and assuming that the first step in the p-
cyclotomic tower of k is not unramified, then the statement above holds without
any condition on CI(kT). Secondly, we consider the conjecture in the p-cyclotomic
tower of the number field k. Denote the n-th layer of the cyclotomic Z,-extension
ks of k by k,, and let G(L,(p)|k,) be the Galois group of the maximal unramified
p-extension L, (p) of k,. Then the following statement holds.
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Let p # 2 and let k be a CM-field containing ji,. Assume that the
Twasawa p-invariant of ke|k is zero. Then there exists a number
ng such that for all n > ny the following holds: If the Galois group
G(Ln(p)|kn) is powerful, then it is finite.

Similar results hold for the maximal unramified p-extension Lg(p) which is
completely decomposed at all primes in S and for the maximal p-extension kg(p)
of k£ which is unramified outside .S, if S contains no prime above p.

Of course, our main interest is the conjecture for general p-adic analytic
groups. We will prove the following result.

Let p # 2 and let k be a CM-field containing i, with maximal to-
tally real subfield k™ and assume that p, < k:; for all primes p of
k™ above p. Then, if G(Li(p)|k) is p-adic analytic, G(Ly+(p)|k™) is
finite.

Unfortunately, we do not have Boston’s result for general analytic pro-p-
groups. Otherwise, in the situation above it would follow that G(Lg(p)|k) is
not an infinite p-adic analytic group.

1 A duality theorem

We use the following notation:

P is a prime number,

k is a number field,

Seo is the set of archimedean primes of k,

S is a set of primes of k£ containing S,

Es(k) is the group of S-units of k,

Cls(k) is the S-ideal class group of k,

Lg is the maximal unramified extension of k
which is completely decomposed at S,

Ls(p) is the maximal p-extension of k inside Lg,

L is the maximal unramified extension of k,

L(p) is the maximal p-extension of k inside L.

We write E(k) for the group Es_ (k) of units of k and CI(k) for the ideal class
group Clg (k) of k. Obviously,

L = Ls_, if k is totally imaginary,
L(p) = Ls_(p), if p#2or k totally imaginary.



If K is an infinite algebraic extension of Q, then Es(K) = lim FEgs(k) where
k runs through the finite subextensions of K.

For a profinite group G, a discrete G-module M and any integer ¢ the i-th
Tate cohomology is defined by

HY(G,M)=H(G,M) fori>1 and H (G, M) = lim H(G/U,MY) for i <0,
U,def

where U runs through all open normal subgroups of G and the transition maps
are given by the deflation, see [7].

Theorem 1.1 Let S be a set of primes of k containing Ss. Then the following
holds:

(i) There are canonical isomorphisms
H(G(Ls|k), Es(Ls)) = H*(G(Ls|k),Q/Z)"

for alli € Z. Here ¥ denotes the Pontryagin dual.

(ii) There are canonical isomorphisms

H(G(Ls(p)|k), Bs(Ls(p))) = H*7(G(Ls(p)|k), Qp/Zy)"

for all i € Z.

Proof: Let Cs(Lg) be the S-idele class group of Lg. The subgroup C3(Lg)
of Cs(Lg) given by the ideles of norm 1 is a level-compact class formation for
G(Lg|k) with divisible group of universal norms. From the duality theorem of
Nakayama-Tate we obtain the isomorphisms

HY(G(Lg|k), Cs(Ls)) = H*(G(Lg|k), Z)", i€,

since H'(G(Lg|k), Cs(Ls)) = H(G(Lg|k), C%(Ls)), see [7] proposition 4.

Let K|k be a finite Galois extension inside Lg. From the exact sequence
0— Es(K) — Jg(K) — Cs(K) — Clg(K) — 0,

where Jg(K') denotes the group of S-ideles of K, which is a cohomological trivial
G (K |k)-module (K |k is completely decomposed at S), we obtain isomorphisms

H™*Y(G(K|k), Es(K)) = H(G(K|k), D(K)),

where D(K') denotes the kernel of the surjection Cs(K) — Clg(K), and a long
exact sequences

— HY(G(K|k), D(K)) — H(G(K|k), Cs(K)) — H(G(K|k), Cls(K)) — .
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If K’ is the maximal abelian extension of K in Lg, then G(Lg|K') is an open sub-
group of G(Lg|K) by the finiteness of the class number of K. The commutative
diagram

Clg(K') —" » Clg(K)

TGC\LN reciw

G(Ls|K')* === G(Ls|K)*
shows, since can is the zero map, that
Cls(K") ™2 Clg(K)
is trivial. It follows that

lim H(G(K|k),Cls(K)) =0 fori<0.

K

Since all groups in the exact sequence above are finite, we can pass to the pro-
jective limit and we obtain isomorphisms

@ﬁi(@(mk), D(K)) = H'(G(Lg|k),Cs(Lg)) fori <0,

and therefore isomorphisms
H™* (G(Lg|k), Es(Ls)) = H(G(Lg|k),Cs(Lg)) fori < —1.

The last assertion also holds for ¢ = 0: from the commutative diagram

HY(G(K'|k), D(K")) -2 HY(G(K'|k), Es(K"))

Jo J

HY(G(K|k),D(K)) — HY(G(K|k), Es(K)),

where k C K C K’ are finite Galois extensions inside Lg, it follows that the limit
lim H'(G(K|k), Es(K)) exists. Since
— K

HY(G(K|k), Es(K)) € H'(G(Ls|k), Es(Ls)) = Cls(k)

and

12

lim A°(G(K k), D(K))

H(G(Ls k), Cs(Ls)) = HA(G(Ls|k), Z)"
>~ [(G(Lslk), Q/Z)" = G(Lslk)™ = Cis(k),

the projective limit lim  H'(G(K|k), Es(K)) becomes stationary and is equal to

—

HY(G(Lsl|k), Es(Ls)).



For ¢ > 1 the exact sequence
0— Eg(Ls) — Js(Ls) — Cs(Ls) — 0
induces isomorphisms
H'(G(Lslk),Cs(Ls)) = H"(G(Ls|k), Es(Ls)).
Putting all together, we obtain canonical isomorphisms
H™"™(G(Ls|k), Es(Ls)) = H*7(G(Ls|k), Z)" = H'~(G(Ls|k), Q/Z)

for all ¢ € Z. The proof for the field Lg(p) is analogous. O

Let k be a number field of CM-type with maximal totally real subfield k&t and
let A =G(k|kT) = (o) 2 Z/2Z. If p # 2, we put as usual

M*=(1+0)M

for a Z,[A]-module M. For a Z,-module N let ,N = {x € N |pz = 0}.

Corollary 1.2 Let p be an odd prime number and let k be a CM-field. Let S be
a set of primes of k™ containing Ss and assume that no prime of S splits in the
extension k|k*. Then

dimg, , H*(G(Ls(p)|k), Qy/Z,)~ < 6,

where 0 is equal to 1 if k contains the group p, of p-th roots of unity and otherwise
equal to 0.

Proof: By proposition 1.1, there is a A-invariant surjection
Es(k) — H*(G(Ls(p)|k), Es(Ls(p))) = H*(G(Ls(p)|k), Qp/Zy)"
and so a surjection
(Es(k)/p)™ = (H*(G(Ls(p)Ik), Qp/Zy) )"

Since no prime of S splits in the extension k|k*, we have (Es(k)/p)~ = pp(k)
which gives us the desired result. O



2 Powerful pro-p-groups with involution

Let p be a prime number. For a pro-p-group G the descending p-central series
is defined by
G1 = G, Gi+1 = (Gl)p[Gl, G] for 4 Z 1.

If a group A = Z/27 acts on G and p is odd, then we define
d(G)* = dimg, (G/G2)* = dimg, H'(G, Z/pZ)*.

The following proposition also follows from Boston result (resp. its proof),
but in our situation, where only an involution acts on GG, we will give a simple
proof.

Proposition 2.1 Letp # 2 and let G be a finitely generated powerful pro-p-group
with an action by the group A = 7,/27. Then the following holds:

If d(G)T =0, then G is abelian.
In particular, if d(G)* =0 and G® is finite, then G is finite.

Proof: Since G is powerful, we have
[G,G]/H C GPH/H where H = (|G, G))?|G, G, G].
From G/Gy = (G/G3)~ it follows that
|G,G|/H = (|G,G])/H)* and GPH/H = (G’H/H)",
since G/[G,G] = (G/|G,G])” and GP = {2P | x € G}, [2] theorem 3.6(iii), and so
(") =27 mod H forl# o€ A and x € G.

We obtain
G,G] C (|G, G)P|G, G, G].

This implies [G,G] = 1. O

Lemma 2.2 Let p # 2 and let G be a finitely generated pro-p-group with an
action by the group A = 7./27.. Then the following inequalities hold:

IA

d(G)t-d(G)~ dimg, (G2/G3)~ —rankz, (G“b)_—i-dimpp JH(G,Q,/Z,)",
(H7) 4 (U97) < dimg, (Go/Gy)t —ranky, (G®)* +dime, ,H2(G, Q,/Z,)*.



Proof: Let d* = d(G)*. From the exact sequences
0— HY(G/Ga, Z/pZ) = H'(G,L/pL) — H" (G5, Z/pZL)"

— H*(G /Gy, Z/pZ) — H*(G, Z/pL)
and

0 —>(pGab)V - H2(G, Z[pZ) — pH2<Ga Q,/Z,) — 0

we obtain the inequalities
dimg, H*(G/Gs, Z/pZ)* < dimg,(G2/G3)* + dimg, (,G*)*
+dimg, ,H*(G,Q,/Z,)*.

Let
G/Go =A@ DA+ DB DD By
be a A-invariant decomposition into cyclic groups of order p such that A; =
Af and B; = Bj. For H*(G/G,,Z/pZ) we obtain the A-invariant Kiinneth

decomposition:
d+

H2(G/Gy, ZIpL) = @ H*(A;, Z./p)
o H' (A1, Z/pZ) © H' (A}, Z/pZ)
o@P H'(B:, Z/pZ) ® H'(B;,Z/pZ)

o P H* (B, 2/pZ)

=1

o H'(A;,Z/pZ) @ H' (B}, Z/pZ).
4,3
Counting dimensions yields

dime, H*(G /G, Z/pZ)t = d*+ (%) + (%),

dimg, H*(G/Gs,Z/pZ)~ = d~ +dtd.
Since
d* = rankz (G*)* + dimg, (,G*)*,
we obtain the desired result. O

Proposition 2.3 Let p # 2 and let G be a finitely generated powerful pro-p-group
with an action by the group A = 7Z/27. Then the following inequalities hold:

(1) d(G)*T-d(G)” < d(G)” +dimg, ,H*(G,Q,/Z,)",
(ii) (1) + (1D7) < d(G)* + dimg, ,H*(G,Qp/Z,)".
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Proof: Since G is powerful, the A-invariant homomorphism
G /Gy —» Go /Gl
is surjective, see [2] theorem 3.6, and we obtain
dimg, (G2/G3)* < d(G)™.

Using lemma 2.2, this proves the proposition. 0

Now we analyze the case where G is a powerful pro-p-group which is a Poincaré
group of dimension 3.

Proposition 2.4 Let p be odd and let P be a finitely generated powerful pro-p-
group with an action of A= 7,/27.
(i) If P is uniform, then

dimg, H*(P,Z/pZ)* = (‘D7) + ("0,
dimg, H*(P,Z/pZ)~ = d(P)"-d(P)".
(i) If P is uniform such that P is finite and d(P)™ = 1, then
dimg, ,H*(P,Q,/Z,)” = 0.
(iii) If P is a Poincaré group of dimension 3 such that P is finite, then
d(P)*=1 and d(P)" =2 or
d(P)* =3 and d(P)” =0.

Proof: Let P be uniform. By [2] definition 4.1 and theorem 4.26, we have
dime, (H' (P2, Z/pZ)")* = d(P)* and dimg, H*(P,Z/pZ) = (*])).
Counting dimensions shows that
dimg, H*(P/ Py, Z/pZ) = dimg, H' (P2, Z/pZ)" + dimg, H*(P, Z/pZ),
and so the sequence
0— HY (P, Z/pZ)" — H*(P/ Py, 7./pZ) — H*(P,7Z/pZ) — 0
is exact. Therefore
dimg, H*(P, Z/pZ)* = dimg, H*(P/ P>, Z/pZ)* — dimg, (H' (P, Z/pZ)")*,

which proves (i).



If P is finite, then dimg, (,P*")* = d(P)*, and so by (i)
dimg, ,H2(P,Q,/Z,)~ = dimg, H2(P,Z/pZ)~ — dimg (,P™)
= d(P)*-d(P)” —d(P)".
This gives us the desired result (ii).

Now let P be a powerful Poincaré group of dimension 3; in particular, P is
torsionfree and therefore P is uniform, see [2] theorem 4.8. Since

dimg, H' (P, Z/pZ) = dimg, H*(P, Z/pZ)
and since P is finite, the exact sequence
0 —><ppab)v - HQ(R Z/pZ) —>,,H2(P, Qp/Zy) — 0

shows that
(,P*)Y = H*(P,Z/pZ).
It follows that
dimg, H*(P, Z/pZ)* = d(P)*,

and so by (i)

This proves (iii). O

3 On the Fontaine-Mazur Conjecture

We keep the notation of sections 1 and 2. Let
dy = dimg, (CU(k)/p)* = d(G(L(p)|k))*.

Theorem 3.1 Let p be an odd prime number and let k be a CM-field such that
(i) df #1.

Then, if the Galois group G(L(p)|k) of the mazimal unramified p-extension L(p)
of k is powerful, it is finite.

Proof: If df = 0, then the theorem follows from proposition 2.1. Therefore
we assume that d; > 2 (assumption (ii)). From assumption (i) and Leopoldt’s
Spiegelungssatz, see [8] theorem 10.11, it follows that d,, > 1. From proposition
2.3 and corollary 1.2 we obtain the inequality

difd; < dg +0.
It follows that df =2, d; =1 (and § = 1), and so d(G(L(p)|k)) = 3.
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If P = G(L(p)|k);, i large enough, then P is uniform, [2] theorem 4.2, and
d(P) < 3, [2] theorem 3.8. Suppose that P is non-trivial. Then P is a Poincaré
group of dimension dim(P) = d(P) < 3, see [5] chap.V theorem (2.2.8) and
(2.5.8). But Poincaré groups of dimension dim(P) < 2 have the group Z, as
homomorphic image, and so we can assume that dim(P) = d(P) = 3. Since
G(L(p)|k) is powerful, we have a surjection

G(L(p)|k)/G(L(p) k)2 = G(L(p)|k)i/ G(L(p)|k)is1-

Furthermore, by [2] theorem 3.6(ii), G(L(p)|k)it1 = (G(L(p)|k):)2 = P», and so
G(L(p)|k);/G(L(p)|k)iz1 = P/P,. Therefore d(P)* = 2 and d(P)~ = 1. By
proposition 2.4(iii) we get a contradiction. O

If p, C k, then df = 1 is the only remaining case. Here we only get a weaker
result. Let ko be the cyclotomic Z,-extension of k and denote by k, the n-th
layer of k. |k.

Theorem 3.2 Let p # 2 and let k be a CM-field containing p,. Assume that
k1 |k is not unramified if di = 1. Then the Galois group G(L(p)|k) of the mazimal
unramified p-extension L(p) of k is not uniform.

Proof: Suppose that G = G(L(p)|k) is uniform. Using theorem 3.1, we may
assume that d(G)™ = 1, and so, by proposition 2.4(ii),

dimg, ,H*(G,Q,/Z,)” = 0.
On the other hand, by theorem 1.1, we have a surjection
H*(G,Q,/Z,)" = H(G, E(L(p))) — H*(G(K|k), E(K))

where K|k is a finite unramified Galois p-extension of CM-fields (recall that
d(G)" #0), and so a surjection

(H*(G,Qp/Zy)7)" — HUG(K k), B(K))™.
Since K is of CM-type, it follows that
HY(G(K k), E(K))~ = H(G(K]|k), p(K)(p)).
By our assumption, K is disjoint to k., i.e. u(K)(p) = u(k)(p), and so
dimg, HO(G(K|k), p(K)(p))/p = 1.

It follows that
dimg, ,H*(G,Q,/Z,)” = 1.

This contradiction proves the theorem. 0
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Remarks:

(1) The theorems 3.1 and 3.2 also hold in the following situation: Replace L(p)
by Ls(p) and Cl by Clg where S O S, is a set of primes which do not split in
the extension k|k*. Use corollary 1.2 for S instead of S,.

(2) Theorem 3.1 is also true, if we replace L(p) by the maximal p-extension kg(p)
of k which is unramified outside a finite set S which contains S, but no prime
above p. Instead of Cl(k) one has to take the ray class group C'(k)/C™(k) mod
m = Hpe 5P (which is finite). In order to prove an analog of corollary 1.2, use
the exact sequence

0— E(K) — Js_(K) x U/(K) — Cs(K) — C(K)/C™(K) —0

where S" = S\ Sy, and U, (K) is the product over the principal units at the places
of §" and E°(K) = ker(F(K) — Us/(K) /UL (K)).

Now we consider the Galois groups G(L,(p)|kn) of the maximal unramified
p-extension L, (p) of k, in the p-cyclotomic tower of k.

Theorem 3.3 Let p # 2 and let k be a CM-field containing p,. Assume that the
Twasawa p-invariant of the cyclotomic Z,-extension koo|k is zero.

Then there exists a number ng such that for all n > ng the following holds:
If the Galois group G(Ly(p)|kn) is powerful, then it is finite.

Proof: Let
1 —Goo — G(Lo(p)lk) — I'—1

where Goo = G(Ls(p)|kso) is the Galois group of the maximal unramified p-
extension Lo, (p) of ke and I' = G(kso|k) = (7). Let I}, = (747"), n > 0, be the
open subgroups of I' of index p”. By our assumption on the Iwasawa p-invariant
(G is a finitely generated pro-p-group.

Let n; be large enough such that all primes of k,, above p are totally ramified
in koolkn, and let (v;) € G(Loo(p)|kn,), 7 = 1,...,s, be the inertia groups of
some extensions of the finitely many primes py,...ps of k,, above p.

For n > ny let

—nq

be the normal subgroup generated by all conjugates of the elements 7? " and

Nn = Mn ﬂ GOO - (,an_nl,y'fpn_nlj [fypn_nlhg]’i?.j = 17 ) 87 g e GOO)

? J J
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Then the commutative exact diagram

1 N, M, I, 1

.

1 Goo G(Lm(p)|kn) — I, —1

shows that
Goo/Nn = G(Ly(p)|kn)

and we have canonical surjections
Goo = G(Lm(p)|km) = G(Ln(p)[kn)

for m > n > n;.
Let ng > nq be large enough such that

Goo/(Goo)s == G(Ln(p)|kn) /(G (Ln(p)[Fn))s3

for all n > ng, i.e.
G(Loo(P)[kn)/(Goo)s = Goo/(Goo)z X Ty = G(Lin(p)|kn) /(G(Ln(p)|Kn))3 X T

Then (fyfn_m) acts trivially on G /(Gw)s for all j < s and N, is contained in

(Goo)s-
Suppose that G(L,(p)|k,), n > ng, is powerful. Then

[Goos Goo) C (Goo)P Ny,.
By assumption on ng the group NV, is contained in (G )3, and so
[Goos Goo] € (Goo)’[Goos [Goor Gool]-
From this inclusion it follows that
(G, G € (Goo)?,

thus G, is powerful.
Using proposition 2.1, we can assume that

di = dimg, (Cl(k,)/p)*" > 1.

Let K|k, be an unramified Galois extension of degree p such that G(Klk,) =
G(K|k,)" and let Ko, = koK. Because of our definition of ny the field K is
not contained in ko, and G(L(p)|K ) is a normal subgroup of G(Ls(p)|keo) of
index p.

Using results of Iwasawa theory, [6] (11.4.13) and (11.4.8), we obtain

d(G(Loo(p) | K))” = P(d(G(Loo(p) ko)) = 1) + 1.
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From [2] theorem 3.8 and the equality above it follows that

AVART
SR8Ra
h

3
Sss==

I
.

2] theorem 3.8, we get
d(G(Loo(p)lko)) " = d(G(Loo(p)| Koo)) ™
Both inequalities together imply
A(G(Luolp) o)™ < 1.
Using [6] (11.4.4), we finally obtain
d(G(Loo(p) ko))", d(G(Loo(p)lkic))™ < 1.

It follows that G(L,(p)|k») is a powerful pro-p-group with d(G(L,(p)|k,)) < 2. If
G(Ly(p)|kn) is not finite, then it contains an open subgroup P which is a Poincaré
group (see [5] chap.V theorem (2.2.8) and (2.5.8)) of dimension dim P = d(P) < 2
(use again [2] theorem 3.8). But these groups have the group Z, as homomorphic

image. By the finiteness of the class number it follows that G(L,,(p)|k,) is finite.
U

Remark: Theorem 3.3 also holds if we replace L(p) by Ls(p) and CI by Clsy,
where ¥ = S, U S, is the set of archimedean primes and primes above p, and if
we assume that no prime of S, splits in the extension k|k™.

Now we consider the conjecture for general p-adic analytic groups. Let
1—D—G—G—1

be an exact sequence of pro-p-groups. For an open normal subgroup H of G we
denote the pre-image of H in G by H. Thus we get a commutative exact diagram

1 D g j? 1
1 D H H 1.
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Proposition 3.4 With the notation as above assume that
(i) G is finitely generated and cd, G < 2,
(ii) ed, G < o0,
(iii) the Euler-Poincaré characteristic of G is zero, i.e.
2
X(G) = (~1)'dime, H(G,Z/pZ) = 0.
=0
Then

d(H) is unbounded for varying open normal subgroups H of G' or c¢d, G < 2.

Proof: Suppose that dimg, H'(H,Z/pZ) is bounded for varying H. Since
x(G) = 0, the same is true for dimg, H*(H,Z/pZ). It follows that H'(D,Z/pZ)
is finite for ¢ = 1,2. By [6] proposition (3.3.7), we obtain

cd,G =cd, G+ cd,D > cd, G.

This proves the proposition. U

As an application to our problem we get the following result for the maximal
unramified p-extension Lg(p) of a number field k.

Theorem 3.5 Let p # 2 and let k be a CM-field containing i, with mazimal
totally real subfield k™. Assume that y, 4 ki for all primes p of k* above p.
Then the following holds:

either (i) G(Lg+(p)lkT) is finite,
or (ii) G(Lg(p)|k)  is not p-adic analytic,

with other words, if G(L(p)|k) is p-adic analytic, then G(Ly+(p)|k™) is finite.

Proof: Suppose that (i) and (ii) do not hold. Then the maximal quotient
G(Ly+(p)|kT) of the p-adic analytic group G(Lyx(p)|k) with trivial action by A =
G(k|k™) is an infinite analytic group. Passing to a finite extension of k*, we
may assume that G(Lg+(p)|k™) is uniform (our assumptions on k are still valid).
The dimension of G(Ly+(p)|k™) is greater or equal to 3, since otherwise it would
have the group Z, as quotient which is impossible by the finiteness of the class
number.

If k;grp (p) is the maximal p-extension of kT which is unramified outside p, then
cd, G(kgfp(pﬂk*) < 2 and X(G(k;fp(pﬂkﬂ) = 0, see [6] (8.3.17), (8.6.16) and
(10.4.8). Applying proposition 3.4, we obtain that

dime, H'(G(kS, (p) K ), Z/pZ) = dime, H* (G ks, (DK (1)), Z/pZ)*
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is unbounded, if Kt varies over the finite Galois extension of k™ inside L+ (p).
By [6] theorem (8.7.3) and the assumption that p, ¢ ki for all primes pl[p, it
follows that

AG(Lp)| K+ () = dime, CUE* (1)) /p
> dime, (Cls, (K (1)) /p)”
= dimg, H'(G(ks, (p) | K+ (1,)). Z/pZ) " — 1

is unbounded for varying K inside Lj+(p) and therefore G (L (p)|k) is not p-adic

analytic. This contradiction proves the theorem. 0]
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