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In [3] Fontaine and Mazur conjecture (as a consequence of a general principle)
that a number field k has no infinite unramified Galois extension such that its
Galois group is a p-adic analytic pro-p-group. A counter-example to this conjec-
ture would produce an unramified Galois representation with infinite image, that
could not “come from geometry”. Some evidence for this conjecture is shown in
[1] and [4].

Since every p-adic analytic pro-p-group contains an open powerful resp. uni
form subgroup one is led to the question whether a given number field possesses an
infinite unramified Galois p-extension with powerful resp. uniform Galois group.
With regard to this problem, we would like to mention a result of Boston [1]:

Let p be a prime number and let k|k0 be a finite cyclic Galois extension
of degree prime to p such that p does not divide the class number of k0.
Then, if the Galois group G(M |k) of an unramified Galois p-extension
M of k, Galois over k0, is powerful, it is finite.

In this paper we will prove a statement which is in some sense weaker as the
above and in another sense stronger (and in view of the general conjecture very
weak):

Let p be odd and let k be a CM-field with maximal totally real subfield
k+ containing the group µp of p-th roots of unity. Let M = L(p) be
the maximal unramified p-extension of k. Assume that the p-rank of
the ideal class group Cl(k+) of k+ is not equal to 1. Then, if the
Galois group G(L(p)|k) is powerful, it is finite.

If the p-rank of Cl(k+) is equal to 1, we have two weaker results. First,
replacing the word powerful by uniform and assuming that the first step in the p-
cyclotomic tower of k is not unramified, then the statement above holds without
any condition on Cl(k+). Secondly, we consider the conjecture in the p-cyclotomic
tower of the number field k. Denote the n-th layer of the cyclotomic Zp-extension
k∞ of k by kn and let G(Ln(p)|kn) be the Galois group of the maximal unramified
p-extension Ln(p) of kn. Then the following statement holds.
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Let p 6= 2 and let k be a CM-field containing µp. Assume that the
Iwasawa µ-invariant of k∞|k is zero. Then there exists a number
n0 such that for all n ≥ n0 the following holds: If the Galois group
G(Ln(p)|kn) is powerful, then it is finite.

Similar results hold for the maximal unramified p-extension LS(p) which is
completely decomposed at all primes in S and for the maximal p-extension kS(p)
of k which is unramified outside S, if S contains no prime above p.

Of course, our main interest is the conjecture for general p-adic analytic
groups. We will prove the following result.

Let p 6= 2 and let k be a CM-field containing µp with maximal to-
tally real subfield k+ and assume that µp ⊆/ k+

p for all primes p of
k+ above p. Then, if G(Lk(p)|k) is p-adic analytic, G(Lk+(p)|k+) is
finite.

Unfortunately, we do not have Boston’s result for general analytic pro-p-
groups. Otherwise, in the situation above it would follow that G(Lk(p)|k) is
not an infinite p-adic analytic group.

1 A duality theorem

We use the following notation:

p is a prime number,
k is a number field,
S∞ is the set of archimedean primes of k,
S is a set of primes of k containing S∞,
ES(k) is the group of S-units of k,
ClS(k) is the S-ideal class group of k,
LS is the maximal unramified extension of k

which is completely decomposed at S,
LS(p) is the maximal p-extension of k inside LS,
L is the maximal unramified extension of k,
L(p) is the maximal p-extension of k inside L.

We write E(k) for the group ES∞(k) of units of k and Cl(k) for the ideal class
group ClS∞(k) of k. Obviously,

L = LS∞ , if k is totally imaginary,
L(p) = LS∞(p), if p 6= 2 or k totally imaginary.
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If K is an infinite algebraic extension of Q, then ES(K) = lim−→k
ES(k) where

k runs through the finite subextensions of K.
For a profinite group G, a discrete G-module M and any integer i the i-th

Tate cohomology is defined by

Ĥ i(G,M) = H i(G,M) for i ≥ 1 and Ĥ i(G,M) = lim
←−

U,def

Ĥ i(G/U,MU) for i ≤ 0,

where U runs through all open normal subgroups of G and the transition maps
are given by the deflation, see [7].

Theorem 1.1 Let S be a set of primes of k containing S∞. Then the following
holds:

(i) There are canonical isomorphisms

Ĥ i(G(LS|k), ES(LS)) ∼= Ĥ2−i(G(LS|k),Q/Z)∨

for all i ∈ Z. Here ∨ denotes the Pontryagin dual.

(ii) There are canonical isomorphisms

Ĥ i(G(LS(p)|k), ES(LS(p))) ∼= Ĥ2−i(G(LS(p)|k),Qp/Zp)
∨

for all i ∈ Z.

Proof: Let CS(LS) be the S-idele class group of LS. The subgroup C0
S(LS)

of CS(LS) given by the ideles of norm 1 is a level-compact class formation for
G(LS|k) with divisible group of universal norms. From the duality theorem of
Nakayama-Tate we obtain the isomorphisms

Ĥ i(G(LS|k), CS(LS)) ∼= Ĥ2−i(G(LS|k),Z)∨, i ∈ Z,

since Ĥ i(G(LS|k), CS(LS)) ∼= Ĥ i(G(LS|k), C0
S(LS)), see [7] proposition 4.

Let K|k be a finite Galois extension inside LS. From the exact sequence

0−→ES(K)−→ JS(K)−→CS(K)−→ClS(K)−→ 0,

where JS(K) denotes the group of S-ideles of K, which is a cohomological trivial
G(K|k)-module (K|k is completely decomposed at S), we obtain isomorphisms

Ĥ i+1(G(K|k), ES(K)) ∼= Ĥ i(G(K|k), D(K)),

where D(K) denotes the kernel of the surjection CS(K) ³ ClS(K), and a long
exact sequences

−→ Ĥ i(G(K|k), D(K))−→ Ĥ i(G(K|k), CS(K))−→ Ĥ i(G(K|k), ClS(K))−→ .

3



If K ′ is the maximal abelian extension of K in LS, then G(LS|K ′) is an open sub-
group of G(LS|K) by the finiteness of the class number of K. The commutative
diagram

ClS(K ′) norm //

∼rec

²²

ClS(K)

∼rec

²²
G(LS|K ′)ab can // G(LS|K)ab

shows, since can is the zero map, that

ClS(K ′) norm−→ ClS(K)

is trivial. It follows that

lim
←−
K

Ĥ i(G(K|k), ClS(K)) = 0 for i ≤ 0.

Since all groups in the exact sequence above are finite, we can pass to the pro-
jective limit and we obtain isomorphisms

lim
←−
K

Ĥ i(G(K|k), D(K)) ∼= Ĥ i(G(LS|k), CS(LS)) for i ≤ 0,

and therefore isomorphisms

Ĥ i+1(G(LS|k), ES(LS)) ∼= Ĥ i(G(LS|k), CS(LS)) for i ≤ −1.

The last assertion also holds for i = 0: from the commutative diagram

Ĥ0(G(K ′|k), D(K ′))
δ
∼−→ H1(G(K ′|k), ES(K ′))ydef

y
Ĥ0(G(K|k), D(K))

δ
∼−→ H1(G(K|k), ES(K)),

where k ⊆ K ⊆ K ′ are finite Galois extensions inside LS, it follows that the limit
lim
←− K

H1(G(K|k), ES(K)) exists. Since

H1(G(K|k), ES(K)) ⊆ H1(G(LS|k), ES(LS)) ∼= ClS(k)

and

lim
←−
K

Ĥ0(G(K|k), D(K)) ∼= Ĥ0(G(LS|k), CS(LS)) ∼= H2(G(LS|k),Z)∨

∼= H1(G(LS|k),Q/Z)∨ = G(LS|k)ab ∼= ClS(k),

the projective limit lim
←− K

H1(G(K|k), ES(K)) becomes stationary and is equal to

H1(G(LS|k), ES(LS)).
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For i ≥ 1 the exact sequence

0−→ES(LS)−→ JS(LS)−→CS(LS)−→ 0

induces isomorphisms

H i(G(LS|k), CS(LS)) ∼= H i+1(G(LS|k), ES(LS)).

Putting all together, we obtain canonical isomorphisms

Ĥ i+1(G(LS|k), ES(LS)) ∼= Ĥ2−i(G(LS|k),Z)∨ ∼= Ĥ1−i(G(LS|k),Q/Z)∨

for all i ∈ Z. The proof for the field LS(p) is analogous. ¤

Let k be a number field of CM-type with maximal totally real subfield k+ and
let ∆ = G(k|k+) = 〈σ〉 ∼= Z/2Z. If p 6= 2, we put as usual

M± = (1± σ)M

for a Zp[∆]-module M . For a Zp-module N let pN = {x ∈ N | px = 0}.

Corollary 1.2 Let p be an odd prime number and let k be a CM-field. Let S be
a set of primes of k+ containing S∞ and assume that no prime of S splits in the
extension k|k+. Then

dimFp pH
2(G(LS(p)|k),Qp/Zp)

− ≤ δ,

where δ is equal to 1 if k contains the group µp of p-th roots of unity and otherwise
equal to 0.

Proof: By proposition 1.1, there is a ∆-invariant surjection

ES(k) ³ Ĥ0(G(LS(p)|k), ES(LS(p))) ∼= H2(G(LS(p)|k),Qp/Zp)
∨

and so a surjection

(ES(k)/p)− ³ (pH
2(G(LS(p)|k),Qp/Zp)

−)∨.

Since no prime of S splits in the extension k|k+, we have (ES(k)/p)− ∼= µp(k)
which gives us the desired result. ¤
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2 Powerful pro-p-groups with involution

Let p be a prime number. For a pro-p-group G the descending p-central series
is defined by

G1 = G, Gi+1 = (Gi)
p[Gi, G] for i ≥ 1.

If a group ∆ ∼= Z/2Z acts on G and p is odd, then we define

d(G)± = dimFp(G/G2)
± = dimFp H1(G,Z/pZ)±.

The following proposition also follows from Boston result (resp. its proof),
but in our situation, where only an involution acts on G, we will give a simple
proof.

Proposition 2.1 Let p 6= 2 and let G be a finitely generated powerful pro-p-group
with an action by the group ∆ ∼= Z/2Z. Then the following holds:

If d(G)+ = 0, then G is abelian.

In particular, if d(G)+ = 0 and Gab is finite, then G is finite.

Proof: Since G is powerful, we have

[G,G]/H ⊆ GpH/H where H = ([G,G])p[G,G, G].

From G/G2 = (G/G2)
− it follows that

[G,G]/H = ([G,G]/H)+ and GpH/H = (GpH/H)−,

since G/[G,G] = (G/[G,G])− and Gp = {xp | x ∈ G}, [2] theorem 3.6(iii), and so

(xp)σ ≡ x−p mod H for 1 6= σ ∈ ∆ and x ∈ G.

We obtain
[G,G] ⊆ ([G,G])p[G,G, G].

This implies [G,G] = 1. ¤

Lemma 2.2 Let p 6= 2 and let G be a finitely generated pro-p-group with an
action by the group ∆ ∼= Z/2Z. Then the following inequalities hold:

d(G)+ · d(G)− ≤ dimFp(G2/G3)
−−rankZp(G

ab)−+dimFp pH
2(G,Qp/Zp)

−,
(

d(G)+

2

)
+

(
d(G)−

2

) ≤ dimFp(G2/G3)
+−rankZp(G

ab)++dimFp pH
2(G,Qp/Zp)

+.
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Proof: Let d± = d(G)±. From the exact sequences

0−→H1(G/G2,Z/pZ) −→∼ H1(G,Z/pZ)−→H1(G2,Z/pZ)G

−→H2(G/G2,Z/pZ)−→H2(G,Z/pZ)
and

0−→(pG
ab)∨−→H2(G,Z/pZ)−→ pH

2(G,Qp/Zp)−→ 0

we obtain the inequalities

dimFp H2(G/G2,Z/pZ)± ≤ dimFp(G2/G3)
± + dimFp(pG

ab)±

+ dimFp pH
2(G,Qp/Zp)

±.

Let
G/G2

∼= A1 ⊕ · · · ⊕ Ad+ ⊕B1 ⊕ · · · ⊕Bd−

be a ∆-invariant decomposition into cyclic groups of order p such that Ai =
A+

i and Bj = B−
j . For H2(G/G2,Z/pZ) we obtain the ∆-invariant Künneth

decomposition:

H2(G/G2,Z/pZ) ∼=
d+⊕
i=1

H2(Ai,Z/pZ)

⊕
⊕
i<j

H1(Ai,Z/pZ)⊗H1(Aj,Z/pZ)

⊕
⊕
i<j

H1(Bi,Z/pZ)⊗H1(Bj,Z/pZ)

⊕
d−⊕
i=1

H2(Bi,Z/pZ)

⊕
⊕
i,j

H1(Ai,Z/pZ)⊗H1(Bj,Z/pZ).

Counting dimensions yields

dimFp H2(G/G2,Z/pZ)+ = d+ +
(

d+

2

)
+

(
d−
2

)
,

dimFp H2(G/G2,Z/pZ)− = d− + d+d−.

Since
d± = rankZp(G

ab)± + dimFp(pG
ab)±,

we obtain the desired result. ¤

Proposition 2.3 Let p 6= 2 and let G be a finitely generated powerful pro-p-group
with an action by the group ∆ ∼= Z/2Z. Then the following inequalities hold:

(i) d(G)+ · d(G)− ≤ d(G)− + dimFp pH
2(G,Qp/Zp)

−,

(ii)
(

d(G)+

2

)
+

(
d(G)−

2

) ≤ d(G)+ + dimFp pH
2(G,Qp/Zp)

+.
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Proof: Since G is powerful, the ∆-invariant homomorphism

G/G2

p−³ G2/G3

is surjective, see [2] theorem 3.6, and we obtain

dimFp(G2/G3)
± ≤ d(G)±.

Using lemma 2.2, this proves the proposition. ¤

Now we analyze the case where G is a powerful pro-p-group which is a Poincaré
group of dimension 3.

Proposition 2.4 Let p be odd and let P be a finitely generated powerful pro-p-
group with an action of ∆ ∼= Z/2Z.

(i) If P is uniform, then

dimFp H2(P,Z/pZ)+ =
(

d(P )+

2

)
+

(
d(P )−

2

)
,

dimFp H2(P,Z/pZ)− = d(P )+ · d(P )−.

(ii) If P is uniform such that P ab is finite and d(P )+ = 1, then

dimFp pH
2(P,Qp/Zp)

− = 0.

(iii) If P is a Poincaré group of dimension 3 such that P ab is finite, then

d(P )+ = 1 and d(P )− = 2 or

d(P )+ = 3 and d(P )− = 0.

Proof: Let P be uniform. By [2] definition 4.1 and theorem 4.26, we have

dimFp(H
1(P2,Z/pZ)P )± = d(P )± and dimFp H2(P,Z/pZ) =

(
d(P )

2

)
.

Counting dimensions shows that

dimFp H2(P/P2,Z/pZ) = dimFp H1(P2,Z/pZ)P + dimFp H2(P,Z/pZ),

and so the sequence

0−→H1(P2,Z/pZ)P −→H2(P/P2,Z/pZ)−→H2(P,Z/pZ)−→ 0

is exact. Therefore

dimFp H2(P,Z/pZ)± = dimFp H2(P/P2,Z/pZ)± − dimFp(H
1(P2,Z/pZ)P )±,

which proves (i).
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If P ab is finite, then dimFp(pP
ab)± = d(P )±, and so by (i)

dimFp pH
2(P,Qp/Zp)

− = dimFp H2(P,Z/pZ)− − dimFp(pP
ab)−

= d(P )+ · d(P )− − d(P )−.

This gives us the desired result (ii).
Now let P be a powerful Poincaré group of dimension 3; in particular, P is

torsionfree and therefore P is uniform, see [2] theorem 4.8. Since

dimFp H1(P,Z/pZ) = dimFp H2(P,Z/pZ)

and since P ab is finite, the exact sequence

0−→(pP
ab)∨−→H2(P,Z/pZ)−→ pH

2(P,Qp/Zp)−→ 0

shows that
(pP

ab)∨ −→∼ H2(P,Z/pZ).

It follows that
dimFp H2(P,Z/pZ)± = d(P )±,

and so by (i)
d(P )+ · d(P )− = d(P )−.

This proves (iii). ¤

3 On the Fontaine-Mazur Conjecture

We keep the notation of sections 1 and 2. Let

d±k = dimFp(Cl(k)/p)± = d(G(L(p)|k))±.

Theorem 3.1 Let p be an odd prime number and let k be a CM-field such that

(i) d−k 6= 0, if µp ⊆/ k,
(ii) d+

k 6= 1.

Then, if the Galois group G(L(p)|k) of the maximal unramified p-extension L(p)
of k is powerful, it is finite.

Proof: If d+
k = 0, then the theorem follows from proposition 2.1. Therefore

we assume that d+
k ≥ 2 (assumption (ii)). From assumption (i) and Leopoldt’s

Spiegelungssatz, see [8] theorem 10.11, it follows that d−k ≥ 1. From proposition
2.3 and corollary 1.2 we obtain the inequality

d+
k d−k ≤ d−k + δ.

It follows that d+
k = 2, d−k = 1 (and δ = 1), and so d(G(L(p)|k)) = 3.
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If P = G(L(p)|k)i, i large enough, then P is uniform, [2] theorem 4.2, and
d(P ) ≤ 3, [2] theorem 3.8. Suppose that P is non-trivial. Then P is a Poincaré
group of dimension dim(P ) = d(P ) ≤ 3, see [5] chap.V theorem (2.2.8) and
(2.5.8). But Poincaré groups of dimension dim(P ) ≤ 2 have the group Zp as
homomorphic image, and so we can assume that dim(P ) = d(P ) = 3. Since
G(L(p)|k) is powerful, we have a surjection

G(L(p)|k)/G(L(p)|k)2 ³ G(L(p)|k)i/G(L(p)|k)i+1.

Furthermore, by [2] theorem 3.6(ii), G(L(p)|k)i+1 = (G(L(p)|k)i)2 = P2, and so
G(L(p)|k)i/G(L(p)|k)i+1 = P/P2. Therefore d(P )+ = 2 and d(P )− = 1. By
proposition 2.4(iii) we get a contradiction. ¤

If µp ⊆ k, then d+
k = 1 is the only remaining case. Here we only get a weaker

result. Let k∞ be the cyclotomic Zp-extension of k and denote by kn the n-th
layer of k∞|k.

Theorem 3.2 Let p 6= 2 and let k be a CM-field containing µp. Assume that
k1|k is not unramified if d+

k = 1. Then the Galois group G(L(p)|k) of the maximal
unramified p-extension L(p) of k is not uniform.

Proof: Suppose that G = G(L(p)|k) is uniform. Using theorem 3.1, we may
assume that d(G)+ = 1, and so, by proposition 2.4(ii),

dimFp pH
2(G,Qp/Zp)

− = 0.

On the other hand, by theorem 1.1, we have a surjection

H2(G,Qp/Zp)
∨ ∼= Ĥ0(G,E(L(p))) ³ Ĥ0(G(K|k), E(K))

where K|k is a finite unramified Galois p-extension of CM-fields (recall that
d(G)+ 6= 0), and so a surjection

(H2(G,Qp/Zp)
−)∨ ³ Ĥ0(G(K|k), E(K))−.

Since K is of CM-type, it follows that

Ĥ0(G(K|k), E(K))− ∼= Ĥ0(G(K|k), µ(K)(p)).

By our assumption, K is disjoint to k∞, i.e. µ(K)(p) = µ(k)(p), and so

dimFp Ĥ0(G(K|k), µ(K)(p))/p = 1.

It follows that
dimFp pH

2(G,Qp/Zp)
− = 1.

This contradiction proves the theorem. ¤
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Remarks:
(1) The theorems 3.1 and 3.2 also hold in the following situation: Replace L(p)
by LS(p) and Cl by ClS where S ⊇ S∞ is a set of primes which do not split in
the extension k|k+. Use corollary 1.2 for S instead of S∞.
(2) Theorem 3.1 is also true, if we replace L(p) by the maximal p-extension kS(p)
of k which is unramified outside a finite set S which contains S∞ but no prime
above p. Instead of Cl(k) one has to take the ray class group C(k)/Cm(k) mod
m =

∏
p∈S p (which is finite). In order to prove an analog of corollary 1.2, use

the exact sequence

0−→ES(K)−→ JS∞(K)× U1
S′(K)−→CS(K)−→C(K)/Cm(K)−→ 0

where S ′ = S\S∞ and U1
S′(K) is the product over the principal units at the places

of S ′ and ES(K) = ker(E(K)→US′(K)/U1
S′(K)).

Now we consider the Galois groups G(Ln(p)|kn) of the maximal unramified
p-extension Ln(p) of kn in the p-cyclotomic tower of k.

Theorem 3.3 Let p 6= 2 and let k be a CM-field containing µp. Assume that the
Iwasawa µ-invariant of the cyclotomic Zp-extension k∞|k is zero.

Then there exists a number n0 such that for all n ≥ n0 the following holds:
If the Galois group G(Ln(p)|kn) is powerful, then it is finite.

Proof: Let
1−→G∞−→G(L∞(p)|k)−→Γ −→ 1

where G∞ = G(L∞(p)|k∞) is the Galois group of the maximal unramified p-
extension L∞(p) of k∞ and Γ = G(k∞|k) = 〈γ〉. Let Γn = 〈γpn〉, n ≥ 0, be the
open subgroups of Γ of index pn. By our assumption on the Iwasawa µ-invariant
G∞ is a finitely generated pro-p-group.

Let n1 be large enough such that all primes of kn1 above p are totally ramified
in k∞|kn1 and let 〈γj〉 ⊆ G(L∞(p)|kn1), j = 1, . . . , s, be the inertia groups of
some extensions of the finitely many primes p1, . . . ps of kn1 above p.

For n ≥ n1 let

Mn = (γpn−n1

j , j = 1, . . . , s) ⊆ G(L∞(p)|kn)

be the normal subgroup generated by all conjugates of the elements γpn−n1

j and

Nn := Mn ∩G∞ = (γpn−n1

i γ−pn−n1

j , [γpn−n1

j , g], i, j = 1, . . . , s, g ∈ G∞).
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Then the commutative exact diagram

1 // Nn
//

� _

²²

Mn
//

� _

²²

Γn
// 1

1 // G∞ // G(L∞(p)|kn) // Γn
// 1

shows that
G∞/Nn

∼= G(Ln(p)|kn)

and we have canonical surjections

G∞ ³ G(Lm(p)|km) ³ G(Ln(p)|kn)

for m ≥ n ≥ n1.
Let n0 ≥ n1 be large enough such that

G∞/(G∞)3 −→∼ G(Ln(p)|kn)/(G(Ln(p)|kn))3

for all n ≥ n0, i.e.

G(L∞(p)|kn)/(G∞)3 = G∞/(G∞)3 × Γn
∼= G(Ln(p)|kn)/(G(Ln(p)|kn))3 × Γn.

Then 〈γpn−n1

j 〉 acts trivially on G∞/(G∞)3 for all j ≤ s and Nn is contained in
(G∞)3.

Suppose that G(Ln(p)|kn), n ≥ n0, is powerful. Then

[G∞, G∞] ⊆ (G∞)pNn.

By assumption on n0 the group Nn is contained in (G∞)3, and so

[G∞, G∞] ⊆ (G∞)p[G∞, [G∞, G∞]].

From this inclusion it follows that

[G∞, G∞] ⊆ (G∞)p,

thus G∞ is powerful.
Using proposition 2.1, we can assume that

d+
kn

= dimFp(Cl(kn)/p)+ ≥ 1.

Let K|kn be an unramified Galois extension of degree p such that G(K|kn) =
G(K|kn)+ and let K∞ = k∞K. Because of our definition of n1 the field K is
not contained in k∞ and G(L∞(p)|K∞) is a normal subgroup of G(L∞(p)|k∞) of
index p.

Using results of Iwasawa theory, [6] (11.4.13) and (11.4.8), we obtain

d(G(L∞(p)|K∞))− = p(d(G(L∞(p)|k∞))− − 1) + 1.
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From [2] theorem 3.8 and the equality above it follows that

d(G(L∞(p)|k∞))+ + d(G(L∞(p)|k∞))−

= d(G(L∞(p)|k∞))

≥ d(G(L∞(p)|K∞))

= d(G(L∞(p)|K∞))+ + d(G(L∞(p)|K∞))−

= d(G(L∞(p)|K∞))+ + p(d(G(L∞(p)|k∞))− − 1) + 1.

The maximal quotient G(L∞(p)|k∞)∆ of G(L∞(p)|k∞) with trivial action of ∆ is
also powerful and we have d(G(L∞(p)|k∞)∆) = d(G(L∞(p)|k∞))+. Using again
[2] theorem 3.8, we get

d(G(L∞(p)|k∞))+ ≥ d(G(L∞(p)|K∞))+.

Both inequalities together imply

d(G(L∞(p)|k∞))− ≤ 1.

Using [6] (11.4.4), we finally obtain

d(G(L∞(p)|k∞))+, d(G(L∞(p)|k∞))− ≤ 1.

It follows that G(Ln(p)|kn) is a powerful pro-p-group with d(G(Ln(p)|kn)) ≤ 2. If
G(Ln(p)|kn) is not finite, then it contains an open subgroup P which is a Poincaré
group (see [5] chap.V theorem (2.2.8) and (2.5.8)) of dimension dim P = d(P ) ≤ 2
(use again [2] theorem 3.8). But these groups have the group Zp as homomorphic
image. By the finiteness of the class number it follows that G(Ln(p)|kn) is finite.

¤

Remark: Theorem 3.3 also holds if we replace L(p) by LΣ(p) and Cl by ClΣ,
where Σ = S∞ ∪ Sp is the set of archimedean primes and primes above p, and if
we assume that no prime of Sp splits in the extension k|k+.

Now we consider the conjecture for general p-adic analytic groups. Let

1−→D−→G−→G−→ 1

be an exact sequence of pro-p-groups. For an open normal subgroup H of G we
denote the pre-image of H in G by H. Thus we get a commutative exact diagram

1 // D // G // G // 1

1 // D // H //?�

OO

H //?�

OO

1.
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Proposition 3.4 With the notation as above assume that
(i) G is finitely generated and cdp G ≤ 2,
(ii) cdp G < ∞,
(iii) the Euler-Poincaré characteristic of G is zero, i.e.

χ(G) =
2∑

i=0

(−1)i dimFp H i(G,Z/pZ) = 0 .

Then

d(H) is unbounded for varying open normal subgroups H of G or cdp G ≤ 2.

Proof: Suppose that dimFp H1(H,Z/pZ) is bounded for varying H. Since
χ(G) = 0, the same is true for dimFp H2(H,Z/pZ). It follows that H i(D,Z/pZ)
is finite for i = 1, 2. By [6] proposition (3.3.7), we obtain

cdp G = cdp G + cdpD ≥ cdp G.

This proves the proposition. ¤

As an application to our problem we get the following result for the maximal
unramified p-extension Lk(p) of a number field k.

Theorem 3.5 Let p 6= 2 and let k be a CM-field containing µp with maximal
totally real subfield k+. Assume that µp ⊆/ k+

p for all primes p of k+ above p.
Then the following holds:

either (i) G(Lk+(p)|k+) is finite,
or (ii) G(Lk(p)|k) is not p-adic analytic,

with other words, if G(Lk(p)|k) is p-adic analytic, then G(Lk+(p)|k+) is finite.

Proof: Suppose that (i) and (ii) do not hold. Then the maximal quotient
G(Lk+(p)|k+) of the p-adic analytic group G(Lk(p)|k) with trivial action by ∆ =
G(k|k+) is an infinite analytic group. Passing to a finite extension of k+, we
may assume that G(Lk+(p)|k+) is uniform (our assumptions on k are still valid).
The dimension of G(Lk+(p)|k+) is greater or equal to 3, since otherwise it would
have the group Zp as quotient which is impossible by the finiteness of the class
number.

If k+
Sp

(p) is the maximal p-extension of k+ which is unramified outside p, then

cdp G(k+
Sp

(p)|k+) ≤ 2 and χ(G(k+
Sp

(p)|k+)) = 0, see [6] (8.3.17), (8.6.16) and
(10.4.8). Applying proposition 3.4, we obtain that

dimFp H1(G(k+
Sp

(p)|K+),Z/pZ) = dimFp H1(G(kSp(p)|K+(µp)),Z/pZ)+

14



is unbounded, if K+ varies over the finite Galois extension of k+ inside Lk+(p).
By [6] theorem (8.7.3) and the assumption that µp ⊆/ k+

p for all primes p|p, it
follows that

d(G(Lk(p)|K+(µp)) = dimFp Cl(K+(µp))/p

≥ dimFp(ClSp(K
+(µp))/p)−

= dimFp H1(G(kSp(p)|K+(µp)),Z/pZ)+ − 1

is unbounded for varying K+ inside Lk+(p) and therefore G(Lk(p)|k) is not p-adic
analytic. This contradiction proves the theorem. ¤
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