PROBLEM SET 2

Problem 0

Show the following.

Let M^n be a Riemannian manifold of dimension $n \geq 2$. Show that M^n is complete, connected and of constant sectional curvature equal to $\epsilon \in$ $\{-1, 0, 1\}$ if and only if M^n isometric to a quotient

(1) of the sphere \mathbf{S}^n by $\Gamma \subset \mathcal{O}(n+1)$ if $\epsilon = 1$,

(2) of the Euclidean space \mathbf{R}^n by $\Gamma \subset \mathbf{E}(n)$ if $\epsilon = 0$,

(3) of the hyperbolic space \mathbf{H}^n by $\Gamma \subset \mathcal{O}(1,n)$ if $\epsilon = -1$,

where Γ acts freely and properly discontinuously.

Here E(n) is the group of affine transformations of \mathbf{R}^n , i.e. $v \mapsto Av + B$, where $A \in \operatorname{GL}(n, \mathbf{R})$ and $B \in \mathbf{R}^n$.

PROBLEM 1

Let H be a compact real Lie group, let g be a bi-invariant Riemannian metric on H and \mathfrak{h} the Lie algebra of H. Show that

(1) Geodesics through $e \in H$ are given by $\gamma(t) = \exp(tX)$, where $X \in \mathfrak{h}$.

(2) Let X, Y be left invariant vector fiels on H. Then

- $\nabla_X Y = \frac{1}{2}[X, Y]$ $g(R(X, Y)Y, X) = \frac{1}{4}||[X, Y]||^2$
- $R(X,Y)X = -\frac{1}{2}ad(X)^2Y.$

PROBLEM 2

Consider \mathbf{R}^{n+1} , $n \geq 2$, with the quadratic form

$$Q(\sum_{i=1}^{n+1} x_i) = -x_1^2 + \sum_{i=2}^{n+1} x_i^2.$$

Define $\Omega = \{ [v] \in \mathbf{RP}^n | Q(v) < 0 \}$, then $\partial \Omega = \{ [v] \in \mathbf{RP}^n | Q(v) = 0 \}$ Then $\Omega \subset \mathbf{RP}^n$ is a strictly convex domain, i.e. for every $x, y \in \Omega$ the projective line through x and y intersects $\partial \Omega$ in exactly two points \overline{x} and \overline{y} .

We define a distance function $d_{\Omega} : \Omega \times \Omega \to \mathbf{R}$ as follows:

$$d_{\Omega}(x,y) = |\log |c(\overline{x}, x, y, \overline{y})||,$$

where $c(\overline{x}, x, y, \overline{y})$ is the crossratio of four points on a projective line.

Let [1:a], [1:x], [1:y], [1:b] be four points in \mathbf{RP}^1 written in homogeneous coordinate, then the cross ratio $c(a,x,y,b)=\frac{y-a}{x-a}\frac{y-b}{x-b}$

(1) Determine the group of distance-preserving maps $(\Omega, d_{\Omega}) \to (\Omega, d_{\Omega})$.

PROBLEM SET 2

- (2) Show that at every point $x \in \Omega$ there exists an isometry $S_x :$ $(\Omega, d_{\Omega}) \to (\Omega, d_{\Omega})$, which satisfies $S_x(x) = x$ and has differential $d_x S_x = -\text{id} : T_x \Omega \to T_x \Omega$.
- (3) What else can you say about the space (Ω, d_{Ω}) ?

Problem 3

Consider \mathbf{C}^2 with a hermitian form h of signature (1, 1), i.e. $h(z_1+z_2, w_1+w_2) = -z_1 \overline{w_1} + z_2 \overline{w_2}$. The complex hyperbolic line \mathbf{CH}^1 is defined as

$$\mathbf{CH}^{1} = \{ v \in \mathbf{C}^{2} \, | \, h(v, v) = -1 \}.$$

Show that \mathbf{CH}^1 carries a natural Riemannian metric with respect to which it is a symmetric space. Show that \mathbf{CH}^1 is isometric to the hyperbolic plane \mathbf{H}^2 .

Problem 4

Consider \mathbf{C}^{n+1} with a positive definite hermitian form h, i.e. $h(\sum_{i=1}^{n+1} z_i, \sum_{i=1}^{n+1} w_i) = \sum_{i=1}^{n+1} z_i \overline{w_i}$. Consider the complex projective space \mathbf{CP}^n . Show that \mathbf{CP}^n carries a natural Riemannian metric with respect to which it is a symmetric space.

Problem 5

Similar as in Problem 3 we can consider \mathbf{C}^{n+1} with a hermitian form h of signature (1, n), i.e. $h(\sum_{i=1}^{n+1} z_i, \sum_{i=1}^{n+1} w_i) = -z_1 \overline{w_1} + \sum_{i=2}^{n+1} z_i \overline{w_i}$. The complex hyperbolic *n*-space \mathbf{CH}^n is defined as

$$\mathbf{CH}^{n} = \{ v \in \mathbf{C}^{n+1} \, | \, h(v,v) = -1 \}.$$

Show that \mathbf{CH}^n carries a natural Riemannian metric with respect to which it is a symmetric space.

PROBLEM 6: PSEUDO-RIEMANNIAN SPACES OF CONSTANT CURVATURE

Consider \mathbf{R}_s^n to be \mathbf{R}^n with a non-degenerate symmetric bilinear form b_s^n of signature (s, n - s). Define pseudo-Riemannian sphere as

$$\mathbf{S}_{s}^{n} = \{ v \in \mathbf{R}_{s}^{n+1} \, | \, b_{s}^{n+1}(v) = 1 \}$$

and the pseudo-Riemannian hyperbolic space as

$$\mathbf{H}_{s}^{n} = \{ v \in \mathbf{R}_{s+1}^{n+1} \, | \, b_{s+1}^{n+1}(v) = -1 \}.$$

Show that these spaces carry a natural pseudo-Riemannian metric of signature (n, s) with respect to which they are symmetric spaces.

Note a pseudo-Riemannian symmetric space X is defined as a Riemmanian symmetric space: For every $x \in X$ there exists an isometry $S_x : X \to X$ which fixes x and whose differential at x equals $-id : T_x X \to T_x X$.

There is an analogue of the statement in Problem 0 classifying all connected complete pseudo-Riemannian manifolds of constant sectional curvature.

 $\mathbf{2}$