
MAT 520: Introduction to Geometry
(Symmetric Spaces) – Spring 2009

Basic Information

• Time: M F 9:30 a.m. - 11:00 a.m.
• Classroom: Fine 1001
• Start Date: Monday, February 9, 2009
• My Office: Fine 1007, My Email: wienhard@math.princeton.edu

Course Description

Symmetric spaces (and locally symmetric spaces) play a crucial role
in Algebraic Geometry, Differential Geometry, Mathematical Physics,
Number Theory, and Representation Theory. They arise as mod-
uli spaces (parameter spaces) for variations of geometric and arith-
metic objects, e.g. the space of all k-dimensional subspaces of an n-
dimensional vector spaces is a symmetric space, and the moduli space
of elliptic curves is a locally symmetric space. Any symmetric space
can be decomposed into irreducible symmetric spaces. There are three
types of irreducible symmetric spaces: Euclidean, compact and non-
compact, where the latter two are related by an interesting duality.
An example of such dual spaces are the two-sphere and the hyperbolic
plane. Due to their rich symmetry group symmetric spaces can be de-
scribed both differential geometrically as well as algebraically. We will
start from the differential geometric definition of (locally) symmetric
spaces and establish their relation with certain real Lie algebras with
involution. We study the structure theory of these Lie algebras and
of the corresponding Lie groups as well as the geometric properties of
compact and noncompact symmetric spaces. If time permits we will
also discuss the special class of Hermitian symmetric spaces which are
related to bounded symmetric domains. Throughout the course we will
see many examples of symmetric spaces and various geometric models
for them.

For undergraduates who would like to get credit for this course there
will be bi-weekly problem sets and a take-home final exam.

Literature

Background on Riemannian Geometry.

• Gallot-Hulin-Lafontaine [3]
• do Carmo [2]
• Kobayashi-Nomizu [5, 6]
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• Sakai [9]

Symmetric Spaces.

• Borel [1]
• Helgason [4] (”the bible”)
• Kobayashi-Nomizu [5, 6]
• Sakai [9]
• Wolf [10]
• Loos [7, 8] (another approach)
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