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which define a function F: R™ — R™: x = (x;, ..., %) = (Fy(x), ..., Fp(x))
where Fj(x) = f; (x). Also DF(x(p))is invertible so that by the inverse function
theorem we can write locally

xi=k(fiys s fids

where k,: R™ - R are C®. However, each fe F(p) equals G(x,...,x,)
locally, where G is C®, and using the above expression for x’s in terms of fi’s
we have the results.

To show (b) just note that for r = m we have df| , ..., df,, generate T,*(M)
if and only if they form a basis. Then we can use the above equations expres-
sing x; = k,(fy,....f) and f; = By{x,, ..., x,) to see f;, ..., f,, are coordin-
ates for some chart at p e M.

Exercise (3) Let U be open in R™ and let f: U — R be of class C™.
Compare Df(p) and df(p) for pe U.

S. Tangent Maps (Differentials)

In the preceding section we considered a C®-map ¢ from the manifold M
into the manifold R and noted that the differential df(p) is a linear map from
the tangent space T(M, p) into the vector space R = T(R, f(p)); this isomor-
phism uses example (2) of Section 2.4. We shall generalize this situation by
showing that a C®-map f: M — N between two manifolds induces a linear
map df(p) : T(M, p) — T(N, f(p)). However, by means of coordinate functions
this generalized situation reduces to that of the preceding section.

Definition 2.21 Let M and N be C*-manifolds and let f: M — N be a
C*-mapping. The differential of /' at p € M is the map
df(p) : T(M, p) — T(N, f(p))
given as follows. For L € T(M, p) and for g € F(f(p)), we define the action of
df(p)(L) on g by
[df(p)XD(g) = L(g = f).

REMARKS (1) We shall frequently use the less specific notation df for
df(p) when there should be no confusion. Also we shall use the notation

T7 = Tflp) = df(p)

and also call Tf{p) the tangent map of f at p. This notation is very useful in dis-
cussing certain functors on categories involving manifolds.
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(2) We note that for g € F(f(p)) the function g o fis in F(p) so the opera-
tion L(g < f) is defined. We must next show Tf(L) is actually in T(¥, f(p)) by
showing it is a derivation. Thus for g, k € C*(f(p)),

TAL)ag + bh) = L(a(g > f) + b(h - f))
=al(g<f) + bL(h-f)
= a[TAL))(g) + bITAL)I(h)
and the product rule is also easy.

The following result shows that df(p) is the correct generalization for
Df(p) of Section 1.2, where f': U— Wisa C®-map of an open set U in R™ and
W is some Euclidean space.

Proposition 2.22 Let f: M — N be a C*-map of C®-manifolds and let
p € M. Then the map
Tf(p) : T(M, p) ~ T(N, f(p))

is a linear transformation; that is, Tf(p) € Hom(T(M, p), T(N, f(p))). Further-
more if (U, x) is a chart at p and (¥, y) is a chart at f(p), then Tf{p) has a matrix
which is the Jacobian matrix of f represented in these coordinates.

PrOOF Let X, Y e T(M, p). Then for a, b € R and g € F(f(p)) we have
[TlaX + bY))(g) = (aX + bY)(g - f)

=aX(gof)+bY(g-f)
= [a TA(X) + b T(Y)](9)

so that TflaX + bY)=a Tf(X) + b Tf(Y). Next let x=(x,,..., x,) and

¥ =(¥1, ..., ¥,) be the given coordinate functions so that we can represent

fin terms of coordinates in the neighborhood ¥ by

Si=weef =%, ..., Xy for k=1,...,n.

Now let 8/dx; = d{p) and 8/dy; = 8 f(p)) determine a basis for T(M, p) and
T(N, f(p)), respectively. Thus to determine a matrix for Tf we compute its
action on the basis d/0x; in T(M, p). Let

- Tf(0/0x;) = 3. b;; 0/0y;

be in T(N,f(p)). Then we evaluate the matrix (b;;) using the fact that y,
F(f(p)) as follows
0fi/0x{p) = 0dD)(¥x o f)
= [Tf1 (ai(P))](.}’k)
= E bji 5(J’k)/ayj' = by,

using d(y,)/8y; = dy;. Thus (b;;) = (0f;/0xp)) is the desired Jacobian matrix.
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Proposition 2.23 (Chain rule) Let M, &, and P be C*-manifolds and let
SiM-—-N and g NP
be C*-maps. Then for pe M,
T(g < f)(p) = Tg(/1p)) - Tfp)

which is a composition of homomorphisms of tangent spaces.

Proor Let X e T(M, p) and & € F((g = /)(p)). Then using definitions and
df(p)X € T(N, f(p)) we have

[T(g o Up)X1(h) = X((hog)of)
= [df(p)X](k - g)
= [dg(f(p)) (dfip)) X )(h)
= [Tg(f(p)) - TADX](h).

Remarks (3) If Uis open in a C®-manifold M, then U is a C®-sub-
manifold such that the inclusion mapi: U—= M : x = x1is C*. Alsoforu e U,
Ti(w): T(U, u) > T(M, u) is an isomorphism and we identify these tangent
spaces by this isomorphism.

Many of the preceding results on submanifolds can be easily expressed in
terms of tangent maps and are usually taken as definitions. Thus let M and
N be C*-manifolds of dimension m and r, respectively, and let

fiTM—-N

be a C*-map. Then we have the following results,
The inverse function theorem can be stated as follows: If p € M is such that

Tf(p) : T(M, p) - T(N, f(p))

is an isomorphism, then m = n and f is a local diffeomorphism. Thus there
exists a neighborhood U of p in M such that

(1) f(U)is open in N;
(2) f: U—f(U) is injective;
(3) the inverse map f 1 : AU) - Uis C*.

We now consider separately the injective and surjective parts of the above
homomorphism Tf{p); this was discussed in Section 2.3.

We have f'is an immersion if and only if Tf(p) is injective for all p e M. In
case f'1s injective, /' is an embedding. Also f{M) is a submanifold of N if /is an
embedding and if f{M) has a C*®-structure such that /: M — f{M) is a diffeo-
morphism. Thus from preceding results we have that the following are
equivalent:
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(1} Tf(p) is injective;

(2) there exists a chart (U, x) at p in M and a chart (V, ) at f(p) in N
such that m <nand x; =y,offori=1,...,mand y;o f=0forj=m+ 1,
cey B

(3) there exists a neighborhood U of p in M and a neighborhoed ¥V of
f(p) in ¥ and there exists a C*-map g: V' — U such that flU)c Vand gof

is the identity | U.

A C®-function f: M — N satisfying (1) at pe M is called regular at p.
If fis regular at every p € M, then it is also called a regular function.

We have fis a submersion if and only if Tf{p) is surjective for all pe M.
Also the following are equivalent:

(1) Tf(p) is surjective;

(2) there exists a chart (U, x) at p in M and a chart (¥, y) at f(p) in N
suchthat m >nand x;, =y;offori=1,...,n;

(3) there exists a neighborhood U of p in M and a neighborhood V of
f(p) in N and a C*-map g: ¥V — U such that f(U) > V and f = g is the iden-
tity | V.

Using the surjective nature of Tf(p) we reformulate Proposition 2.13 and
construct submanifolds using the following version of the implicit function
theorem: Let f: M — N be a C*-map of C*-manifolds and let m = dim M >
dim N =mn. Let g ef(M) be a fixed element and let

FUg)={peM:f(p)=4q)}.

If for each p e f~'(g) we have Tf(p) : T(M, p) > T(N, f(p)) is surjective, then
F~Y¢) has a manifold structure for which the inclusion map i:f (g) —» M
is C™. Thus f~'(g) is a submanifold of M. Furthermore the underlying
topology of the submanifold £ ~*(g) is the relative topology and the dimension
of £~ Yg) is m — n.

Examples (1) We next consider the special case of f: M — N where
M =R or N =R. First let N = R; that is, f'e C®°(M). Then combining the
notation of Sections 2.4 and 2.5 we have Tf(p) = df(p) and for X € T(M, p)
we have Tf(p)(X) e T(R, f(p)) = R. Thus for u: R — R : t — ¢ the coordinate
tunction on the manifold R, we have for some ae R

TAp)X = a(d/du)

and as before a = a(d(u)/du) = [Tf(p)X (1) = X(u - f) = X(f), using u(r) = t.
Consequently the map '

T(R,f(p))— R : ald/du) > a
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is the isomorphism which yields

Tf(p): TM, p) - R;
that is, which yields the cotangent space.
(2) Next consider f: R — M formulated in terms of curves. Thus let
I'=(a, b)andleto : I - M bea C®-curve which admits an extension & : (a — &,

b+ &) » M (Definition 2.14). The tangent vector to a at te / is denoted by
d(t) and defined by

a(t) = [Tu(2)(d/du),
where #: R — R is the coordinate function discussed above.

Now let X e T(M, p). Then there exists a curve o : I — M, where [ is an
interval containing 0 € R such that «(0) = p and &(0) = X, for let (U, x) be a
coordinate system at p with x(p) = 0 and find a curve f: R —» x(U) = R™ with
B(0) = 0 and B(0) = [Tx(p)}(X); that is, f a straight line. Then o = x7 1o B is
the desired curve

4(0) = [T(x"" = BY0)](d/du)

= Tx Y(x(p)) - f(0),  using the chain rule and x(p) =0

= Tx~!(x(p)) - [Tx(P)X) = X
and

a(0) = x~(B(0) = p.
Also for f'e F(p) we have
X(f) =a(0)f)
= [(Tu(O))(d/dw))(f) = ddu(0)(f o ).

Let (U, x) be a chart on M and let a: (g, b) = U< M be a C®-curve as

above. Then for ¢ € (a, b) we can represent
(1) = [Tu(O)(d]du) = ) a;, O (1)) € T(M, (1))

and evaluate the coefficients a, = g(f) using the dual basis of differentials as
follows.

a; =dx {3 a, d;)
= dx(¢)
= dx;[do(d]du)], notation
= d(x, o a)(d/du), chain rule
= dfdu(x; - a),
where we use the definition of differential of a function applied to a tangent

(note paragraph following Definition 2.19). Thus as in calculus the tangent
vector to a curve u is obtained by differentiating its coordinate representation.
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(3) Consider the special case when M = G =GL(n, R). We shall con-
struct an explicit vector space isomorphism of g = gi(n, R) onto T{G). Thus
for any fixed X e g let

d:R—>G:t—exptX.
Then « = & and define an element X € T(G) by
X(f) = a0)(f)

for any fe F(I). From the preceding example we actually have X e T{G)
since o(0) = I. Next note that

X(f) = [(T0))(dd/du)]( /)
= dJdu(0)(f > o))
= lim [flexp tX) — f(1)]ft

=0
= [DADX). (+)
Now define the mapping
p:9-T(G): X > X,

where ¢ is well defined and for X, Y e g and a, b € R we use Eq. (*) to obtain,
for any fe F(I),

elaX +bY)f)=aX +bY(f)
= [Dfi)(aX + bY)
= aDf(I)(X) + bDAI)(Y)
=aX(f)+ bY(f)
= [ap(X) + bo((/)
so that ¢ is a vector space homomorphism. Next suppose X =0 and let
Uy, ..., U4, (m=n*) be coordinates in g (=R™) corresponding to a basis
X000 X, of g. Let X=3 x,X,eg with X)=X=0 and let f; =
u; o log € F(I) as previously discussed. Then f({) = 0 and since X =0,
0= )_(fi
—lim [fi(exp tX) — f(DIt,  Eq. ()
t—=0

= X;

so that X = 0 and ¢ is an isomorphism. We frequently omit this isomorphism
and just use the most convenient identification for a given problem.
(4) Let f:G— G be a C*-automorphism of G = GL(V). Then from
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Section 1.6 we see that the “tangent map* Df(J) is an automorphism of the
Lie algebra g = gl(V). Thus relations on the Lie group are translated to
relations on the Lie algebra by the tangent map.

6. Tangent Bundle

In this section we shall show how to make the collection of tangent spaces
of a manifold into a manifold. We also discuss mappings of such manifolds
and use them to define vector fields in the next section,

Definition 2.24 Let M be a C*-manifold of dimension m and let
T(M) = | J{T(M, p) : p e M}
which is a disjoint union. We call T(M) the tangent bundle of M.

We now make T(M) into a manifold (Fig. 2.10). We shall frequently
denote the points of T(M) by the pairs (p, ¥) where pe M and ¥ e T(M, p);
the p is unnecessary in this notation but convenient. First T(M) is a Hausdorff
space as follows. Let

n:TM)—-M:(p, Y)—p

be the projection map. For (p, ¥) € T(M) let (U, x) be a chart at p in the atlas
o/ of M. Then n~"(U) ={(q, X) e T(M) : ge U}. Now if (g, X) e n~}(U),
then in terms of coordinates x(q) = (x;(9), ..., x,(¢)) and X =Y a; 8/dx,(q),
where a, = a;(g). The map

QSU . ﬂ:il(U) 8 R2m : (q: X) _’(XI(CI): * i xm(q)s al LR R ] am

is injective and there is a unique topology on T(M) such that for all (U, x) € .7,
the maps ¢; are homeomorphisms (why ?). This topology defined by the sets
7~ 1(U) can easily be seen to be HausdorfT using the fact that M and R™ are
Hausdorff. Also note that since M has a countable basis of neighborhoods,
then so does T(M).
Next we define a C™-atlas on T(M) so that the projection map
n: T(M)—> M is a C*-map. Thus for each (p, ¥)e T(M) let n~(U) be a
neighborhood of (p, ¥) where (U, x) is a chart at p and let ¢(U) = ¢y, :
7~ }(U) - R*™ be the above homeomorphism. We claim that (n~'(U), $(U)) is
achartat (p, ¥). Thus we must show any two such coordinate neighborhoods
are compatible, Therefore, let (U, x), (V, ) be charts at p where the x and y

6. TANGENT BUNDLE 75

are C®-related by x =f(y) on U F; that is, f=x0oyp 1. Now in terms
of coordinates let x, = fi (V15 -5 Yuhs
¢(U) (Z‘,---,Zmaszﬂ,--A,sz)a q‘)(V)=(W1=---:wmsmerla"':Wlm)

where
zgq, X) =x{q) for i=1,...,m,

Zivmlg X) = a; for j=1,...,m,

and similarly wig, X) =yq) for i=1,...,m and w;,(q, X) = b, where
= 2 b; 0/dy{q).
Now for (g, X) e n Y{(U) n =~ (V) we have first fori=1, ..., m
zi(q, X) = x,(q) :f.‘(h@)a cees ym(@)) =fi(w1(€.’s X), .o walg, X))
so that the first m coordinate functions are C*-related. Next forj=1,..., m
and for X =) a, 8/dx,(g) we note that

Zj+m(‘?= X) = aj(q) = X(xj) = de(X)
and similarly dy{(X) = w;.,(¢. X) for j=1, ..., m. Thus by the transforma-
tion law for differentials (note remark following Proposition 2.18),

Ziwmlg, X) = dx(X) = Z 0x;/8y(q) dyi(X)
= Zk:fjk(Jﬁ(‘?): oo V) dyy(X)
= z.f_;‘k(wl(qa X)a 2 iy wm(q’ X))ern-%—k(q? X)
%

which is a C®-relationship where f, = df;/éy, recalling x; = fi(yy, - s V)
Thus all the coordinates are compatible. The Hausdorff space T(M) with the
maximal atlas determined by the above charts is a C*-manifold and we shall
always consider the tangent bundle with this C™-structure.

Finally we note that the projection map n: T(M) — M : (p, Y} —»pis C*.

For let (U, x) be a chart at p and let ¢(U) =(z, ..., z2,,) be a coordinate
system at (p, ¥) as above. Then in terms of coordinates, x; o n(g, X) = z/(q, X)
for i =1, ..., m which.shows that the coordinate expressions x; o 1 = z; are

C* (see Fig. 2.10).

T M)

(p,X)

Fig. 2.10.
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We now discuss real vector bundles [Lang, 1962; Loos, 1969].

Definition 2.25 A vector bundle E over a C®-manifold M is given by the
following.

(a) Eisa C*-manifold.

(b} There is a C*-surjection = : E — M called the projection map,

(c) Each fiber E, = n~'(p) has the structure of a vector space over R.

(d) Eis locally trivial; that is, there is a fixed integer » so that for each
p € M there exists an open neighberhood U of p such that U x R is diffeo-
morphic to =~ (U) by a diffeomorphism ¢ so that the accompanying diagram
1s commutative, where pr; is the projection onto the first factor; specifically,

Ux R 2, n~{(U)
I-R /
U

n e (g, X) = q. Furthermore we require for each g € U that ¢(g, )isavector
space isomorphism of R” onto E, = n~'(g).

Examples (1) E=T(M) the tangent bundle where n=m and
R"=T(M,p)=E,.
(2) Let M be a C*-manifold and let

T*M) = {T*(M, p)} : p e M},

which is called the cotangent bundle. Then analogous to the construction of
T(M) we make T*(M) into a C*-manifold. Thus for E = T*(M) we see that
T*(M) is a vector bundle and E, = n~!(p) = T*(M, p).

Definition 2,26 Let M and N be C*-manifolds and let E and E’ be vector
bundles over M and N, respectively. A bundle homomorphism is a pair of
(surjective) maps (F, f) such that:

(a) F:E—E andf: M — N are C*-maps;
(b) the accompanying diagram is commutative; that is, 7' o F=fon.

E L, g

M—T—"N‘
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Thus for each p e M, F(n™'(p)) = (o))" '(f(p)).

(c) For each p € M, the restriction F': E, — E',, of the fibers is a linear
transformation of the corresponding vector space structures. Also (F,f) is a
bundle isomorphism of E onto E’ if it is a bundle homomorphism such that
the maps F and f are surjective diffeomorphisms. It is easy to see that in this
case the pair (F 1, f~1) is a bundle isomorphism of E’ onto E.

Examples (3) Letg: M — N be a C*-map. Then we define the map
T(g) : T(M) - T(N) : (p, X) - (9(p), [T(g)P))(X))

where X e T(M, p) and therefore [T(g)(p)I(X) € T(N, g(p)). Then (Ty, g) 1sa
bundle homomorphism of T(M) into T(NN) because the diagram

T(M) —2— T(N)

M — N

q

is commutative and T(g)(p) : T(M, p) — T(N, g(p)) is a vector space homo-
morphism.

Next note if we also have another C*-map #: L — M of manifolds, then
geh:L— Nisa C®map and

T(g = by = T(g) » T(h) : T(L) > T(N),

so that (T(g = k), g © &) is a bundle homomorphism. Thus T can be regarded
as a covariant functor from the category whose objects are manifolds and
morphisms are C™-maps into the category whose objects are vector bundles
and morphisms are bundle homomorphisms [Loos, 1969].

It will be easy to see later that if G is a Lie group, then the tangent bundle
T(G) is a Lie group and is isomorphic as a vector bundle and as a Lie group
to the Lie group g x G (semi-direct product) where g is the Lic algebra of G.
Thus the tangent bundles which we want to consider are of a relatively
simple nature.

Exercise (1) Let M and N be C®-manifolds and let M x N be the
corresponding product manifold. Show the tangent bundle T(M x N) is
bundle isomorphic to T(M) x T(N).
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7. Vector Fields

We have previously discussed the coordinate vector fields &; = é/éx; and
saw that they were functions defined on a neighborhood U of p € M which
assigns to each g € U a tangent vector d,(q) € T(M, q).

Definition 2.27 Let M be a C*-manifold and let T(M) be the correspon-
ding tangent bundle. A vector field on a subset A = M isa map X : 4 — T(M)
such that m o X' = idy| 4. Thus X assigns to each p € 4 a tangent vector X(g),
where X(g)e T(M, ¢), but such that p =idy(p) = (n « X)}(p) = ﬂ(X(q)) =gq.
That is, the tangent vector assigned to p by X is actually in T(M, p). Also X
is a C®-vector field on A if A is open and if for each fe C*(A4) the function
Xfis in C*(A) where we define Xf by the action of the corresponding tangent
vector: (Xf)(p) = [X(p))(f). Thus X'is C* on M if and only if X : M — T(M)
i1s a C*-mapping of manifolds.

Example (1) Let M = R? and let A = B(0, r) the open ball of radius r

and center 0. Then with coordinates u, , u, on 4 a C™-vector field X on 4 can -

be written
X =a,(uy, uy) 0/0uy + ay(uy, uy) 6/0u,

where the ¢; and a, are C*~functions on 4 as shown below. Thus a C®-vector
field is a well-behaved variable tangent vector.

REMARKS We now consider a vector field on M locally in terms of co-
ordinates. Thus let (U, x) be a chart on M with U open in M, then we have
the following.

(I} The coordinate vector fields @; = d/dx; are C®-vector fields on U.
This follows from the previous discussion: 8,p)e T(M,p) so that
(w2 0;) (p) = p. Next if fe C*(U), then g =fox~!: x(U)— R is C® on the
open set x(U) = R™. Also 0,(f) = dg/du; o x is C® on U where u,, ..., u,
are coordinates on R™.

(2) If Xis a C*-vector field on U, then there exist functions a; € C*(U)
such that X =} g; ¢; on U. Furthermore the a;, = X(x,;). Thus the functions
a; . U— R exist because for each g € U, the tangents é,(q), i =1, ..., m, form
a basis of T(M, q) and X(q) = }_ a;(q) 9,(q) for some a,(q) € R. The a, are C*
since G(x;) = d; and a; =) a, 8,(x;) = X(x,) which is in C®(U). Also note
that if X is a C*-vector field on M, then the restriction X|Uis a C*-vector
field on U and has the above expression in coordinates. Thus summarizing
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we see that a vector field X is C* on M if and only if for every chart (U, x) the
corresponding component functions a; = X(x,) are in C*(U),

The following result is frequently taken as a definition [Helgason, 1962].

Proposition 2.28 We have that X is a C*-vector field on M if and only
if X is a derivation of the algebra C*(M) into C*(M).

Proor Foreach f,ge C*(M) and a, b € R the properties
X(af + bg) = aX(f) +bX(g) and  X(fg)=(Xf)g +/(Xg)

follow from the corresponding properties for tangents (Definition 2.16). Also
by definition X 1s C* if and only if Xfe C*(M).

We have seen that a C®-vector field X on M restricts to a tangent X(p)
and we now consider the converse of extending a tangent to a vector field.

Proposition 2.29 Let M be a C*-manifold and let XeTWM, p). Then
there exists a vector field X which is C* on M such that X(p) = X.

ProoF We can choose a chart (U, x) at p such that X =3 b, 8,(p). Thus
defining the constant functions @;: U— R :gq—b; we see that Y =3 a,d,
is a C™-vector field on U such that X = ¥(p). Now let ¢ : M - R be a C*®
“bump function™ at p; that is, from exercise (6), Section 1.4 we have
pe D< U, where D is an open neighborhood of p and the C*-function ¢
satisfies 0 < d(x) <1 for all xe M and ¢(g) =1 if ge D and ¢(x) =0 if
x e M — U. Then we define ‘

= (oY on U,
X = {0 on M—U.

Thus X(p) = ¢(p) Y(p) = X and by construction X is a C*-vector field on M.

Example (2) For the manifold G = GL(V) we identified irLSection 2.3,
T{G) with g = gl(V) and for X € g we define a C*-vector field X on G by its
action on fe C®(G)atpe G

&N = X(f = L(p)) = [TL(p)T) - X)(S)

where L(p) : G — G : g — pg. Then X is C* since the right side_pf the equality
consists of C*-operations and note (X/)(f) = X(f) so that X(I) = X. Also
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X(p) = [TL(p)(I)]1 X € T(G, p) so that [zo X](p) = p which shows X is a
vector field. Using (%) of example (3), Section 2.5 we have

&) = X(f- L(p)

_ iy o @)(exp £X) — [fe L(p)I7)

=0 t
s f(p exp 1X) — f(p)
= lim .

t=+0

d
=5/ exp tX)]=0-

We shall let D(M) denote the set of all C*-vector fields on M. Then we
have the following algebraic results concerning these derivations

Proposition 2.30 (a) D(M) is a Lie algebra over R relative to the
bracket multiplication [X, Y] = XY — YX.
(b)y D(M) is a left F-module over the ring F = C*(M).

Proor (a) Clearlyif X, Ye D(M) and a, be R, then aX 4+ bY € D(M)
by just checking the properties of a derivation. Next we shall show
[X, Y]= XY — YXis a derivation

LY, YI(fg) = XI(¥f)g + f(Yg)] — Y(Xf)g + f(Xg)]
= (XYf)g + (Y[} Xg) + (Xf)(Yg) + /(X ¥g)
— (YXf)g — (Xf)(Yg) — (Y} Xg) — (¥ Xg)
= ([X, Y1) + ALX, Ylg).

The multiplication [X, Y] is bilinear and satisfies [X, ¥] = —[Y, X]. Also the
Jacobi identity

[X,[Y, Z]]+ Y, [Z, X]]+ [Z,[X, Y]]=0

is a straightforward computation which is always satisfied for the bracket of
endomorphisms.

(b) Tt is easy to see that the various defining properties of a left medule
are satisfied; for example, (f+ @)X =fX + gX or (fg)X =f(gX) forf,ge F
and X e D(M). However, note that D(M) is not a ““ Lie algebra ™ over F since
for “scalars” f, g e F we do not obtain the correct action relative to the
product

[fX, gY]=fglX, Y]+ f(Xg)Y — g(Y/) X # fg[X, Y].
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RemArRk If for a chart (U, x) on M welet X =) a,0;and ¥ = Y. b, 6
be in D(U), then for any fe C*(U), (XY)f) = X(¥f) e C*(U) and

(XY)(f) = ; X(be 0,(1))

- (a 2% 2 +bkai7‘32—)(f)

S\ ox; Ox, &x; dx;,

which shows XY is not a tangent vector. However because the order of
differentiation can be interchanged, the second-order derivatives vanish in
[X, Y]

Example (3) Letu, u,, u; be coordinate functions on M = R? and let
XN=u,0; —uy0,, Y=u38 —u 04, Z=u 0; —uy0,.

Then X, Y,Z are linearly independent (over R) C®-vector fields and the
vector space L spanned by X, Y, Z is a Lie algebra because the products

[X.Y]=—-Z2, [Y,Z]= —X, [Z,X]=-Y

are all in L.

Next we consider the action of a C®-map f: M — N on vector fields. First
we note that finduces a map Tf(p) : T(M, p) —» T(N, f(p)) which maps tangent
vectors into tangent vectors. However, in general, it is not possible to map
vector fields on M into vector fields on N by Tf. Thus for any X e D(M)
define the map

TAX) : M — T(N) : p — [TAP)1 X(p)

noting that [Tf{(p)] X(p) € T(N,f(p)).
One would like to use (Tf)X to define a vector field over N or even over

f(M) by taking a point r = f(p) € N and defining [(Tf)X](r) to be [Tf(p)] X(p).
However, this is not always possible as shown by the following. Suppose
p#q but fip)=fg). Let Xe D(M) be a C®-vector field such that
Tf(p) X(p) # Tf(q)X(q) both of which are in T(X, f(p)). Then we can not assign
a unique value to (Tf)X at r € N by the desired process.

Exercise (1) Iff: M — Nis a difftomorphism, then show that a vector
field can be defined on N by the formula [(T)X]f~*: N — T(N).

Definition 2.31 Let : M — N be a C®-map and let X € D(M), ¥ € D(N)
be vector fields. Then X and Y are f-related if (T/)X = Y o f; that is, for all

peM, Tf(p) - X(p) = Y(f(p)).
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Thus if X and Y are f-related, then for every g € C*(N)

(Yg)of = X(gof),
for if p e M, then
[(Yg) > fl(p) = (Yo f(p)) = Y (f(p))g
=[Tf(p) - X(p)lg = X(p)g=f) = [X(g-=/)p).

Definition 2.32 let f: M —+ M be a C*-map and let Xe D(M) be a
vector field on M. Then X is frinvariant if X is f~related to X. Thus X “com-
mutes’’ with the action of f by means of the formula TfX = X o f; that is
TAp)X(p) = X(f(p))-

Another way of viewing the f~invariance of X is by noting that Tf(p) X(p)
and X(f(p)) are both in T(M, f(p)) so that the frinvariance of X means they

are equal.

Example (4) For G =GL(V) and Xegl(V) we defined the vector

field ¥ on G by (Xg)(p) = X(g > L(p)) where g € C*(G). Now for any a € G,.

X is L(a)-invariant. Thus let f = L(a), then for any g € C*(G)

[T X (01 9) = X(p) g = f)
=[X(gN(p)
= X((g /) L(p)), definition of X
= X(goL(a)-L(p)), usingf=L(a)
= X(g » L(ap)) = (Xg)ap) = [X(ap))( ).

Thus Tf(p)X(p) = X(f(p)); that is, TL(a)X = X o L(a). The vector field X is
called left invariant or G-invariant and will be used in yet another definition of
the Lie algebra of G.

Proposition 2.33 Let X, and ¥, , X, and Y, be f-related. Then [X;, X,]
is f~related to [Y,, Y,

Proor Since the X's and Y’s are frelated we have using the paragraph
following Definition 2.31 for any g € C*(N) that

Y5(Y19)f(p) = X,(Y1g9 = f)(p)
= Xz(XL(g °f))(P) = [X, X,(g = N(p).
Thus since a similar formula holds for ¥, ¥, we have

([Y1, Yalg)fip) = ([X1, X2)(g = /))(p)
so that [¥,, ¥,] is frrelated to [ X, X,].
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Proposition 2.34 Let f: M — N be a C®-map.

(a) If fis an immersion, then for every Y e D(N) there is at most one
X € D(M) such that X and Y are f-related. In this case the X e D(M) exists
if and only if for every p e M we have Y(f(p)) € Tf(p)T(M, p).

(b) If fis a surjection, then for every X e D(M) there is at most one
Y € D(N) such that X and Y are frelated.

ProoF (a) Let Ye D(N) and let X,Ze D(M) with Tf(p)X(p) =
Y(f(p)) = TA(p)Z(p). Then since Tf(p) is injective X(p) = Z(p); thatis, X = Z.
Now if X exists, then by definition Y(f(p)) = Tf(p)X(p) € Tf(p)T(M, p) and
conversely one can define X by X(p)= Tf(p)~" ¥(f(p)) and this defines a
vector field on M.

All that remains to show is that X is C*. Now since Tf(p) is injective we
have from Section 2.5 that for p € M there is a chart (V, y) at f(p) in N so that
(U, x) is a chart at p where x; =y;¢ffor i =1, ..., m. Now with these co-
ordinates we let X =) a; d; on U, then for g € U we have

afq) = X(x)(g) = [X(y; < /)(g)
= [(TFX)(y))g) = (TIX)NDI )
= [Y(A@)y) = [(Yn) = f)q)
which shows a; is C* because Yy, and fare C”.

The proof of (b) is a straightforward exercise.

Exercises (2) Let f: M — M be a C*-map. Show that the set of f~
invariant vector fields in D(M) is a Lie subalgebra of D(M).
(3) Let G = GL(V) and let g be an analytic multiplication on G; that is,

p:Gx GG (x ) > plx, p)
is an analytic mapping of manifolds. Now form the differential
Tu: T(G, x) x T(G, y) = T(G, u(x, y));
that is, for X e T(G, x) and Y e T(G, y) we have
[(Tu)x, DNX, Y) e T(G, u(x, y)-
(i) For X e T{G) = gl(V) show the map
I, X): G- T(G) : x = [(Tw(x, DO, X)
is an analytic vector field on G if and only if u(x, I} = x for all x € G;
(ii) Similarly discuss the function

(i, X): G- T(G) : x - [(Tw)(Z, x))(X, 0);
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(iii} In case u is the usual associative multiplication on G, compare the
vector fields /(u, X), r(u, X), and X of example (2).

(4) What can be said about a function fe C*(R™) such that [fX, Y] =
SIX, Y] for all C®-vector fields X, ¥ € D(R™) (note Proposition 2.30)?

8. Integral Curves

Let « be a C™-curve defined on (g, b) into M as discussed in Section 2.5.
Then the tangent vector &() is given by d(t) = [T a(d/du)](r) € T(M, «(t)).
Thus ¢ : (a, b) = T(M) is a C*-map such that the accompanying diagram is
commutative,

(@ b) —— TWM)

1,,
[+ 4
M

Definition 2.35 Let M be an m-dimensional C®-manifold and let X be
a C*-vector field on M. An integral curve of X is a C*-curve a: (a, b)) > M
such that the tangent vector to « at each t € (a, b) equals the value of X at
a(t); that is, a(t) = X(a(t)) all ¢ e (a, b). Thus the accompanying diagram is
commutative.

(@, b) —— T(M)

M

In terms of a chart (U, x) of M we have from Section 2.5,
&= d(x;oa)dtd,
and writing X in coordinates on U

X=Za,-5i
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we obtain « as an integral curve of X if and only if
dx;ca)fdt =ax;od, ..., X, 0°0) for i=1,...,m

We now summarize the facts we shall need concerning the solutions of
such differential equations and the proofs can be found in the work of
Dieudonné [1960] and Lang [1968].

Proposition 2.36 Let U ‘be an open subset of R™, let pe U, and let
a,e C*(U)fori=1,...,m. Then

(a) there exists an open neighborhood D of p with D < Uj;

(b) there exists an open interval (—¢&, €) = R;

(c) thereexistsa C®-mapf:(—e¢, &) x D— U:(t, w)— f{t, w) such that
for each w € D the function a,,: (—e¢, &) > U: t - f(t, w) with o; = u; ° &, for
i=1,..., m satisfies

(i) doifdu(t) = afay(), ..., an(1)) all te (—e, &), and
(i) a(0) = w,; where w; = u(w).

Moreover if &, : ( — &, &) » U with (— &, &) = (— ¢, ¢) satisfies (i) and (ii), then
&, =a,|(—E &).

Thus the unique solutions to the above differential equations depend in a
C™-manner on the initial conditions. We now translate these facts to mani-
folds [Bishop and Goldberg, 1968 ; Singer and Thorpe, 1967].

Theorem 2.37 (a) Let M be a C*-manifold and X e D(M) a C*-vector
field on M and let p € M. Then there exists an open neighborhood D of p
in M and an open interval (—e, &)= R and a C®-map f: (—¢&, &) x D> M
such that for each we D the curve

o, {—¢& &) > M:t—f(t,w)

is the unique local integral curve of X defined on (—e¢, &) with ,(0) = w. In
particular «, is a local integral curve through pe M.

(b) For each te(—g, g) the C*-map ¢(f) given by ¢(t): D> M : w—
e, w) satisfies:

(i) if s,¢t and s+t are in (—e¢, &), then ¢(s+ 1) = ¢(s) = ¢(f) on
¢~ (D) N D;
(i) ifte(—e, &), then ¢p(f) L exists on D n H(O)(D) and H(H)~" = d(—1).
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A map ¢ :(—e, &) x D— M such that ¢(¢) satisfies (i) and (ii) above is
called a local one-parameter group on M.

ProorF (a) Let (U, x) be a chart at p in M and let U’ = x(U) = R™.
Then on U’ we have X =) g, 8; where a; e C*(U’). By Proposition 2.36,
there exist D' c U’ and (—¢,8) < R and [ :(—¢, &) x D' = U’ with the
desired properties which can be translated back to M by x 1.

(b) We use the uniqueness part of Proposition 2.36 as follows. For fixed
te(—e, &) the curves u(s) =f(s+1t, w) and v(s) = f(s, ¢(r)(w)) are integral
curves of X defined on a subinterval of (— ¢, &) which contains 0 and by the
initial conditions we have w(0) =v(0) =f(t, w). Thus by the uniqueness

u = v; that is, ¢(s + t) = @(5) o H(1). Also H()~* = H(—1).

The preceding results on differential equations are also true when C® is
replaced by “analytic.” Furthermore, if the vector field depends analytically
upon a parameter, then the integral curve does also as follows.

Definition 2.38 Let M be an analytic manifold and let ¥ be a Euclidean
vector space over R. Let 4 denote an element in ¥ and let X(4) be an analytic
vector field which is a function of 4 € V. Then X(A4) depends analytically on
the parameter 4 € I if for any p € M and any function f analytic at p, the
mapping Dom(f) x ¥V — R : (g, 4) — [X(A) /)](q) is analytic.

Using the results of Dieudonné [1960] and Lang [1968] on this dependence
we have the following.

Theorem 2.39 Let M be an analytic manifold, ¥ a Euclidean vector space
over R, and X(A) an analytic vector field which depends analytically upon
the parameter A € V. Then for any p € M, there exist an open interval (— g, &)
< R and an cpen convex neighborhood U of 0 in ¥ and an analytic map
u:{—e ey x U—=M:(t, A) — u(t, A) which is the unique local integral curve
of X(A) through pe M.

Proor Since this is a local result, we can assume M is an open set in
R™ so that the vector field X(A) can be represented by analytic functions
af(x,A) on MxV for i=1,...,m; that is, X(4)=) a;8 where
a;: M x V— R are analytic. Thus we now have as before a system of (para-
meterized) differential equations for the integral curve, and the results follow
from Dieudonné [1960, Theorem 10.7.5], for example.

Exercise (1) Show that the vector fields X, Ky, X), and r(u, X) in
exercise (3), Section 2.7 depend aqa]ytically on the parameter X e gi(¥).

8. INTEGRAL CURVES 87

Example (1) Let p=(0,0)e R* =M with coordinates (u,,u,) and
let X' = 8; + exp(—u,) d, be a vector field on all of M. Then the equation for
the integral curve o is

doyfdt = 1 and doyJdt = exp(—a,).

Let D={(x,y)e R*: —1 <y <1} be an open neighborhood of p and let
¢ =e 1. Then for t € (—¢, ¢) and for w = (w;, w;) € D, the C*-map

fi(—¢&e)x Do M:(t,w)—>(t + wy, log(t + exp w,))
is such that
a,(t) = (0‘1(3); O‘z(’))
with
) =t+w;,  and  oy(f) =log(t + exp w,)

is a solution to the above equation with «,(0) = w.

Remark Theorem 2.37 gives only local existence and uniqueness of
integral curves and it is not always possible to find global curves; that is, it is
not always possible to extend the domain (—eg, ¢) to all of R. Thus, for ex-
ample, let M = R* — {(0, 0)} with coordinates (u; , u;) and let X = 8, . Then
the integral curve a(t) of X through (1, 0) is «(t) = (¢ + 1, 0) which cannot be
extended to a curve in M defined on all of R because (0, 0) is not in M.

Let M = R? and let X = —u, &; + 1, 9, be a vector field on M. Then the
general form for the integral curve a,,(f) is

o, (1) = (wy cos 1 — w, sin £, w, cos { + wy sin 1)

and «,,(0) = w. Note that «,(¢) is defined for all t € R.

Definition 2.40 A vector field is complete if all its integral curves have
domains all of R.

Exercise (2) Show X = —u, d; +u; 0, is complete on R% Is X =
exp (—u;) d; + 8, complete on R*?

Examples (2) Let G=GL(V) and let g=gl{(V) be identified with
T;(G). For X € g we have defined the G-invariant vector field X by (Xf)(a) =
X(f o L(a)) for all ae G and fe C*(G). Let E,; be the usual matrix basis of
End(V) which gives coordinate functions u;; on G; that is, u;;(a) = (g;;). We
write X = > X;; 0/0uy; so that X;; = X’(uu) are in C*(G) and we now compute
the coordinate functions X;;.

For a, x € G we have

(uy; ° L(@)(x) = uyj(ax) =k§1 ug @)y (x),
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using matrix multiplication. Thus applying X to this formula for u;; o L(a) we |
have

X(uij o L(a)) = X(; U@ty ‘
= Zk ”ik(a)X(”kj) = ; uik(a)xkj )

where we write X = Y x;; 6/0u;(I) € g and have x,, = X(up) = Xp(I). Thus
letting f = ;; in the definition of X we obtain
Xij(a) = (fuij)(a)
= X(“ij g L(ﬂ)) = ; unl@)xy;» (%)

so that the equation for an integral curve « of X is
d(uy; o o)fds = (uy © o)Xy for i=1,...,m
k

From example (2) in Section 2.7 on X we have

(ZF)(p) = df(p exp tX)/dE] =0
so that for p = g exp sX we have

(Xf)g exp sX) = dflg - exp(s + DXV/dt| =0
= df(g + exp uX)/du| -, = df(q * exp sX)/ds, '
where associativity is used in the first equality. Thus forg =1 and f=u;; we
have
du,j(exp sX)/ds = (Xuy;)(exp sX) = Y. ugexp sX)x ‘
k 1

using (*) above for the last equality. This shows that os) = exp sX is the
solution of the equation for the integral curve of X

dotylds = DT, and o(0) =1,
%

where o;; = u;j ° o In terms of the given matrix X = (X;;) this equation can
be written: da/ds = o X which yields «(s) = exp sX which is a one-parameter
group defined on all of R. If the initial condition is changed to «(0) = 4, then
for ¥ we obtain the integral curve o,(s) = A * exp sX and o« ,(0) = A. From
this we see X is a complete vector field on G.

(3) We now consider a Taylor’s series expansion for a real-valued an-
alytic function f on the analytic manifold G = GL(V). Thus let Xegand X
be as in the preceding example and let £ be analytic at p e G. Then from this
example we have

df(p exp sX)/ds = (Xf)(p exp sX) = [X(p exp sX)1(f)
and by induction

Pl exp sX)/ds" = [£(p exp sOUX (1)) = (RF Xp exp ). '
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Thus if we write g(s) = f(p exp sX), we have, since g is the composition of
analytic functions, the power series in a suitable interval containing 0 € R

ay
g(S) =5 z 1? s,
where the g, € R are computed by differentiation as usual

a, = d"f(p exp sX)ds"| ;=0 = (XN)-

Thus if we define the operator formula
& o g X"f
[(exp sX)(N))(p) = Z,O =T (),

we obtain the following version of Taylor’s formula for GL(V)

f(p exp sX) = [(exp sX)H)p).

Exercise (3) (i) Consider the C®-vector field on R* defined by

X(p) = p (8/0x,)(p) + P (0] 9x,)(p) + p1 (6/0x3)(p)

where p = (py, P2 P3) Find the integral curve a(f) of X so that o(0) =
(=1,1, 1).

(i) Let the C*-vector field on R® be given by Y(p) =piP2 (8/0x3)(p).
Compute [X, Y](p).



