CHAPTER 2

MANIFOLDS

A manifold is a topological space where some neighborhood of a point looks
like an open set in a Euclidean space. Thus we are able to translate the cal-
culus of the preceding chapter to this type of a space and we develop the
formalism in this chapter. In the first few sections we consider differentiable
structures, the definition of a manifold, and real-valued differentiable func-
tions defined on a manifold. Next we consider submanifolds and how they
arise from the inverse function theorem; we give many examples of sub-
manifolds which are subgroups of GL(n, R). The derivative is generalized to
a tangent at a point p in a manifold M and then the vector space spanned by
these tangents generalizes the tangent plane of a surface. As the point p varies
over M we obtain a variable tangent vector which is formalized via vector
fields. We give many examples concerning GL(n, R) which will be abstracted
in later chapters; in particular we consider the invariant vector fields on
GL(n, R) and their integral curves.

Most of this chapter is used in the rest of the book and the reader who
knows this material need only look at the examples. However, if one is un-
familiar with manifolds it might be best to read through Section 2.3, then read
Chapters 3 and 4 for applications before finishing this chapter. The reader
should note that we are assuming a neighborhood of a point is an open set in
the space.
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1. Differentiable Structures

We now extend the basic concepts of Euclidean space to a topological space
which locally looks like Euclidean space via suitable choices of *‘ coordinates.”

Definition 2.1 (a) Let = R™andlet X, ..., X,, be a basis of V' so that
we can represent any point p =y p, X, € ¥ uniquely. Relative tothis basis, we
define coordinate functions #; for i=1, ..., m on R™ by

u;: R > R:Yp X, > p,.
We shall frequently use the usual orthonormal basis ey, ..., e,, to obtain the
usual coordinates u; given by u(a,, ..., a,) =a;.

(b) Let M be a topological space and let p e M. An m-dimensional chart
at pe M is a pair (U, x), where U is an open neighborhood of p and x is a
homeomorphism of U onto an open set in R™. The coordinates of the chart
(U, x) are the functions x; for i =1, ..., m given by

x;=u;ox:U->Rig-xq),
where x,(q) = ui(x(q)) and the u; are coordinates in R™. We frequently write
x=(xy,...,x,). The set U is called a coordinate neighborhood and (U, x) is
called a coordinate system at p € M.

Definition 2.2 An m-dimensional topological manifold M is a Hausdorff
space with a countable basis such that for every p e M there exists an m-
dimensional chart at p. In this case we say that the dimension of M is m.

Thus in particular we can find a covering of M by open sets and each open
set U in the covering is homeomorphic to the open m-ball B,, ={ae R™:
lal < 13}.

Examples (1) Any open subset N of R™ is a manifold of dimension m,
since N itself is a coordinate neighborhood of each of its points and the
identity map x is such that (¥, x) i1s an m-dimensional chart. Thus for ¥ = R"
we have GL(V) = R™ is a manifold of dimension #%. Note that for a fixed
basis in ¥, any linear transformation 4 € GL(V) has a unique matrix repre-
sentation (@;;) and coordinate functions x;; can be defined by x,(4) = a;;.

More generally, if & is an open subset of a manifold M, then N becomes
a manifold by restricting the topology and charts of M to N, and A is called
an open submanifold of M.

(2) The unit circle M = S* ={ae R*: |a| = 1} with the topology in-
duced from R? is a one-dimensional manifold, and the collection of open sets
which covers S can be taken to have two elements. More generally, we shall
show later that the n-sphere S" ={ae R"*': |a|| = 1} is an n-dimensional
manifold, and the collection of charts can be taken to have two elements.
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(3) The closed interval M = [0, 1] is not a one-dimensional manifold
since the point 0 is not contained in an open set U/ = M which is homeo-
morphic to an open set in R. Is the loop M as indicated in Fig. 2.1 a manifold?
Thus is the point of intersection contained in an open set U < M which is
homeomorphic to an open set in R 7

Fig. 2.1.

The coordinate functions given for the manifold GL(V') are differentiable
of class C® (actually analytic), and we now define such notions in general.

Definition 2.3 A set ./ of (m-dimensional) charts of an m-dimensional
manifold M is called a C*™-atlas if o/ satisfies the following conditions.

(a) For every pe M, there exists a chart (U, x) € of with p e U; that is,
M= J{U: (U, x) e o4}

(b) If (U(x), x) and (U(y), y) are in o/, where U(z) is the coordinate
neighborhood corresponding to the homeomorphism z, then U(x) n U(y) is
empty or the maps x =y ' and y o x ! are of class C*.

Note that xop~' (respectively yox~') has domain p(U(x) n U(y))
[respectively x(U(x) n U(y))] and transforms these subsets of R™ homeomor-
phically onto each other (Fig. 2.2). Thus since one of these maps is the inverse
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of the other, their derivatives are invertible linear transformations on R",
using the chain rule. These maps are called a change of coordinates and one
says that the corresponding coordinate (U(x), x) and (U(y), y) systems of p
are compatible when they satisfy condition (b). This will eventually lead to
the fact that if a function f: M — R is differentiable in one coordinate system,
then fis differentiable in any compatible coordinate system.

Definition 2.4 Let &/ be a C*-atlas on an m-dimensional manifold M.
Then a chart (U, x) is admissible to </ or compatible with 7 if (U, x) is com-
patible with every chart in «/; that is, for any (U(y), y) e/, we have (U, x)
and (U(y), ) satisfy condition (b) in Definition 2.3.

Now given any atlas .o¢, one can adjoin all charts which are admissible to
=/ and obtain a collection .7 which is again an atlas on M. Thus 7 is maximal
relative to properties (a) and (b) of Definition 2.3, and any atlas is contained
in a unique maximal atlas.

Definition 2.5 (a) An m-dimensional topological manifold M has a
C*”-differentiable structure or just a C*-structure if one gives M a maximal
C™-atlas. Thus to give a C”-differentiable structure, one need only exhibit a
C*-atlas on M, then consider the maximal atlas containing it.

(b) A differentiable manifold of class C® or just a C*-manifold is an m-
dimensional topological manifold M to which there is assigned a C*-dif-
ferentiable structure.

Remarks (1) One obtains differentiable manifolds of class C*, k > 0,
or real analytic manifolds by just demanding that the change of coordinates
yeox~"and xo p~" given in Definition 2.3(b) is of class C* or analytic.

(2) To define an m-dimensional complex manifold just replace R™ in the
definition of differentiable manifold of class C* by the m-dimensional complex
space C™. Condition (b) in Definition 2.3 must be modified by demanding
that the functions y e x ! and x o ! be holomorphic in the respective sets
in C™.

Examples (4) Let M = R and define a coordinate system (U(x), x) by
Ux)=R and x: M- R:t—t Then o = {(U(x), x)} is a C*-atlas which
defines a differentiable structure and R is a differentiable manifold of class
C™ relative to this structure. Now let M; = R and define a coordinate system
(U(y),») by U(y) =R and y: M; »R:t—¢> Then o, ={(U(y),»)} is a
C®-atlas since U(y) covers My and the map y o y~ 1, the identity, is of class C*®.
Thus Definition 2.3 is satisfied. The atlas .«/; makes M, into a C®-manifold.
The manifolds are distinct in the sense that the charts (U(x), x) and (U(y), y)
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on R are not compatible since x ¢ y™': R —» R : i » t1/3 is not differentiable
at+=0.

(5) Let 8"={ae R""!: |la| =1} be the n-sphere with the topology in-
duced from R"*! and ||a|? = Y7t a? for a=(ay, ..., a,4,) € R""L. We
define a differentiable structure on S” as follows. Let p = (0, ..., 0, 1) be the
“north pole” and g = (0, ..., 0, —1) be the “south pole” of §". Then the
open sets U(p) = S" — {p} and U(g) = S" — {g} cover S", and we define co-
ordinate functions x and y so that {{U(p), x), (U(g), »)} is an atlas on S”. The
functions x and y are defined by stereographic projections as follows. For
a e U(p) let A be the line determined by the points p and @ and let 7 be the
plane in R"*' given by u,,, = 0. Then the value x(a) is the point in R"*!
where A and 7 intersect. Thus we have a map x: U(p) — R" (see Fig. 2.3).

P
xla)
""-.,______/
Fig. 2.3.
More specifically if @ = (a;, ..., a,.1), then x(a) = (x, ..., x,), where x, =
afl —a,.  fori=1,...,n Similarly y is given by stereographic projection

y:U@—-R":a—=(y.,....,y),wherey,=a;/l +a,,  fori=1,...,n From
the formulas, the functions x and y are homeomorphisms onto R”, and the
formulas show that x oy~ and 3= x~ ! are of class C®, Thus we obtain an
atlas which makes $" into a C*-manifold.

Note that " is a special case of manifolds defined by the implicit function
theorem as follows. Let f: R"*! — R be a C™-function and suppose that on
the set M ={peR""':f(p) =0} we have Df(p)#0 or more generally
D, ., f(p) # 0. Then one can apply the implicit function theorem to obtain
a neighborhood of p € M which projects in a bijective manner onto the plane
#,+; = 0 and yields an atlas which makes M into a C* n-dimensional mani-
fold. Thus for 5", take f(x;,..., X,41) =X24 - +x2,—1 and note
Df(p) # 0 for pe 8" = £ (0) (just compute Df(p) for p € §").

(6) We now consider the product manifold determined by two C*®-
manifolds M and N. Thus let (U(x), x) and (¥(y), y) be in the maximal atlases
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for M and N with U(x) [respectively ¥(y)] a neighborhood of p e M (respec-
tively g € N). Then define an atlas on the topological product space M x N
by letting U(x) x F{(y) be the coordinate neighborhood of (p,g)e M x Nand
define the homeomorphism

x % p:U@x) x ¥(y) = R™ x R": (u, v) - (x(u), y()).

Thus the set of all these charts (U(x) x V(y), x x ¥) defines a C™-atlas on
M x N and the corresponding maximal atlas defines a C®-differentiable
structure on M x N. The product manifold of M and N is the Hausdorff space
M x N with the C*-structure as given above. Similarly one can define the
product of any finite number of differentiable manifolds.

Next let S be the unit circle with the usual C*-differentiable structure and
let T"= 8" x --+ x S (n-times) be the product manifold. Then T" is called
an n-dimensional torus. Thus, in particular, since T* = [} {{x} x §!: x e §1};
that is, 77 is a union of unit circles whose centers are on a unit circle, we
obtain Fig. 2.4.

Fig. 2.4.

As shown in Fig. 2.5, T? can also be represented as a closed square whose
points on the top edge are identified with those directly below on the bottom
edge. The points on the right and left edges with the same heights are identi-
fied; in particular, the four vertices are identified as the same point. This
identification comes from appropriately cutting and bending the above
diagram for T2. Note that since 5 = {exp 2zix : 0 < x < 1}, we can identify
T? = {(exp 2mix, exp 2miy) : 0 < x < 1 and 0 <y < 1} with [0, 1) x [0, 1) as
above.

Fig. 2.5.
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2. Differentiable Functions

A mapping f: M - Nof two C*-manifolds will be seen to be differentiable
of class C* if its “coordinate expressions’ are differentiable. Thus we shall

reduce the differentiability of f to investigating the differentiability of func-
tions g : R™ - R,

Definition 2.6 Let M and & be CZ-manifolds of dimension m and m,
respectively, and let
FTM—-N

be a map defined on a neighborhood of a point p e M. We say that f is
differentiable at p of class C* if there exists a coordinate system (U, x)atp
in M and a coordinate system (¥, y) at f(p) in N such that

yofex tix(U)— p(V)

is differentiable at x(p) of class C* (see Fig. 2.6). Note that x(U) = R™ and
»¥V)c R

yefext

Fig. 2.6,

Since differentiability is given in terms of specific charts, we must show
that it is actually independent of the choice of charts. Thus let (U, %) [re-
spectively (V, )] be any other elements of the atlas for M (respectively N)
which are neighborhoods of p [tespectively f(p)]. Then we must show the map

Fofeo X1 M(U)— §(V)

is differentiable at X%(p). However, since differentiability is a local property,
it suffices to show this on neighborhoods. Thus for U n I and ¥ ~ V{which
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are nonempty), we have on the neighborhoods X(U/ » U) and §i(F ~ V) that

Yo(yofeox Hexox L

1

Jefext=jey
Thus since Fo ™1, yofox™ and xo X! are of class C*, so is their com-
position. If /2 M — N is C*-differentiable at every point p e M, then fis a
differentiable map of class C* from M into NV.
Now in terms of coordinates, it suffices to show that the functions

fi=uo(yofex"H:R" R

for i =1, ..., n are differentiable on an open subset D of x(p). Thus if (U, x)
and (¥, y) are the corresponding coordinate systems, then we obtain the co-
ordinate expression

yi=FfX1, ., X0 for i=1,...,n

which must be differentiable at x(p) = (py, ..., p,). This yields the following;
for example, see Bishop and Goldberg [1968, p. 37].

Proposition 2.7 Let /: M —> N be a continuous mapping of two C*-
manifolds. Then f is of class C* on M if and only if for every real-valued
C*®-function y : ' — R defined on an open submanifold ¥ of N, the function
y o fis of class C™ on the open submanifold £ ~4(V) of M.

We shall write C*(M) or F(M) for the set of real-valued C*-functions on
M and C®(p) or F(p) for the set of those real-valued functions which are C*-
differentiable at p e M. Note that since differentiability of f at pe M also
means f is defined on a neighborhood U of p, the elements of C™(p) are
actually pairs (f, U). Consequently one can define an equivalence relation for
elements of C*(p) such that (f1, Uy} ~ (/5. U,}if and only if there exists an
open set G with p e G and fi(g) = f»(¢) for all g € G. The set of equivalence
clagses are called germs of C®-differentiable functions at p. Note that the
coordinate functions x; on U7 are in C™(p). We shall usually not use this
terminology but just the underlying ideas.

Next note that F/ = C*(M) is an associative algebra over R with operations
given by

(af)(p) = af(p) for aeR,
(f+g)p) =fp) + 9(p)
(f9)(p) = f(p)g(p) for f,geC*(M)

and £ satisfies the following [Helgason, 1962, p. 5].

(1) Iffy,....f,eFandifg: R"— Ris of class C* on R, then g(/,, .
el

oy
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(2) Iff: M — R is a function on M such that for each p e M there is a
g € F and there is a neighborhood U of p such that f(g) = g(q) for allge U,
then fe F.

(3) For each p in the m-dimensional manifold M, there exist m functions
fis+-osfmin Fand an open neighborhood U of p such that the mapping

U-R":q-(£i(@), ... [u(@)

is a homeomorphism of ¥ onto an open subset of R™. The functions f;, ...,
Jm and the set U can be chosen so that for any /e F, there is g : R™ = R of
class C* and

f:g(fls"'!fm)
on U.

These properties determine a differentiable structure on M as follows (see
Helgason [1962, p. 6] for a proof).

Proposition 2.8 Let M be a topological HausdorfT space and let m be an
integer greater than 0. Let F be a set of real-valued functions on M satisfying
properties (1)-(3). Then there exists a unique collection of charts o/ = {(U,;
x,) : a € A} which form a maximal atlas of M such that the set of real-valued
C>-functions on the manifold M with atlas &/ equal the set F.

Definition 2.9 The C®-manifolds M and N are diffeomorphic if there
exists a homeomorphism f: M — N such that fand ! are of class C*; fis
called a diffeomorphism.

Thus a diffeomorphism yields an equivalence relation such that the two
manifolds are not only topologically equivalent, but also they have equivalent
differentiable structures.

Examples (1) Let R be a manifold with the usual structure x : R = R :
t—tand (—1, 1) be an open submanifold of R. Then

Fi=L, 1) R:t -4l — )

is a diffeomorphism.

(2) Let R be the above manifold with the usual structure, and let M, be
the manifold with space R and coordinate function y : M; = R : t — ¢*. Then
the map /: M; = R : s — s is a C*-homeomorphism and the inverse homeo-
morphism 7 ':R > M;:u—u'? is actually differentiable of class C®
relative to the above differentiable structures: For ¢ € R we have the coordin-
ate expression (yof 1o x"N(t) = (yof “H(1) = y(t'?) = t. However, note
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that identity map g: M; > R:t—1t is not C* since (xogop 1)(f) = !/
which is not C*, that is, the identity map is not a diffeomorphism.

Exercise Let M be a C*-manifold. Show that the charts (U, x)and (¥, y)
at p € M are compatible if and only if x and y are C®-related by y = f(x) and
x = g(y) for suitable C®-functions f and g.

3. Submanifolds

We shall now use the preceding results to study certain substructures of a
manifold and return to these topics again after studying the differential of a
function.

Definition 2.10 Let M and N be C*-manifolds of dimensions m and »
respectively, and let f: M — N be a C*-mapping.

(a) We call /an immersion of M into N if forevery p € M, there is a
neighborhood U of p in M and a chart (¥, ¥) of f{p) in N such that if we
write y = (yy, ..., ¥,) in terms of coordinate functions, then x; = y; o f| U for
i=1,..., m are coordinate functions on U in M. Thatisif x = (x, ..., X,,),
then (U, x) is a chart at p in M. We say that M is immersed in & if an im-
mersion f: M — N exists.

(b) We call fan embedding if /is injective and f'is an immersion. Also M
is said to be embedded in N. Thus an immersion is a local embedding.

() We call the subset f(M) of N a submanifold of N if fis an embedding
and f(M) is given a C*-differential structure for which the mapping of mani-
folds f: M — f(M) is a diffeomorphism. In particular if M is a subset of the
C™-manifold N and M has its own C®-differentiable structure, then M is a
submanifold of N if the inclusion map i: M - N : x — x is an embedding.
Thus a coordinate system on & induces a coordinate system on M.

The subset f(M) is called an immersed submanifold if the above mapping
fis just an immersion. The topology of a submanifold M < N need not be the
induced topology of the containing manifold. However, since the inclusion
map is C™ and consequently continuous, the open sets in the induced topology
are open sets in the submanifold topology. Also note that the dimension of a
submanifold is less than or equal to the dimension of its containing manifold
and in the case of equality we just obtain open submanifolds; this can be
easily seen by using the inverse function theorem as stated in Section 2.5.
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Fig. 2.7,

Examples (1) Consider the mappings f: R — R” indicated in Fig. 2.7.
In (a) fis an immersion (why ?7) but not an embedding and f(R) is an immersed
submanifold but not a submanifold. In (b} the figure ““8” is such that the
arrow segments approach but do not touch the center p, Then f'is an embed-
ding and f(R) is a submanifold when given the obvious C™-structure. Note
that the submanifold topology is that of a bent open interval and therefore a
neighborhood of p in the submanifold topology is just a bent open interval
containing p. However, a neighborhood of p in the topology induced from
R* always contains part of the arrow curves near p. Also the spiral in (¢)
yields an embedding and a submanifold. What can be said about the sub-
manifold topology and the topology induced from R? in (¢)?

(2) Consider the torus of Section 2.1

T? ={(exp 2mix, exp 2niy) : 0 < x<land 0 <y < 1}

and define
f:R—> T?:t—(exp 2niat, exp 2nibt)

where a/b = a is an irrational number. Then f is injective (by solving the re-
sulting equations and using « is irrational) and fis C®. Thus by giving f(R)
the obvious C*-structure so that f: R — f(R) is a diffeomorphism, f{R) is a
submanifold. Furthermore f{R) wraps around T2 in a nonintersecting manner
and is actually dense in T (exercise or see the text of Auslander and Mac-
Kenzie [1963]). Representing T2 as a square with opposite sides identified as
discussed in Section 2.1, we see f(R) can be represented by the line segment
(x, ) = (at, bt) and their displacements as in Fig. 2.8. Also we should note

/)

Fig. 2.8.
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that points close together in T2 need not be close in f(R); that is, the topology
in f(R) is not the induced topology.

Exercises (1) In general, can one find a one-dimensional submanifold
of T" which is dense in T"?

(2) Show if f: M — N defines a submanifold and if M is compact, then
f1 M — f(M) is a homeomorphism. (Hint: What can be said about a con-
tinuous map of a compact space onto a Hausdorff space?)

If z = f(x, p) is a well-behaved function, then it defines a surface M = R3
which is a two-dimensional submanifold. For a point p e M we can define,
in a suitable neighborhood ¥ in R?® of p, coordinates (x, y, u), where u = z —
f(x, ). Thus the surface is given locally by the equation u = 0. The familiar
upper hemisphere given by z = (1 — x* — »*)!"2 > 0 is an example of such a
situation. We have the following generalization of this.

Proposition 2.11 Let M be an m-dimensional C®-submanifold of the n-
dimensional C*-manifold N and let p e M. Then there exists a coordinate
system (V, z) of N with p € ¥ such that:

(a) z(p) = = z,(p) = 0 where the z; are the coordinate functions;
(b) the set W={reV:z, (r)=""=2z()=0} together with the
restriction of z, ..., z, to W form a chart of M with pe W.

Conversely, if a subset M = N has a manifold structure with a coordinate
system at each p € M satisfying the above, then M is a submanifold of N.

PROOF Let 2 Q —+ NV be an embedding which defines M = f{Q) and let
p = f(g) for a unique g € Q. Now let (T, ) be a chart for p in N and we can
assume p(p) =0 in R". Let U be a neighborhood of ¢ = f ~!(p) in Q and let
x =y e f|U be such that (U, x) is a chart for ¢ in Q. Thus x(g) € R™ and for
i=1,...,m we have x; =y, o f| U are the corresponding coordinate func-
tions.

Now the composition y » /o x ™' = Fdefinesa C*-function F : x(U) — y(T),
where x(U) = R™ and p(T) = R", and we can write F in terms of coordinates

P = & v T for i=1,...,n

The hypotheses M = f(Q) is a submanifold, yof = Fox, and x =y f|U
vield y; = x;fori =1, ..., m in the above expression for F. Thus the rank of
DF(x(q)) is m; that is, the m x m matrix (3f,/éx,), i,j=1,...,m, is the
identity. By the inverse function theorem there exists a neighborhood D of
x(g) with D < x(U) where the first m equations can be locally inverted

x:':gi(yl"":ym) for I.'=1,...,J’.V£,
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where »,,...,J, are actually the coordinate functions defined on fo
x~}(D) = T but are also used above to denote ““coordinates” in y(T). (Note
that due to the simple expression of the first m equations y; = fi(x;, ..., Xum),
the functions g; can be explicitly computed. What are they ?)

We now change from the y-coordinates to the z = (z, , ..., z,) coordinates
given by

zZ; =y for j=1,....m
zi:yiﬁf‘i(gl(yla""ym)a"'>gm(y15 sym))

for i=m + 1, ..., n. These equations for s are defined on fox YD) T
and are C®. They form a change of coordinates because z7! exists locally
[show det(dz,/dy;(p)) # 0] and y o z7! and z - y~! are C* on their domains.

Let ¥ = fo x~ (D) be the subset of the domain of y in T where z is defined.
Then ¥ is a neighborhood of p in & and by unscrambling the definitions of f;
and g; and using ¥(p) = 0 we have z(p) = 0. Now the set W in (b) given by

W={rE V:Zm+1(r):"-:zn(r)=0}

contains p and is in M since in terms of the defining equations for z,, 41, ..., z,
we see W f(x (D))< f(U)<f(Q)=M and also W is open in M. The
restriction of z; = y; fori =1, ..., m to W equals x; (second paragraph) and
so are coordinates on W.

The converse follows from various definitions.

ReMaARK The above precof contains some machinery which is not neces-
sary in view of our definition of a submanifold and for a more direct proof
see the book by Bishop and Goldberg [1968, p. 42]. However, it can be modi-
fied to obtain the following result which is frequently used as the definition
of a submanifold [Helgason, 1962; Singer and Thorpe, 1967].

Corollary 2.12 Let P be an m-dimensional C*-manifold, let N be an n-
dimensional C*-manifold with # > m, and let f: P — N be an injective C*-
function. If for every g € P, there exists a chart (U, x) of ¢ in P and there exists
a chart (T, y) of f(g) = p in N such that the linear transformation

D(yofox ")(x(g)): R"— R"

is injective, then M = f(P) is a submanifold of N provided f{P) is given a
C*®-structure so that f: P — f{(P) is a diffeomorphism.

PROOF  We shall use the converse of Proposition 2.11 by showing (a) and
{(b) hold. By a simple translation argument we can assume that x(g) = y{(p) = 0.
Now near x(g) we can represent the composition y o fo x~! = F in terms of
coordinates
Yy =%y 5 009%5) for i=1,...,n
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Since D(y o fo x~)(x(g)) has rank m we have that some subsystem of m
equations
yij=fij(x1!"‘3xm) for j:1:"'s.m

is such that m x m matrix (f; /0x,) is invertible. We can assume this sub-
system consists of the first m equations and consequently can define a function

F:x(U)_)Rm:(xls‘--,xm)_b(yls---aym)

where we use the coordinate function to also denote the corresponding point.
Thus by the inverse function theorem there exists a neighborhood D of x(g)

~and D = x(U) on which F has a local inverse G. Thus the first m equations

can be locally inverted

X =gVises V) for i=1,...,m,

and we proceed as in the above proof. Note that from the defining equations of
z we see that x(q) = y(p) = 0 implies z(p) = 0.

RemMaRK ILet M be an m-dimensional C*®-manifold. Then it can be
proved that M is diffeomorphic to a submanifold of R" with n < 2m + 1.
This theorem of Whitney can be found in the work of Auslander and Mac-
Kenzie [1963].

Proposition 2.13 Let M and N be C*-manifolds of dimension m and »,
respectively, with m =n. Let f: M — N be a C™-map and for some fixed
peNlet f~'(p) ={ge M :f(g) = p}. Let every g € f ~'(p) have a chart (U, x)
in M and let p have a chart (T, ) in N such that D(y o f o x™")(x(g)) : R™ — R”
is surjective. Then £~ '(p) is a closed (m — n)-dimensional submanifold of
M or f~(p) is empty.

Proor This follows from the variation of the inverse function theorem
given in Proposition 1.17 using the inverse image of the set {p} is closed (or
see the book by Spivak [1965, p. 111]).

A C®-map f: M — N such that for every g € M there is a chart (U, x) at
g and a chart (T, y) at f(g) with D(y = /o x™")(x(q)) surjective is called a sub-
mersion. Thus the injective or surjective nature of D{y o fo x_l)(x(q)) deter-
mines submanifolds.

Exercise (3) 1If f: R— R™ is C®, then show the graph of f given by
G(f) ={(t.f()): te R} is a submanifold of R™*' = R! x R™ with the in-
duced topology. Does f: R— R?:t— (%, %) define a submanifold? The
above can be generalized to C*-functions f: M — N.
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Definition 2.14 Let M be a C*-manifold. A C®-curve in M is a C®-map
f from some interval I contained in R into M such that f has an extension f
which is a C®-map of an open interval J = I into M. Thus if [ = [a, b], then
there exists an & >0 such that J=(a — ¢, b+ &) and there exists a C*-
function f: J — M such that f(t) = f(¢) for all ¢ € I. Then f'is frequently called
a curve segment in case I = [a, b]. A broken C*-curve in M is a continuous
map f: [a, b] = M together with a partition of [a, ] such that on the cor-
responding closed subintervals f'is a C*-curve.

Examples (3) Themapf: R— R?:t— (1%, t3) is a C®-curve in R? with
a cusp at (0, 0).

(4) The “wrap around” map on thc torus T? given in Section 2.3 with
“irrational slope’’ is actually a C®-curve which is dense in T2

(5) The map f: [0, 1] = R? given by

_ [(, sin 1/1) if t#£0,
f(t)‘{(o, 0) if t=0

is not a C®-curve in R? since it does not have a C®-extension to an open
interval containing 0.

We recall that a topological space M is connected if it satisfies any of the
following equivalent conditions:

(1) M is not the union of two nonempty disjoint closed subsets;

(2) M is not the union of two nonempty disjoint open subsets;

(3) the only subsets of M which are both open and closed are M and the
empty set;

4y if M =\J,E,, where E, are open and E, n E, is empty if a # b, then
only one of the E, is nonempty; '

(5 iff:M—->Nisa continuous map into a discrete set, thenf(M) is a
single point.

A topological space M is path connected if for every p, g € M, there exists
a continuous curve f: [a, b] - M with p = f(a) and g = f(b). We have the fact
that a path connected space must be connected [Singer and Thorpe, 1967].

Proposition 2.15 Let M be a C*-manifold.

(a) If M is connected, then every pair of points can be joined by a broken
C®-curve.
(b) M is connected if and only if M is path connected.

Proor Part (b) follows from the preceding remarks and part (a). Thus
let p e M and for ¢ € M, define g ~ p if and only if g can be joined to p by a
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broken C®-curve. Then since ~ is an equivalence relation, M is the union of
the disjoint equivalence classes

E, ={geM:q~p}.

Now each E, is open in M, forif g e E,, let (U, x) be a chart of M such that
g € U with x(g) =0 and x(U) = B,,, an open m-ball. Now for each u € U the
point x() € B,, can be joined to x(g) by a C*-curve A in B, ; that is, 1 a
straight line segment. Therefore # € U can be joined to g by the C*-curve

'o A and consequently ue U can be joined to p by a broken C®-curve.
Thus u ~ p, so that U < E, and E, is open. However, since M = | | E, (dis-
joint), we have by condition (4) that all the E, are empty except one. Thus
every point in M can be joined to p by a broken C®-curve.

Example (6) Let V'=R" and let G = GL(V). Then G is an open n’-
dimensional submanifold of R™, Now let

SL(V) ={4 e GL(V) : det(4) = 1}.

Then SL(V) is clearly a subgroup of GL(V) and is called the special linear
group and is sometimes denoted by SL(», R). Now SL(V) is a closed sub-
manifold because if we let

FiGL(V) > R — {0} : A - det(A),

then using exercise (5), Section 1.4 for the derivative of det we see that for
all 4 € GL(V), D(f)(A) is surjective; that is, of rank 1. Thus by Proposition
2.13, SL(V) = f (1) is closed and of dimension n* — 1.

We shall now use exp to obtain a coordinate system at the point 7 € SL(V)
and then for any point A4 € SL(V). For g = gl(V) we let

sSliVy={Xeg:tr X=0}

Thus since tr is linear and tr[X, Y] =tr XY — tr YX = 0 we see that si(V) is
a Lie subalgebra of g; that is, si(V) is a vector subspace of g so that for all
X, Yesl(V) we have [X, Y] = XY — YX esl(V). Also for any X eg,

1 1 1
X=—(tr )+ [X—;(trxﬂ =—(tr X)[ + Y,
| 1

where tr ¥'=0. Consequently dim si(V) = n® — 1. Next note that exp re-
stricted to si(V) is actually in SL(V'), since we have from exercise (3), Section
1.1 that

det(exp X) = "™ = |

if X esl(V). Thus if we let F = exp|sl(V), we have from the proof of Propo-
sition 1.19 that DF(0) is the igdentity. Therefore by the inverse function
theorem there exists a neighborhood U, of 0 in s/(¥) and a neighborhood U,
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of I'in SL(V)such that F: Uy — U, : X > exp X is a diffeomorphism of U,
onto Uy, Thus for t in a sufficiently small interval (—4&, §) of 0 € R and for X
fixed in s/i(V) we see that the map

exp:sV)— SL(V): tX —exptX
maps the line segment {.X into a C®-curve segment in SL(V).

To coordinatize SL(V) by exp we proceed as follows. First as in the re-
marks following Proposition 1.19 we have the local C*-diffeomorphism

log: U; > U,
and since Uy is open in si(V) we find that (U;, log) is a chart at 7 in SL(V)
[noting that tr(log exp X) = 0]. Now for any other point 4 € SL(V) we have

that

L(A) : SL(V)— SL(V) : B— AB
is a diffeomorphism of SL(V) and therefore the set

L(AYU; = AU, ={Au:ue U}
is an open neighborhood of 4, using 4 = Al Let V=AU; and let
y=log o L(A)~'. Then (¥, y) is a chart at 4 in SL(V) as shown in Fig. 2.9.
Finally we remark that G = GL(V) is not connected ; for if it were, then since
det is continuous, det(G) = R — {0} is connected, a contradiction. However,

SL{V) is connected and this follows from Proposition 2.15 and the following
result.

Fig. 2.9.

 nillll
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Exercise (4) Let P(V)={A4 e GL(V):det A >0}. Then P(V) is path
connected.
Now to show SL(V) is connected we note that the map

0:P(V)— SL(V) : A — (det A) /"4

is a continuous surjection so that SL(V) is connected.

Example (7) Againlet = R" and let
B:VxV—-R:(X,Y)—-B(X,Y)
be a nondegenerate bilinear form (symmetric or skew-symmetric). Then the
adjoint A* relative to B is uniquely given by
B(AX, Y) = B(X, A*Y)
for A € End(V). We have the usual rules
(ad + BB)Y* + aA* + bB* and (AB)* = B*A4*,
Let
K ={BeEnd(V): B* = B}.
Then X is a vector space and a manifold and the manifold dimension equals
the vector space dimension. Also for any 4 € G = GL(V) let
f:GoEnd(V): A— AA* — L
Then f(A) € K and let
H={AeG:B(AX, AY)=B(X, Y)all X, Ye V}

={AdeG: AA* —T=0}

=/7X0).
Then H .is clearly a subgroup of G and H is a closed submanifold of G of

dimension n? — dim K as follows.
To see this we shall use Proposition 2.13. Thus we must show for every

A € G such that f(4) = 0 that Df(4) : End(V) — K is surjective. Forany A e G
and any Ye K, let X =1 ¥Y4* ' e End(V). Then we shall show

Y = [DAA)IX)
so that Df(A) is surjective. Thus

[DAA)IX) = lim LA + 1)~ fA)]

= lim ;{[(A + XA +1X)* = I] — (A4* — D]}

t—+0

— XA* + (XA%* = Y.




58 2. MANIFOLDS

To coordinatize H we proceed as follows. Let g = gl(V) and let

h={Peg:B(PX,Y)=—B(X,PY)all X, YeV}

={Peg:P*=—-P},
Then & is a Lie subalgebra of g; that is, 4 is a vector subspace of g and for
P, Qechwe have [P, Q]=PQ — QPch. Thus for P, Qe hand a,be R we
have
(aP + bO)* = aP* + bQ* = —(aP + bQ)

so that & is a subspace and

[P, O]* = (PQ)* — (QP)* = —(PQ — OP)
so that [P, @] € h as desired.
Now for any P € k we have for all X, Y e IV that

B((exp P)X, (exp P)Y) = B(X, (exp P)*(exp P)Y)
= B(X, (exp P*)(exp P)Y)
= B(X, exp(—P)(exp P)Y) = B(X, Y).

Thus exp : & — H so that as in the preceding example there exist a neighbor-
hood U, of 0 in / and a neighborhood U; of I in H such that exp: Uy, — U,
is an analytic diffeomorphism and (U;, log) is a chart at in H which induces
the chart (AU}, log < L(4)~ ") at A in H. Also if for any P € g we demand that
the C™-curve R — (7 : 1 — exp tP actually be in H for t in an interval about 0
in R, then by differentiating the formula B((exp tP)X, (exp tP)Y) = B(X, Y)
we obtain P e h using example (1), Section 1.2. Note that the manifold di-
mension of H equals the vector space dimension of A.

There are various subcases depending on B.

B Symmetric (1) (i) Let B be positive definite; that is, B(X, X) =0
implies X = 0. Thus there exists a basis e; , ..., e, of V' such thatif X = } x;e;,
Y =3 y;e;, then B(X, Y) =) x;»;. In this case H is called the orthogonal
group and denoted by O(n). We also note that the vector space K={Be¢
End (V) : B = B*} is just the set of symmetric matrices and has dimension
n{rn + 1)/2. Thus the manifold dimension of H = O(n) is n* — n(n + 1){2 =
n(n — 1)/2.

Now for 4 € O(n), AA* = I yields (det 4)*> = 1 so that det 4 = +1. Thus
noting

-1

- 0
A= 0 € O(n),
1

we have, since det : O(n) » R — {0} is continuous, that O(n) is not connected,

—_—
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Let
SOn)={AeO():det 4 =1}
= O(n) n SL(n, R)

which is called the special orthogonal group. We know that SO(») is also a
manifold of dimension n(n — 1)/2 and we shall show later that SO(n) is con-
nected. In this case the Lie algebra & n sI(V) associated with SO(n) is denoted
by so(n).

(i) Now assume the general form for the nondegenerate form B; that is,
there exists a basis f; , ..., f, of ¥ such thatfor X =Y x, f;, ¥ =Yy, f;, then

n

P
B(X,Y)= =) x;y;+ Y x)
i=1 i=p+1
[Jacobson, 1953, Vol. 11]. In this case the group H n SL(n, R) is frequently
denoted by SO(p, ¢q), where p + g = n and the Lie algebra & n si(n) is denoted

by so(p, q).
Next we shall consider ¥ = R" as column vectors with

relative to the basis fi, ..., f, so that we can write B(X, Y) in block form
B(X,Y)=X" 1 Oy X'BY,
L 0 IH

where t denotes transpose and [,, [, are the appropriate identity matrices.
Then for

Peso(p,g)={Pesln): B(PX,Y)= —B(X, PY)}
we have
0= (PX)BY + X'B(PY)= X'(P'B+ BP)Y.
Thus P'B 4+ BP = 0 and if we partition P into appropriate blocks

Py P
p=|f1t 12]’
[le Pz

then P{y = —Pyy, Py = —P,,, Py, = P5y, and Py, arbitrary. Thus we obtain
the form of the Lie algebra so(p, g) and that it is of dimension

p(p—1)/2+4q(g—1)/2+ pg=n(n—1)/2
using p + g =n.
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As before we can use (U, log) to coordinatize SO(p,q) where log: TABLE 2.1
Uy — Uy c so(p, g). Thus we see that SO(p, g) is an n(n — 1)/2-dimensional LiE GROUPS
manifold.
GL(n, C) nonsingular 7 X # complex matrices,
[ GL(n, R) nonsingular # X n real matrices,
Exercise (5) Show SO(p,q) is not connected (Hint: Investigate SL(n, C) {XeGL(n, C):det(X)=1},
matrices of the form SL(n, R) {X e GL(n, R) : det(X) =1},
O(n, R) {XeGL(n, R) : X*= X1},
Ay, 0O S0, R)  O(n, R) N SL(n, R),
[0 Azz]’ o(p, q) (XeGL(p+q,R) : I, s X I; = X1,
SO(p, q) O(p,q) n SL(p+4, R), 1 )
where A;; are orthogonal matrices of the appropriate size satisfying ::ﬁg: 1%) fqﬁé%ﬁfﬁ(njgf ST =X,
det 4,y det 4z, = 1). Uln) (XeGL(n, C): X' = X-1),
SU(n) U(n)  SL(n, C).

B Skew-symmetric (2) Thus B(X, Y) = —B(Y, X) and there exists a
basis f1,...,f, of ¥V such that n=2p and using the preceding notation

B(X, Y) has the block form [Jacobson, 1953, Vol. 1] | TARLE 22
L1E ALGEBRAS
B(X,Y)=X* 0 1 Y= i
’ a -, 0 - ey (X Y+ p = Xicp Vi) gi(n, C) n % n complex matrices,
gl(n, R) n X n real matrices,
In this case we shall consider H n GL(2p, R) which is fregently denoted by slin, C)  {Xegln, C):tr(X) =0},

si(n, R) sl(n, C) ngln, R),
so(n, R) {Xeglin, R): X'=—X},
so(p,q) {Xegllp+gq,R) : L, X' [; = —X},

Sp(p, R), where n = 2p, or Sp(p), or Sp(n, R) and is called the symplectic
group. The Lie algebra associated with Sp(p, R) equals # n gl(2p) and is de-

noted by sp(p, R). Next for P e sp(p, R) we put it into block form and find spn, C)  {Xegi@n, C): J, X',  — — X}, |
sp(n, R) sp(n, CY N gl(2n, R), ‘
P= Py Py ) ' u(n) {Xeglin, C): Xt= —X},
Py Py’ su(n) u(n) N sln, C).
where Py, = —P{;, P\, =P,,, P}, =P,,, and P, arbitrary. Thus p? +
pp+D2+p(p+1)2= 2p* + p = dim sp(p, R) which equals the manifold For more details on matrix groups the reader should consider the work of
dimension of Sp(p, R). ! Chevalley [1946, Chapter 1] and Helgason [1962, p. 339].

For future reference we present a short list of important Lie groups and
Lie algebras in Tables 2.1 and 2.2. We will describe the groups and algebras
entirely in terms of matrices. For convenience we include the groups and
algebras that have been previously discussed. First define f, , € GL(p + ¢, R) ‘
and J, € GL(2n, R) by

_[-1, 0 [ o 1
ol e

In the definition of the unitary group U(n) the matrix X = (@ ij) is the com-
plex conjugate matrix of X = (a;;). .

4, Tangents and Cotangents ‘

Let M = R? be a well-behaved surface given by the differentiable function i
z = f(x, y) and going through the point p = (0, 0, 0). Then from calculus the
tangent plane to M at p is given by the equation ‘

z = x 9f(0, 0)/dx + y @f(0, 0)/ey for x,yeR.
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If this plane is cut by the plane x = 0, then the equation of the line of inter-
section is z = y df(0, 0)/8y and we obtain the vector (0, 1, 8f(0, 0)/3y) in the
tangent plane. Similarly (1, 0, 3f(0, 0)/dx) is in the tangent plane. These two
vectors which give the tangent plane are determined by the partial ditferentia-
tion of . Thus we are led to study operators on real-valued functions which
have the properties of differentiation and we now abstract this situation to
manifolds. :

First recall that for a C®-manifold M and for p € M the set F(p) = C*(p)
of C®-functions at p € M is an associative algebra using the pointwise opera-
tions: Let U, V' be open sets of M containing p and let /: U—-R,g: V=R
be in F(p). Then define for ¢, b € R

af +bg . UnV-oR:q—aflq)+bglg) and fg:Un V—R:qg— flglglg).

Definition 2.16 A tangent at p e M is a mapping L : F(p) —» R such that
for all f, g € F(p) and a, be R,

(a) L{af+ bg) = aL(f) + bL(g);
(b) L(fg) =L(g(p) + Ap)L(g).

That is, L is a derivation of F(p) into R. Let T,(M), or T(M, p), or M, denote
the set of tangents at p e M.

Example (1) For pe M = R™ and for fixed X € R™ the map
Ly : F(p) = R [— [Df(p)I(X)

is a tangent at p using Proposition 1.3 concerning the product rule.

Proposition2.17 Let M be an m-dimensional C*-manifold and let p € M.

(a) If f, g € F(p) and f(g) = g(q) for all g in a neighborhood U of p, then
" L(f) =L(g) for all Le T(M, p).
(b) T(M, p) is a vector space over R.

Proor (a) The function & defined on U by k(g) =1 for allge U is in
F(p) and we have for any L e T(M, p) that
Lk) = L(k*), using 1=1?
= L(k)k(p) + k(p)L(k)
= 2L(k).
Thus L(k) = 0. Now we have f= kf = kg on U and therefore
L(f) = L{k)f(p) + k(p)L(f)
= L(kf) = L(kg)
= L(k)g(p) + k(p)L(g) = L(g)-
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(Can the “bump function™ of exercise 6, Section 1.4 be used above?)

(6) For L; and L, in T(M, p) and for a, b € R we see that al, + bL, 18
a linear operator; that is, it satisfies (a) of the definition. Also for f, g € F(p)
we have

(aL, + BLy)(fg) = aLi(fg) + bL,(f9)
= a(L,(/)g(p) + Ap)Li(9)) + B(Lo(Neg(p) + AD)LA(9))
= (aLy + bLy)(fg(p) + f(p)aly + bLy)(g).

Thus al, + bL, € T(M, p).

We shall now show that the vector space dimension of T(M, p) is m; that
is, equal to the manifold dimension of M. We shall do this by taking a chart
(U, x) of M at p such that for u; : x(U) — R where the u; are coordinate func-
tions of R™, the partial derivative operators D(x(p)) = 8/du(x(p)) in R™ for
i=1, ..., meventually yield a basis (p) fori=1, ..., m of T(M, p).

Thus let (U, x) be a fixed chart at p in M and let f'€ F(p), where fis defined
on an open neighborhood ¥ of p with f: ¥ — R of class C*. Now fis of class
C*® on the neighborhood U n ¥ < U so that we can write f in terms of the
fixed coordinates x = (x;, ..., X,,) where x; = u; o x. Therefore for D = x(U)
an open set in R™ the function g =« x':D—=Ris C* on D. Thus =
gox=g(xy,...,X,) where we write g = g(uy , ..., u,,) on D. We now define
the maps

8,: F(p)— F(p) : f—0(f° x~N)/ou; o x

which are called coordinate vector fields relative to (U, x); that is, we form the
real-valued C®-function h = 8(f e x~")/du; = dg/éu; defined on D to obtain
the function % o x which is in #(p). Sometimes the notations

d; = 0/0x; and 8. f = affox;
are used. The mapping &, has the following properties for f, g € F(p) and
a,beRr,
() odaf+bg)=ad;f+bdig;
() &(fg) =(0:Ng +f(8:9)-
Note that for the coordinate functions x; = u;o x on U we have from the

above definition
: d;x; = OuyfOu, = d;;

and for the constant function f{g) = ¢ for g € U, we have &, f = 0.
Next we define an element 8,(p) € T(M, p) as follows: For f'e F(p) we
obtain 9, f € F(p), then evaluate (&; /)(p) € R. Thus

a:(p)f = (; S)p)
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and from (1), (2) above we see 0,(p) satisfies the definition of a tangent at p.

Proposition 2.18 Let (U, x) be a fixed chart at p e M where x = (x, .
x,,). Then the vector space T(M, p) has basis

61(P), e am(p)
and any I € T(M, p) has the unique representation

fay

L= iglai a[(p)s

where a; = L(x;) € R. Thus the manifold dimension of M equals the vector
space dimension of T(M, p).

PrOOF We can assume that x(p) =0 since 'a translation x, =y, + 1t
yields 8/dx; = 9/dp,. Now from Section 1.4 it is easy to see that any real-
valued C*-function g defined on D = x(U) has the Taylor’s formula expan-
sion about the point 8 = (0, ...,0)e D= R™

g=90) + _Zlu,-g;,

where u; are coordinates on R™ and g; are C® at 8§ € D. Thus for the real
valued function f'= g o x € F(p) as previously discussed we obtain on U

f=g°x=g(0)+ 3 (u;°x)g;ex)
=90 + 2 x; f;»
where f; = g; - x € F(p). We apply 8,(p) to this equation
adp)f = (@, S )p)

=0+) 9i(x; 1:)(p)

= 2. [@:x,)(p) £(D) + x,(p) 8. /()] = fp)
using d;x; = §;; and x;(p) = 0. Next we apply L to the same equation

L(f) = L(9(®) + . L(x; f;)
=0+ Y [(Lx)f{(p) + x,(DLUNI =Y. a; 8,(p)f

using the preceding equation. Thus L =} a;d,(p). The elements d;(p), ...,
0.(p) in T(M, p) are linearly independent. For if ) a;8;(p) = 0, then applying
to coordinate functions,

0=0(x) = z a;0(p)(x;) = a;
using 5;'(]—'7)(-755) = aj x{p) = 5:‘,‘,-
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RemARK Let (U, x) and (V, y) be charts at pe M. Then on Un V we
have the coordinate functions x; and y; defined. Then 8/dx(p) and é/dy,(p) = L
are in T(M, p) and according to Proposition 2.18 we can represent L by

0/ay,(p) = 3. 0x:/oy,(p) 010x(p),

where the matrix ((0x;/0y)(p)) is the nonsingular Jacobian matrix obtain by
writing x; = x;();, ..., ¥u). Thus we have the matrix for the change of basis
in T(M, p) when we change charts at p e M.

Examples (2) For pe M =R™ and XeR™ let Lye T(M, p) be the
tangent given in example (1) of this section. Then the map R™ — T(M, p) :
X — Ly is linear because L,y.,(f) = DfiplaX + bY) = (aLy + bLy)(f).
Also this map is an isomorphism. (Why ?) Thus at each point pe M = R™ we
can attach the tangent space which is isomorphic to M itself.

(3) Let N be a group with identity e and let (x, y) = xyx 'y ' bein N
and for A4, B subsets of N let (4, B) be the subgroup generated by all com-
mutators (x, y) with x € 4, ye B. Then for N, = (N, N), N+, = (N, N) we
have

NoN, o oN;>--

and call N nilpotent if there exists & with &, ={e}. Now let N be the sub-
manifold of SL(V') consisting of the nilpotent subgroup given by the set of
triangular matrices

where * denotes arbitrary elements from R. We shall now show that the vector
space Ty N) is isomorphic to the vector space of all triangular (nilpotent)
matrices

0 *

0 0
and denote this vector space of matrices by #. To show the isomorphism we
shall use the exp mapping by showing exp : n— N is locally invertible. Now

for 4 e n we see that the associative products A%, 43, ..., 4* are all in n and
since A is a nilpotent matrix A™ = 0. Thus we see that

expA=T+A+ -+ A" Y(m—1)!
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is in N so that exp : n — N. Also D exp(0) is invertible. Thus as before, there
exist a neighborhood U, of 0 in n and a neighborhood of U of Jin N so that
(Uy, log) is a chart in NV at 7. Consequently we have, since U, is open in #,

dim U; =dim U, = dim n.
However dim T{(N) = dim U; and since the vector spaces T;(N) and » have

the same dimension, they are isomorphic.

Exercises (1) Show that n is a nilpotent Lie algebra. Thus first show
[n,n] = {3 [4;, B]: A;, B;e n} = n. Next define
n! = [n, n] and 1 = [k, n]

and note that n > n' > -5 #n* = +++, 8o finally show n? = 0 for some p. This
will show that the nilpotent (Lie) group N is such that the tangent space
T IN) is vector space isomorphic to a nilpotent Lie algebra .

(2) Let M, N be C®-manifolds and let p e M, g€ N. Then show

T(M x N, (p,q)) = T(M, p) x T(N, q) = T,(M) ® T(N).

Recall that if V' is an m-dimensional vector space over R, then its dual
space V* = Hom(V, R). Elements of V* are called linear functionals and the
map

Vx V¥R (X, f) > AX)
is bilinear and is frequently written
fX) =<X, ).

Now for any basis Xy, ..., X, of ¥ we have the dual basis /; ¥, ..., f,,* given
by

fj*(Xi) = <Xisfj*> = 5ij-
From this we see any X € J can be written in the form

X =Y [HX)X,.

Definition 2.19 The cotangent space at p € M is the dual space of T,(M)
and is denoted by T,*(M), or T*(M, p}, or M *. The elements of T*(M, p)
are frequently called differentials at p and T#(M, p) is also called the space of
differentials at p.

Now let fe F(p) and define the element df e T*(M, p) by
df: TM, p) » R : L > L(f);
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that is, df(iL) = {L, df» = L(f). Sometimes a more specific notation df(p) or
df, will be used. In particular if (U, x) is a chart with x; the coordinate func-
tions, then a basis for T(M, p) is given by d,(p), . .., é,(p) and a dual basis for
T*(M, p) is given by dx,(p), ..., dx,(p) because they satisfy
{8{p), dx;(p)> = a(xj)/axi(p) = &;;.
Now for any L e T(M, p) and any fe F(p) we have from Proposition 2.18
that L = Y L(x;) &,(p) and therefore
dfiL) = L(f) = ). L(x)(@: ) (p)
= (3, /)p)L(x)
=2, (6: )p) dx{(L);
that is,

df(p) = ). (0:/)(p) dx{(p).

Combining various facts we have the following result.

Proposition 2.20 Let M be an m-dimensional manifold and let fi, ...,
f.e F(p) for pe M.

(a) FEach fe F(p) equals g(f;,...,f) on a suitable neighborhood
V = V(f) of p, where g : R — R is of class C* if and only if df(p), ..., df.(p)

generate the cotangent space T*(M, p). .
(b) The functions f; , ..., f, (that is, r = m) are the coordinates of some

chart (U, f) at p where f = (f;, - ... [,s) if and only if the set dfi(p), ..., df.(p)
is a basis of T*(M, p).

Proor (a) Let (U, x) be a chart at p and suppose each fe F(p) equals
g(fi,...,[;) on ¥ n U. Then each of the coordinate functions

xi:gi(fla-"sf;)

and therefore dx; = ), dxg,(p) df.. However, since the dx’s generate T*(M, p),
the df’s also generate T*(M, p). Conversely, assume the df”’s generate (M, p)
and represent f; in coordinates

Fi = AR, vevs X
Then we obtain
df; = Z dxhip) dxy,

i=1,...,r. Now since the df’s generate T*(M, p) the m x r matrix (3 h(p))
has rank m < r. Thus we can assume that there exists a system of m functions

Siy =R (Xrs o ons X for j=1,...,m
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which define a function F: R™ — R™: x = (xy, ..., X,) = (Fi(%), ..., F,(x))
where Fj(x) = f; (x). Also DF(x(p)) is invertible so that by the inverse function
theorem we can write locally

X = ki(fh g sfim)s

where k;: R"— R are C®. However, each fe F(p) equals G(x,,..., x,,)
locally, where G is C*, and using the above expression for x’s in terms of fi's
we have the results.

To show (b) just note that for r = m we have df} , ..., df,, generate T,*(M)
if and only if they form a basis. Then we can use the above equations expres-
sing x; =k,(f;,.... )and f; = hix,, ..., x,) to see f;, ..., /[, are coordin-
ates for some chart at p e M.

Exercise (3) Let U be open in R™ and let f: U — R be of class C®.
Compare Df(p) and df(p) for pe U.

5. Tangent Maps (Differentials)

In the preceding section we considered a C®-map g from the manifold M
into the manifold R and noted that the differential df{p) is a linear map from
the tangent space T(M, p) into the vector space R = T(R, f(p)); this isomor-
phism uses example (2) of Section 2.4, We shall generalize this situation by
showing that a C®-map f: M — N between two manifolds induces a linear
map df(p) : T(M, p) —» T(N, f(p)). However, by means of coordinate functions
this generalized situation reduces to that of the preceding section.

Definition 2.21 Let M and N be C*-manifolds and let f/: M - N be a
C®-mapping. The differential of /' at p € M is the map
df(p) : (M, p) — T(N, f(p))
given as follows. For L € T(M, p) and for g € F(f(p)), we define the action of
df(p)(L) on g by
[f(pXL))(g) = L(g = 1)

REMARKS (1) We shall frequently use the less specific notation df for
df(p) when there should be no confusion. Also we shall use the notation

Tf = Tf(p) = df(p)

and also call Tf(p) the tangent map of /'at p. This notation is very useful in dis-
cussing certain functors on categories involving manifolds.
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(2) We note that for g € F(f(p)) the function g o fis in F(p) so the opera-
tion L(g < f) is defined. We must next show Tf(L) is actually in T(N, f(p)) by
showing it is a derivation. Thus for g, A € C*(f(p)),

Tf(L)ag + bh) = L{a(g ° f) + blh < [))
=al(g-f) +bL{h-f)
= a[TAL)(g) + BITAL)(R)
and the product rule is also easy.
The following result shows that df{p) is the correct generalization for

Df(p) of Section 1.2, where f: U— Wisa C”-map of an open set Uin R™ and
W is some Euclidean space.

Proposition 2.22 Let f: M - N be a C®-map of C®-manifolds and let
p € M. Then the map

Tf(p) : T(M, p) ~ T(N, ()

is a linear transformation; that is, Tf(p) € Hom(T(M, p), T(N, f(p))). Further-
more if (U, x) is a chart at p and (¥, y) is a chart at f(p), then Tf(p) has a matrix
which is the Jacobian matrix of f represented in these coordinates.

PrOOF Let X, ¥Ye T(M, p). Then for a, b € R and g € F(f(p)) we have

[TflaX + bY)l(g) = (aX + bY)(g = f)
=aX(gof)+bY(g-f)
= [a TA(X) + b TA(Y)(g)
so that TflaX +bY)=a Tf(X) + b Tf(Y). Next let x =(x,,...,x,) and
y=(»1,...,», be the given coordinate functions so that we can represent
f in terms of coordinates in the neighborhood ¥V by

ﬁc=yk°f=j;l(xls'--sxm) for kzl,...,ﬂ.

Now let 8/dx; = 3,(p) and 8/3y; = 8,(f(p)) determine a basis for T(M, p) and
T(N, f(p)), respectively. Thus to determine a matrix for Tf we compute its
action on the basis 8/dx; in T(M, p). Let

- T7f0x) = ¥ b;:0/y;

be in T(N, f(p)). Then we evaluate the matrix (b;;) using the fact that y, €
F(f(p)) as follows
3filéx(p) = 0{p) (Y o f)
= [T/ (24p)1(»)
= Z b;; a()’k)/aJ’j = by;

using 3(y,)/8y; = &;. Thus (b;;) = (8f;/0x,(p)) is the desired Jacobian matrix.




