MAT455 - PROBLEM SET 6 - DUE ON FRIDAY, OCTOBER 28, 2011

PROBLEM 1 – [COMPLETE VECTOR FIELDS]

Show that the vector field $X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ is a complete vector field on \mathbb{R}^2 . What about $X = \exp(-x) \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$?

PROBLEM 2 – [SURJECTIVITY OF THE EXPONENTIAL MAP]

For n=2,3 show that the exponential map $\exp:\mathfrak{so}(n,\mathbb{R})\to SO(n,\mathbb{R})$ is surjective.

Let G be a Lie group with Lie algebra \mathfrak{g} . If $X,Y\in\mathfrak{g}$, then for $t\in\mathbb{R}$ small enough:

$$\exp(tX)\exp(tY) = \exp(t(X+Y)) + O(t^2),$$

where $O(t^2)$ is a differentiable \mathfrak{g} -valued function such that $\frac{O(t^2)}{t^2}$ is bounded as $t \to 0$.

PROBLEM 4 – [ADJOINT REPRESENTATION]

Let $G \subset GL(n, \mathbb{R})$ be a Lie subgroup with Lie algebra $\mathfrak{g} \subset \mathfrak{gl}(n, \mathbb{R})$. Show that in this case the adjoint representation $Ad: G \to GL(\mathfrak{g})$ (see previous problem sets) is given by conjugation of G on \mathfrak{g} , i.e. for $g \in G$ and $X \in \mathfrak{g}$ we have

$$Ad(g)(X) = gXg^{-1}.$$

Problem 5 - [A universal covering Map]

The aim of this exercise is to show that the group SU(2) is the universal covering group of the rotation group $SO(3,\mathbb{R})$.

Consider

$$SU(2) := \{ A \in SL(2, \mathbb{C}) \mid A^* = A^{-1} \} = \{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \mid |a|^2 + |b|^2 = 1 \}$$

and its Lie algebra

$$\mathfrak{su}(2) = \{ X \in \mathfrak{sl}(2, \mathbb{C}) \, | \, X^* + X = 0 \}.$$

- 2
- (1) Construct a Lie algebra homomorphism $\phi: SU(2) \to SO(3, \mathbb{R})$ whose kernel is $\{\pm Id_2\}$, where $Id_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

[Hint: Use the adjoint representation of SU(2) on its Lie algebra. Show that $b(X,Y) = -\frac{1}{2} \operatorname{tr}(XY)$ defines a positive definite bilinear form on the real vector space underlying $\mathfrak{su}(2)$.]

- (2) Show that the differential of ϕ at the identity satisfies $(d\phi)_e : \mathfrak{su}(2) \to \mathfrak{so}(3,\mathbb{R})$ is a Lie algebra isomorphism and deduce that ϕ is a covering map.
- (3) Show that SU(2) is homeomorphic to the 3-sphere S^3 and deduce that SU(2) is simply connected. Show that $SO(3,\mathbb{R})$ is homeomorphic to the projective space \mathbb{RP}^3 . What is the fundamental group of $SO(3,\mathbb{R})$?
- (4) Are there any other Lie groups with Lie algebra isomorphic to $\mathfrak{su}(2)$?