MAT455 - PROBLEM SET 3 - DUE ON FRIDAY, OCTOBER 21, 2011

PROBLEM 1 – [COVERING GROUPS]

- (1) Let G be a connected Lie group, H a topological space and $p: H \to G$ a covering map. Then there exists a unique Lie group structure on H such that p is a smooth group homomorphism and the kernel of p is a discrete subgroup of H.
- (2) Let G be a connected Lie group and (H, p) a covering of G equipped with the Lie group structure from above. Show that p is a local isomorphism of Lie groups and $d\phi_e$ is an isomorphism of Lie algebras.

PROBLEM 2 – [ABELIAN LIE GROUPS]

- (1) Let G be a connected Lie group with Lie algebra \mathfrak{g} . Show that G is abelien if and only if G is abelien.
- (2) Show that D is a discrete subgroup of \mathbb{R}^n if and only if D is isomorphic to \mathbb{Z}^k for some $0 \le k \le n$.
- (3) Deduce that any connected abelian Lie group is isomorphic to $\mathbb{R}^n \times \mathbb{T}^k$ for some *n* and *k*. (Here \mathbb{T}^k denotes the *k*-dimensional torus $\mathbb{R}^k / \mathbb{Z}^k$.)

PROBLEM 3 – [EXPONENTIAL MAP]

Let $G = S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$. Determine the Lie algebra \mathfrak{g} of G and the exponential map exp : $\mathfrak{g} \to G$.

PROBLEM 4 – [ONE-PARAMETER SUBGROUPS]

Let $G = GL(n, \mathbb{R})$, let $X_e \in T_e G = M_n(\mathbb{R})$ and let X be the unique invariant vector field on G defined by X_e . Show that for any $f \ni C^{\infty}(G)$ and every $g \in G$

$$(Xf)(g) = \frac{d}{dt}|_{t=0} f(exp(tX)g).$$

PROBLEM 5 – [THE UNIVERSAL COVER OF $SL(2,\mathbb{R})$]

- (1) Construct an explicit diffeomorphism between $S^1 \times \mathbb{R} \times \mathbb{R}$ and $SL(2, \mathbb{R})$. (Hint: Use the so called Iwasawa decomposition $SL(2, \mathbb{R}) = SO(2, \mathbb{R})$ · $A \cdot N$, where $A \cdot N$ denotes the subgroup group of upper triangular matrices in $SL(2, \mathbb{R})$.)
- (2) Construct a differentiable group structure on the manifold $S^1 \times \mathbb{R} \times \mathbb{R}$ such that the resulting Lie group is isomorphic to $SL(2,\mathbb{R})$. (Hint: Use the coordinates constructed in (1).)

- (3) Construct on \mathbb{R}^3 a Lie group structure and a surjective Lie group homomorphism $\mathbb{R}^3 \to SL(2,\mathbb{R})$ (with respect to the Lie group structure you constructed).
- (4) Determine the center of \mathbb{R}^3 with the above Lie group structure and the kernel of ϕ .
- (5) Deduce that \mathbb{R}^3 with this Lie group structure is the universal covering group of $SL(2,\mathbb{R})$, which is also denoted by $\widetilde{SL(2,\mathbb{R})}$.

 $\mathbf{2}$