MAT455 - PROBLEM SET 1 - DUE ON WEDNESDAY, SEPTEMBER 21, 2011

Problem 1

Let G_1 and G_2 be two groups, and $\phi: G_2 \to \operatorname{Aut}(G_1)$ a homomorphism. The semidirect product $G = G_1 \times_{\phi} G_2$ is the product $G_1 \times G_2$ with multiplication defined by $(x_1, x_2) \cdot (y_1, y_2) = (x_1 \phi(x_2) y_1, x_2 y_2)$.

- (1) Show that the multiplication is associative.
- (2) Determine the inverse of (x_1, x_2) .
- (3) Show that $H_1 = G_1 \times \{e\}$ is a normal subgroup. Here $e \in G_2$ is the identity element.
- (4) Is $H_2 = \{e\} \times G_2$ a normal subgroup? Again, $e \in G_1$ denotes the identity element.

Problem 2

Let G be a topological group.

- (1) Let H be a closed subgroup. Show that H is a topological group.
- (2) Let H < G be a normal subgroup. Show that G/H is a topological group.

Problem 3

Let G be a topological group and X a topological space. Let $\mu:G\times X\to X$ be a continuous transitive group action, that is μ is a continuous map such that

- (Associativity) $\mu(g,\mu(h,x)) = \mu(gh,x)$ for all $g,h \in G$ and all $x \in X$.
- (Identity) $\mu(e, x) = x$ for all $x \in X$.
- (Transitivity) $\mu(G, x) = X$ for all $x \in X$.

Show the following:

- (1) If G is compact, then X is compact.
- (2) If G is connected, then X is connected.

Problem 4

On \mathbb{R}^{p+q} consider the non-degenerate symmetric bilinear form $B_{p,q}$ given by

$$B_{p,q}(x,y) := -\sum_{i=1}^{p} x_i y_i + \sum_{j=p+1}^{p+q} x_j y_j.$$

9

Define $O(p,q) := \{ A \in GL_{p+q}(\mathbb{R}) \mid \forall x, y \in \mathbb{R}^{p+q} : B_{p,q}(Ax,Ay) = B_{p,q}(x,y) \}$ and $SO(p,q) = O(p,q) \cap SL_{p+q}(\mathbb{R}).$

- (1) Show that O(p,q) is compact if an only if p=0 or q=0.
- (2) Show that O(p,q) is not connected for any p,q. Show that SO(p,q) is connected if and only if p=0 or q=0.
- (3) Construct an embedding $O(p,q) \to O(p+q,\mathbb{C})$.

[Hint: Use Problem 3 for (1) and (2). For (3) use the fact that over \mathbb{C} all non-degenerate symmetric bilinear forms are equivalent.]

Problem 5

Define a topology on \mathbb{R} such that $(\mathbb{R}, +)$ is not a topological group.