MAT455 - PROBLEM SET 11 - DUE ON FRIDAY, DECEMBER 16, 2011

Problem 1 – [Tensor representations]
Let \(g \) be a Lie algebra. Let \(\Omega \in g \otimes g \) be a \(g \)-invariant tensor. Show that for arbitrary representations \(V, W \) of \(g \) the element \(\Omega \) defines an endomorphism \(\Omega \in \text{End}_g(V \otimes W) \).

Problem 2 – [Complete reducibility]
(1) Consider the representation \(\mathbb{C} \to \mathfrak{gl}(2, \mathbb{C}), x \mapsto \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix} \). Show that this representation is not completely reducible.
(2) Let \(g \) be a complex Lie algebra. Show that if every representation of \(g \) is completely reducible, then \(g \) is semi-simple.

Problem 3 – [\(\mathfrak{sl}(2, \mathbb{C}) \)-representations]
Let \(V(m) \) be the \(m \)-dimensional irreducible representation of \(\mathfrak{sl}(2, \mathbb{C}) \). Show that \(V(m) \otimes V(n) \) and \(\text{Hom}(V(m), V(n)) \) are (as representations of \(\mathfrak{sl}(2, \mathbb{C}) \)) isomorphic to \(V(m+n) \oplus V(m+n-2) \oplus \cdots \oplus V(|m-n|) \).

Problem 4 – [Cartan subalgebras]
Determine the Cartan subalgebras and the root system for \(\mathfrak{sl}(n, \mathbb{C}), \mathfrak{sp}(2n, \mathbb{C}) \) and \(\mathfrak{so}(n, \mathbb{C}) \).

Problem 5 – [Invariant bilinear forms]
Let \(g = \bigoplus_{i=1}^n g_i \) be a complex semisimple Lie algebra, where \(g_i \) are the simple ideals. Let \(B_g \) be the Killing form on \(g \). Let \(\mathcal{B} \) denote the vector space of all invariant bilinear forms \(B \) on \(g \times g \), i.e. \(B([X, Y], Z) + B(Y, [X, Z]) = 0 \) for all \(X, Y, Z \in g \). Let \(B_i(X, Y) = B_g(\pi_i(X), \pi_i(Y)) \), where \(\pi_i : g \to g_i \) is the projection relative to the orthogonal decomposition above, \(i = 1, \cdots, n \). Prove that \(\{B_1, \cdots, B_n\} \) is a basis for \(\mathcal{B} \).

What can you say when \(g \) is only a real semi simple Lie algebra?