MAT455 - PROBLEM SET 11 - DUE ON FRIDAY, DECEMBER 16, 2011

Problem 1 – [Tensor representations]

Let \mathfrak{g} be a Lie algebra. Let $\Omega \in \mathfrak{g} \otimes \mathfrak{g}$ be a \mathfrak{g} -invariant tensor. Show that for arbitrary representations V, W of \mathfrak{g} the element Ω defines an endomorphism $\Omega \in End_{\mathfrak{g}}(V \otimes W)$.

Problem 2 – [Complete reducibility]

- (1) Consider the representation $\mathbb{C} \to \mathfrak{gl}(2,\mathbb{C})$, $x \mapsto \begin{pmatrix} 0 & 0 \\ x & 0 \end{pmatrix}$. Show that this representation is not completely reducible.
- (2) Let \mathfrak{g} be a complex Lie algebra. Show that if every representation of \mathfrak{g} is completely reducible, then \mathfrak{g} is semi-simple.

Problem
$$3 - [\mathfrak{sl}(2,\mathbb{C})$$
-representations]

Let V(m) be the m-dimensional irreducible representation of $\mathfrak{sl}(2,\mathbb{C})$. Show that $V(m) \otimes V(n)$ and Hom(V(m),V(n)) are (as representations of $\mathfrak{sl}(2,\mathbb{C})$) isomorphic to

$$V(m+n) \oplus V(m+n-2) \oplus \cdots \oplus V(|m-n|).$$

PROBLEM 4 – [CARTAN SUBALGEBRAS]

Determine the Cartan subalgebras and the root system for $\mathfrak{sl}(n,\mathbb{C})$, $\mathfrak{sp}(2n,\mathbb{C})$ and $\mathfrak{so}(n,\mathbb{C})$.

Let $\mathfrak{g} = \bigoplus_{i=1}^n \mathfrak{g}_i$ be a complex semisimple Lie algebra, where \mathfrak{g}_i are the simple ideals. Let $B_{\mathfrak{g}}$ be the Killing form on \mathfrak{g} . Let \mathcal{B} denote the vector space of all invariant bilinear forms B on $\mathfrak{g} \times \mathfrak{g}$, i.e. B([X,Y],Z) + B(Y,[X,Z]) = 0 for all $X,Y,Z \in \mathfrak{g}$. Let $B_i(X,Y) = B_{\mathfrak{g}}(\pi_i(X),\pi_i(Y))$, where $\pi_i:\mathfrak{g} \to \mathfrak{g}_i$ is the projection relative to the orthogonal decomposition above, $i=1,\cdots,n$. Prove that $\{B_1,\cdots,B_n\}$ is a basis for \mathcal{B} .

What can you say when \mathfrak{g} is only a real semi simple Lie algebra?