MAT455 - PROBLEM SET 3 - DUE ON FRIDAY, OCTOBER 14, 2011

PROBLEM 1 – [SOME LIE ALGEBRAS]

(1) Let M, N be smooth manifolds and $f: M \to N$ a smooth map such that the differential df has constant rank equal to r. Then for every $q \in N$ the level set $M' = f^{-1}(q)$ is a closed regular submanifold of M of dimension $\dim(M) - r$.

Show that for every $p \in M'$ we have a canonical identification

$$T_pM' = ker(df_p).$$

(2) Compute the Lie algebra of the Lie groups U(p,q), Sp(2n), B(n) and N(n), where B(n) is the group of real invertible upper triangular $n \times n$ matrices, and N(n) is the group of real invertible upper triangular $n \times n$ matrices with 1's on the diagonal.

Problem 2 – $[\phi$ -related vector fields]

Let M and M' be smooth manifolds and $\phi: M \to M'$ a smooth map.

- (1) The vector fields $X \in Vect(M)$ and $X' \in Vect(M')$ are said to be ϕ -related if $d\phi \circ X = X' \circ \phi$. Show that if $X_i \in Vect(M)$ is ϕ -related to $X_i' \in Vect(M')$ (i = 1, 2), then $[X_1, X_2]$ is ϕ -related to $[X_1', X_2']$.
- (2) Let ϕ be a diffeomorphism. The push-forward $\phi_*(X)$ of a vector field $X \in Vect(M)$ is defined by $(\phi_*X)_{m'} = d\phi_{\phi^{-1}(m')}(X_{\phi^{-1}(m')})$ for $m' \in M'$. Show that $\phi_* : Vect(M) \to Vect(M')$ is a Lie algebra isomorphism.

Problem 5 – [More on Lie Algebra]

- (1) Let \mathfrak{g} be a Lie algebra. Show that $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), X \mapsto [X,Y]$ is a Lie algebra homomorphism.
- (2) Let G be a Lie group. Define $c_g: G \to G$ by $c_g(h) = ghg^{-1}$ and let $Ad(g) = (dc_g)_e: \mathfrak{g} \to \mathfrak{g}$ be its differential. Show that $Ad: G \to GL(\mathfrak{g})$ is a homomorphism of Lie groups, whose image consists of Lie algebra automorphisms of \mathfrak{g} . Show that the Lie algebra homomorphism associated to Ad is $ad: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$.
- (3) Let H < G be a Lie subgroup of G. Assume that H is normal. Show that the associated Lie subalgebra $\mathfrak{h} \subset \mathfrak{g}$ is an ideal.
- (4) A Lie algebra \mathfrak{g} is said to be simple if it is non-abelien and has no ideals except $\{0\}$ and itself. Find a basis $\{e, f, h\}$ of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$ such that [h, e] = 2e, [h, f] = -2f, [e, f] = h. Show that $\mathfrak{sl}(2,\mathbb{C})$ is simple.

Problem 4 – [Frobenius Theorem - Easy Direction]

Prove that if \mathcal{D} is a smooth distribution on a smooth manifold M which admits maximal integral submanifolds through each point of M, then \mathcal{D} is involutive.

PROBLEM 5 – [DISTRIBUTIONS AND SURFACES]

Consider the system of Partial Differential Equations

$$\frac{\partial z}{\partial x} = h(x, y, z)$$
$$\frac{\partial z}{\partial y} = g(x, y, z).$$

Set $X := \frac{\partial}{\partial x} + h \frac{\partial}{\partial z}$ and $Y := \frac{\partial}{\partial y} + g \frac{\partial}{\partial z}$.

- (1) Show that if z = f(x, y) is a solution of the system which describes a surface $\Sigma = graph(f) \subset \mathbb{R}^3$, then for every $p \in \Sigma$ the tangent space $T_p\Sigma$ is spanned by X_p and Y_p .
- (2) The order of differentiation of f can be exchanged if and only if the distribution defined by X and Y is involutive.