MAT455 - PROBLEM SET 10 - DUE ON FRIDAY, DECEMBER 9, 2011

Problem 1 – [Simple Lie Algebras]

Show that the Lie algebra $\mathfrak{sl}(n, \mathbb{K})$, $\mathbb{K} = \mathbb{C}$, \mathbb{R} , is simple.

PROBLEM 2 – [EXAMPLES]

- (1) Give an example of a Lie algebra \mathfrak{g} with a non-zero radical and a non-degenerate invariant symmetric bilinear form.
- (2) Give an example of a solvable Lie algebra whose Killing form is not identically zero.
- (3) Give an example of a solvable but non-nilpotent Lie algebra whose Killing form is identically zero.
- (4) Let \mathfrak{g} be a Lie algebra over some field k and let $F = End_{\mathfrak{g}}(V)$ be the space of endomorphisms of V which commute with the action of \mathfrak{g} . Show that F is a field. Give an example where F is not commutative.

Problem 3 – [Real forms]

Let G be a complex connected Lie group, let K be a real submanifold of G which is also a subgroup. Let \mathfrak{g} (defined over \mathbb{C}) and \mathfrak{k} (defined over \mathbb{R}) denote the corresponding Lie algebras.

- (1) Assume $\mathfrak{k} + i\mathfrak{k} = \mathfrak{g}$. Show that if a complex submanifold H of G which is also a subgroup contains K, then H = G.
- (2) Show that the property $\mathfrak{k} + i\mathfrak{k} = \mathfrak{g}$ is satisfied in the following examples:
 - $G = SL(n, \mathbb{C}), K = SU(n)$
 - $G = SO(n, \mathbb{C}), K = SO(n)$
 - $G = Sp(2n, \mathbb{C}), K = SU(2n) \cap G = Sp(2n).$

PROBLEM 4 – [REDUCTIVE PART OF A LIE ALGEBRA]

Let \mathfrak{g} be a Lie algebra and \mathfrak{r} its radical. Prove that $[\mathfrak{r},\mathfrak{g}]$ is the smallest of the ideals \mathfrak{h} in \mathfrak{g} such that $\mathfrak{g}/\mathfrak{h}$ is reductive.