CHAPTER 1

DIFFERENTIABLE AND ANALYTIC
MANIFOLDS

1.1. Differentiable Manifolds

We shall devote this chapter to a summary of those concepts and results

from the theory of differentiable and analytic manifolds which are needed -

for our work in the rest of the book. Most of these results are standard and
adequately treated in many books (see for example Chevalley [1], Helgason
[1], Kobayashi and Nomizu [1], Bishop and Crittenden [1], Narasimhan [1]).

Differentiable structures. For technical reasons we shall permit our dif-
ferentiable manifolds to have more than one connected component. However,
all the manifolds that we shall encounter are assumed to satisfy the second
axiom of countability and to have the same dimension at all points. More
precisely, let M be a Hausdorff topological space satisfying the second axiom
of countability. By a (C=)differentiable structure on M we mean an assignment

D:U—DW) (Uopen, = M)
with the following properties:

(i) for each open U = M, D(U) is an algebra of complex-valued func-
tions on U containing | (the function identically equal to unity)
(ii) if ¥, U are open, ¥ = U and f € D), then f] ¥V € D(V);! if V,
(i € J) are open, ¥ = U,V,, and fis a complex-valued function defined on ¥
such that f] ¥V, € D(V) for all i € J, then f € D(V)
(iii) there exists an integer m > 0 with the following property: for any
qf_g, M, one can find an open set U containing x, and m real functions x,,

3

,x,, from D(U) such that (a) the map
é : Y = (xl(y)s afeie axm(y))

is a homeomorphism of U onto an open subset of R” (real m-space), and (b)

1If Fis any function defined on a set 4, and B = A, then F|B denotes the restriction
of Fto B.
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for any open set ¥ < U and any complex-valued function f defined on ¥,
[ e D(V)ifand only if fo £~ ! is a C= function on V1

Any open set U for which there exist functions x,,...,x, having the
property described in (iii) is called a coordinate patch; {x,...,x,}is called
a system of coordinates on U. Note that for any open U = M, the elements of
D(U) are continuous on U.

It is not required that M be connected; it is, however, obviously locally
connected and metrizable. The integer m in (iii) above, which is the same for
all points of M, is called the dimension of M. The pair (M,D) is called differ-
entiable (C*) manifold. By abuse of language, we shall often refer to M itself
as a differentiable manifold. It is usual to write C=(U)instead of D(U) for any
open set U © M and to refer to its elements as (C*) differentiable functions
on U. If U is any open subset of M, the assignment V> C=(V) (V = U,
open) gives a C= structure on U. U, equipped with this structure, is a C~
manifold having the same dimension as M it is called the open submanifold
defined by U. The connected components of M are all open submanifolds of
M, and there can be at most countably many of these.

Let k be an integer = 0, U = M any open set. A complex-valued function
Fdefined on U is said to be of class C* on U if, around each point of U fisa
k-times continuously differentiable function of the local coordinates. It is
easy to see that this property is independent of the particular set of local
coordinates used. The set of all such fis denoted by C*(U). (We omit k when
k= 0: C(U) = C°(U). C*(U) is an algebra over the field of complex numbers
C and contains C=(L)).

Given any complex-valued function f on M, its support, supp f, is defined
as the complement in M of the largest open set on which fis identically zero.
For any open set U and any integer k with 0 << k <C oo, we denote by CHU)
the subspace of all f € C*(M) for which supp fis a compact subset of U.

There is no difficulty in constructing nontrivial elements of C~(M). We
mention the following results, which are often useful.

(i) Let U = M be open and K = U be compact; then we can findgp
C=(M) such that 0 < p(x) << 1 for all x, with ¢ = | in an open set containing
K, and ¢ = 0 outside U.

(i) Let {V};e; be a locally finite? open covering of M with CI(V)) (Cl
denoting closure) compact for all / € J; then thereare g, € C(M)(i € J)
such that

(a) foreachi e J @, > 0 and supp g, is a (compact) subset of V;
(b) Yies ¢x) =1 for all x e M (this is a finite sum for each x,
since [V }ie; 1s locally finite).
{@.);c, is called a partition of unity subordinate to the covering {V3ic;.

2 A family {E;}ics of subsets of a topological space S is called locally finite if each point
of X has an open neighborhood which meets E; for only finitely many i € J.

=
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Tangent vectors and differential expressions. Let M be a C* manifold

_ of dimension m, fixed throughout the rest of this section. Let x € M. Two

C> functions defined around x are called equivalent if they coincide on an
open set containing x. The equivalence classes corresponding to this relation
are known as germs of C* functions at x. For any C~ function f defined around
x we write f, for the corresponding germ at x. The algebraic operations on
the set of differentiable functions give rise in a natural and obvious fashion
to algebraic operations on the set of germs at x, converting the latter into an
algebra over C; we denote this algebra by D,. A germ is called real if it is
defined by a real C* function. The real germs form an algebra over R. For
any germ f at x we write f(x) to denote the common value at x of all the C~
functions belonging to f. It is easily seen that any germ at x is determined by
a C= function defined on all of M.

Let D* be the algebraic dual of the complex vector space D,, i.e., the
complex vector space of all linear maps of D, into C. An element of D¥ is said
to be real if it is real-valued on the set of real germs. A tangent vector to M
at x is an element ¥ of D¥ such that

(L.1.1) { (i) wvisreal

(i) w(fg) = f(x)o(g) + glx)u(f) for allf, g € D..

The set of all tangent vectors to M at x is an R-linear subspace of D¥, and is
denoted by T,(M); it is called the rangent space to M at x. Its complex linear
span T,.(M) is the set of all elements of D} satisfying (ii) of (1.1.1). Let U be
a coordinate patch containing x with x,,....x,, a system of coordinates on
U, and let

U= {(xi(9) ... . x,(y):y € U}

For any f € C*(U)let f & C=(0) be such that fo (xy, ...
the maps

,x,,) =f. Then

i)
fH (arj ri=xi{x), ..., t=Xm(x)
for 1 <<j<<m(t;,....t, being the usual coordinates on R”) induce linear
maps of D, into C which are easily seen to be tangent vectors; we denote
these by (3/dx,),. They form a basis for T,(M) over R and hence of T, (M)
over C.

Define the element 1, € D¥ by

(1.1.2) 1.(f) =f(x) (I €D,

1, is real and linearly independent of 7,.(M). It is easy to see that for an ele-
ment # € D¥ to belong to the complex linear span of 1, and T,(M) it is
necessary and sufficient that o(f, f,) = O for all f,, f, € D, which vanish at x.
This leads naturally to the following generalization of the concept of a tangent
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vector, Let
(1.1.3) J.=[f:fe D, f(x) =0}

Then J, is an ideal in D,. For any integer p > 1, J2 is defined to be the linear
span of all elements which are products of p elements from J, ; J2is also an
ideal in D,. For any integer r > 0 we define a differential expression of order
<Zr to be any element of D* which vanishes on J*!; the set of all such is a
linear subspace of D and is denoted by T¥)(M). The real elements in T & (M)
from an R-linear subspace of T)( M), spanning it (over C), and is denoted by
TO(M). We have TO(M) =R-1,, TO(M) = R-1_ + T.(M), and T (M)
increases with increasing r. Put

TOM) = TOM)
(1.1.4) =0
TEW) = TRM).

TE(M) is a linear subspace of D¥, and TU(M) is an R-linear subspace
spanning it over C.

It is easy to construct natural bases of the T?(M) in local coordinates.
Let U be a coordinate patch containing x and let 7 and x,, ..., x,, be as in
the discussion concerning tangent vectors, Let (&) be any multiindex, i.e.,
(a) = (y, . - . ,00,,) where the a; are integers =>0; put [a| =a, + - -+ 4+ o,
Then the map

(2

P T (f e CTUY)

oy’ -+ arrﬂm)n=x1(x)....,fm=xm(x)

induces a linear function on D, which is real. Let ¢ denote this (when
(&) = (0), 0 = 1,). Clearly, % e TO(M) if |ec| << r.

Lemma 1.1.1. Let r > 0 be an integer and let x < M. Then the differen-
tial expressions 0% (|a| << r) form a basis for T(M) over R and for T (M)
over C.

Proof. Since this is a purely local result, we may assume that M is the
open cube {(y,, ...,y :|p;| << afor | <<j<Cm}inR” with x as the origin.
Let ¢, ... ,f, be the usual coordinates, and for any multiindex (f) = (8,
.+ .o f,) let 9 denote the germ at the origin defined by ¢§* . . . £8/8,!--- §,,!

Let f be a real C* function on M and let g, . .(8) = f(tx,, ..., ix,)
(=1 <<t=<1,(xy,...,x,) € M). By expanding g,, . ., about¢ = 0in its
Taylor series, we get

£ ‘
ORI O S T L
! ).

0<s<r
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for 0 <<t << 1. Putting ¢t = 1 and evaluating the t-derivatives of g,, .. in

_terms of the partial derivatives of f, we get, for all (x,,...,x,) € M,

_ qu i xﬂ}m (8
f(xl!"'sxm) l.f;i—'rﬂlz"'ﬂm!ax (f)

x?l 2 s x:‘mh(u)(x] x)
—_—— § W
]al=r+i“1!"'mm! PG

where
g1t tdm

BO(%, %) = (r 1)[1(1 —uy (a f )(uxi, st i

[ a!f,;“

Clearly, the A'* are real C* functions on M. Passing to the germs at the origin,
we get

f— B D - (e}
6;: (f) +_ |ac|=2r+1t

[A1

A
2

Since t'* & J.*! for any (o) with || = r + 1, we get, for any 4 € T (M),

= 2 A(t‘m)f)f’
| Bl=r

This shows that the d¥'(| 8] << r) span T{"(M) over R. On the other hand,
the ¢% are linearly independent over R or C, since

0 () +*=(B)

wen={ | ol

This proves the lemma.

Vector fields. Let X (x+— X)) be any assignment such that X, € T,.(M)
for all x € M. Then for any function f € C=(M), the function Xf: x—
X (I,) is well defined on M, f, being the germ at x defined by f. If U is any
coordinate patch and x,,...,x, are coordinates on U, there are unique
complex-valued functions a, . . .,a, on U such that

X, = li%m ﬂf(y)(a%)y (y € U).

X is called a vector field on M if Xf € C=(M) for all f € C=(M), or equiva-
lently, if for each x £ M there exist a coordinate patch U containing x and
coordinates x,, . . . ,x,, on U such that the a, defined above are C~ functions
on U. A vector field X i1s said tobe real if X, € T.(M) ¥ x € M; X is real
if and only if Xfis real for all real f' € C=(M). Given a vector field X, the
mapping f— Xf is a derivation of the algebra C=(M); i.e., for all f and
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g € C7(M),
(1.1.5) X(fe)y=f-Xg+ g X/

This correspondence between vector fields and derivations is one to one and
maps the set of all vector fields onto the set of all derivations of C=(M).
Denote by 3(M) the set of all vector fields on M. If X € 3(M)andf € C=(M),
fX: x> f(x)X, is also a vector field. In this way, 3(M) becomes a module
over C*(M). We make in general no distinction between a vector field and the
corresponding derivation of C=(M).

Let X and Y be two vector fields. Then X o ¥ — Y o X is an endomor-
phism of C=(M) which is easily verified to be a derivation. The associated
vector field is denoted by [X, Y] and is called the Lie bracket of X with Y.
The map

(X,Y)— [X,Y]
is bilinear and possesses the following easily verified properties:

(H [XXx]=0
(1.1.6) (i) [X.Y]+[Y.X]=0
(i) [X[Y.Z]+ [V, [Z.X]] + [Z,[XY]] =0

(X,Y, and Z being arbitrary in 3(M)). If X and Y are real, so is[X,Y]. The
relation (iii) of (1.1.6) is known as the Jacobi identity.

Differential operators. Let r = 0 be an integer and let
(1.1.7) D:x— D,

be an assignment such that D, € T (M) for all x € M. If f € C=(M), the
function Df: x +— D,(f,) is well defined on M, f, being the germ defined by
fat x. If Uis a coordinate patch and x,, . . .,x, are coordinates on U, then
by Lemma 1.1.1 there are unique complex functions a;,, on U such that

b, :]“Eg aw(a® (y € U).

D is called a differential operator on M if Df € C=(M) for all f € C~(M), or
equivalently, if for each x € M we can find a coordinate patch U containing
x with coordinate x,, . . . ,x,, such that the a,, defined above are in C=(U).
The smallest integer r > 0 such that D, € T{(M) for all x € M is called
the order (ord(D)) or the degree (deg(D)) of D. For any differential operator
Don M and x € M, D, is called the expression of D at x. If Dfis real for

-
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_ any real-valued f € C*(M), we say that D is real. The set of all differential

operators on M is denoted by Diff(M). If f« C*(M) and D € Diff (M),
fD: x> f(x) D, is again a differential operator; its order cannot exceed the
order of D. Thus Diff(M)is a module over C~(M). A vector field is a differ-
ential operator of order <C1. If {V,};c, is an open covering of M and D(i € J)
is a differential operator on ¥, such that

(a) sup;e; ord (D;) < oo
(b) if V,, N V;, # ¢, the restrictions of D, and D,, to V';, N ¥, are equal,

then there exists exactly one differential operator D on M such that for any
i € J D, is the restriction of D to V..

Let D (x+~ D,) be a differential operator of order <<r. We also denote
by D the endomorphism f+— Df of C=(M). This endomorphism is then
easily verified to have the following properties:

(i) it is local; i.e., if f € C=(M) vanishes on an open set U,
Df also vanishes on U
(1.1.8) (i) if x € M, and f,,...,f ;4 arer -+ 1 functions in C=(M)
which vanish at x, then

(D(fify -+ fre))x) = 0.

Conversely, it is quicky verified that given any endomorphism E of C*(M)
satisfying (ii) of (1.1.8) for some integer r == 0, E is local and there is exactly
one differential operator D on M such that Df = Ef for all f € C™(M); and
ord(D) < r. In view of this, we make no distinction between a differential
operator and the endomorphism of C~(M)induced by it. It follows easily
from the expression of a differential operator in local coordinates that if
D, and D, are differential operators of respective orders r, and r;, then
D, D, is also a differential operator, and its order is <{r, + r,; MOTEOVer,
D,D, — D,D, is a differential operator of order <r, +r, — L. Diff(Af)
is thus an algebra (not commutative); if Diff(M), is the set of elements
of Diff(M) of order <Cr, r — Diff(M), converts Diff{M) into a filtered alge-
bra. A differential operator of order 0 is just the operator of multiplica-
tion by a C= function; if u is in C*(M) we denote again by u the operator
J> uf of C=(M).

If M = R~ and D is a differential operator of order <C r, there are unique
C~ functions a,, (|| <<r) on M (coefficients of D) such that

dlml

D= T a—
mzs:, T T
ty,. ...l being the linear coordinates on M. It is natural to ask whether
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such global representations exist on more general manifolds. The following
theorem gives one such result.

Theorem 1.1.2. Let X\, ..., X, be m vector fields on M such that (X,),,
e oo o (Xo), form a basis of T, (M) for each x € M. For any multiindex (o) =
(1, . - . .0} let X' be the differential operator
(1.1.9) X® =XpXge ... X

(when (&) = (0)X™) = 1, the identity operator). Then the X'“ are linearly
independent over C=(M). If D is any differential operator of order < r, we can
Sind unique C* functions a,,, on M such that

(1.110) D = E a(m,X(“).

lel=r
If the X, are real, then for any real differential operator D the ai,, defined by
(1.1.10) are all real.

Proof. For any integer r > 0, let D, denote the complex vector space of
all differential operators on M of the form 3}, <, fin X @, the f,, being C*
functions on M. Note that D, contains all vector fields. In fact, if Z is any
vector field, we can write Z = ¥, ,.-..c; X, for uniquely defined functions c;.
To see that the ¢; are in C~(M), let U be a coordinate patch with coordinates
X(, ..., X%, Then there are C= functions d;, a; on U (1 < j, k < m) such
that Z, = 331 <;<nd;(0)(0/0x;), and (X)), = 31 ck<m@(¥)(0/0x,), for all y €
U. Since the (X)), (1 <j << m) are linearly independent for all y, the matrix
(a;.) is invertible. If a’* are the entries of the inverse matrix, they are in
C=(U)yand ¢; = ¥ cjend,a® on U.

We begin the proof of the theorem by showing that if / is an integer
>1land Z,,....Z are [ vector ficlds, then the product Z, --- Z, belongs
to ®,. For I = 1, this is just the remark made in the previous paragraph.
Proceed by induction on /. Let / > 1, and assume that the result holds for

any I — 1 vector fields. Let Z,,...,Z, be / vector fields, and write E =
By = T
Notice first that if ¥,,...,Y, are any [ vector fields, F= Y, --- ¥,

and F’ is the product obtained by interchanging two adjacent Y’s, then F' —
F’ is a product of  — 1 vector fields. So F — F' € D,_, by the induction
hypothesis. Since any permutation is a product of such adjacent interchanges,
it follows from the induction hypothesis that ¥, --- ¥, — Y, Y, --- ¥, €
D,_, for any permutation (i;,...,i) of (I,....0). Butif 1<{j, <j, =< .-
< j; < m, then X, --- X, = X™ for a suitable (&) with |a| =/, so that
X, --- X, € D, Hence, from what we proved above, if (k;,...,k,) is
any permutation of (I, ...,m) and (&) is any multi-index with |a| </, then
Xgp-. Xgmned,
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Now consider E. By the induction hypothesis, there exist C* functions b,

~“gtid ¢, on M such that Z, = uren €, X; 80d Zy v Zi— Y s1a1 B X2,
So
E = 1<§.‘;m r.a\;—l (X, o b(ﬁ,)X“"
e . x® (X. ()
lg:sm mé_]cfb(ﬁ!XJX o IQZ_QH i cAXbp)X @,

Since, for all (§) with |f|<</— 1, X, X% = D, (by what was seen in the
preceding paragraph), we have E € D,

We can now complete the proof of the theorem. Let r > 0 be any integer.
Let U be a coordinate patch with coordinates x,,...,x, and let ¢** be the
differential operators y +— d{* on U. By the result of the preceding paragraph
(applied to the manifold U/), there exist C* functions a,  on U such that

(1.1.11) 0 = ]ﬂ; A, XP (o] <r)

on U. This shows at once that for any y € M, the X?(| 8| << r) span T
(M); since their number is exactly the dimension of Ti)(M), they must be
linearly independent too. Therefore, if D is a differential operator of order
<r, we can find unique functions ay, on M such that

1.1.12 — Y
(1.1.12) D 1,35r‘;ra(mX

To prove that the a,, are C=, we restrict our attention to U and use the above
notation. We select C* functions g,,, on U such that D =3, ,-,£.,8" on
U. Then by (1.1.11) and (1.1.12) we have, on U,

Ay = MZ(,I S, (Bl<71),
proving that the a,; are C=. The last statement is obvious. This proves the
theorem.

We shall often use Harish-Chandra’s notation for denoting the applica-
tion of differential operators. Thus, if f'is a C~ function and D a differential
operator, f(x; D) denotes the value of Dfat x € M.

Exterior differential forms. Let W be a finite-dimensional vector space
of dimension m over a field ¥ of characteristic 0. Put A,(W) = F, and for any
integer k > 1, define A, (W) as the vector space of all k-linear skew-symmetric
functions on W x --- x W (k factors) with values in F. A (W) is then 0 if

k> m, and dim A (W) = (}f) 1 < k < m. We write A(W) for the direct

sum of the A (W), 0 < k < m and write A for the operation of exterior
multiplication in A(W) which converts it into an associative algebra over F,
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its unit being the unit 1 of F. We assume that the reader is, familiar with the
defintion of A and the properties of A(W) (cf. Exercises 9-11). If ¢, ¢" =
A(W) (= dual of W), ¢ A ¢' = —¢' A ¢; in particular, ¢ A\ ¢ = 0. More
generally, if ¢ € A (W) and ¢' € A (W), then p A ¢' € A, (W), and
o Ag =(—1)"9" Ag.If{p,,...,p,}is a basis for A,(W),and | <k <m,
the (?) elements ¢, A -+ A @, (1 <iy << --- < i <m)form a basis for

A (W). Note that dim A, (W) =1 and that ¢; A --- A ¢, is a basis for
it. If ., ... ,w, is another basis for A (W), where w; = 3} <jcm@;9; (1 =
i<<m), and if A is the matrix (@;;);<; j=m, then

(1.1.13) wi A Ay, =det(d)gi A o0 A gn
A O-form is a C* function on M. Let 1 < k << m and let
WX @,

be an assignment such that @, € A (T,.(M)) for all x € M. @ is said to be
real if w, is real-valued on T (M) % --- x T (M) forall x € M. Let Ubea
coordinate patch and let x,,...,x, be a system of coordinates on it. For
y e U, let {(dx)),, .. .,(dx,),} be the basis of T,(M)* dual to {(d/dx,),, .. .,
(8/0x,,),}. Then there are unique functions a;, ., (1 =i <Tip <<+ <
< m) defined on U such that

.....

WOdx,), A A ldx), (v € U).

@, = ¥ _a,

L=< ip=m

¢ is said to be a k-form if all the a;,
choices of U).

Suppose @ (x > w,) 1s an assignment such that w, € A(7,..(M)) for all
x e M. Let Z,,...,Z, be vector fields. Then the function

;, are C functions on U (for all possible

CO(ZI, A Mo sZk): X '_>‘Cox((zl‘)1\:9 |l 3(Z.fc)x)

is well defined on M. It is easy to show that e is a k-form if and only if this
function is C> on M for all choices of Z,, . . . ,Z,. The map

(Zl’ o 5Zk)H CO(ZI!- .. :Zk)

of (M) x -+ x I(M)into C*(M)is skew-symmetric and C=(M)-multilinear
(i.e., C-multilinear and respects the module actions of C*(M)); the corre-
spondence between such maps and k-forms is a bijection. If  is a k-form and
feC=(M),fw: x— f(X)o, is also a k-form. So the vector space of k-forms is
also a module over C=(M).If wis a k-form and @’ is a k'-form, then x — 2, A
@', is usually denoted by w A '. Itisa (k + k')-form,and w A @’ = (—1)¥¥
o' A w.

e
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We write Q(M) = C*(M) and @&, (M) for the C=(M)-module of all k-
forms. Let @(M) be the direct sum of all the @.(M) (0 < k << m). Under
A, @(M) is an algebra over C=(M).

Suppose f € C=(M). Then for any vector field Z, Zf € C=(M), and so
there is a unique 1-form, denoted by df, such that

(1.1.14) df}Z)=2Zf (Z e IM)).

If U is a coordinate patch with coordinates x,, .. . ,x,, then

@n,= 3 (5L )oxax, »euv.

In particular, on U, dx; is the I-form y+— (dx;),. More generally, there is a
unique endomorphism d (w — dw) of the vector space @(M ) with the follow-
ing properties:

(i) d(dw)=0forallw e G&(M)
(1.1.15) (i) if o € &(M), o' € &, (M), then dw A ) = (dw) A
o o +(—Drwo A do'
(i) if f € @,(M), df is the I-form Z > Zf (Z € I(M))

Let U be a coordinate patch, let x,, .. .,x, coordinates on it, and let
= Z @y, dx, Ao Adx,
1=<iy---<ip=m

on U. Thenon U

(1.1.16) do= Y da,

1=y < cleZm

W Adxy A e A dx,

.....

The elements of @(M) are called exterior differential forms on M. The
endomorphism d (e — dw) is the operator of exterior differentiation on Q(M).

We now discuss briefly some aspects of the theory of integration on
manifolds. We confine ourselves to the integration of m-forms on m-dimen-
sional manifolds.

We begin with unoriented or Lebesgue integration. Let M be, as usual, a
C~ manifold of dimension m, and @ any m-form on M. It is then possible to
associate with @ a nonnegative Borel measure on M. To see how this is done,
consider a coordinate patch U with coordinates x,,...,x,, and let U=
{(x:(»), ..., %.(3)): ¥ € U}; for any Cr function f on U, let f € C(0) be
such that f o (x4, ...,x,) =/ Now, we can find a real C* function w, on U
such that @ = wydx, A --- A dx,, on U. The standard transformation for-
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mula for multiple integrals then shows that for any /" & C.(U), the integral

J‘ﬁf-’(tla Tem tm)EwU(!ls L !m)ldtl . -dfm
does not depend on the choice of coordinates x,, . . ., X,. In other words,
there is a nonnegative Borel measure g, on U such that forall f € C(U) and
any system (x;, ..., x,,) of coordinates on U

[ fawe = Fwolde, - dt.

The measures g, are uniquely determined, and this uniqueness implies the
existence of a unique nonnegative Borel measure g on M such that g, is the
restriction of g to U for any U. Thus, for any coordinate patch U and any
system (x,, . . . ,X,,) of coordinates on U we have, for all f € C(U),

(1.1.17) jufdp - jgf(:,,._.,f,,,)1wu(r1,...,zm)uzl s il

We write @ ~ g and say that u corresponds to @.

Let M be as above. M is said to be orientable if there exists an m-form on
M which does not vanish anywhere on M. Two such m-forms, w; and @,, are
said to be equivalent if there exists a positive function g (necessarily C”) such
that @, = go,. An orientation on M is an equivalence class of nowhere-
vanishing m-forms on M. By M being oriented we mean that we are given M
together with a distinguished orientation; the members of this class are then
said to be positive (in symbols, >-0).

Suppose now that M is oriented. Let 77 be any m-form on M with compact
support. Select an m-form e > 0 and write 7 = gw, where g € C2(M); let
i, be the measure corresponding to . We then define

(1.1.18) qu:ngd,um.

It is not difficult to show that this definition is dependent only on # and the
orientation of M, and not on the particular choice of e. Finally, ifew > 0is
as above we often write [ few for [, fdu.,.

Theorem 1.1.3. Let M be oriented and w a positive m-form on M. Let p
be the nonnegative Borel measure on M which corresponds to o. Then, given
any differential operator D on M, there exists a uniqie differential operator D'
on M such that

(1.1.19) JMDf-gdu:jMf-D*gdy

T
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for all f, g & C=(M) with at least one of f and g having compact support. D'
has the same order as D and D — D' is an involutive antiautomorphism of the
algebra Diff(M).

Proof. Given D € Diff(M) and g € C=(M), the validity of (1.1.19) for
all f € CZ(M)determines D'g uniquely. So if D' exists, it is unique. It is also
clear that if D'is a differential operator such that (1.1.19) is satisfied whenever
fapd g are in C7(M), then (1.1.19) is satisfied whenever at least one of f and
g lies in C7(M). The uniqueness implies quickly that the set 9,, of all D <
Diff(M) for which D' exists is a subalgebra, that D}, = D,,, and that D —
D' is an involutive antiautomorphism of D,,. It remains only to prove that
D, = Diff(M).

Let U be a coordinate patch, and let (x,, . . . ,x,,) be a coordinate system
U with @ = wydx; A --- A dx,, on U, where w, >0 on U, Put U =
{(xi(»), - - xa(3)): y € U} and forany h € C=(U) denote by & the element
of C~(U) such that Ao (x4, ...,x,) = h. A simple partial integration shows
thatif 1 <<j<{m, f,g € C(U),

O i drsoeode — | (9% o L 3%\ 7
fﬂ (al'_,-) gwy dt, dt, = J-E' (Ft_‘, o m;’g) Swydty - dt.

If Z, is the vector field y+ (d/0x;), on U, and ¢; € C=(U) is defined by
@, = wg' - (Z;wy), it is clear that Z exists and is the differential operator of
order I givenby Z} = —(Z; + ¢)).If h € C~(U), 4" exists and coincides with
. But by Theorem 1.1.2, Diff(U) is algebraically generated by C=(U) and the
vector fields Z;, 1 <<j<<m. Hence D, = Diff(U). Moreover, the above
argument shows that for any E € Diff(U) the order of E' is < order of E.
N Let D be any differential operator on M. From what we have just proved
it is clear that for each coordinate patch U one can find a différential operator
D}, on U such that ord(D},) << ord(D) and for all f, g € C=(U)

fM(Df)-gdﬂ = fM f-(Dyg)dp.

The uniqueness of T shows that the D}, match on overlapping coordinate
patches. So there is a differential operator D’ on M such that C}, is the restric-
tion of D' to U for any arbitrary coordinate patch U. Moreover, if U is any
coordinate patch, we have

[, @ngdu=[ rwedu

for a]lf, gc (;;’“(I_J). A simple argument based on partitions of unity shows
thz_lt t_h]s equation is valid for all f; g € CZ(M). In other words, D' exists and
coincides with D’. Our construction makes it clear that ord(D") << ord(D)



14 Differentiable and Analytic Manifolds Chap. 1

for all D e Diff(M). Since D' = D, this shows that ord(D) << ord(D"),
so that necessarily ord(D) = ord(D") for all D € Diff(M). The theorem is

proved.
Dt is called the formal adjoint of D relative to .
Mappings. Let M, N be C~ manifolds. A continuous map
nM—N

is said to be differentiable (C~) if for any open set U = Nand any g € C7(U),
g o7 € C=(z 1(U)). Suppose x is differentiable, x € M, y = n(x). Then with
respect to coordinates x,,...,x, around x, and y,,...,y, around y, @ is
given by differentiable functions.

If g, g" are C= around y and coincide in an open set containing y, then

gomand g’ o m coincide in an open set containing x. Thusthe mapgr—goxm
(g € C=(N)) induces an algebra homomorphism 7* (u— u o x) of D, into
D,. If X, € T..(M), there is a unique Y, € T,,(N) such that Y,(u) =
X.(n*(n)); we write Y, = (dn) (X,). Thus

(@m) (X)) = X (z* W) (u € D,).

(dm), is a linear map of T .(M) into T, (), called the differential of mat x. 1t
is clear that (dn), maps the tangent space T,(M) into the tangent space T,(N).
A special case of this arises when A is an open subset of the real line R. In
this case, for any 7 € M, D, = (d/dt),-, is a basis for T,(M), and it is custo-
mary to write

d

(1.1.20) () — (Et—)r:tn(r) — LD,

7t(7) is thus an element of T, ,(N).
If p > 1 is any integer, it is obvious that z*(J7) < JZ, so given any v €
Te)(M), there is a unique v’ € T{(N) such that »'(u) = v(z*(u)) for all

u € D,. We write v’ = (dn){”(v); thus
(1.1.21) (dm)S(v)(u) = v(z*(w) (u € D).

It is obvious that (dn)! maps T{'(M) into T{"(N) for any integer r = 0 and
that (dn)™ | T.(M) = (dn),. We refer to (dr){ as the complete differential of
n at x. If D is a differential operator on M, there need not in general exist a
differentiai operator D’ on N such that (dn){(D,) = D, for all x € M.
If such a D’ exists, we shall say (following Chevalley) that D and D’ are n-
related. Given D € Diff(M) and D'  DIifl(N), it is easy to show that D and
D' are m-related if and only if D{uoz) = (D'u) oz for all u € C=(N). If

e
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D, € Diff(M) and D € Diff(¥) are z-related (j = 1, 2), then D, ¢ D, and
D\ e D) are g-related.

Let w: M — N be a C* map and e any r-form on N, For x € M let
(n*w), be the r-linear form defined by

(l] 22) (ﬂ:*w)x(vlz L :vr) = wn(x)((dn)x(’vl): L ’(dn)x(ﬂr));

forvy,...,v, € T (M). Then (m*w), € A(T..(M)), and x— (x*w), is an
r-form on M. We denote this form by n*w. z* : @ — n*@ has the following
properties:

() 7a%uw) = womn*ew (e C*(N))
(1.1.23) (i) dn*w) = n*(dw)
(iii) 7w, A ) = (@ w,) A (n*w,).

(®, w,, @,, = @(N) are arbitrary).

We consider now the special case where the differentiable map 7z is a
homeomorphism of A onto ¥ and =~ * is also a differentiable map. & is then
called a diffeomorphism. In this case w induces natural isomorphisms between
the respective spaces of functions, differential operators, etc. For instance,
let N = M and &: x — ax) a diffeomorphism of M onto itself. Then ¢ in-
duces the automorphism u > u* of C*(M) where u*(x) = u(a(x)) for all
x € M,u € C~(M). This in turn induces the automorphism D~ D= of the
algebra Diff(M); D=(u) = (D(u="))*, for all D € Diff(M) and u € C=(M).
The set of all diffeomorphisms of M is a group under composition. If a, #
are diffeomorphisms of M onto itself, the D*f = (D#)* for D < Diff(#).
Similarly we have the automorphism w — w* of Q(M).

Let 7 (M — N) be a C* map (m = dim(M), n = dim(N)), x € M, and
let (dx), be surjective. Let y = z(x). Then m == n, and it is well known that in
suitable coordinates around x and y, = looks like the projection (¢, . . . ,%,)
(¢, ...,t,) around the origin in R™. In fact, let x,, . . ., x,, be coordinates
around x, and y,, . ..., coordinates around y with x,(x) = y,(») =0, 1 <
i<<m, | <<j<Cn There are C™ functions F,, ..., F, defined around 0, =
0,...,0) € R™ such that y,on = F;(x,...,x,) (I =< j < n) around x.
Since (dm), is surjective, a standard argument shows that the matrix
(OF,/0t,) 1< jen1<r<m has rank n at 0,,. By permuting the x; if necessary, we
assume that the # X n matrix (0F,/0t;),<; s, is non-singular at 0,,. It is then

clear that the functions y,om, ..., ¥, 0%, X,0ys...,X, form a system of
coordinates around x; and with respect to these and the y,, n looks like the
projection (¢, ... ,t,) — (t,, ..., t,). It follows from this that the set M, =

{z:z € M, (dn), is surjective} is open in M, that z[M,] is open in &, and that
7 is an open map of M, onto n[M,]. = is called a submersion if (dn), is sur-
jective for all x = M. If = is a submersion and z[M] = N, N is called a quo-
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tient of M relative to m. 1t follows from the local description of z given above
that if NV is a quotient of M relative to z, then for any open set U = N, a
function g on U is C=if and only if g o 7 is C~ on z~(U). In other words, in
this case, the differentiable structure of N is completely determined by =z
and the differentiable structure on AM.

We now consider maps with injective differentials. Here it is necessary to
exercise somewhat greater care than in the case of a submersion. Let M and
N be C= manifolds of dimensions m and » respectively, and z (M — N) a
C= map. Let x € M, y = n(x) and suppose that (dz), is injective. Then m <<
n, and in suitable coordinates around x and y, m looks like the injection

(t1, .o« t) = (ty o o o t0, - . . ,0) around the origin. More precisely, we can
find all of the following: a coordinate patch U containing x with coordinates
X1y ... X,; acoordinate patch ¥ containing y with coordinates yi, . ...V

and a number @ > 0 with the following properties:

(i) &z (x,(2),...,x,(2))) is a diffeomorphism of U onto
I7, with &(x) = 0,,; 7 (2 > (31,(2)), . . . .y(2")) is a diffeo-
morphism of V¥ onto I7, with #(y) = @,.?
(LL124) § (i) momo& ! isthe map
(ti, .ot (e stn0, .00 50)
of I into I%.

To see this, let x|, ....x, be coordinates around x and let ¥}, ...,y be
coordinates around y = z(x) with xi{(x) = yi()) =0, 1 <i<m, 1 <j<n.
Let F.(1 < j < n) be C~ functions around 0, such that ;o 7 = F,(x\, ...,
x.)around x(1 << j << n). Since(dn), is injective, the matrix(9F,/00c) 1 < j<n, 1 2k 2m
has rank m at 0,,. By permuting the ', if necessary, we may assume that the
m X m matrix (3F;/0t,), <; x=m is nonsingular at 0,,. It is then clear that the
functions y, o 7, . . . .}, o = form a system of coordinates around x. Let x, =
y, o (1 << i < m). Let G, be C= functions around 0,, such that y, o7 =
G,(X1, - . . %) around x(m < p <_n). Define y, = yi (i <m), ¥, = Vo —
G(¥1y+ -« V) (m < p << n). Then we have (1.1.24) for suitable U, V, a > 0.
It follows from (1.1.24) that there is a sufficiently small open set U around
x such that # is a homeomorphism of U onto n[U].

1 is called an immersion if (dr), is injective for all x € M; an imbedding
if it is an one to-one immersion; and a regular imbedding if it is an imbedding
and if 7 is a homeomorphism of M onto n[M], the latter being given the
topology inherited from N. The properties (1.1.24) are not in general strong

3For any integer k = 1 and any b = 0, we write I,’,‘ for the cube in R* defined by
IE = .. al): =B 1B for L]k
The origin of R* is denoted by 0.

-
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enough to ensure that a given imbedding is regular or has other nice prop-
erties. Note, however, that if 7z is an imbedding the equations (1.1.24) com-
pletely determine the differentiable structure of M in terms of z and the
differentiable structure of N:if W < M is open and f is a complex-valued
function on W, fis C~ if and only if for each x € 1 one can find an open set
U with x & U = W, an open set ¥ containing y = n(x) with z[U] = ¥, and
g € C=(V) such that f(z) = g(=(2)), z € U.

The next theorem describes some of the nice properties of regular imbed-
dings. Recall that a subset 4 of a topological space E is said to be locally
closed (in E) if it is a relatively closed subset of some open subset of £, or
equivalently, if it is open in its closure.

Theorem 1.1.4. Let © be a regular imbedding of M into N. Then n[M] is
locally closed in N. For each x € M, we can choose U, V, X1, ... Xp Y1, -+ -,
v, such that, in addition ro (1.1.24), we have

(1.1.25) zlU]==M]I N V.

If P is any C* manifold, and u is any map of P into M,u is C~ if and onlyifmoun
is a C map of P into N.

Proof. Let U, V', X1, .. X Y1y« - - »¥m and @ >0 be such that the
relations (1.1.24) are satisfied (with U’, V', and a’ replacing U, ¥, and aq,
respectively). Since m is a homeomorphism onto =[M],z[U’] is open in
n[M], so there is an open set ¥ in N such that z[U']= V" n xa[M]. Let
V,= V'~ V" Then ¥, is an open subset of N containing y = n(x) and
a[U’] = V, M a[M]. Choose a with 0 << a << @’ such that #~'(/7) = V, and
E-1(Im)y < U'. Then if we set U = &-1(/7") and ¥V = 7' (1]), we have (1.1.25).
Note that n[U] = a[M] N V is closed in V" by (1.1.24). Now select open
sets V,(i € I) in N such that z[M] < (,e,V, and n[M] 1 V; is closed in ¥,
for each 7 = £, Then it is clear that z[M] is closed in (), V,; thus m[M]
is locally closed. For the last assertion, let P be a C™ manifold, and let u
be a map of P into M such that o uis a C” map of P into N. Let p € P,
x = u(p), y = n(x). There is an open set W in P containing p such that
(m o W)[W] € V; then u[W] < U. It follows at once from a consideration of
coordinaies that & is a C map of W into U.

The universal property contained in the last assertion of Theorem 1.1.4
is an important consequence of the regularity of an imbedding. However,
even some irregular imbeddings possess this property. Let z be an imbedding
of M into N. We shall call 7 guasi-regular if the following property is satisfied :
if P is any C~ manifold and « any map of P into M, u is C~ if and only if
7 ouis C* from P to N. There are imbeddings which are quasi-regular but
not regular (Exercise 1).
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Submanifolds. Let M, N be C= manifolds. Then M is called a submani-
Jfold of N if
(1.1.26) { (i) M = N (set-theoretically)

o (i) the identity map of M into N is an imbedding.

M is said to be a regular (resp. quasi-regular) submanifold if the identity map
of M into N is regular (resp. quasi-regular). If M is a submanifold of & and
x € M, we shall identify 702(M) with its image in 77 () under the complete
differential of the identity map of M into ¥.

As we have observed already, the relations (1.1.24) have the following
consequence: given a subset M = N and a topology on M under which M is a
Hausdorff second countable space and which is finer than the one induced
from N, there is at most one differentiable structure on M so that M becomes
a submanifold of N. If such a structure exists, we shall equip M with it and
refer to M as a submanifold of N. If the topology on M is the one induced by
N, then the differentiable structure described above, if it exists, will convert
M into a regular submanifold of V.

Theorem 1.1.5. Let N be a C= manifold and let M = N. In order that M,
equipped with the relative topology, be a (regular) submanifold of N, it is neces-
sary and sufficient that the following be satisfied. There exists an integer m
with | << m < n such that given any x = M, one can find an open set V of N
containing x and n — m real differentiable functions fy, . . . ,f,-, on V such that

(i) VOM={z:zeV, filz) =+ =f,_ul2) =0}
(1.1.27) (i) (df)us- - - (dfs ). are linearly independent elements of
T.(N)*.

If this is the case, dim(M) = m, and M is a locally closed subset of N.

Proof. The only thing that needs to be proved is that if M satisfies the
conditions described above, then it becomes a regular submanifold of N;
Theorem 1.1.4 implies the remaining assertions. Also if m =n, (1.1.27) reduces
to the condition ¥ = M, so that in this case M is an open submanifold of .
We may thus assume 1 <<m < n.

Fixx € MandletV,f,,...,f,_, beasin (1.1.27). Itis then clear that we
can find a system of coordinates x, . . . ,X, in a neighborhood of x such that
x;(x) = 0(l <j<n)and x,,; = fi(l =<<j<In—m). By replacing V' by a
smaller open set, we may assume that the homeomorphism & (y — (x;(»),
.. .,x.(3)) maps ¥ onto I? for some g > 0. Then £ maps M N V onto [T X
0, .. In other words, U = M N Vis aregularly imbedded submanifold of ¥,
hence of N. Since x € M is arbitrary, it follows that we can write M =|_J;c;U},
where each U, is open in' M and is a regular submanifold of NV. If i, j € [ are
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such that U,; = U, N U, # @, then U,; is open in both U, and U, and is a
regular submanifold of N under each of the C~ structures induced by U,
and U;. These two structures must be the same, so U;; is an open submanifold
of both U, and U,. It then follows that there is a unique C* structure for M
such that each Ui = I) becomes an open submanifold of M. This structure
converts M into a regular submanifold of V.

Product manifolds. Let M,(j =1, 2) be a C~ manifold of dimension m;,
and let M = M, x M,. Equip M with the product topology; it is then
Hausdorff and second countable. Let I/ & M be an open subset and f'a com-
plex function defined on U. We say fis C” if the following condition is
satisfied: for any (a,,a,) € U there are coordinate patches V; around a; and
coordinates x;,, . . . ,X;,, on V,(j = 1, 2) such that (i) V', X ¥, < U, and (i1)
if ¥, is the image of ¥; under the map z+— (x;1(2), . . . ;% (2)), there is a

C~ function ¢ on ¥, X ¥, such that

flby, by) = (a(xll(bx)a S =x1m.(b1)=x21(bz)’ s & ey K D71

for all (b,,b;) € V, % V,. Ur> C=(U) is a differentiable structure for M;
itis called the product of the structures on M, and M,. M is called the product
of the €= manifolds M, and M,. If &, is the natural projection of M on M,
n,is a submersion. If Nisa C= manifold and u: y = (u,(y), u,(»)) is a map of
N into M, then u is C* if and only if u#, and u, are C~.

Suppose x = (x,,x;) € M. Given functions f; € C=(U)), where x; € U;
(j=1,2), we write f; X/, for the element of C=(U, x U;) given by (fi X.f2)
(a,,as) = fi(a) fila)(a, € U)). The map f,,f, — fi &K [, induces a natural
injection of D,, @ D,, into D,. If X, is a tangent vector to M; at x; (j=
1, 2), there is exactly one tangent vector X to M at x such that foru; € D,

(j=12),
(1.1.28) X(u, @ uy) = uy(x,)X,(0,) + u,(x) X (uy);

X,, X,— X is a linear isomorphism of T, (M,) x T, (M) with T.(M).
More generally, if v, € T¢(M,) (j = 1, 2) there is exactly one v &€ T (M)
such that

(1.1.29) o(f, ®f,) = vf)v.(f) f € D)

v e T (M) and the map v, X v, — v extends uniquely to a linear iso-
morphism of T&2 (M) ® T(M,) onto T5(M). We shall often identify
these two spaces and write v, (X) v, for the element v defined by (1.1.29); in
particular, the tangent vector X defined by (1.1.28) is nothing but X, & 1,,
+ 1, ® X

If D, is a differential operator on M (j = 1, 2), then D:(x,, x,) > (D),
X (D,),, is a differential operator M, X M,; we write D, & D, for D.
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These considerations can be extended easily to products of more than two
manifolds.

1.2. Analytic Manifolds

We begin by recalling the definition of an analytic function of m variables,
real or complex, Let U = R™ be any open set and let £ be a function defined
on U with values in C. f'is said to be analytic on U if, given any (x!, ... ,x%)
€ U, we can find an # > 0 and a power series

D ol — 3 G — X (e, € ©)
around (x4, ..

. »Xn) such that the series converges absolutely and uniformly
for all (x,, ...

1 — Q
X)) with lrgfas)fﬂlx,- x9] < n, to the sum f(x,, ... ,x,). For

an open set U = C™, a similar definition of a complex analytic or holomorphic
function on U can be given. The functions which are analytic on U form an
algebra under the usual operations. Analytic functions of analytic functions
are analytic.

The definition of a real analytic manifold is similar to that of a C~ mani-
fold. Let M be a Hausdorff space satisfying the second axiom of countability.
A real analytic structure for M is an assignment

A: U+ WU) (U open, = M)
such that

. 1Si) U possesses properties (i) and (ii) of a differentiable structure (cf.

(if) There exists an integer m > 0 with the following property: for each
x € M, can find an open set U containing x and m real functions x, . .. ,x,
from A(U) such that (a) the map &:y— (x,(3), ....x,(»)) is a homeomor-
phism of &/ with an open subset of R™, and (b) if W is any, open subset of U,
(W) is precisely the set of all functions of the form F o &, with F analytic on
S ].

The pair (M, ¥) (and, by abuse of language, M itself) is said be a real analytic
manifold of dimension m. For an open U < M, the elements of () are called
the analytic functions on U. As before, any open set such as U in (ii) above is
called a coordinate patch; and x,, . . . ,x,, are called analytic coordinates on U.

Let U = M be open and let f be a complex-valued function defined on
U. We define fto be C~ if for each x € U, fis a C*= function of the local
analytic coordinates around x. The assignment U~ C=(U) is easily seen to
be a differentiable structure for M. We shall call this the C= structure underly-

—
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ing the analytic structure. Note that 2(U) = C(U) for all open U/. The entire
theory of differentiable manifolds now becomes available to M.

Let M and N be analytic manifolds and = a map of M into N. The defini-
tion of the analyticity of z is analogous to the C case. z is called an analytic
isomorphism or an analytic diffeomorphism if it is bijective and if both = and
71 are analytic. It is a consequence of the classical theorem on implicit and
inverse functions that if z (M — N) is analytic and bijective and if (dn), is
bijective for all x € M, then z~! is analytic, so that z is an analytic diffeo-
morphism.

Let M be an analytic manifold and D a differential operator on M. For any
open set U = M, let D, denote the restriction of D to U. D is called analytic
if for each open U, Dy:f— Dy f leaves W) invariant. Let U be a coordi-
nate patch, x,, . . . ,x,, analytic coordinates on U, and let D, = N a0
Then if D is analytic, ay,y € WUV); conversely, if for each x € M we can find
analytic coordinates xi, ... ,X, around x such that D = > a0 on
an open set around x with analytic a,, then D is an analytic differential
operator. Similarly, a definition of analyticity can be given for differential
forms. The analytic differential operators form a subalgebra of Diff(Af).
If e is an analytic m-form which is real and vanishes nowhere, D an analytic
differential operator, and D' the formal adjoint of D with respect to w, then
it is easy to verify that D' is analytic. If , 0’ are analytic r-forms, then daw
and @ A @' are analytic; if 7 (M —» N) is analytic and @ is an analytic r-
form on N, so is 7w on M.

The concepts of products and quotients of analytic manifolds as well as
submanifolds of analytic manifolds are defined exactly as in the C™ case, with
analytic functions and coordinate systems replacing the C™ ones. The defini-
tions and results of §1.1 concerning maps with surjective and injective differ-
entials remain valid with this modification. In particular, Theorems 1.1.4 and
1.1.5 remain true in the analytic case: if N is an analytic manifold and M a
subset of N equipped with the relative topology, then M is a regular analytic
submanifold of &V of dimension m (1 << m < n) if and only if for each x € M
we can find an open subset ¥ of ¥ containing x and n — m real-valued ana-
Iytic functions £}, . . . ,fa—r o0 ¥ such that (i) V' N M is precisely the set of
common zeros of fi, . . . .fum in ¥, and (i) (df)),, . .. (dfy-n), are linearly
independent elements of T,(N)*.

A complex analytic or holomorphic manifold of complex dimension m is
defined in the same way as a real analytic manifold, with holomorphic
functions replacing real analytic functions. Given a complex analytic mani-
fold M of dimension m, there is an underlying real analytic structure for M
in which M is a real analytic manifold of dimension 2m; if U = M is open
and £ is a real-valued function on U, f will be analytic in this real analytic
structure if and only if the following is satisfied: for each x & U, we can find
holomorphic coordinates z,, . . . ,Z, around x such that £ is a real analytic
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function of the 2m real functions Re(z,), ... ,Re(z,), Im(z,), ..., Im(z,) in
a sufficiently small open neighborhood of x.

Let M be a complex analytic manifold and let x € M. Two functions
defined and holomorphic in an open set containing x are called equivalent if
they coincide in some open neighborhood of x. The equivalence classes are
called the germs of holomorphic functions ar x. In the usual way, they form an
algebra over C, denoted by H_; for any f H,, write f(x) for the common
value at x of the elements of f. The holomorphic tangent vectors to M at x are
then the linear functions » on H, such that v(fg) = f(x)v(g) + s(x)u(f) for all
f.,g € H,. They form a complex vector space, the so called holomorphic
langent space to M at x, this vector space is denoted by T.(M). More general-
ly, let J,, be the ideal in H, of all u with u(x) = 0; then for any integer r > 0. a
holomorphic differential expression at x is a linear function v on H, which
vanishes on J;*'. The set of all such is a vector space denoted by TV(M).
As before, we put T¢'(M) = U,., T (M). Holomorphic vector fields, differ-
ential forms, and differential operators can now be defined as in the real
analytic case; no changes are needed.

The same situation provails with respect to the concepts of quotient and
submanifolds of complex analytic manifolds. In particular, the analogues
of Theorems 1.1.4 and 1.1.5 are true in the complex analytic case also.

Algebraic sets. The version of Theorem 1.1.5 for analytic manifolds is
very useful in showing that certain subsets of R* or C* are regular analytic
submanifolds. The simplest examples are obtained when we take M to be the
set of zeros of a collection of polynomials. For example, let p > 1,¢ > 1 be
integers and let F be the polynomial on R#"¢ defined by

= 2 2 2 2
F('xls-'-sxpﬁ-q)*xl‘k +xp‘_xp+17 Tt T Xpug

Let M be the set of zeros of F and M, = M{0} (0 is the origin in R2+9).
Then, for x € M, (dF), + 0if and only if x M,. So M, is a regular ana-
lytic submanifold of dimension p + g — 1. It is not difficult to show that M
does not look like a manifold around 0. 0 is called a singular point, and points
of M, are called regular; the set of regular points is thus open in A and
forms a regular submanifold of R?*%, We now prove a theorem of H.
Whitney [1] which asserts that the above example is somewhat typical. We
work in R”; the case of sets of zeros in C* of complex polynomials can be
handled similarly.

Let U < R” be an open set, fixed throughout this discussion; let @ be
the algebra of all polynomial functions on R” with real coefficieuits. For any
subset ¥ < @ let

(1.2.1) ZF) =fuiuec U,Pu)=0Y P e ).

e
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Any subset of U which is Z(F) for some § < @ is called an algebraic subset of
U. For any subset M of U, let

(1.2.2) IM)={PPc @ P)=0Yuec M}

g(M) is an ideal in ®. Note that Z(¥) is also the set of common zeros of the
elements of 9(Z(F)), so that any algebraic subset of U is of the form Z(4) for
some ideal § = ®. Now, if 4 is an ideal in ®, we can find P,,... P. c g
such that § = ®P, + --- 4 ®P, (Hilbert basis theorem); {P,,... P} is
called an ideal basis for 9. So any algebraic set is of the form Z(%) for a finite
subset F of @.

Suppose now that M is an algebraic subset of U. For.any ue M, let
(1) be the dimension of the linear space spanned by the differentials (dP),,
P c 9(M). rp(u) is called the rank of M at u. The relation

d(PQ), = Pu)(dQ), + Q(u)(dF),

shows thatif {Q, ..., Q,}is an ideal basis for 9(M), r, (1) is also the dimen-
sion of the linear space spanned by (d(Q,),, . . ., (dQ,),. Put

(1.2:3) r = max )

(1.2.4) My={u:uc M, ry)=r}

The points of M, arecalled regular; those of M “ M, are called singular. .Now,
forany Py, ...,P, € 8(M), (dP,),, . . . ,(dP,), are linearly independen‘t if and
only if the matrix (@P;/@!;) <<, 1252, 15 Of rank s at w. It follows easily from
this that M, is a nonempty open subset of M, being the set of allu € M where
the rank of the matrix ((dQ,/d¢,),) is maximum.

Theorem 1.2.1. (Whitney) Let notation be as above. Then M, is a non-
empy open subset of M and is a regular analytic submanifold of R" of dimension
n—r.

Proof. We follow Whitney’s proof. It is enough to prove that .each point
of M, can be surrounded by a connected open subset of M, which is a regular
analytic submanifold of R* of dimension n — r. Fix u, € M,; we may as-
sume that u#, = 0. We can then select Py, ...,P. € 9(M) such that (dP,)e,
.. ..(dP,)y are linearly independent. The matrix (dP,/d¢)), -, 1,2, therefore
has rank r at 0. By permuting the coordinates if necessary, we may assume
that

& ooy Sl
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It is then obvious that

(B(Pl, OFT .7 TT L
0055 5 o5les £rats roe ofa)

);éo.
[1]

Write y, =P, 1 <i<<r,y, = t, v+ 1 <Ci<n Clearly, we can choose an
open s_et V and an a > Osuch that (i) 0 € V' = U, and (ii) v — (@, ...
¥.(¥)) is an analytic diffeomorphism of ¥ with the cube I7. Let , 5

(125) VG :{?):’U S Vayi(v) _ e :yr(q)):o};

then ¥ is a connected regular analytic submanifold of R* of dimension
n—r,0e Vy,and VN M < V,. It is now enough to prove that ¥, = M.
F.or suppose this proved: then V, = V' N M, so V, is an open subset gf‘M'
Since (dP,),,...,(dP,), are linearly independent for all v € V,, ¥, = M, -
So ¥, would be an open subset of A, containing u, and imb’eddea as Ua.
regular analytic submanifold of dimension #n — r of R™.

.We now prove that ¥y = M. Let A be the algebra of all real-valued ana-
Iytic functions on V. Write § = g(M) and 3 = Ad, the ideal in A generated
by‘ﬂ. We claim that g is invariant under the derivations iy, r+1<j<n
I.l Is enough to prove that d/dy,; § = §forr + 1 <j < n. Ff;(j with?—f—‘1<.
j<n Fed. WriteP,:tIifr—i—lglgnandl;-‘_—j, and P, = F. Th-e;

2.6 OPiro.\P) _ 9(Pure.sP) (tn... )
GRS Rl TroseavA S coma

Now
IPy,....P) _ OF
6(_]/1, v :yn) - 6.]}_.'
Furthermore,

oty ...t
W = ( 1 n) =
6(y1: e ayn)
On the other hand, consider

P:a(Pls--- :Pn)_

A.

6(113 L] stn)
We have
P Py, .o L, F)
d(!l‘l R :tr!t_f)
Since Py, ..., P, F € 4, P has to vanish at all points of M, as otherwise

thfare would be points of M where g has rank >r + 1. So P = 0 on M. Since
P is a polynomial, P € 4. (1.2.6) now shows that

dF -
i =pP e 4.

i
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It follows from the above result that for any F € § and any multiindex
() = (&yi1y o+« + %) (3/0y,4 ) - -(d[dy,)F € 4. Now, it is trivial to see
that any element of  vanishes at 0. So if F € 4, all the derivatives (3/dy, )"
.« +(@/dy,)=F vanish at 0. Since F is analytic and ¥V, is connected, this im-
plies that F vanishes on V,. In particular, all elements of ¢ vanish on V.
So ¥V, = M. As mentioned earlier, this is sufficient to prove the theorem.

1.3. The Frobenius Theorem

The aim of this section is to introduce the concept of involutive systems
of tangent spaces on an analytic manifold and to prove that such systems are
integrable. At the local level this is just the classical Frobenius theorem.
However, for applications to the theory of Lie groups, the local form of the
theorem is not adequate, and it becomes necessary to construct global in-
tegral manifolds. We shall follow Chevalley’s elegant method of doing this.
We restrict ourselves to the analytic case; the C* versions of our theorems
can be proved by means of analogous arguments.

Let M be an analytic manifold of dimension m. An assignment £: x —
£.(x € M) is called a system of tangent spaces (of rank p) if £, is a linear
subspace of dimension p contained in T(M) for all x € M. The system £ is
said to be nontrivial if 1 << p <<-m — 1. We shall consider only nontrivial sys-
tems in this section. Given a system £ of tangent spaces of rank p, a vector
field X is said to belong to £ on an openset Uif X, € £, forallx € U. £1is
said to be an analytic system (a.s.) if for each x € M we can find an open set
U containing x and p analytic vector fields (p = rank £) X, ..., X, on U
such that (X,),, . . ., (X,), span £, forall y & U. £ is said to be an involutive
analytic system (i.a.s.) if it has the additional property: let U be an open subset
of M and let X, Y be two analytic vector fields which belong to £ on U; then
[X,Y] belongs to £ on U.

Given an a.s. £, an analytic submanifold S of M is said to be an integral
manifold of £ if (a) S is connected, and (b) for each y € S, T,(S) = £,. We
do not require that S be a regular analytic submanifold, and so the topology
of S could be strictly finer than the one induced from M. £ is said to be
integrable if each point of M lies in some integral manifold of £.

An integrable a.s. £ is necessarily involutive. To prove this, we need only
verify that if x € M and X and Y are analytic vector fields which belong
to £ in some open neighborhood of x, then [X,Y], € £,. Now, there is an
integral manifold S of £ through x. Replacing S by a sufficiently small open
subset of it containing x, we may assumie that S is a (connected) regular
submanifold of M and that § = U/, where U is open in M and where X and

Y are defined on U and belong to £ on it. Then X' (y— X,)and Y (y — Y,)
(y € ) are analytic vector fields of S; if i is the identity map of S into
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M, X', X and Y’, Y are i-related. So [X',Y’] and [X, Y] are i-related. This
implies that [X, Y], € £._.

Let M (resp. N) be an analytic manifold and 9 (resp. M) an a.s. on M
(resp. N). M and N are called isomorphic if there is an analytic diffeomorphism
z (M — N) such that (dr),(M,) = N, for all x € M. If £L(x+— £,) isan
a.s.on Mand U & M an open set, £ induces on Uan a.s. £| U, by restriction.
Let @ > 0 and let us consider the cube 77" in R™. Let ¢, ... ,t, be the usual
coordinates in R™. For any x € I7 let £2™* be the linear span of (3/dt,).,
oo(@/0t,),. Then £»™e: x5 £2ma is an ias. If pi1y - .- o4, are fixed
numbers between —g and 44, the submanifold

{(rls eI !tm): tp'i‘l = a_p+19' ® & Jm = am}

is an integral manifold of £2m2. £7m2 s called a canonical i.a.s. The classical
Frobenius theorem asserts that, locally, every i.a.s. is isomorphic to a canoni-
cal one,.

The proof of the local Frobenius theorem depends on the following two
lemmas; the first lemma proves the theorem in question for the case p = 1.

Lemma 1.3.1. Let M be an analytic manifold, X any real analytic vector
Jield on M, and x € M a point such that X, + 0. Then there are analytic

coordinates x, . . . ,x,, around x such that X, = (8/dx,), for all y in an open
neighborhood of x.
Proof. Select analytic coordinates z,, . . .,z, around x such that zy(x)

== -+ = z,(x) = 0 and X,(z;) # 0. Then there are real analytic functions
Gy, .. .,G,, defined on I7 (for some @ > 0) such that G,(0,...,0)== 0 and

X, = 3 Gz, za(») (diz,)y

for all y in an open neighborhood of x. Consider the system of differential
equations

(1.3.1) ‘%‘ = GslD),.. . 4D (1< 1< W),
By the standard existence theorem (cf. Appendix, Theorem 1.4.1), we can

select b with 0 << b < ¢ and real analytic functions u,, . . . ,u,, on I such that

(@) Juft,ys,.. . p)|<aforl<<j<mand(,y,,... JVw) € 17
(b) for fixed (ys,...,y,) € I, the functions u,(-, y,, . . . K1)

Un(*s Y2y - - - V) satisfy (1.3.1) on the open interval (—b,b) with the
initial conditions

u1(09y25'-~>ym):0: uZ(O!yZa---zym):yb vEN L]
um(osyb- L] syrn) == ym'

QU
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Then the analytic map

T (I,_}'z,- . -;ym) = (ul(tsyb LR sym)s- LEhs :um(tayZ’- . aym))

has the nonvanishing Jacobian G,{0, ..., 0) at 0, and 7(0) = 0. So it is an
analytic diffeomorphism on an open set containing 0. Therefore, there exist
functions £, ... ,F,, defined and analytic around 0, vanishing at 0, such
that the map (v, ..., — (Fi(@, .. 00, .. Fu(vy, ... ,0,)) Inverts T
around @. Let x; = Fi{(z,,...,z,). Then x,, ... ,x, form a system of ana-
lytic coordinates around x. It is easy to verify that X, = (d/dx,), for all yin
some open set containing the point x.

Lemma 1.3.2. Let M be an analytic manifold, x € M,and let X, ... X,
be real analytic vector fields defined on an open set U containing x such that (i)
(X)), - - - ,(X,), are linearly independent for y € U, and (ii) [X;,X,] =0,
1 << j, k < p. Then we can choose coordinates x,, . .. ,x,, around x such that,
in an open set around x,

(1.3.2) X,:%JFIE_% d‘i 1<j<p),
J 5

sl f
where the a;, are defined and analytic around x.

Proof. We prove this by induction on p. For p = 1 this follows at once
from Lemma 1.3.1, Let 1 << p << m, and assume the result for X, ..., X,_;.
Then we can choose a connected open set V' with x = ¥ < U and coordinates
Uy, ..., M4, on ¥Vsuch that

(1.33) X= gt B buge 0<j<p—D),

J

where the &, are analytic on V. Write X, = 31,.,.. g, 8/du,, where the g,
are analytic on ¥, and put X", =3 ....g. d/du,. From (1.3.3) and the
condition (i) of the lemma we conclude easily that (X)), = Oforally € V.
On the other hand, the conditions [X,, X ] = 0 yield the relations

d d
(13.4) I e[| B, ey g =0
on V, for 1 << j<< p — 1. Now (1.3.3) shows that, for ] <s<Imand 1<
< p— 1, [d/du,,X,] is a linear combination of only the d/du, with 1 I ¢ <C
p — 1. Hence (1.3.4) implies that X,g, =0on Vfor 1 <j<<p—1,p<s
<< m. A simple argument based on (1.3.3) now shows that d/du,;g, = 0 on
Vforl <j<{p—1,p<s<Cm. Since V is connected, this implies that, for
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each s with p < s <Im, g, is a function of U ,py, ... .U, only. An ap-
plication of Lemma 1.3.1 now shows that we can replace u,,...,u, by
analytic functions v, ...,v, with the following properties: (a) u,, ...,
Up 1,V - - s ¥, fOrm a system of coordinates around x, and (b) X', = d/dv
around x. Let x; = u;for | <j<Ip— land x; = v, for p << j<<m. TherFll
(1.3.2) is satisfied in the coordinate system (x,, ... ,x,).

Theorem 1.3.3. (Local Frobenius Theorem) Let £ (x — £.) be an involu-
tive nontrivial analytic system of tangent spaces of rank p on an analytic mani-
Jold M of dimension m. Then, for any x € M, we can find an open set U containing
x and an a > 0 such that £| U is isomorphic to the canonical i.a.s. £»™°. In
particular, £ is integrable.

Proof. The theorem is equivalent to the following: given x € M we can

choose analytic coordinates x, . . . ,x, around x such that £, is spanned by
(dfd.xl)y, .. .,(@/dx,), for all y in an open set containing x. Since the canoni-
f:a]. involutive analytic systems £#"¢ are integrable, this would imply that £
Is integrable. Fix x € M. Let z,,...,z, be analytic coordinates around x
and let Z,,...,Z, be analvtic vector fields such that (i) Z,,...,Z, are
defined on an open set U containing x and the z,, . . . ,z,, are coordinat;;s on
U, and (ii) (Z,),, . .. ,(Z,), span &, for all y € U. We may then write Z, =
D 1<rzm@;,0/0z,, where the o, are analytic functions on U. Clearly, some
P >< p submatrix of (@),); <<, 12, 18 invertible at x. We may assume without
lo;mg generality that (a’,);;,<, is invertible at x and that U is so small that
this matrix is invertible on U. Let &;; (1 << {, j << p) be the entries of the inverse
matrix. Then the b,; are analytic functions on U. Let X, = 3} .,.,b,,Z,.
Then: (i) (X)), ...,(X,), span £, for all y € U, and (i) X, = d/dz, +
Y pcigramCy, 0/02,, 1 <T j < p, the ¢,, being analytic functions on U. '
. We now claim that [X,X;] =0, 1 <<j, k¥ < p. Fix such j, k. Since £ is
involutive, [X,,X;] belongs to £ on U. Therefore [X,X,] = ¥ ,..<, /. X,,
where the f; are analytic functions on U; in particular, £, is the coefficient of
d/dz, in [X;,X,] for 1 <{ s < p. On the other hand, the formula (ii) above
for the X, shows that [ X, X};] is a linear combination of only the d/dz, with
p + 1 << r << m. This implies that the £, are all zero, i.e., that [X,,X,] = 0.

Now use Lemma 1.3.2 to choose analytic coordinates x,, . . . ,x,, around
x sucl} that, for 1 <{j<<p, X; =0d/dx; + > 1<.,a,, 8/dx,, the a;, being
analytic around x. This representation shows that (d/dx,),,...,(d/dx,),

span £, for all y in some open set containing x. This completes the proof of
the theorem.

Let U = M be an open set, x,...,x, a system of coordinates on U,
and ¢ > 0. We say that (U; x4, ... ,x,; a) is adapted to £ if the map u
(xy(u), . .. ,x,(u)) is an analytic diffeomorphism of U with I™ and if £, is
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spanned by (3/0x )y - - - ,(8/dx,), for all w € U. In this case, for any a =
(55 = 2 saln) &I 7 We define U(a) by
(1.3.5) Ula) ={u:u € U, x,01(1) =@pa1s. oo 5%0(8) = ap}-

The U(a) are regularly imbedded integral manifolds of £.

The local Frobenius theorem is not adequate for applications, since the
integral manifolds have been constructed only locally. For full effectiveness
it is necessary to obtain them in the large. This was done by Chevalley [1];
we shall follow his method of “piecing together” the local integral manifolds
to obtain the global ones. However, this has to be done with some care,
because the global manifolds are not always regularly imbedded.

It is easy to see that an arbitrary integral manifold of £ is a union of
open subsets of the form U(a). In fact, let (U; x4, ..., X,; a) be adapted to
& and let S be an integral manifold of £ with § N U = ¢; then SN U is
open in S. If #; = x,|S N U, we have dx; =0 (p + 1 < j < m), so that
these %, are locally constant on S ™ U. In other words, gach connected com-
ponent of § N U (in the topology induced by S) is contained in some U(a).
Since these components are open in S, it follows that § M U(a) is open in S
for any a € I™~*. But then, for any such a, the identity map of §n U(a)
into U(a) is analytic with a bijective differential. This shows that S N U(a)
is open in S, as well as in U(a); both S and U(a) induce the same topology on

it.

Lemma 1.3.4. If S, and S, are any two integral manifolds of &£, then
S, " S, isopenin S, aswell asin Sy; both S, and S, induce the same topelogy
on it. The integral manifolds of £ are all quasi-regularly imbedded in M.

Proof. Lletu € S, N S,. Select an open set U containing u, coordinates
Xy, ... sX, on U, and a > 0 such that (U; x4, .. - X3 @) is adapted to L.
Leta € I™ ?be such thatu € U(a). It is then clear from what we said above
that S, N S, M U(a) is open in S, as well as in S,, both of which induce the
same topology on it. This leads at once to the first assertion. For the second,
let S be any integral manifold of £, N any analytic manifold, and & an analy-
tic map of N into M such that z[N] = S. We shall prove that z is an analytic
map of N into the analytic manifold S. Fix y N and let u = zn(y). Choose
an open set U containing u, coordinates xy, . .. ,X, on U, and a > 0, such
that (U; x1, . . . ,X,,: @) isadapted to £. Let a I ? be such thatu € U (a),
and let T be the connected component of S N U(a) containing u(in the topo-
logy of §). We claim that T'is also the connected component of S M Uin the
topology of U, which contains . Indeed, if 7' is the component in question,
then obviously 7 = 7. On the other hand, since S is second countable,
S M U has at most countably many connected components (in the topology
of ), so that S N U = |_yesU(b) for some countable set & < I7~#. But then
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the map u — (x,,,(u), . . . ,x,(u)), which is continuous on § N U in the
topology induced from U, takes at most countably many values. Therefore,
it must be a constant on each connected component of S ™ Uin the topology
of U, in particular on 7. Thus T = S U(a); and, since we have already
proved that both S and U{a) induce the same topology on S M U/(a), we must
have T = T’. This proves our claim. If ¥ is the connected component of
- 1(U)containing y, it is then clear that W is open and z[W] < T. Since T is
open in the regularly imbedded Uf(a), z is an analytic map of W into 7. Hence
7 is an analytic map of W into S; this [eads to the second assertion.

Lemma 1.3.5. Let A be a connected Hausdorff space which is locally con-
nected. Suppose A = |_Ji.| A, where each A, is open in A and each connected
component of A, is second countable for each n. Then A is itself second count-
able.

Proof. Let @, be the class of (open) sets which are connected com-
ponents of A4,, and € = [_J,@,. Since there cannot exist an uncountable
family of mutually disjoint nonempty open sets in a second countable space
it follows that, given F' € @, there are only countably many F' < € such that
Fn F' = ¢. We now define the families J;,J,, . .. of open subsets of 4 as
follows. We select E € @ arbitrarily and define J, = {E}; for s =1, J,
={F:Fe @ Fn F' + ¢ for some F' € J,_;}. The J, (s > 0) are well de-
fined inductively. A simple induction on s shows that they are all count-
able. Let B = _J7.4 (res, F. Then B is open and second countable. If » €
CI(B), we can find F € @ such that v € F; and as F B & ¢, there is an
52> 0and an F' € J, such that F " F’ 5= ¢. This shows that F ¢ J,,, and
hence that v € B. B is thus open and closed. Since 4 is connected, 4 = B.
A is thus second countable.

Theorem 1.3.6. (Global Frobenius Theorem) Let M be an analytic mani-
Jold £ (x— £.) an involutive analytic system of tangent spaces of rank p.
Given any point of M, there is one and exactly one maximal integral manifold
of £ containing that point. Any (nonempty) integral manifold of £ is quasi-
regularly imbedded in M and is an open submanifold of precisely one maximal
integral manifold of £.

Proof. Let J be the collection of all subsets of M which are unions of
integral manifolds of £. It follows from Lemma 1.3.4 that J is a topology for
M finer than its original topology. It is clear that (M,3) is a Hausdorff locally
connected space. Let {M,:& € J} be the set of connected components of
(M,3). Each M, is an open subspace of {(M,3) and if S is any integral manifold
of £, the underlying topological space of S is an open subspace of exactly
one M;.

We now prove that the A, are second countable. Fix & € J. Let U be an
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open set with coordinates x,, . . . ,x,, and let @ > 0 be such that (U; x;, .. .,
X,..a)is adapted to £. Since M, as well as the U(a) are open in (M,3), it follows
that M, M U(a) is an open subspace of U(a) for alla € I7~%. Now, M, " U
is open in M, and is the disjoint union of the M, N U(a), so each connected
component of M, N U is an open subspace of some U(a) and is therefore
second countable. Since M (and hence M,) can be covered by countably many
open sets such as U, Lemma 1.3.5 can be used to conclude that M, is second
countable.

It is now obvious that there is a unique analytic structure on M, such that
gach integral manifold of £ contained in M, is an open submanifold of A,.
With this structure, M, becomes a submanifold of M. It is also obvious that
each M, is a maximal integral manifold of £. Theorem 1.3.6 is completely
proved.

It may be remarked that Theorems 1.3.3 and 1.3.6 are valid in the complex
analytic case also. No change is necessary either in the formulations or in the
proofs.

1.4. Appendix

In this appendix we discuss briefly some elementary results on analytic
systems of ordinary differential equations. We work in R” or C”. For any
a >0, let

" ={t,....tw):t; E R <a for 1< j<mj
Jr={(z4,....Zm}:2; € C, | 2;| < a for 1<j<<m}
Leta > 0and let G4, . . .,G,, be mreal functions defined and analytic on

I™. We consider the system of ordinary differential equations:

(1.4.1) W) — G, .. ) (1 << ).

If the G, are defined and holomorphic on J, we consider the system
(14.2) W) — G ) (L Z )

Theorem 1.4.1. Let a > 0 and let G, . ..,G, be real functions defined
and analytic on 17, Then

(@) ifuy, v, (1 <<j<m)are analytic functions defined on an open interval
A containing 0 such that (u,, . . .,u,) and (vy, ...,,) are both solutions of
(1.4.1) on A with u,(0) = v,(0) (1 << j <" m), then u;=v; on A for 1 < j<m.
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(h) there exists b with 0 <2 b << a and real analytic functions u; on 1!
(1 <C j =C m) such that

@ luftsyi ey <afor(t,ye, . ym) € I
(ii) ‘W”y‘—gg"y’"): Gl P » Pideere 5 Waltibys « ¢ a3
uf0, %1, Yd =¥,
Fortsi - « « ) = 171 s gt
Proof. (a) If(g,,...,p,)issolution of (1.4.1), we have, for 1 << j <l m,
95(0) = Gp:(0),....9,0))

50 = 3 0. .0 00i0)

and so on. A simple induction on s> 1 shows that the initial vector
(,(0), . . . ,0.,(0)) completely determines the values of all the derivatives
@$(0) (s = 1,1 <<j <_m). So if the ¢, are analytic on an open interval A
containing 0, they are completely determined on A by the initial vector
(0.(0), . ...,p,00). (a) follows at once from this.

(b) Replacing a by a smaller positive number, we may assume that the
power series expansions of the G, around the origin converge absolutely and
uniformly in I7. Hence the G are restrictions to I of holomorphic functions
on J. We also denote the latter by G,. Let 0 << ¢ < a4, and

}" = max sup & IGJ(ZM b :zm)“

1=j=m (z1,..., Z,) EJ

Then y is finite. Choose a constant L = 1 such that

(1.4.3) max |Glzy,....2,) — GA2\, ... 2| << L max |z; — zj|
1=j=m

- J
1<j<m

forall(z,, . ...z} (Z\, . . . ,z,) € J™. Finally, select & with 0 <2 &b < ¢l +4-y)~*
and Lb < 1.
Now define a sequence

(1005 - sttmn) (N=0,12,...)

of vector-valued functions as follows. Put

"(1.4.4) o =0 (1<j<m);

Sec. 1.4 Appendix 33
for N>1and (z, 2z, .- -,Zm) € J5, put

uj,N(z7zls LA )Zm)

1.4.5 2 , ,
( ) :Zj + joGj(ul,N—l(erzli--- szm)’--' :um‘Nfl(z 7219---:zm))dz ]
where the integral is taken along the line segment from 0 to z. We claim that
for any N = 0, the u; y(1 < j < m) are well defined and holomorphic on
Jr+t and that

uj,N(z: ATERE ,Zm)l <ec

forl <j<<mand(zz,...,2.) € Jr+1. We prove this claim by induction
on N. For N = 0 there is nothing to prove. Let N > 1 and assume the result
for N — 1. It is clear from (1.4.5) that u, » is well defined and holomorphic
on Jr+t. Further, if (z,2,, . . . ,Zm) € Jr+! we have for 1 <j<<m

lalezmss: » Sad| =042 HZdz’

< b(1 +p)
< ¢,

carrying forward the induction. Our claim is thus proved.
Now for N> 1 and (2,24, . . - ,2,,) € J3*!

luy per(2,205 .- O S TN X ) |

g Lb max Sup luj,N(zale T szm) - uj,N—l(zazh s o5 3Zm)!a

1<j<m (2,71,..., zq) €L

from (1.4.5) and (1.4.3). Applying this estimate in succession and noting that
lu; (2,21, . . sZm)| < cforl<j<m and that (z,z,, . . . ,Z,) € J771, we get

max sup 1”],N+l(zazla T !zm) - uf,N(Z5zls o szm)l g C(Lb)N
1<i<m (z,21,...,Zm) EL™!

Since Lb < 1, it follows that the series
3, {“j,NH(Z’ZU o v 3 Zp) — Uy W(Z 1y « o szm)}
N=0

converges uniformly inJy*! for 1 < j << m. Let u,(z,z4, . . . ,Z,,) be the sum.
Then u, is holomorphic on J;*! and

(1.4.6) 28 i) = }Iim U (2,210 52a) (L j<m)

for (z,zy, . - . »Zm) € Jp*1. (1.4.6) and (1.4.5) now yield
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UAZ, 245 v s 1Z)
1.4.7 z
(145 =2 [ Gz 212 B2
1]

forl <{j<Imand(z,z,,...,z,) € Jy*'. Restricting to J7*' and differentiat-
ing (1.4.7) with respect to z, we get

Wbrsee V) — G (61, pds - i1 )

(0,31, 0 ¥m) = ¥y

for 1 <j<mand (ty,...,v,) € Iy*'. The u; being analytic on I7*!, the
theorem is proved.

The holomorphic version of Theorem 1.4.1 with the differential equations
(1.4.2) instead of (1.4.1) is proved as above with minor variations. We leave its
formulation and proof to the reader.

In applications it often happens that the G; depend analytically on certain
parameters. In this case, the solutions u; also have the same analytic depen-
dence on these parameters.

Theorem 1.4.2. Let N be an analytic manifold, a > 0, and let the real
Junctions G, be defined and analytic on I X N. Fix x € N. Then we can find
b with 0 << b < a, an open subset N, of N containing x, and real analytic
Sunctions w, . .., u, on It < N_ such that

Ut Vis oo s VmsX
A2y Jt YrX) G(uy(t,y1,

d sym:x’): Sk T ,u,,,(t,y,,. .- :ym,x’))
uj(ozyh e :ymux’) = y."
Jor L <j<tm, (t,yy, ...y eI and x' € N,.

Proof. We may assume that for somed > 0, N =12 x=(0,... ,0), and
that the G, are the restrictions to I7* x I of functions (denoted again by G)
defined and holomorphic on J7 x J5. let 0 < ¢ <g,0 < e < d, and let
N’ = Jz Define y by

¥ = max sup EG}(Z]; s szm!x’)l

1=j=m (z1,...,2n) EF, X'EN’

and let L. > 1 be a constant such that

| G215+ v sZmsX”) — GAZY, . .. ,20x") | < L max |z; — 2,

1<j=m
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forall x" € N' (z,,....,2.), (Zh, . . . ,Z0) € J7. Choose b such that 0 < b <
el + )=t and Lb << 1; we then define the sequence u; v as follows. For
N=0,putu;, =0(l <j<<m); for N> I write

¥
N N W
z ") ' ' i
=z; -} J il 0ty « By Joms » sl BB vevce B s B V5
0
forl <<j<m, (z,zy,...,2m) € J3*', x" € N'. Theorem 1.4.2 is now proved

by arguing exactly as in the previous theorem. We leave the details to the
reader.

The same proof also gives the holomorphic version of the above result.

EXERCISES

1. Consider C? as a four-dimensional real analytic manifold, and let T? =
{(z1,22): 21,22 € C,|z4] = |2z2| = 1}; show that T? is a regularly imbgdd@d
compact submanifold. Prove that if & & R is irrational, the map 7 — (e e"%)
(f € R) is an imbedding of R into T? which is quasi-regular but not regular.

2. Let n > 2 and let 7 be the map of R” into R! given by
ﬂ()ﬁ, v ,X,,) - x% e vmen A xfzr-

Let M =R*\{0}, N={r:te R t>0} Let D = a2fdx? - -0 + 6’3,/6';(%,_.
Prove that there is a unique differential operator D on N such that D and D
are m-related. Calculate D,

3. (a) Let F be a field of characteristic 0; V" (resp. W) a vector space over F of
finite dimension m (resp. n); and 9 a linear map of ¥ onto W with kernel
U. Let A (resp. f) be a nonzero element of A, (V) (resp. A (W)). Prove
that there is exactly one v € A,_(U) with the following property: let
Uiy V1, . - -,V De & basis for ¥ such that wy, ... ,um-s span U;
then

A(”l’ IR s TR a”n)

ﬂ(}'vls e J’“n)

V(I'A'], v sum—n) =

We write v = (A/g),. .

(b) Let M and N be analytic manifolds of dimensions m and » respectwc.ly.
Let @! € @,(M) and w? € @,(N), and suppose that @! and @? vanish
nowhere. Let @ be a submersion of M onto N, and for each y € N let
P, = n1({y}). Prove that the P, are closed regular submanifolds of M.
Fory € Nand x € P,let @ = (01/3})4n, Provethat@”: x — @} 1san
element of &,,_,(P,) foreachy € Nand thaty — @ is analytic in a natural
SEnse.




