HOMEWORK, DUE OCTOBER 15, 2007

PROBLEM 1: SURFACES OF REVOLUTION

Let S be a surface of revolution and C its generating curve. (See the previous homework assignment for definition).

- (1) Show that one can find local parametrizations $\mathbf{x}(u, v)$ of S such that in this local parametrizations the first fundamental form is given by E = E(v), F = 0, G = 1, where E(v) is a function depending on v, but not on u. (Note: in the previous homework assignment the variables (u, v) where denoted by (ϕ, t) .)
- (2) Let s be the arc length of the regular curve C and $\rho = \rho(s)$ the distance to the rotation axis of the point of C corresponding to s. Show Pappus' Theorem: The area of S is

$$2\pi \int_0^l \rho(s) ds,$$

where l is the length of C.

3

(3) Compute the area of the torus which is obtained by rotating a circle $\alpha(v) = (R + r\cos(v), 0, r\sin(v))$ with $0 \le v < 2\pi$ and 0 < r < R, around the z-axis.

PROBLEM 2: TUBULAR SURFACES

Let $I \subset \mathbb{R}$ be an open interval and $\alpha : I \to \mathbb{R}^3$ a regular parametrized curve, parametrized by arc length, with nonzero curvature $\kappa(s)$ everywhere. Let $K = \sup_{s \in I} \kappa(s)$. Let n(s) be the normal vector to α in s and b(s) the bi-normal vector of α at s. Fix some constant $\frac{1}{K} > r > 0$. The parametrized surface

$$\mathbf{x}(s,v) = \alpha(s) + r(n(s)\cos(v) + b(s)\sin(v))$$

with $s \in I$, $0 < v < 2\pi$ is called the *tube* of radius r around α .

- (1) Show that the parametrized surface \mathbf{x} is regular.
- (2) Show that a unit normal vector to the surface at $p = \mathbf{x}(s, v)$ is given by $N(s, v) = -(n(s)\cos(v) + b(s)\sin(v))$.
- (3) Show that the area of the *tube* is $2\pi r$ times the length of the curve $\alpha(I)$.

PROBLEM 3: GENERALIZED HELICOIDS

Read Example 3 on page 94. Solve Problem 13 on page 101.

Problem 4

Problem 15 on page 90.

Problem 5

Problem 3 on page 99

Problem 6

Problem 2 on page 99.

Not required

I will probably not cover this by Wednesday - so keep it in mind for the next homework!

For every k > 0 let

$$P_k = \{(x, y, z) \in \mathbb{R}^3 \,|\, z = x^2 + ky^2\}$$

be the paraboloid in \mathbb{R}^3 . This is a regular surface. Study the Gauss map and its differential at the point $p = (0, 0, 0) \in P_k$.