18.950 Handout 4. Inverse and Implicit Function Theorems.

Theorem 1 (Inverse Function Theorem). Suppose U C R" is open,
f:U—R"isCl zg € U and dfy, is invertible. Then there exists a
neighborhood V' of xo in U and a neighborhood W of f(xg) in R™ such that
f has a O inverse g = f~1 : W — V. (Thus f(g(y)) =y for ally € W
and g(f(x)) = for all x € V..) Moreover,

dgy = (dfg(y))_1 forallye W
and g is smooth whenever f is smooth.

Remark. The theorem says that a continuously differentiable function f
between regions in R is locally invertible near points where its differential
is invertible.

Proof. Without loss of generality, we may assume that zo = 0, f(zg) = 0

and dfy, = I. (Otherwise, replace f with f(z) = df;,'(f(z + o) — f(20)).
Note that if the theorem holds with fv, 0, 0, I and a function g in place of f

xo, f(xo), dfz, and g respectively, then it is easily verified that the theorem
as stated holds with g(y) = zo + g(df ;' (y — f(x0)))-)

Since df, is continuous in = at o (see Exercise 1), there exists a number
r > 0 such that

_ 1
z€Bo(0) = |dfs 1] < .

(Recall that for a linear transformation A : R™ — R™ we define the norm
of A by [|All = supyy<1y [A(v)].) Fix y € B, /2(0). Define a function ¢ by

¢(r) =z — f(z) +y.
Note that d¢, = I — df, and hence

ldo.|l <1/2 if z € B,(0).
Thus

1
6@ < o) =vl <l =1 [ Goteaatl+1y
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whenever z € B,(0). i.e. ¢ is a map from B,(0) into itself. For any z,z €
B,(0),

1
/0 %(b(x +t(z —x))dt

1
< /0 |d¢x+t(z—m) ) (z - x)’dt

1
< /0 | dari(ooylllz — zldt

< 1|Z —zl.

- 2
Thus ¢ : B,-(0) — B,(0) is a contraction, and hence ¢ has a unique fixed
point z, € B,(0). i.e. there is a unique point z, € B,(0) with f(z,) = y. In
fact z, € B, (0) since § > [yl = |F(z,)| = |y — lay — £(2,)] > | — By | =
5|2yl Set W = B, 5(0) and V = f~H(W)NB,(0). Note then that V is open.
Define g : W — V by g(y) = zy. Then f(g(y)) = y for all y € W and
g(f(z)) =z for all x € V.

Next we show that g is differentiable, with dg, = (dfg(y))*l. First note
that with ¢ : B,(0) — R" defined by ¢(z) = = — f(z), we have that for
xr1,T2 € BT(O),

|21 — x| — [f(21) — f(22)] < [(z1 —22) — (f(21) — f(22))]
< () — Y(a2)]
< o -

where the last inequality follows by estimating as in (1), using dy, = I —df,.
Hence

%|x1 — :Ug’ < |f($1) B f($2)|

for any 1,22 € B,(0), which implies

l9(y1) — 9(y2)| < 2ly1 — y2] (2)
for any y1,y2 € W = B, 5(0). In particular, g is continuous.



Now fix y € W, and let A = df(,). Since W is open, there exists § > 0
such that y + k € W if k € Bs(0). Let h = g(y + k) — g(y). Then k =
y+k—y=[flgly+k)—flg(y) = flg(y) +h) = f(g(y)) and hence, for
k € B5(0) \ {0},

gy +k) —g(y) — Akl |[ATN(AR—K)[|h]
|| A ||
A~ [k — Ah| |h|
- A ||
< 2 A~ £ (g(y) + ’hh)’— f(g(y)) — An| 3)

where the last estimate follows from (2). Note that since g(y+k) = g(y) =
flgly+ k) =flgly) = y+k=y = k =0, we have that h # 0
if k # 0. Sice A = dfy(y), it follows from the definition of differentiability
of f that the right hand side of (3) tends to 0 as h — 0, and hence, since
|h| < 2|k| by (2), it follows that

lg(y + k) —gy) — A k| _

li :
k0 k] 0
i.e. g is differentiable at y and
dgy = (dfg(y))_l' (4)

Finally, note that the function y — dg, is the composition of the function
y — dfy(y) and matrix inversion A — A~ Matrix inversion is a smooth map
of the entries, and the function y — df(,) is continuous since g is continuous
and f is C'. Hence we conclude that y — dg, is continuous; i.e. that g is
C'. Repeatedly differentiating (4) shows that g is smooth if f is smooth. [

Exercise 1. Let L(R™;R™) be the set of linear transformations from R"
into itself with the metric d(A, B) = ||A — B||. (cf. Exercise 10 of handout
1.) Let U € R" be open and f : U — R™ be a C! function. Show that the
map z — df, is continuous as a map from U into L(R"; R™).

Exercise 2. Suppose g : [a,b] — R™ is continuous. Show that

/ bg(t)dt‘ < [t




where | - | denotes the Euclidean norm. You may use without proof that
’f; h(t)dt’ < f: |h(t)|dt for a scalar valued function h.

Exercise 3. Define f : R — R by f(z) = §+xzsin% if x # 0 and
f(0) = 0. Compute f'(x) for all z € R. Show that f/(0) > 0, yet f is not
one-to-one in any neighborhood of 0. This example shows that in the Inverse
Function Theorem, the hypothesis that f is C' cannot be weakened to the
hypothesis that f is differentiable.

Exercise 4. Define f : R?> — R? by f(z,y) = (e®cosy,e®siny). Show
that f is C' and that df (z,y) 1 invertible for all (z,y) € R? and yet f is
not a one-to-one function globally. Why doesn’t this contradict the Inverse
Function Theorem?

Next we prove the Implicit Function Theorem. This theorem gives con-
ditions under which one can solve, locally, a system of equations

filz,y) =0, i=1,2,...n

where z € R™ and y € R”, for y in terms of z. (Thus, y = (y1,...,Yn)
where y1,...,y, are regarded as n unknowns, satisfying the n equations
fi(x,y) =0, i =1,...,n.) Geometrically, the set of solutions (x,y) to the
system of equations is the graph of a function y = g(z). Note that we have
from linear algebra that if for each ¢, the function f; is linear with constant
coefficients in the variables y;, then whenever the (constant) n x n matrix

(%) is invertible, the system of equations is solvable for y in terms
Yi/1<i,j<n

of z. Implicit function theorem says that whenever f; are C' and this matrix
is invertible at a point (a,b), then the system is solvable for y in terms of x
locally in a neighborhood of (a,b).

We shall use the following notation: For an R"™ valued function f(x,y) =
(fi(z,y), fo(z,y), ..., fu(z,y)) in a domain U C R™™" = R™ x R", where
z € R™, y € R", we shall denote by d, f the partial differential represented

g ic %) and by dy f the partial differential
7/ 1<i<n,1<j<m

%)

95 J1<ij<n

Theorem 2 (Implicit Function Theorem). Let U C R™t" = R™ x R"
be an open set, f : U — R™ a C' function, (a,b) € U a point such that
f(a,b) =0 and dyf\(a b) invertible. Then there exists a neighborhood V' of

by the n x m matrix (

represented by the n x n matrix (
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(a,b) in U, a neighborhood W of a in R™ and a C' function g : W — R™
such that

{(z,y) eV : fz,y) = 0} = {(z,9(x)) : € W}.

Moreover,

dg. = — (dy f) (.0 Ao fl(z,9(2))

z,9(z)

and g is smooth if f is smooth.

Proof. Define F : U — R™™" by F(z,y) = (z, f(7,y)). Then F is C! in
U, F(a,b) = (a,0) and det dF|, ;) = det d, f|(a’b) # 0. Hence by the Inverse

Function Theorem, F' has a C! inverse F~! : W — V for neighborhoods
V of (a,b) and W of (a,0) in R™ x R™. Set W = {x €¢ R™ : (2,0) € W}.
Then W is open in R™. Note then that if x € W, then (z,0) € W so that
(x,0) = F(x1,y1) where (x1,y1) € V is uniquely determined by z. (In fact,
by the definition of F', z1 = z.) Define g : W — R" by setting y; = g(x).
Thus g(z) is defined by F~!(z,0) = (z, g()); i.e. by g(z) = 7o F~1(x,0)
where 7 : R™ xR™ — R" is the projection map 7(z,y) = y. Then {(x,y) €
Vo f(ey) =0} = {(5.y) €V : Fla,y) = (2,0)} = {(z,9(x)) : v € W},
Since 7 is a smooth map and F~! is C?, it follows that g is C'. The formula
for dg, follows by differentiating the identity

f(z,g(x))=0 onW

using the chain rule. By repeatedly differentiating this identity, it follows
that g is smooth if f is smooth. L]



