18.950 Handout 1. Metric Spaces.

Definition 1. A set X together with a function $d : X \times X \to \mathbf{R}$ is called a metric space, and the function d a metric or distance function, if the following holds:

For all $x, y, z \in X$,

- (1) $d(x,y) \ge 0.$
- (2) d(x, y) = 0 iff x = y.
- (3) d(x, y) = d(y, x).
- (4) The triangle inequality: $d(x, y) \le d(x, z) + d(z, y)$.

Exercise 1. Let (X, d) be a metric space, and $E \subset X$. Then (E, d_E) is a metric space where d_E is the restriction of d to $E \times E$.

Exercise 2. The Euclidean space \mathbb{R}^n equipped with the metric $d(x, y) = |x - y| \equiv \sqrt{\sum_{j=1}^n (x_j - y_j)^2}$, where $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$ is a metric space.

Definition 2. Let (X, d) be a metric space, $x_0 \in X$ and ρ a positive real number. The set $B_{\rho}(x_0) \equiv \{x \in X : d(x, x_0) < \rho\}$ is called the open ball centered at x_0 with radius ρ .

Definition 3. Let (X, d) be a metric space. A subset $U \subseteq X$ is said to be open if for each $y \in U$, there exists ρ such that $B_{\rho}(y) \subset U$.

Exercise 3. Let (X, d) be a metric space. Then

- (a) X and the empty set \emptyset are open sets.
- (b) The union of any collection of open sets is an open set.
- (c) The intersection of any finite collection of open sets is an open set.

Exercise 4. The open ball $B_{\rho}(x_0)$ is an open set.

Definition 4. Let (X, d) be a metric space. A subset $C \subseteq X$ is said to be closed if the complement $X \setminus C$ of C is open.

Exercise 5. Let (X, d) be a metric space. Then

- (a) X and \emptyset are closed sets.
- (b) The intersection of any collection of closed sets is closed.
- (c) The union of any finite collection of closed sets is closed.

Definition 5. Let (X, d) be a metric space and $E \subseteq X$. Let \mathcal{F} be the collection of closed subsets C of X such that C contains E. The closure of E, denoted \overline{E} is defined by $\overline{E} = \bigcap_{C \in \mathcal{F}} C$.

Definition 6. Let (X, d_X) and (Y, d_Y) be metric spaces, $f : X \to Y$ be a map and $a \in X$. The map f is said to be continuous at $a \in X$ provided that for each $\epsilon > 0$, there exists $\delta > 0$ such that whenever $x \in X$, $d_X(x, a) < \delta$, we have that $d_Y(f(x), f(a)) < \epsilon$. A map $f : X \to Y$ is continuous if it is continuous at each point of X.

Exercise 6. Let (X, d_X) and (Y, d_Y) be metric spaces. Then $f : X \to Y$ is continous if and only if $f^{-1}(U)$ is an open subset of X whenever U is an open subset of Y.

Definition 7. Let a_n , $n \in \mathbf{N}$, (\mathbf{N} is the set of natural numbers 1, 2, 3, ...) be a sequence of points in a metric space (X, d) and let $a \in X$. The sequence a_n is said to converge to a, written $a_n \to a$ or $\lim_{n\to\infty} a_n = a$, if for each $\epsilon > 0$, there exists $N \in \mathbf{N}$ such that $d(a_n, a) < \epsilon$ whenever $n \ge N$.

Exercise 7. A map $f : X \to Y$ from the metric space (X, d_X) to the metric space (Y, d_Y) is continuous at a point $a \in X$ if and only if $f(a_n) \to f(a)$ for every sequence $a_n \in X$ with $a_n \to a$.

Definition 8. Let (X, d) be a metric space. A sequence a_n of X is called a Cauchy sequence if for each $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $d(a_n, a_m) < \epsilon$ for all n, m > N.

Exercise 8. Convergent sequences are Cauchy.

Definition 9. A metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point in X.

Definition 10. A subset E of a metric space X is said to be bounded if there exists a number R > 0 and a point $a \in X$ such that $E \subset B_R(a)$.

Exercise 9. Let a_n be a Cauchy sequence of a metric space X. Then the set $\{a_n\}$ is bounded.

Definition 11. Let (X, d) be a metric space and $E \subseteq X$. An open cover of E is a collection of open sets U_{α} , $\alpha \in A$ where A is an arbitrary index set, such that $E \subseteq \bigcup_{\alpha \in A} U_{\alpha}$. A finite subcover of the open cover U_{α} is a finite subcollection $U_{\alpha_1}, U_{\alpha_2}, \ldots, U_{\alpha_n}$ such that $E \subseteq \bigcup_{i=1}^n U_{\alpha_i}$.

Definition 12. Let (X, d) be a metric space. A subset $K \subseteq X$ is said to be compact if every open cover of K has a finite subcover.

Theorem 1. Any compact subset of a metric space is closed and bounded.

Theorem 2. A compact metric space is complete.

Theorem 3. A subset of \mathbb{R}^n is compact if and only if it is closed and bounded.

Theorem 4. A continuous function on a compact metric space attains its supremum and infimum. That is to say, if (X,d) is a compact metric space and $f: X \to \mathbf{R}$ a continuous function, then there exist points $x_m, x_M \in X$ such that $f(x_m) = m = \inf_{x \in X} f(x)$ and $f(x_M) = M = \sup_{x \in X} f(x)$. In particular, m and M are finite. **Exercise 10.** Let $L(\mathbf{R}^n; \mathbf{R}^m)$ denote the set of linear transformations $A : \mathbf{R}^n \to \mathbf{R}^m$. For $A \in L(\mathbf{R}^n; \mathbf{R}^m)$, define ||A|| (the *norm* of A) by

$$||A|| = \sup_{\{|v| \le 1\}} |A(v)|.$$

For $A, B \in L(\mathbf{R}^n, \mathbf{R}^m)$, define d(A, B) = ||A - B||. Then $(L(\mathbf{R}^n; \mathbf{R}^m), d)$ is a metric space.