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Introduction

A complex matrie group G GL(n, C) is algebraic, defined over Q, if it
consists of all invertible matrices whose coefficients annihilate some set
of polynomials on M(n, C) with rational coefficients. In this case, let G,
be the subgroup of elements of G which have integral coefficients, deter-
minant +1, and Gg = GNGL(%n, R). Then G is an arithmetically defined
subgroup of Ggr, or more briefly, an arithmetic subgroup of Gg. Typical
examples are SL(n, Z) cSL(n, R), Siegel’s modular group, or the group of
units of a non-degenerate rational quadratic form; and the main purpose
of this paper is to generalize facts known in these and other cases involv-
ing classical groups, chiefly from reduction theory. In particular, we shall
prove that G, is finitely generated, and give necessary and sufficient con-
ditions under which Gr/Gz is compact, or of finite invariant measure. In
analogy with the terminology used in the classical cases, we shall also call
G the group of units of Gg.

In view of known facts about algebraic groups and algebraic tori, the
main case to investigate is that of semi-simple groups, and this paper is
mainly concerned with the latter. However, it turns out that the redue-
tive groups (that is fully reducible groups, or groups whose identity com-
ponent is isogenous to the product of an algebraic torus by a semi-simple
group) form the natural domain of validity for some results, and part of

the discussion will be carried out directly for reductive groups. The two
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486 ARMAND BOREL AND HARISH-CHANDRA

following properties will be particularly useful for our purposes:

(A) LetG,> -+ DG, bereductive real algebraic subgroups of GL(%, R).
Then there exists a € SL(n, R) such that the groups a-G,-a ' are all
stable under x — 'z (1.9).

(B) Let G be a connected complex algebraic reductive group defined
over Q, H a closed subgroup defined over Q. Then H is reductive if and
only if G/H can be realized as the closed orbit of a rational point in a
rational representation defined over Q (3.8).

The statement (A) is known [21, § 7], and (B) is a slight sharpening of
known facts. Proofs have been included for the sake of completeness.
However, the techniques used in them will seldom occur elsewhere in the
paper, so that the reader who wishes to proceed as directly as possible to
the main part of the paper may skip 1.5 to 1.9, the proofs of 1.10, 1.11,
and 3.4 to 3.8 without serious inconvenience. Section 2 is also preliminary,
and collects some basic facts and notions about algebraic groups.

Section 4 introduces Siegel domains. Let G be a real algebraic semi-
simple, or reductive group, and G = K- A - N an Iwasawa decomposition
of G (see 1.11). A Siegel domain &, (¢t > 0; @ a compact set in N) is the
set of elements K- A4, - w, where A, is the set of exponentials of elements
on which the simple restricted roots have values smaller than ¢t. Their
chief properties are:

(i) thesetofelementsa-n-a™'(a € 4,, n € w)isrelatively compact (4.2);

(ii) if G is semi-simple, &, , has finite Haar measure (4.3).

When G=GL(n,R)and K-A- Nis the standard Iwasawa decomposition,
it is classical that &, , meets only a finite number of its right translates
under -Gz U Gz x (x € Gg), and that G =&, ,-SL(n, Z) for ¢, @ big enough
(see 2.5 for references). These facts will be used in the present paper.

Section 5 is devoted to a finiteness lemma (5.3, 5.4), which generalizes
the finiteness of the number of integral reduced forms with a given non-
zero determinant. This lemma, together with (A), (B), is used in 6.5 to
show that if G is reductive, defined over Q, there exist open sets U in Gg
such that Gg = U-Gz, K- U = U for a suitable maximal compact sub-
group K;and U'- UN(x - Gz-y) is finite if , y € Gq. The construction
of U is analogous to Hermite’s procedure to obtain a fundamental domain
for the group of units of an indefinite rational form in the space of
majorizing forms; however, we shall operate directly in the group, instead
of using the symmetric space G/K. The finite generation of G, follows
immediately. It is also shown (6.9) that in a rational representation of G
defined over Q, the integral points contained in a closed orbit form a finite
number of orbits of G,. Applied to the natural representation of SL(n, Z)
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in the space of quadratic forms, this yields the finiteness of the number
of classes of integral forms with a given non-zero determinant. Theorem
6.5 is extended to general algebraic groups in 6.12. In 6.11 it is proved
that if #: G — G’ is an isogeny, defined over Q, then /(G,) and G}, are
commensurable.

The finiteness of the measure of Ggr/Gy is provedin § 7 when G is semi-
simple, in §9 when the identity component G° of G has no non-trivial
rational character defined over Q (see 7.8,9.4). In §7, the basic lemma
is 7.5, which says roughly that if & is a Siegel domain of a real algebraic
semi-simple Lie group, and G, is a suitably embedded semi-simple sub-
group of G, then &. £ NG, is contained in the union of a finite number of
translates of a Siegel domain of G,. Theorem 9.4 follows easily from 7.8,
a result of Ono [22] on algebraic tori, and some remarks on rational
characters made in § 8.

Section 10 is a preliminary to §11, and discusses closed conjugacy
classes. It is shown that if G is an algebraic group, the conjugacy class
of an element = in G, (or in the Lie algebra of G), is closed if z is semi-
simple, and not closed if G is reductive and 2 not semi-simple (10.1).

Section 11 gives a necessary and sufficient condition for Gg/Gz to be
compact. When G is semi-simple, the condition is that Gq consists of
semi-simple elements. It generalizes the compactness of Gg/G; when Gq
is the multiplicative group of elements of norm 1 in a division algebra
over Q, or when G is the orthogonal group of a rational form which does
not represent zero. This condition had been conjectured by R. Godement.
Its necessity follows easily from 10.1. Conversely, if Gq consists of semi-
simple elements, then 10.1 implies the existence of a locally faithful
rational representation defined over Q (the adjoint representation) in which
all rational points have closed orbits. The main part of the proof starts
from that fact, and is a suitable adaptation of a known argument used in
the classical case.

The definition of groups of units given above can be generalized by
replacing Q and Z by a number field K and the ring of algebraic integers
of K respectively. However this case is reduced to the previous one by
the well-known operation of “restriction of the ground field”, and the
main results of the paper extend automatically to groups over number
fields, as will be seen in § 12.

In § 13, we have relegated some remarks on algebraic groups, not used
in the present paper, but which may be viewed as natural complements
to some auxiliary results proved in §§ 1, 8.

The main results of this paper have been summarized in [3]. The appli-
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cations to adele groups announced in [2] will be published elsewhere.

Notation. Linear representations will always be right representations.
H\G (resp. G/H) is the space of cosets Hg (resp. gH) of a group G modulo
a subgroup H. The identity component of a topological group G is denoted
G°. If a group G operates on a space M, the subgroup of G leaving a
given point m e M fixed, (the isotropy group of m), is denoted by G,.
diag (a,, ---, @,) is a diagonal n x n matrix with diagonal coefficients
a,, +++,a, The Lie algebra of a Lie group G, H, M, --- is denoted by the
corresponding German letter.

1. Reductive real algebraic groups

1.1. Let g be a real semi-simple Lie algebra, g = f + p a Cartan decom-
position of gand 6: k + p - k — p the corresponding Cartan involution.
It is convenient to allow g to be compact, then p = 0 and @ is the identity.
The Cartan involutions and Cartan decompositions are conjugate under
Adg (see [20], for instance). The Cartan involutions of 8l(n, R) are the
transformations x — —x*, where «* is the adjoint of x with respect to
some positive non-degenerate quadratic form on R". They are also
involutive automorphisms of gl(n, R), to be called the Cartan involu-
tions of gl(n, R). Similarly, the automorphisms x — (£7')* of SL(n, R)
or GL(n, R) will be called the Cartan involutions of these groups. The
restriction of a Cartan involution of gl(n, R) to a semi-simple subalgebra
g, which is stable under it, is a Cartan involution of g.

Given a subspace m of g or of gl(n, R), and a Cartan involution 6 of g or
gl(n, R), we put

m, = mnt, mp=mﬂp.

If m = 0(m), then m = m, + m, (and conversely), and m is spanned by
semi-simple elements.

It is standard that, given a real or complex representation of g in a
finite dimensional vector space V, there exists a Hilbert space structure
on V with respect to which the elements of o(f) (resp. o(b)) are skew-
hermitian (resp. hermitian). The algebra o(g) and the analytic group it
generates are then self-adjoint; this also implies that o(x) is a semi-simple
endomorphism of V with purely imaginary (resp. real) eigenvalues when-
ever x ¢t (resp. x €p). If p is the adjoint representation, such a scalar
product is given by B*(x, y) = — B(%, 0(y))(z, ¥ € g), where Bis the Killing
form of g.

If gcgl(n, R), and p is the identical representation, the preceding re-
marks show that g is stable under some Cartan involution of gl(n, R). By
the conjugacy of Cartan involutions, it follows that the Cartan involutions
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of g are the restrictions to g of the Cartan involutions of gl(n, R) leaving
g invariant.

1.2. A subalgebra g of a Lie algebra m is reductive in m if ad,g, (the
image of g in the adjoint representation of m), is completely reducible. A
Lie algebra g is reductive if it is so in itself. This is the case if and only
if g is the direct product of its center by a semi-simple ideal, which is
then necessarily equal to the derived algebra 9g of g [5, § 6, No. 4].

LEMMA. Let G be a closed subgroup of GL(n, R) with a finite number
of connected components. Then the following conditions are equivalent:

(i) G 1is completely reducible;

(ii) g is completely reducible;

(iii) g ts reductive in gl(n, R);

(iv) g is reductive, and its center consists of semi-simple endomor-
phisms.

The identity component G° of G is invariant in G, of finite index. By
an elementary fact (see e.g. G. D. Mostow, Amer. J. Math. 78 (1956),
200-221, Lemma 3.1), G is completely reducible if and only if G°is, hence
(i) is equivalent to (ii). For the other equivalences, see [5, § 6, Nos. 3-6].

1.3. A real algebraic group is a subgroup of GL(n, R) which
consists of all invertible matrices whose coefficients annihilate some set
of polynomials with real coefficients, in n* indeterminates. A subalgebra
of gl(n, R) is algebraic if it is the Lie algebra of a real algebraic group.
A real algebraic group is reductive if it is a completely reducible linear
group.

1.4. LEMMA. Let m be an algebraic commutative fully reducible sub-
algebra of gl(n, R). Then m = m’' + m", where m’ (resp. m”) consists of
all elements of m with purely imaginary (resp. real) eigenvalues, and
18 an algebraic subalgebra. m is invariant under a Cartan involution
of gl(n, R). If 0 1is a Cartan involution of gl(n, R) leaving m invriant,
then my=m', m =m", and 0 leaves invariant every algebraic subalgebra
of m,

The algebra m consists of semi-simple elements, and is therefore con-
tained in a Cartan subalgebra c of gl(n, R) [4, 2.7]. It is known (see e.g.
[11, p. 107]) that a Cartan subalgebra of a semi-simple Lie algebra g is
invariant under a Cartan involution of g. If we apply this to 8l(n, R), and
recall that ¢ is the product of the center of gl(n, R) by a Cartan subalgebra
of 3l(n, R), we see that ¢ is invariant under a Cartan involution 6’ of
gl(n, R). Using 1.1, we have then ¢ = ¢, + ¢ where ¢, (resp. cp) is the set
of elements of ¢ with purely imaginary (resp. real) eigenvalues.

p
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Let xem. Wehavex =k + p(kect,pe Cp), and in order to prove our
first contention, it is enough to show that k, p € m or also, since k and p
are real matrices, that k, pem,. After a suitable complex change of
coordinates, we may assume c to be diagonal, and write

k = diag (ity, «-+,1tt,) = diag (A, =+, \,)
(kirﬂieR’i: 17 ”'7/n) .

But [7a, p. 160] the smallest algebraic algebra in gl(n, C) containing z is
the set of matrices diag (a,, *--, @,), where (a,, ---, @,) annihilates all
linear forms with integral coefficients which are zero on (A, + ¢, - -,
. + it,). It contains therefore k and p; a fortiori k, p € m,.

If now @ is a Cartan involution of gl(n, R) leaving m invariant, and a is
an algebraic subalgebra of m, then we have m’ = m, m"” = m, by 1.1,
hence also a’Cm1,, a”Cmp, which shows that d(a) = a.

1.5. LEMMA. Let g be either semi-simple or equal to gl(n, R) and m a
subalgebra of g. Then tf m s stable under a Cartan involution 6 of g,
1t 18 reductive in g, and the restriction of 0 to Pm s a Cartan involution
of Dm. Conwversely, if m is reductive and algebraic, it is stable under
some Cartan involution of g.

Using the last assertion of 1.1, and identifying g with an algebraic sub-
algebra of gl(n, R) (n = dim g) by means of the adjoint representation,
we see first that it is enough to prove the first part when g = gl(n, R).

Let m be stable under a Cartan involution 6 of g. The ideal 1t formed
by the nilpotent matrices of the radical of m is then also stable under 4,
hence (1.1) spanned by semi-simple matrices; thus n = 0 and m is fully
reducible [5; § 6, Théoréme 4].

Let now m be fully reducible, and algebraic. The existence of a Cartan
involution @ of g leaving m invariant is known if m is semi-simple [20], or
if mis commutative (1.4). Let now m be neither semi-simple nor com-
mutative. Its center ¢ is fully reducible, algebraic, therefore invariant
under a Cartan involution € of g. The centralizer 3(c) of ¢ in g is reductive
in g [4, §§ 3, 4], stable under ¢, and ¢ induces a Cartan involution of 9j(c).
By [20] there exists a Cartan involution 6’ of g which leaves 9;(c) and Dm
invariant. The restriction of @ and ¢’ to 93(c) are Cartan involutions of
Di(c), and the analytic group generated by 9;(c) contains an element g
such that 6” = Adg o600 Adg* has the same restriction to Dj(c) as ¢’ (1.1).
The Cartan involution ¢” leaves then invariant ¢, 9m, hence also nt.

1.6. LEMMA. Let gDg’ be algebraic subalgebras reductive in gl(n, R).
Then there exists a Cartan involution 0 of gl(n, R) leaving g invariant.
Amny such Cartan involution is conjugate under an element of the analytic
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group G generated by g to a Cartan involution leaving also g’ invariant.

Let c and ¢’ be the centers of g and g’, and € a Cartan involution of
gl(n, R) leaving g invariant. The algebra ¢ + ¢’ is commutative, algebraic,
reductive in gl(n, R), hence so is ¢’ = DgaN(c + '), and ¢’ + Dg’ is alge-
braic, reductive in 9g. By 1.5, ¢’ + 94’ is stable under a Cartan involu-
tion of 9g. Using 1.1, this shows the existence of g € G such that §' =
AdgofoAdg™ leaves ¢’ + 9g’ invariant; since g centralizes ¢, we also
have 6'(c) = ¢, hence 0'(c + ¢’) = ¢ + ¢”, and, by 1.4, 0'(¢') = ¢; therefore
0'(g) =g.

This proves the second assertion of 1.6. The first one is the special case
where g = gl(n, R) and ¢’ = g.

1.7. LEMMA. Let M be reductive algebraic subgroup of GL(n, R), 0 a
Cartan imvolution of GL(n, R) leaving the Lie algebra m of M invariant,
gl(n, R) =t 4+ v the corresponding Cartan decomposition. Then M =
L-exp (mp) where L is a compact subgroup with Lie algebra m,, which
1s conmected if M 1s so.

Let ¢ be the center of m, and @ the normalizer of (9m), in M. The
group  normalizes ¢, hence also ¢, and ¢, (1.4), and (Pm),, which is the
orthogonal complement of (9my), in Pm with respect to the Killing form.
By a standard result, (9m), is equal to its normalizer in 9m; therefore
the Lie algebra q of @ is equal to ¢ + (Dm),. The algebras ¢, = cNt and
(9m), = tNDm, being algebraic, generate closed, hence compact, sub-
groups A, B of Q°, with A central. ¢ is the Lie algebra of a vector sub-
group V, which is invariant in Q. It follows immediately that Q° =
A-B-V, and hence Q°/ V is compact. Since Q° has finite index in Q, the
quotient Q/V is also compact. By Iwasawa’s theorem (see e.g., [27, Exp.
22, Théoréme 1]), there exists a compact subgroup L of @, containing 4 « B,
such that @ is the semi-direct product of L and V. The Lie algebra of L
is therefore equal to m,. By the conjugacy of Cartan decompositions of
Dm under Ad9m, the group @ meets every connected component of M,
therefore M = Q- M°. By a classical result of E. Cartan (see [20], [12,
Lemma 31] for instance), the analytic subgroup generated by Pm is equal to
B. exp((@m)p), therefore M°=A- B- V-exp((9m),)=A- B-exp m,, and
M=L-V-A-B-exp (mp) = L-exp (rnp). Moreover L= A - Bif M = M".

1.8. LEMMA. Let GO G’ be reductive algebraic subgroups of GL(n, R).

Then there exists a Cartan involution of GL(n, R) leaving G invariant.

Every such Cartan involution is conjugate by an element Adg(g e G°) to
a Cartan involution leaving also G’ invariant.

As in 1.6, the first assertion is a special case of the second one. By 1.6,
a Cartan involution leaving G invariant is conjugate by an automorphism
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Adz(x € G°) to a Cartan involution @ leaving also the Lie algebra g’ of G’
invariant. Let gl(n, R) = f + p and GL(n, R) = K- P be the correspond-
ing decompositions of gl(n, R) and GL(%n, R). By 1.7, G' = L-exp (g;),
where L is a compact subgroup with Lie algebra g;. The involution ¢
clearly leaves invariant G°, L°, but not necessarily L. Assume that we
have found y € G° such that

) K'=y-K-y'DL y-exp(g) -y’ =exp(g)-.

Then ¢’ = Adyo6oAdy* will do. In fact it is conjugate under y - x to the
initial Cartan involution, acts trivially on L, and acts by p — p~* on exp (g;,),
hence it leaves G’ invariant.

There remains to find y € G° satisfying (1). Let M be the normalizer of
gp in G. It contains L, and is stable under . We view P as usual as a
Riemannian symmetric space of GL(%, R) under the operations p—x-p-x*,
where «* = 0(x~'). Then M = exp m, is a totally geodesic submanifold,
and, by E. Cartan’s fixed pomt argument, every compact subgroup of
GL(n, R) leaving M invariant has a fixed point on M (for all this, see
for instance [20]). In particular L has a fixed point a on M. Lety be
the square root of a contained in M Then, for any x € L,

('-x-yly ' -x-y)* =y“‘-x-y-y-x*-y“’
=y lz-a-a*-y=y'-yy'=e,

and therefore y '+ L - yC K, which is the first part of (1). Since M nor-
malizes g, we have [mp, gp]cgp, but [m,, g ]C[p, plct, hence [m,, gp] =0,
and ¥ commutes elementwise with exp g Thus ¥ also verifies the second
equality of (1).

1.9. THEOREM (Mostow [21]). LetG,D --- DG, be reductive real alge-
braic subgroups of GL(n,R). Then there exists a € SL(n, R) such that
the groups a - G;-a~'(1 = 1, - - -, m) are self-adjoint.

By 1.1, this theorem is equivalent to the existence of a Cartan involu-
tion of GL(n, R) leaving the G,’s invariant. By 1.8, there exists a Cartan
involution leaving G, invariant. Assume 0(G;) =G; for 1 =1 =k < m.
By 1.8, ¢ is conjugate under an element Adz(z € G}) to a Cartan involution
¢ leaving G, ., stable. Since the G;’s (¢ =< k) are still invariant under &',
the theorem follows by induction.

The following proposition strengthens 1.7, and extends to reductive
real algebraic groups well-known properties of semi-simple Lie groups.

1.10. PROPOSITION. Let G be a reductive algebraic subgroup of
GL(n, R), 6 a Cartan involution of GL(n, R) leaving G invariant (1.6),
gl(n, R) =t + p, and GL(n,R) = K - P the corresponding decompositions
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of gl(n, R) and GL(n, R). Then the set L of fized points of 6 in G is a
maximal compact subgroup with Lie algebra 8;. Every compact subgroup
of G 1s conjugate by an element Adx(x € exp (gp)) to a subgroup of L. The
map (x, y) — x - exp (y) of L x g _into G is an analytic homeomorphism.

Let g =k-p(ke K, pec P) be an element of G. Since (g~ -g = p?,
we have p*e (G, hence also p™e G, (meZ). In a suitable coordinate
system, log p = diag (\,, + -+, \,), (\; real), and p*™ = diag (exp 2m\,, - - -,
exp 2m\,). It is then an elementary fact that every polynomial with real
coefficients over the space of » x n matrices which is annihilated by the
elements p™(meZ) is also annihilated by the diagonal matrices
diag (exp t\,, ««+, exp t\,) (¢ real). Since G is algebraic, this shows that
G contains the 1-parameter group generated by log p. Therefore
logpe 8y P E€XDg,, andkeGNK = L. ThusG = L-exp 8- That every
compact subgroup of G is conjugate under exp g, to a subgroup of L is
proved by the fixed point argument of E. Cartan used in 1.8. The proof
of the last statement for semi-simple Lie groups given in [12, Lemma 31]
is valid without change here.

1.11. We now extend Iwasawa’s decomposition to reductive algebraic
groups. Let G cGL(%, R) be reductive, algebraic, § a Cartan involution
of GL(n, R) leaving G invariant, K its fixed point set, a a maximal sub-
algebra of g,. For vea*, let g, = {regq,[a, x] = Ma)r, a ca}. Choose
some order on a* and let n = 3 g,.

PROPOSITION. We keep the previous motation. Then 1 generates a
closed unipotent subgroup N imvariant under A = expa, and G =
K-A-N. The map (k,a,n) > k-a-n of Kx A x N onto G is an
analytic homeomorphism.

Let ¢ be the center of g. Then g =c¢ x 9g, and a = ¢, X a, where
a, is a maximal subalgebra of (,@g)p. Clearly, for X\ +#0,g, =
{w e Dg, [a,, ] = Ma,)z, a, € a;}. By the usual Iwasawa decomposition, the
analytic group M generated by 9g is of the form M = K, - A,- N where
K, = KNM, A, =expa,, and Nis closed, unipotent, with Lie algebra n.
As was remarked in 1.7, ¢, and ¢, generate respectively a torus T and a
vector subgroup V, therefore

G=T-K-V-A-N=T-K,-A-N.

ButG = K-G°, with Ko T-K,, hence G = K-A-N. Since Vis central,
and N is stable under conjugation by elements of A,, the group N is also
invariant under A. The second assertion is proved by standard arguments,
as in the usual case [27; Exp. 11].

An Iwasawa decomposition G = K- A- N and a Cartan involution 6
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whose fixed point set is K, and which induces @ — z~* on A, will be called
compatible.

Let G’ be an open subgroup of G. Since G = K-G° and ¢ leaves K point-
wise fixed, we have 0(G') = G'. The automorphism of G’ induced by ¢
and the decomposition G’ = (KNG')-A-N will also be called a Cartan
involution and an Iwasawa decomposition of G’ respectively. Clearly,
1.8 to 1.11 are also valid for open subgroups of reductive real algebraic
groups.

2. Algebraic groups

In this paragraph and the next we assume some familiarity with the
elementary theory of affine algebraic sets and algebraic groups, and shall
recall only some of the relevant definitions and facts. For more details,
see e.g. [1, 8, 17].

2.1. A complex algebraic group, or simply, an algebraic group, is a
subgroup G of GL(n, C), which consists of all invertible matrices g = (g.;)
whose coefficients annihilate some set of polynomials {P.[Xy, ++, Xu.l}
with complex coefficients. In other words, G is the intersection of GL(n, C)
with an affine algebraic set in the space M(n, C) of n x n complex matri-
ces. The group is said to be defined over a subfield k of C if the P, may be
chosen so as to have coefficients in k.! The intersection of all the fields of
definition is also a field of definition. An algebraic group is also a complex
Lie group; it is connected as a manifold if and only if it is irreducible as
an algebraic set, or if and only if it is connected in the Zariski topology.

Let G be an algebraic group, and A a subring of C. Then G, will denote
the subgroup of elements of G whose coefficients are in A and whose
determinant is a unit of A. If A is a field of definition, then G , is an alge-
braic A-group in the terminology of [2], an algebraic group over Ain|7],
and if G is connected, G, is Zariski dense in G [26, p. 44]. Conversely, if
H is an algebraic group over A, in the sense of [7], then H = G,, where
G is the smallest complex algebraic group containing H.

An algebraic group G is not necessarily a closed subset of M(n, C);
however, if we add one coordinate and put g,:1.1 = (det ¢)7, guiii =
Gini1=0(=1,+-+,n), then G becomes an algebraic subgroup of
SL(n + 1, C), which is closed in M(n + 1, C). This operation clearly does
not change G .

1 This is the definition of [1], with the universal field specialized to C. Being in
characteristic zero, we need not distinguish between Zariski k-closed and defined over k
(or between defined and quasi-defined over k [1]).
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2.2. A rational representation 7: G — GL(V) is a homomorphism of G
into GL(V) (V finite dimensional complex vector space) whose restriction
to each connected component of G is a rational map of G into the space
of endomorphisms E(V) of V. The coefficients of 7(g) with respect to a-
basis of V are regular functions on each connected component of G. If G
is a closed set in M(n, C), they are therefore polynomials in the coeffi-
cients of g, whose coefficients are constant on each connected component
of G. From this and the end remark in 2.1, it follows that in general the
coefficients of m(g) are polynomials in those of g and in (det g).

The rational representation = will be said to be defined over k if each
component of G is, and if there exists a basis (v,) of v such that the coeffi-
cients of m(g) with respect to that basis are regular functions defined over
k on each connected component of G. In that case, we shall denote by V,
the set of linear combinations of the v,’s with coefficients in ADk.

Given a rational representation 7: G — GL(V), we shall most often
write v-g for v-m(9) (ve V,9€G). An orbit v-G is always open and
everywhere dense in its Zariski closure (smallest affine algebraic set con-
taining it), therefore the latter coincides with the closure in the ordinary
topology. If G is connected, and 7 is defined over k, then v - G, its closure
and the isotropy group G, of v are defined over k(v).

Let G be a connected algebraic group, H an algebraic subgroup, both
defined over k. Then H\G is in a canonical way an algebraic variety de-
fined over k. Given a rational representation 7: G — GL(V) and a point
v € V for which G, = H, the map g — v - 7(g) induces a regular bijective
map of H\G onto v - G, defined over k if 7 is. Since we are in character-
istic zero and these varieties are non-singular, this map is in fact biration-
al and biregular.

2.3. PROPOSITION. Let G be a conmected algebraic group defined over
R, 7: G — GL(V) a rational representation of G defined over R, and X
an orbit of Gin V. Then Xy = XN Vy is the union of a finite number
of orbits of (Gg)’, which are closed if X s so.

dimg and dim¢ will denote the topological and the complex dimension,
respectively. Let s = dim¢ G, t = dimg X. The s — t = dim; G,(x € X).
We assume Xy to be non-empty, hence X and its closure X are defined
over R. The latter is an irreducible algebraic set of complex dimension t.
The group Gy being Zariski-dense in G, the set X is the smallest algebraic
set containing (X)g, hence (X)g is a real algebraic irreducible set of
dimension ¢, and (X); = AU B, where A is a manifold of dimension ¢, the
set of real simple points of X, and B a real algebraic set of dimension <%
[31, §§ 10, 11]. In view of their characterizations, A and B are both in-
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variant under Gy. Let now z € Xy. Itis asimple point of X, hencexz € A4,
x - Gy is an open submanifold of A4, and x-G% is a connected component
of A. But A, being the complement of a real algebraic set in a real alge-
braic set, has only a finite number of components [31, Theorem 4], which
proves the first part of our assertion. If moreover X = X, then (X); =
XrCA, hence Bis empty, A is a closed submanifold with a finite number
of components, which must then also be closed.

2.4. PROPOSITION. Let G be a connected algebraic group, H an alge-
braic subgroup, k a field of definition for G and H, and assume H\G to
be an affine algebraic set. Then there exists a rational representation
: G = GL(V) defined over k and a point ve V, such that G, = H,v-G
18 closed, and g — v - g induces a biregular birational map of H\G onto
v.G.2

Let A and B be rings of regular (i.e. rational, everywhere defined)
functions, defined over k, of G and H\G respectively. The variety H\G
is defined over k, non-singular and affinely imbeddable. It is therefore
also biregularly homeomorphic over k& to an affine algebraic set defined
over k (see A. Weil, Amer. J. Math. 78 (1950), p. 509-524, Theorem 7).
Therefore

(i) B is a finitely generated k-algebra and separates the points of
H\G.?

We let G operate on A @ Con the right by (f-9)(x) = f(g-2)(fe ARC;
g, £ €G). The transpose of the canonical projection G — H\G identifies
then B @ C with the ring of invariants of H.

Let b, ---, b, be a finite system of generators of B, P, a finite dimen-
sional vector subspace of A such that P; Q) C is invariant under G and
b; e P; |25, Theorem 12], P the direct sum of the P, v= (b, ---, b,), and
7 the natural representation of Gin V= P& C. From (i) it is clear that
G, = H. Let X =v-+@G, and ¢ be the map of H\G into the Zariski closure
X of X defined by g — v-g. It is rational, defined over k, everywhere
regular. Let B’ be the ring of regular functions on X. Since X is Zariski
dense in X, the elements of B’ are determined by their restriction to X,
and ¢ induces an injective homomorphism ‘¢ of B’ into BQC. Let us
prove now that ¢ is surjective. For this, it is enough to show that
b;e'(B)(1=1,---,8). In P, we may always find a basis fi, -+, f;
such that fi(e) = 0(j = 2). We have b;-g = E, a;(9) - f;, where the a;’s
are regular functions on G, therefore

2 Propositions 2.4, 2.5 and their proofs are also valid if C is replaced by a universal
field of arbitrary characteristic.
3 In our case, this also follows directly from the fact that Gy is Zariski dense in G [26].
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bi(g) = (bi- 9)(e) = 32, ai(9)fie) = a,(9) - file) .

This implies that b, = ‘¢(x, - fi(e)), where z, is the first coordinate function
with respect to the basis (f;). Thus b; € ‘u(B’). ‘

Thus, v is a regular map of H\G into X, defined over k, whose trans-
pose is an isomorphism of the rings of regular functions. Since H\G and
X are affine, this implies that v is a biregular, bijective, hence also that
X=X qed

The following proposition is a slight strengthening of Proposition 5 in
[8, Exp. 10] and is proved in the same way. It will be used only in 8.7.

2.5. PROPOSITION. Let G be a connected algebraic group, H an alge-
braic subgroup, and k a field of definition for G and H. Then there
exists a rational representation m: G — GL(V), defined over k, a point
ve V,, (v # 0), such that H is the set of elements of G which leave the
1-dimensional subspace [v] spanned by v invariant.?

Again let A be as in 2.4, and I the ideal of Hin AX®C. It is in-
variant under H, and has a finite system of generators belonging to A.
By [25, Theorem 12] there exists a finite dimensional subspace P of A
such that P C is invariant under G, and that PN I contains a system
of generators of I. Let d = dim PN I and = the natural representation
of Gin V= A*(PXRC). Then v = PN I fulfills our condition.

3. Reductive algebraic groups. Affine homogeneous spaces

3.1. An algebraic torus (a torus, in the terminology of [1]) is an alge-
braic group which is birationally isomorphic to a direct product of groups
C* (multiplicative group of non-zero complex numbers), or equivalently
[1], a connected group which is diagonalizable. A connected subgroup of
GL(n, C) is an algebraic torus if and only if its Lie algebra is algebraic,
commutative, and consists of semi-simple elements (or is reductive in -
gl(n, C)). An algebraic group G will be called reductive if G° = T-G'
where T is an algebraic torus, central in G°, and G’ is semi-simple. For
an algebraic group G CGL(n, C) the following conditions are equivalent:

(i) G is reductive;

(ii) G is fully reducible;

(iii) g is reductive in gl(n, C).

In fact, G is reductive, or fully reducible, if and only if G° is, and this
equivalence follows from the previous remarks and the characterization
of fully reducible subalgebras of gl(n, C) [5, § 6, No. 5]. Let  be a rational
representation of G. If G is a torus, then so is 7(G), [1; 9.4], therefore,
7(G) is reductive if G is. The reductive algebraic groups are the algebraic
groups, all of whose rational representations are completely reducible.
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3.2. PROPOSITION. Let G be an algebraic group defined over R. Then
the following conditions are equivalent:

(i) G s reductive;

(ii) Gy is reductive;

(iii) g is the complextfication of the (real) Lie algebra of a maximal
compact subgroup of G°.

Let g and gy be the Lie algebras of G and Gy, over C and R respectively.
Then g = gg @ C. Thus gy is fully reducible if and only if g is, and the
equivalence of (i) and (ii) follows from 3.1 and 1.2. Let now G°= T-G’
be reductive, A and B be maximal compact subgroups of T and G’ re-
spectively. Then A x B is a maximal compact subgroup of T x G’,
which moreover contains the (finite) kernel of the natural homomorphism
of T x G’ onto G°, therefore A - B is a maximal compact subgroup of G°.
Since the Lie algebras a and b of A and B are real forms of the Lie alge-
bras of T and G’, this shows that (i) = (iii). If now g is the complexifi-
cation of the Lie algebra of a compact group, it is certainly fully reducible,
hence (iii) = (i).

3.3. PROPOSITION. Let G be a reductive connected algebraic group,
7. G— GL(V) a rational representation. Then the invariant polynomials
separate the closed orbits of G.

Let X, Y be two distinct closed orbits. These are two affine sub-
varieties with empty intersection. There exists therefore a polynomial P
vanishing on X, and a polynomial @ vanishing on Ysuchthat P + @ = 1.
We have then P-g + Q-9 =1 for any g € G. Let K be a maximal com-
pact subgroup of G, dk the Haar measure on K with total measure 1, and

P* = SKP-kdk Q* = SKQchk.

We still have P* + @* =1, and P*(x) = Q*(y) = 0(x e X,y Y), hence
P*=1on Y. Moreover P* and Q* are invariant under K. Since the
natural representation of G on the space of polynomials on V of a given
degree is rational, and G is the smallest algebraic subgroup of G contain-
ing K (3.2), P* and Q* are invariant under G, whence our contention.

3.4. REMARK. The property (iii) also characterizes reductive groups
among connected complex Lie groups. In fact, let G be complex, con-
nected, K a maximal compact subgroup, and assume that g =t ® C. Of
course f = ¢ x 9t with ¢ the Lie algebra of a torus (usual sense) and Dt a
compact semi-simple Lie algebra, therefore g = (c @ C) x (Dt R C), G =
T-G’, with G’ complex semi-simple, T isomorphic to a product of C*'s,
and T'NG’ central, hence finite. TNG’ is also the intersection of any two
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maximal compact subgroups of T and G’, therefore is uniquely character-
ized by the maximal compact subgroup K. This implies that if G and G*
are complex, connected, reductive, and have isomorphic maximal compact
subgroups, then they are isomorphic (as complex Lie groups at first).
Moreover, it is known that a reductive group has only one structure of
algebraic group compatible with the given complex analytic structure.
(For a more general theorem, see G. Hochschild and G.D. Mostow, Amer.
J.Math.88(1961), p.p.111-136, § 8.) Therefore a complex analytic isomor-
phism between two reductive groups is necessarily birational, biregular.

3.5. THEOREM. Let G be a connected reductive algebraic group, and
H an algebraic subgroup. Then G|H is an affine algebraic variety if and
only if H is reductive.

This result is not new. Since a non-singular affine variety is a Stein
manifold, it is a consequence of the two following assertions, where G and
H are as in the theorem:

(a) If G/H is a Stein manifold, then H is reductive.

(b) If H is reductive, G/H is affine.

The assertion (a) is due to Matsushima [18]. Assertion (b) is stated in
[18] without proof, and attributed to Iwahori-Sugiura. For the sake of
completeness, we insert here a proof of (b), and also one for (a), which
is shorter than that of [18], although based on a similar idea. A conse-
quence of (a) and (b) is that a quotient G/H, with G connected, reductive,
is Stein if and only if it is an affine variety. We also remark that the
statement 3.5 makes sense in arbitrary characteristic, but we do not know
whether it holds true.

3.6. PROOF OF (a). G/H®is a finite Galois covering of G/H, hence is a
Stein manifold [6], and we may assume H to be connected. We denote by
Hy(X) the " singular homology group of the space X, with complex
coefficients. ‘

Let » = dim¢ G, m = dim; H. We claim first that H reductive is equiva-
lent to H,(H) + 0. As a manifold H is the topological product of a
euclidean space by a maximal compact subgroup, hence H reductive implies
H,(H) + 0. A complex analytic group being the quotient by a finite group
of the semi-direct product of a semi-simple Lie by a solvable group, it is
enough to prove the converse for H solvable. A maximal compact sub-
group K of H is then commutative, of real dimension =m. Since H is a
complex linear group, f and 7 - f are linearly independent over R, hence
) =t + af (direct), and §) = t R C.

G is a locally trivial fibering, with typical fibre H, base G/H, and
structural group H, therefore the Betti numbers of G are majorized by
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those of (G/H) x H (as follows from the existence of a spectral sequence).
We have H,(G) + 0; since G/H is Stein, H(G/H) =00 >n —m =
dim¢ G/H) [6], hence by the Kiinneth rule, H,(H) # 0 for some i = m.
But G is Stein (it is algebraic), hence so is H (as a closed submanifold of
G), and H(H) = 0 for © > m; we must then have H,(H) # 0. As was
already proved, this implies that H is reductive.

3.7. PROOF OF (b). Let KDL be maximal compact subgroups of G and
H respectively and o a faithful representation of Kin GL(%n, R). It follows
from 3.4 that o extends to a biregular birational isomorphism of G onto
the smallest complex algebraic group containing o(K). We identify G with
the latter. Thus G is defined over R, and H, the smallest complex alge-
braic group containing L, is also defined over R. The group Gy, being
real algebraic, with identity component K, is compact and consequently
Ggr = K. By 2.5, there exists a rational representation 7: G — GL(V)
defined over R, and a non-zero element v € V}, such that H is the subgroup
of G leaving C- v invariant. This yields a real 1-dimensional representa-
tion of L. Since L is compact, its image has at most 2 elements. By 1,10,
applied to H, viewed as real reductive algebraic group, we have H/H° =
L/L’, the subgroup H' of H leaving v fixed has index =2, and G/H’ is
either equal to G/H or a two-fold covering of G/H. But the quotient of
an affine variety by a finite group is an affine variety (see Serre, Sympo-
sium de Topologia Algebrica, Mexico, 1958, 24-53, § 13), therefore it is
enough to prove that G/H’ is affine. Changing slightly the notation, we
may assume H to be the isotropy group of v. Let now X =v-G, and X
its closure. We want to prove that X = X. Theset ¥ = X — X is alge-
braic, defined over R. Let S,, ---, S, be polynomials with real coefficients
which generate the ideal of Yand S = S? + .-+ + S7. On V4, this poly-
nomial vanishes on Y} only. Therefore, for « € Xy, S has a constant sign
on x- K. We let G operate in the usual fashion on the ring A of poly-
nomials over V, and consider as in 8.3 the average S* of S over K:

S*=SKS-kdk,

where dk is a Haar measure on K. It is invariant under K, hence also
under G; consequently, S* is constant on X, and therefore on X. Since
S does not vanish on the connected set x - K(x € X3), S* is not zero on X;
on the other hand, Y is invariant under K, and S vanishes on Y, there-
fore S* vanishes on Y. This is a contradiction, unless Y = @, X = X.
Thus X is an affine algebraic set. The map ¢ — v - ¢ induces an isomor-
phism of H\G onto X and allows one to identify H\G with X (2.2).

For future reference, we state here a consequence of 2.4, 2.5, 3.4 to
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3.7, the only one to be used in the sequel.

3.8. THEOREM. Let G bea connected reductive algebraic group, defined
over Q, and H an algebraic subgroup. Then the two following con-
ditions are equivalent: '

(i) H is reductive, defined over Q;

(ii) there exists a rational representation w: G > GL(V) of G, defined
over Q, and an element v e V,, such that v -G 1is closed and G, = H.

In fact if (i) is true, then H\G is affine by 3.5, and (ii) follows from 2.4.
If (ii) is true, then H\G may be identified with v -G (see end of the
preceding proof) hence is affine, and H is reductive by 3.6. Finally, since
H=G, (ve Vy), His defined over Q.

4, Siegel domains

4.1. Let G be an open subgroup of a real algebraic, reductive group,
G =K-A-N an Iwasawa decomposition of G (1.11), and = the set of
simple restricted roots, in the ordering for which the roots of adga in
1 are positive. Let A, = {ac 4, Mlog a) < t; v e Z}. A Siegel domain in
G is a subset of the form K- A,-® where @ is compact in N. It will
usually be denoted by &, ., or simply by & if ¢, w need not be specified.
Clearly, &, ,C&,. . if t =t, wCcw'.

It is understood once and for all that the choice of a Siegel domain pre-
supposes an Iwasawa decomposition which, unless otherwise stated, will
be written K- A - N or equivalently, pre-supposes a Cartan involution 4,
a maximal subalgebra on which # = —1Id, and an ordering of the restricted
roots.

The union of the Siegel domains, with respect to a fixed Iwasawa de-
composition, is G, and any finite union of such Siegel domains is contained
in a Siegel domain.

Let us say that two families A, B of subsets of G are equivalent if
every element of A (resp. B) is contained in an element of B (resp. 4).
It is clear that we get a family equivalent to the set of &, , if we replace
above A4, by a - A(a € A), or if we allow A\ to run through all the positive
roots in the definition of A,.

4.2. PROPOSITION. Let G be an open subgroup of a real algebraic, re-
ductive group, G = K-A-N an Iwasawa decomposition of G, and o
a compact set in N. Then the set of elements a-n-a(a € A,, ne€w) is
relatively compact in N.

Let (z)1 =t =<m=dimn) be a basis of n, such that [k, z;,] =
Ni(R)x; (h € a), where \; is a linear form on a which is >0 for the given
ordering (1 <t =m), and that N, <\; if 7 <j. For each j, the
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elements x,(¢ = j) span then an ideal of n and it follows from standard
properties of simply connected nilpotent groups that (&, «--,t,) —
exp (@) - -+ exp (t.¢,) is an analytic homeomorphism of R™ onto N.
Further, if n = J], exp (t;) and a € A4, then

a-n-a7' =[], exp tn(log a)x; .

The \,’s are positive roots, therefore linear combinations with positive
coefficients of the simple roots. Hence if a € A, there exists a constant
t’ such that \;(loga) < ¢’ for all 4. If further n € w, then the t/’s are
also bounded, and the proposition is proved.

4.3. PROPOSITION. Let G be an open subgroup of a real algebraic,
semisimple Lie group. Then any Siegel domain has finite Haar
measure.

Let G = K- A- N be the underlying Iwasawa decomposition, and dk,
da, dn Haar measures on K, A and N. Then, in the notation of 4.2,

dg = exp [o(log a)] dk - da - dn (=7 +++2N\)

is a Haar measure on G [9, Lemma 35], hence

S dg=c- S exp [o(log a)]da .
Gt,0 A(loga)<t,AEZ

Let A, «++,\, be the simple roots. Then ¢ = m\, + +++ + m,\, with
m; >0(1 <1t =7r). Since G is semi-simple, r = dima, the \; form a
coordinate system on a, and the exponential a — A carries the euclidean
measure on the Haar measure, we have, up to a constant factor

t
exp [o(log a)lda = ], S exp (m;\;)dn; < oo .

S’\(logu) <t,A€Z

4.4. Siegel domains in GL(n, R). In GL(n, R) we consider the usual
Iwasawa decomposition where K = O(n), A is the subgroup of diagonal
matrices with positive coefficients, and N the group of upper triangular
matrices with diagonal coefficients equal to 1. If we denote the diagonal
coefficients a, -« - a, of an elementa € A by exp ¢, -+, exp /., the simple
positive roots are the linear forms ¢, — t£;,,.(¢t =1, -++, n — 1). Therefore
the subset &,, ={k-a-v} where keO(n),a =diag(a, +--, a,), a; <
tea,,(i=1,+-+,n—1),v=(n;;)e N, |n;| <u( < j) is a Siegel domain
in the sense of 4.1. Clearly &, ,C8,. .. if t <, u <« and GL(n, R) is
the union of the &,,(t,u >0). If ¢ and w are big enough (in fact
t>2.3" u>1/2will do), &, ,, or its intersection with SL(n,R), or with
the group of matrices of determinant +1, will be called a standard Siegel
domain of the group in question. These domains will be important for us,

“because of the following result; for which references are given below.
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4.5. PROPOSITION. Let & be a standard Siegel domain of GL(n, R).
Then

(a) GL(n, R) = &-SL(n, Z). ‘

(b) Forx,yc GL(n,Q),the intersectionS™ - SNx - SL(n,Z) - y is finite.

Let P, be the space of real symmetric positive non-degenerate n x n
matrices, and 7: X - X+ X the usual projection of GL(%, R) onto P,.
We let as usual GL(%, R) act on the right on P, by FF - F[X] =‘X-F- X
(Fe P,, XeGL(n, R)). Fort,u > 0, the Siegel domain &, , in P, is the
set of matrices D[T'] where

D = diag (d,, -+, d,) di=ted;i=1,++2,0—1)
T=(j;)eN (It =u, v <) .
Clearly, &,, = n7(8}.,); the Siegel domains of GL(n, R) defined above
are the inverse images of the Siegel domains in P,. From the definitions,
it is clear that ¢-&,, =&, ,, and &, ,[¢-I] =&,, for ¢ > 0. Since

g € GL(n, Q) may be written as g = ¢-g’, where ¢’ has integral coeffi-
cients, and ©(X - Y) = n(X)[Y], Proposition 4.5 follows from

(@) Fort = 4/3,u = 12, P, = Usesrnz,SLIS].

(') For each positive number q, the set of integral matrices S with
determinant smaller than q in absolute value for which &, [SINS! ,+ D,
18 finite.

The statement (a’), which is more or less implicit in Hermite’s work
[14], is proved in [16]; in fact Sis allowed in [16] to have determinant —1,
but it is obvious from the proof that it may be taken in SL(n,Z). The
second assertion is a well known theorem of Siegel [28].

Clearly, the interior of a standard Siegel domain contains a standard
Siegel domain, a finite union of standard Siegel domains is contained in a
standard Siegel domain, and every element of GL(n,R) belongs to a
standard Siegel domain.

5. A finiteness lemma

5.1. Let G be a locally compact group, acting continuously on the right
on a locally compact space M, and G, the isotropy group of a point z € M.
Then #: g — « - g induces a continuous bijective map of the space G,\G of
cosets G, - g onto the orbit « - G of x. It follows from a theorem of Arens
[19, p. 65] that if G is countable at infinity, and « - G is closed, then u is
a homeomorphism of G,\G, endowed with the quotient topology, ontox - G,
endowed with the induced topology. Since a compact set of G,\G is always
the image of a compact set of G, this can also be expressed by saying
that, under the assumptions made, the set of g € G for which x - g belongs
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to a fixed compact set of M is of the form G, - Q, with Q compact in G. Of
this we shall need the following special case.

5.2. PROPOSITION. Let G be a Lie group with finitely many connected
components, T a continuous complex or real linear representation of G
m a finite dimensional vector space V, ve V a point whose orbit v - (G)
18 closed, and Q a compact subset of V. Then{geG,v-n(g)cQ} =G, Q,
with Q compact.

By a lattice I in a finite dimensional vector space over Q or R we mean
as usual a discrete additive subgroup which is generated by a vector space
basis of V. A subspace W of V is said to be rational with respect to I if
WNT is a lattice in W, or, equivalently, if W is defined by linear equa-
tions with integral coefficients in a coordinate system in which I' is the
lattice of integral points.

5.3. LEMMA. Let G be a subgroup of finite index in a semi-simple
real algebraic group, 6 a Cartan involution of G,G = K+ A+ N an Iwa-
sawa decomposition of G compatible with 6, and &S a Siegel domain of
G (with respect to the decomposition K+ A+ N). Let r be a real represen-
tation of G in a finite dimensional vector space V, and I' a lattice in V
with respect to which the maximal eigenspaces V; of n(A) are rational.
Let v e V be a point whose orbit is closed and whose isotropy group G, is
stable under 6. Then v-n(S)NT s finite.

We denote by |v | the norm of v € V for a euclidean norm with respect
to which the elements of 7(A) are self-adjoint (1.1). The space V is the
direct sum of the V,’s, which are mutually orthogonal. We denote by E,
the orthogonal projection of V onto V;, and by y; the weight of a in V,.
Since V; is rational with respect to I', the subgroup of I" spanned by the
intersections I'N V; has finite index, and E;(T) is also a lattice in V..
There exists therefore a constant ¢ > 0 such that w € ", Ey(w) # 0 implies
| E(w) | = c.

Letnowas =Fk,-a,-n, €&, andy, = - a;', 2, = ¥, -a;*. Inthesequel,
we shall drop 7, and write w - g instead of w-w(g)(we V, g€ G).

Let w = v -2, and w;, = E,(w). Then

(1) Ei(v-y,)=exp[—ploga,)]-w;, E(v-z,)=exp[—2¢(oga,)]w,.
It follows from 4.2 that
{yz}ze@ = K' {a’ N a_l}wneg

is relatively compact. Consequently, {v+¥,),eg is relatively compact and
there exists a constant ¢’ such that |w.a,™| =|v-y,| < ¢'. Hence

2 |E(v-y.)| =|w;|exp[—p(loga,)] < .
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Assume now w eI, and fix an ©. There are two possibilities:
(i) w; =0; then Ey(v-y,) = E((v-2,) = 0;
(ii) w,; # 0; then, by the above, | w;| = ¢, hence, using (1),
3) | Ei(v-2,)| = | E(v-9y.) [l w;| = c"[c.
In both cases, | E;(v - 2,)| has a bound which is independent of % and of
2 €. This proves therefore that if v-x e, x €&, then v -z, belongs to

some compact set of V. Since v-G is closed by assumption, 5.2 shows
the existence of a compact subset @ of G such that

4) vexel,re®=>2,€G,-Q.

We now fix such an «, and drop the index x. We have
z=k-an-a=k-at-a’*-n-0eG,-Q.

But 0(k) = k, 0(a) = a7, and, by assumption, 6(G,) = G,, hence

0z)=k-a-0@-n-a?)=x-n'-0@-n-a?)eq,- 0(Q)
2eG,-0Q)-0(ad* n-a?)ten.

By definition of &, the element # lies in a fixed compact set. Further if

we have & = &, , in the notation of 4.1, then a® <€ A4,, and therefore, by

4.2, a*-n-a7? lies in a fixed compact set. Then so does 6(a*-n-a~*),
and (5) shows the existence of a compact set Q@ G such that

vexel,reS=>rxeG, Q.
But then v - « belongs to I'Nv - @', which is finite.

®)

REMARK. The lemma and its proof are valid if G is reductive, provided
7(A) is real diagonalizable, as will always happen if 7 is a rational rep-
resentation. In fact we shall use the following form of the lemma (only
for G = GL(n, C), and we could also limit ourselves to the case G =
SL(n, C).

5.4. LEMMA. Let G be a reductive complex algebraic group defined
over Q, 8 a Cartan involution of Gy, Gg = K+ A+ N an Iwasawa decom-
position of Gg compatible with 6, where A is contained in an algebraic
torus T of G which is defined over Q and is isomorphic over Q to a product
of groups C*, and S a Siegel domain. Let w: G — GL(V) be a rational
representation of G which is defined over Q, and I' a lattice of V. Let
v be a point of Vi whose orbit under G ts closed and whose isotropy
group in Gy is stable under 6. Then v -n(S)NT s finite.

By 2.3, v - T(Gy) is closed. Moreover 7(T') is diagonalizable over Q [26,
Proposition 5], which means that a maximal eigenspace of 7(A) has a
basis in Vg, hence that it is “rational with respect to I'". Thus, taking
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the above remark into account, all conditions under which the proof of
5.8 is valid, are fulfilled.

5.5. EXAMPLE. Let G = SL(n, R), 0 be the involution g — *¢~, and &
a standard Siegel domain (4.4). Let V be the space of symmetric real
7 X m matrices, and I' the lattice of integral symmetric matrices. For
m, we take the usual representation F—‘X . F'- X= F[X]. Here A is the
group of positive diagonal matrices with det 1, and n(A) is diagonal with
respect to the standard basis of I'; the maximal eigenspaces of 7(A4) (which
are in fact 1-dimensional) are then rational with respect to I. Let ¢ be a
strictly positive number, p, ¢ two positive integers whose sum is n, and v
the diagonal matrix with p entries equal to ¢, and ¢ entries equal to —e.
Then G, is the proper orthogonal group of the quadratic form v, and is
clearly stable under 6. Moreover, the orbit v-G of v consists of all
quadratic forms with determinant (—1)?- ¢* and signature (p, 9), hence is
closed. The lemma applies, and shows that v[S]NT is finite. But the
matrices v[g](g € ©) are those of the forms of determinant (—1)*-c*and
signature (p, g), which are reduced in the sense of Hermite (if we agree
to call reduced those positive quadratic forms whose matrix is of the type
‘X - X (with X e®). This is a somewhat bigger set than the one con-
sidered by Hermite). The lemma in this case means therefore that the
integral reduced forms with given non-zero determinant and signature
are finite in number, a well known statement of Hermite [14, p. 127].
Since SL(n, R) = & - SL(n, Z), it implies that the number of proper classes
of integral quadratic forms with a given non-zero determinant is finite.

If we consider, instead of x, the natural representation of SL(n, R) in
the space of homogeneous forms of degree m = 2, then the lemma also
applies, and shows that the number of classes of integral forms belonging
to some closed orbit is finite. Such generalizations of Hermite’s result
have been given by C. Jordan (Journal Ec. Polytechnique, 48 (1880), pp.
151-168), and H. Poincaré (ibidem, 51 (1882), pp. 45-91).

6. A fundamental set for arithmetic subgroups

6.1. Let G be an algebraic group defined over Q. Then G, is a discrete
subgroup of Gg. It is known [29], and will follow from 6.3, that if we
change the imbedding, that is, if we replace G by its image G' under a
rational injective homomorphism p, defined over Q, then G, is commensu-
rable with o(G,). (We recall that two subgroups of a group are com-
mensurable if their intersection has finite index in both.) Therefore the
commensurable class of G, in G has an intrinsic meaning.

6.2. PROPOSITION. Let G be a connected algebraic group de fined over
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Q, 7: G — GL(V) a rational representation defined over Q. Then the
subgroup of G, leaving a lattice I in Vg invariant has finite index in
G,.

Let H be the identity component of GNSL(%n, C). Then H, has finite
index in G,, we may therefore assume GCSL(n, C). In this case, the
coeflicients 7(g),, of 7(g), with respect to a basis of I, are polynomials in
those of g, with rational coefficients (2.2). Let g!; = g;; — 8.;. Then

y;u.v(g) = ﬂ(g)uv - Suv = uv(g{b °ty g;m) ’ (1 = KU, v = dim V) ’

where the P,, are polynomials with rational coefficients and no constant
term. Let m be a common multiple of the denominators of the P,,, and
M be the congruence subgroup of the elements in G, which are =Id mod m.
Then M has finite index in G4, and 7(9),, € Z for g € M.

6.3. COROLLARY. There exists a lattice in Vy containing I' which is
imvariant under G,. If © is faithful, G, is commensurable with the
subgroup of G leaving T invariant.

We keep the notation of the previous proof. The subgroup M is in-
variant in G, therefore, for any g € G,, the lattice I' - 7(g) is invariant
under M. Then the sum of the lattices I' - #(g;), where g, runs through a
system of representatives of G,/M, is a lattice invariant under G,. The
second assertion follows from 6.2 applied to 7= and to .

6.4. COROLLARY. Let G = H- N be the semi-direct product of a sub-
group H and of an invariant subgroup N, both defined over Q. Then
H, - N, has finite index in G,.

We may assume G to be connected. The mapg =h-n—>h(he H,ne N)
is a rational homomorphism defined over Q, hence (6.2) G, has a subgroup
M of finite index whose image is in H,. Then M CH,-N,.

6.5. THEOREM. Let GCGL(n, C)be a reductive algebraic group defined
over Q, a € SL(n, R) such that a - Gg - a™" is self-adjoint (see 1.9), and S
a standard Siegel domain of GL(n, R) (see 4.4). Then there exist finitely
many elements b, --+,b, € SL(n, Z) such that the interior U of U =
Uik (@ - © - b,) N Gy has the following properties:

(i) Gp=U-Gy

(ii) K- U = U for a suitable maximal compact subgroup K of Gg;

(i) U7-Unz-G,-y s finite for any x,y <Gy,

The group G, 1s finitely generated.

By 3.8, we may find a rational representation 7: GL(n, C) > GL(V),
defined over Q, for which there exists v € ¥V, whose isotropy group is G
and whose orbit is closed. Using 6.3, we take in V, a lattice I invariant
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under GL(n, Z); replacing v by a multiple if necessary, we many assume
veTI'. The group Gy is real algebraic, reductive (8.2); by 1.9, there exists
a € SL(n, R) such that a - Gi - a™' = Gy is self-adjoint. Let v’ = v - m(a™).
Then v'.7(GL(n, C)) = v+ n(GL(n, C)) is closed, hence (2.3) so is
- v+ 7(GL(n, R)). The isotropy group of ¢’ in GL(n, R) is G}, and is by
construction invariant under the Cartan involution 6: g — *g~*, which
underlies the definition of the standard Siegel domain &. Moreover, in
this case, A is the subgroup of diagonal matrices with positive real eigen-
values, and it belongs to the algebraic torus D(n) of all diagonal matrices
of GL(n, C), which is defined over Q. Consequently, all conditions of 5.4
are fulfilled, and we may assert that v'-7(S)NT is finite. A fortiors,
v - w(@)Nv - 7(SL(n, Z)) is finite. Let then b, ---, b, € SL(n, Z) be such
that

(1) v (@) Nv - x(SL(n, Z)){v - m(Y), -+, v+ 7))} .
Let now
2 H = {geGL(n, R)|v'-7(g) = v} .
Then
3) H=a-Gg=G-a.
Let h € H. By the classical reduction theory (4.5),
h=s-b (s€®,beSL(n, Z)) .

The equality v' - w(h) = v yields v' - 7(s) = v+ w(b™"), hence, by (1), there
exists an index %, (1 = 7 < m) such that
v'em(s) =vew(d) =v.w®d?).

We have then b;* - b € GNSL(n, Z)CG,, hence b €b,G,, and

HcCU;©-b,-G,,
(4) GR:a—1°HCUia—I°@°bi’Gz,

GR: l_]'Gz, (l—]=Ui(a_1°@'bi)nGR).
The equality (4) is a fortitor: true if we replace & by a standard Siegel
domain containing & in its interior, hence (i) is proved.

The group K'= GpNO(n) is maximal compact in G} (1.10), and
K=a"K'-ais maximal compact inGg. Clearly, K'-(8b; N Gy) CGb; N Gy,
and therefore K- U= U, K- U = U.

Let now x,y€Gq, and uc U+ UNx-G,-y. There exist, then, two
indices ¢, 7(1 < 1, 7 < m) such that

ue(@'+S:b)'(@*-Sb;) =b;'-1-S-b;,
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whence
b,ou-b;'ec1. &,

and the finiteness of the number of the possible %'s follows from Siegel’s
theorem (4.5). For = y = e, this implies that U~'- UNG, is finite, in
other words that U meets only a finite number of its right translates
under G,. Since G,N(Gy)° is of finite index in G,, the finite generation
of G, follows from the following well known elementary lemma;:

6.6. LEMMA. Let H be a group which operates on a connected topo-
logical space M, and U an open set such that U-H = M. Then J =
(he HIU-hN U # @} is a set of generators for H.

In fact let H' be the subgroup generated by J. Then U- H' is open. If
U-hNU-W+@(heHecH),thenU-h-h'-*N U+ @ ,henceh e J-h'c H’,
from which it follows first that U+ H' = M, and then that H' = H.

6.7. REMARKS.

(1) Let us call fundamental set an open subset of Gy satisfying prop-
erties (i), (ii), (iii). In view of the inclusion properties of standard Siegel
domains listed at the end of 4.5, the class C of fundamental sets con-
structed in 6.5 has the following properties: it covers Gy, any finite union
of such sets is contained in a set of C, any such set contains the closure
of an element of C.

The main part of 6.5 will be extended to algebraic groups in 6.12. It
will be shown later that, at any rate for a suitable a, the set U has finite
Haar measure when G is semi-simple.

(2) Let K be a maximal compact subgroup such that K- U= U, and =
the natural projection of Gy onto P = K\Gg. Clearly, U’ = 7(U) has the
following properties: (i') P = U’ - Gy; (iii’) for z, y € G, the set of g€ G,
for which U'NU"-x-g-y #+ @ is finite. Conversely, the inverse image
of a set U’ in P having the properties (i), (iii’) has the properties (i), (ii),
(iii), so that the construction of fundamental sets in Gy or in K\Gg
are essentially equivalent questions. In the special case where G is the
orthogonal group of an integral non-degenerate indefinite quadratic form
F, K\Ggis the space of majorizing positive forms of F' in the sense
of Hermite. If we take, furthermore, the natural representation of
GL(n, C) in the space of symmetric matrices, then our construction reduces
to that of Hermite (always with the minor difference that instead of using
an arbitrary Siegel domain & of GL(%, R), Hermite uses the inverse image
of the space of reduced positive forms in his sense, that is, the domain
given by 4.5a’). In this case, the two properties of U’ above, and the
resulting finite generation of G, are also proved by Hermite [14, pp. 201-
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233, § VIII].

6.8. LEMMA. Let MCG be reductive subgroups of GL(n, C) = G', both
defined over Q. Let w: G' — GL(W) be a rational representation, defined
over Q, I' a lattice in W, invariant under G;,, w' € I' a point whose orbit
under G' is closed and whose isotropy group in G’ is M. Then w'-GxNI
consists of a finite number of orbits of G,.

By 1.9, there exists a € SL(n, R) such that a-Gg-a™* and a- My -a™
are self-adjoint. By 6.5, there exists a finite number of elements b, € G,
such that Gg = U, (GgNa*'-S-b;)- G, where & is a standard Siegel
domain of GL(%, R). It suffices therefore to show that

w+(GgNa'-S-b,)NT

is finite, hence, a fortiori, that w.a'-S NI is finite. Let w’' = w-a™'.
Then G, = a-M-a™, hence (G.,)y is self-adjoint. Further, the group A
of diagonal matrices which underlies the definition of & belongs to an
algebraic torus which is diagonal over Q hence 5.4 applies and yields the
finiteness of w-a'- &N =w'-SNT.

6.9. THEOREM. Let G be a reductive algebraic group defined over
Q, 7w: G — GL(V) a rational representation defined over Q, T a lattice in
Vo tnvariant under G,, and X a closed orbit of G. Then XNT consists
of a finite number of orbits of G.

Since G° has finite index in G, we may assume G to be connected. We
assume XNI' #= O (otherwise there is nothing to prove), take v e I'N X,
and put H = G,. The group H and the orbit X = v - G are defined over
Q. Since X is closed, H is reductive (3.8). We prove first:

(*) There exists a rational representation #': G — GL(W) defined over
Q, a point we Wy such that G, = H, w-7'(G) = X' is closed, and that
X' NI consists of a finite number of orbits of G, for any lattice IVC Wa
invariant under G,.

Let G’ = GL(n, C). The group H being reductive, defined over Q, there
exists by 3.8 a rational representation p: G’ — GL(W) defined over Q, and
a point we Wy such that w - o(G’) is closed and H = G/,. We claim that
the restriction 7’ of o to G fulfills our conditions. The orbit X’ = w - z'(G)
is closed because if we identify w - o(G’) with H\G', the orbit X' is the in-
verse image of a point in the projection H\G' — G\G'. Let now I'"C WQ
be a lattice invariant under G,. It is contained in a lattice invariant
under G, (6.3), therefore it is enough to consider X' NI for lattices in-
variant under G;,. Of course, X'NI'C X' N Wy, which consists of a finite
number of closed orbits of Gy (2.3); therefore, it suffices to show that for
w' e X'NI", the intersection w’ - 7'(Gg) NI consists of a finite number of
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orbits of G,. There exists g € G such that w' = w-7'(g), hence G}, =
gt H-9gcG. The group G, is reductive, since H is, and defined over Q,
since w’' € Wy. Moreover w'-p0(G') = w-p(G’) is closed. The fact that
w'«7'(Gg) NI is the union of a finite number of orbits of G, is now a
consequence of 6.8 (with M = G,).

The maps g — v-7(g9) and g — w - 7'(¢g) induce isomorphisms of H\G
with X and X', defined over Q, whence an equivariant isomorphism
@: X - X', defined over Q. Let «,, -+, 2, and ¥, ---, ¥, be coordinates
in V and W with respect to bases of I" and I respectively. The function
Y:(@(x))(x € X) is a regular function, defined over Q. Since X is an affine
algebraic set, y;(®(x)) may be written as a polynomial Pi(«,, -+-, «,) in the
x;’s, with rational coefficients (1 <1 < s). If ¢ is a common multiple of
the denominators of those coefficients, then q - y,(¢(x)) is integral when-
ever &, +++, x, are, therefore

1
q
The lattice (1/¢)I” is of course also invariant under G, therefore
(1/@)T" N X' consists of a finite number of orbits of G, by (*). Since @ is

G-equivariant, its restriction to XNT' is G,-equivariant, hence XNT is
also a finite number of orbits of G,.

PXNT)C X' N=TI".

6.10. In order to go from the reductive to the general case in the two
following sections, we shall use the following facts: a connected algebraic
group G defined over a field k& (of characteristic 0) is the semi-direct
product of a reductive group H and of an invariant unipotent group N,
both defined over k.* If G is unipotent, defined over Q, then Gg/G, is
compact. The latter fact is completely elementary; in fact, G being
nilpotent, defined over Q, its Lie algebra has a basis (z;) (1 =1, -+, dim Q)
consisting of matrices with integral coefficients, such that foreachj =1,
the elements x;(¢ = j) span anideal. Let, further, m be the degree of the
ambient linear group. Then z*=0(=1,.--,dimG), and g, =
exp (m! - x;) € G;. Using induction on dim G, it is immediately seen that
the quotient of Gy by the subgroup generated by the g,’s is compact.

6.11. COROLLARY. Let G, G’ be algebraic groups defined over Q and
U:G— G a surjective rational homomorphism defined over Q, with
finite kernel (an isogeny). Then 1(G,) and Gy are commensurable.

Here again, it is enough to prove this when G and G’ are connected. It

4 The corresponding statement for Lie algebras is proved in [7b, Chap. V, §4, Prop.
5]. For the global version, see G. D. Mostow, Amer. J. Math. 78 (1956), 200-221,
Theorem 6.1.
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follows from 6.3 that we may assume x(G,)C G7z. By adding one coordinate
(see 2.1), we may have G’ closed in M(n/, C).

Let now G be reductive. We let G act on V = M(n’, C) by right trans-
lations « — x - 1(g), and get in this way a rational representation G —
GL(V) defined over Q. The subgroup G, is the intersection of the closed
orbit G’ of G with the lattice M(n, Z) which is invariant under Gz, and
belongs to V. By 6.9, G}, consists of a finite number of cosets of HG,),
hence [G}: 1(G,)] < .

If G is unipotent, Gy/G, is compact; then so is Gr/M(G,); this space is
a covering of G/Gy, with a discrete fibre which has [G: 1(G,)] elements.
This number must be finite.

In the general case, G=H-N, G' = H'- N’ with H, H'=p(H)reductive,
defined over Q, N, N'=g(N) unipotent, invariant, defined overQ(6.10). By
the above ((H,- N,) has finite index in Hj- Ny, and 6.11 follows from 6.4.

6.12. THEOREM. Let G be an algebraic group defined over Q. There
exists an open set U in Gy such that U-G, = Gy, and that for any
x, Yy € Gq, the intersection U™+ UNw -G, -y s finite. The group G, is
finitely generated.

It is enough to prove this for G connected. If G is reductive, see 6.5.
If G is unipotent, then (6.10) there exists a relatively compact open sub-
set U such that Gy = U-G,. Then U clearly satisfies our second con-
dition.

In the general case, we use the decomposition G = H- N of 6.10. Let
A and B be open subsets in H and N satisfying our two conditions in H
and N, with B, moreover, relatively compact. We assert that U = A4 - B
verifies our contention. In fact

G=H-N=A-H,-NCA-N-H,CA-B-N,-H,CA-B-G,,
which proves the first condition. The group H,- N, has finite index in
Gy (6.4). Therefore, our second assertion is equivalent to the finiteness
of U*-UN(x-Hy,-N,-y) for arbitrary z,y e G4 The group G being
isomorphic to H- N over Q, we also have Gq = Hy - N, and may write
*=a-b,y=c-da,ceHyb,deN,y). Let he H,,ne N,. We have

A-B.x-h-n-y=A-a-h-c-B'-n
(B'=(a+h+c)y* B-a-b-h-c; n = ctemec-d),
hence A- BNA-B-x-h-n-y #+ @ is equivalent to
@ A-a-h-cNA+@, B -w'NB+ Q.

By our assumption on A, the possible %’s are finite in number. Since Bis
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relatively compact, B'~'- B is also relatively compact, hence its inter-
section with the discrete set ¢+ N+ ¢ -d is finite. Thus there is a finite
number of possibilities for 4, and for each of them, a finite number of
possible »’s.

The above implies in particular that U~*- UNG, is finite. The finite
generation of G, then follows from 6.6, as in 6.5.

6.13. REMARK. Aswas mentioned in the introduction, the construction
of Uin 6.5 is a generalization of Hermite’s procedure in the case of in-
definite quadratic forms [14]. As is well known, the latter had been
adapted, notably by Siegel, to many other cases, the most inclusive one
being that of the automorphism group of a rational involutorial semi-
simple algebra [24, 29]. This case represents essentially all classical groups
with center reduced to the identity. However, U is constructed there in
the symmetric space K\Gg, rather than in Gy, but this is a minor differ-
ence (see 6.7). This implies, of course, the finite generation of G,. The
finiteness of the volume of Gg/G,, or, equivalently, of (K\Gg)/Gz, in that
case is also proved in [24], generalizing earlier results of Siegel.

In order to construct U, we take a rational representation of the
ambient linear group GL(%, C), such that the representation space has a
rational point with closed orbit and isotropy group G, whose existence
follows from 2.5 and 3.5b. In this respect, we point out that 3.5a is used
only in proving 6.9, and there only to ascertain that H is reductive. This
last fact is obvious in 6.11, where H = (e) and follows from [4] in 11.6,
where H runs through the centralizers of semi-simple elements; as these
are the only two applications of 6.9 made in this work, we see that, except
for 6.9 in full generality, this paper can be made independent of 3.5a.

7. The finiteness of the volume for semi-simple groups

In this paragraph, we often write b® for a-b-a~", where a, b are ele-
ments of a group.

For the sake of reference, we first sketch the proof of an elementary
lemma on nilpotent Lie groups (see also [13, Lemma 1]):

7.0. LEMMA. Let N be a connected, simply connected, real or complex
nilpotent Lie group, n' a strictly decreasing sequence of ideals of n
such that [n, n?]Cn " n, and n, two mutually complementary subspaces
such that n® =, Nn® +n,Nn? @ =0, -++; 1% =n). Then (x,y)—>
expx-expy(xen, yen) is an analytic homeomorphism of m, x m,
onto N.

Let s be the biggest index such that n® = 0. Then n' is central,
generates a closed simply connected central subgroup N of N, and
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N/N* is simply connected. Let 1, and n, be supplementary subspaces to
n®Nn, and n N, in 1, and n, respectively. Proceeding by induction on
8, we may assume the lemma to be true for n,/(n,Nn*) and n,/(n,Nn')
inn/n®. This implies immediately that (x, y) — exp exp ¥ is an analytic
homeomorphism of 1, x n} onto M = exp 1 - exp ny, and that (m, 2) > m -2
is a homeomorphism of M x N onto N. The lemma then follows readily
from the following facts; the exponential is an analytic homeomorphism
of n onto N, exp (@ + b) = expa-expb if [a,b] = 0 (a, b en), and n® is
central.

7.1. Let G be a real algebraic semi-simple Lie group, 6 a Cartan in-
volution of G, and G = K - A+ Nan Iwasawa decomposition of G compatible
with € (1.11). We use the notation of 4.1, except for the fact that = will
denote the set of all positive roots for the ordering defined by N. Moreover,
givenx =k-a-nkeK,acA,neN), we put H(x) = log a and v(x) = n.

Let M be the centralizer and M* the normalizer of A in K. Then
M*|M = W is a finite group, the “restricted” Weyl group of G. It acts.
by inner automorphisms on A or a, and this representation is faithful.

7.2. LEMMA. We keep the above notation. Then M*|(M*NG°) = G/G*
and each coset of M* modulo M*NG° contains an element which nor-
malizes N. The group G is the disjoint union of the subsets Nm,M,AN,
where m,, runs through a system of representatives of the elements w of”
w.

By Bruhat’s lemma, [10], G° is the disjoint union of the subsets.
Nm,(M N G°)A-N, where w runs through M(M*NG°)/M. Our second
assertion follows from this and the first assertion. By a theorem of E.
Cartan (see e.g. [12, Lemma 33]), given k ¢ K, there exists k' € K° such
that kAk™ = kE'AK'"'. Therefore M* meets each connected component.
of G. Moreover, M(M*NG°)/M is transitive on the Weyl chambers of a,
therefore each coset of M* modulo M*NG° contains an element which
leaves the positive Weyl chamber invariant, hence normalizes N. This
proves the first assertion.

REMARK. The above is also valid in a semi-simple Lie group with
finitely many connected components, whose identity component has a
finite center.

7.3. Letw e W,Z(w) be the set of positive roots whose transforms under
w are negative, and ®(w) the set of roots which are linear combinations.
of elements of Z(w)U(—3(w)). Then

8w = 2 neow) (Ga + [8ar §-a])
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is clearly a subalgebra. Let n, =g,Nn,a, =g,Na,m, =g,Nn,f, =
g, N¥t. Asusual, for a € a*, h, is the element of a defined by (k,, k) = a(h),
where ( , ) is the scalar product defined by the Killing form. Then g,
is semi-simple,

@) 8o =, +a, + 1,

is an Iwasawa decomposition of g,, and

2) Qw = Eweﬂ(w) R-h, = Ew&@(w) R-h, .

In fact, it is elementary and known that if x €g,, ¥y €g_,, then

B(x, 6(x)) # 0 (x+0),
[z, 0(x)] = k.B(x, 6(z)), [x,y] — haB(x,y)em,

where B is the Killing form, from which we deduce (2) and

) My, + Gw = D ueom [Gor 8-als G = My + G + e s Ga s

so that (1) follows from

() 8o+ -2 = 8o + 0(ga) = 8o + (80 + g-a)NE.

The algebra g, is stable under 8, hence reductive (1.4). By (4), m, + a,,
belongs to the derived algebra 9g,, of g,,. By (2), for each & € ®(w), there
exists h € a, which does not annihilate «, hence g, = [k, g,]CDg. Thus
8o = 9g,, and g, is semi-simple.

@)

Up to 7.7, G is a real algebraic semi-simple Lie group, 6 a Cartan in-
volution of G,G = K- A - N an Twasawa decomposition compatible with
9, 3 the set of the positive roots in the ordering defined by N. The Siegel
domains of G are always defined with respect to the given Iwasawa
decomposition.

7.4. LEMMA. Let & be a Stegel domain of G,x€G and t a positive
real number. Then SxNK- A, - N is contained in a Siegel domain of G.

For any Siegel domain &' and elements a € A, n € N, the sets &' - a and
&'« n belong to Siegel domains. In view of Bruhat’s lemma (7.2) we may
assume ¥ = m~, me M*. Let w be the element of W defined by m. We
use the notation of 7.3. Let further n), be the sum of the g, where
aes, ag¢ d(w),a), be the subspace of a on which the elements of ®(w)
are all zero. Let A4,, 4, N,, N, be the exponentials of q,, al, n,, 1.
Then A = A4, A, and the group A/, centralizes the analytic group G(w)
with Lie algebra g,,. Let further a;, -+, a, be the positive roots arranged
in increasing order. Then

n'® = Ejéi gwi ’ nm=n,nm=1n,,
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satisfy the assumptions of 7.0, hence (n, n') — exp 7 - exp #' is an analytic
homeomorphism of 1, x 1, onto N = N, - N'. Let yeSandz =y -m™.
We may write

y=k-a-n (keK,acA,neN),
A =0Q* Ay N="MN+MN, (a,€A,, a,e A, n,e N,, n,e N)) .

1)

In the sequel, we say that an element, which is a function of ¥, is
bounded if it stays within some compact set when y varies subject to
our conditions. We prove first that a, is bounded. We have

z=k-a-n-m*=k-nea-m?=k-n*-mtem-a-m,
z=k-m™?-n".wa),

hence

@) H(z) = H(n™) 4 log w(a) .

By 4.2, n* is bounded, hence so is n™*. There exists therefore ¢, = ¢ such
that

3 a(log w(a)) < t, (aes).
Let now a € Z(w). Then ‘w(a) < 0, and, by (3)
4) —a(log a) = —*w(a)(log w(a)) < t, .

By definition of a Siegel domain, there exists ¢, such that a(log a) < t,,
for & > 0. For t"” big enough, we have therefore
(5) |a(loga)| < t” (e Z(w)) .
But a(log a) = a(log a,) for « € Z(w), and the roots a € Z(w) span the dual
of a,, therefore (5) implies that log a, varies in a compact set. Thus q, is
bounded, as was contended. But then, w(a,) is also bounded, and (3) shows
the existence of ¢, such that
(6) a(log w(a,)) = t, (xe3).
Since a, commutes with n,, we may write
(7 z2=k-m?*-(m-a,-n -m?) - wa,-n, m=m-n,-m™).
The element % is bounded (by definition of a Siegel domain), hence so are
N, %y and ;. The product a,-n, belongs to G(w) and ‘w(S(w)) = — S(w™);
hence
m-a,-n-mrem:Gw) -m?*=Gw?),
MMM =kyea;m,,

(kse KNG(w™), a, € ANG(w™), n,e NNG(w™)) ,

where a, and n, are bounded, since the left hand side is. The element a,

)
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commutes with G(w), hence w(a,) commutes with G(w™), and we have
by (7)
z=kem* ke, w(a) ny-n};
therefore,
H(z) = log a; + log w(a,) .

We have already seen that a,, n, and n] are bounded. Taking (6), into
account, this shows the existence of s > 0 and of a compact set ® in N
such that

zeK-A;-o,
which proves the lemma.

7.5. LEMMA. Let G, be an algebraic semi-simple subgroup of G, and
assume it satisfies the following condition: (a) 6(G,) =G, G, =
K,-A -N(K,= KNG, 4 = AnG,, N, = NNG,) ts an Iwasawa decom-
position of G,, and the restrictions to a, of the positive roots on a are
> 0 for the ordering associated to n,. Let S be a Siegel domain of G,
and x € G. Then there exists a Stegel domain S, of G, (for the Iwasawa
decomposition K, - A, - N;) and a finite number of elements x,, -+, 2, € G,
such that SxNG,CcU; S, - 2;.

In this proof, the Siegel domains of G, are defined with respect to the
decomposition K, - A, - N;. Let

’

ny = Ewez;w(a1)=0 3o » n = Ewei;w(al)#o 8o «

Then, clearly, 1, is a subalgebra and n’ an ideal of n. By 7.0, (n,n') —
expn -exp#’ is an analytic homeomorphism of n, x n’ onto N. For any
«a € T, whose restriction to q, is not zero, let g/, be a supplementary subspace
to g,N g, in g,, and let n, be the sum of all the g;,. Then n’ =n, + n,, where
n, is a subalgebra, and it follows from 7.0 that (n,, n,) — expn,-expn,
is an analytic homeomorphism of m, + 1, onto N’. Thus (n,, %, 1) —>
exp 7, * exXp N, - eXp 7, is an analytic homeomorphism of n, + 1, + 1, onto
N = N,;+ N,- N,.

By7.2,wehavex =a-u-m™*-v(@cd;u,ve NymeM*). SinceS-a-u
is contained in a Siegel domain, we may assume ¢ = m™ - v. Let us write
v=2v.0"(v"€ N,+ N;;v”" € N)). Then©xNG, = (S-m™-v'NG,) - v". We
may therefore assume v = v’ € N, - N,. In this case, 7.5 will follow from
the more precise lemma:

7.6. LEMMA. We keep the above notation and assume
x=m"t-v (meM*,ve N,- N,) .
Let M* be the normalizer and M, the centralizer of A, in K,, and
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x(1=1=ord M*|M,) a set of representatives of the cosets of M* modulo M,.
Then there exists a Stegel domain &, of G, such that S-2 NG, U;S, ;.

Lety=Fk-a-nkeK,acA, ne N)be an element of & such that z =
y+x €@, Then

z=k-a-n-mt-v=k-a,-n (k,eK,,a,e A, n, eN,) .
We first show that a, - n, - a;! is bounded. We have
z=k-n*ea-mrv=k-mrtem-n®-mrt-m-a-m?v
=kemtenm.qm.0,
zeK-n™.q™ev = K+e¥" e p(u)-a™-v (w =n%,
where v(u) is the component in N of u (see 7.1), whence
1) a, =eT%.q™ N vt = (@)t -v(u)-a™ .
By 4.2, n* is bounded, hence so are u = n™?, v(u), and therefore by (1),
also a, - (@™, and
2) a o vteart = (@ o n e art)(a, vt eart) .
It is clear from the definitions that a, normalizes N, and N+ N,, therefore
the two factors on the right hand side belong to N, and N, - N, respectively.
Since the map (', n”’) - n’ - n” is a homeomorphism of N, x N, N, onto

N, we see that both factors on the right hand side of (2) are bounded.
Let, for ¢ > 0,

Vie=1{2eGxNG,|2-2;*c¢ K-A,- N}.
We want to prove the existence of £ > 0 such that
3) SrnG,clU: Vi .

The restricted Weyl group W, of G, is transitive on the Weyl chambers,
therefore, given 2z, there exists an 4 such that x;-a,-2;*€ A7, where
A7 = A, , denotes the exponential of the negative Weyl chamber. We
have

zext=kea,om 27t =k enpreacx7te K enfimealn,
z-xte K - eT™ . q . (@i - v(u) - aff) ' (u = njr™),
which implies
H(z-27') = Hu) + H(@;-a,-2;7) .
But z;-a;-2;7'€ A7 by assumption, hence, taking 7.5(a) into account,
a@;-a,-x7') <0 for ¢ €=. Moreover, n{* is bounded, as was proved

above, hence % is bounded. There exists, therefore, ¢; > 0 such that
H(z-x;")Clog A, ,, for all z€ Sx NG, for which
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Tyt X7t =x,-e7P ot e AT .

This proves (3). In view of the condition (a) of 7.5, 4, ,C A,, and it follows
from 7.4 that we may find a Siegel domain &’ of G such that z-x;'€ &
when ze V,,; we have then V,,C&!.x; or equivalently

(4) I/'”C(@: N Gl) ;.

But in view of 7.5(a), !N G, is a Siegel domain of G,. Since a finite union
of Siegel domains (with respect to a fixed Iwasawa decomposition) is
contained in a Siegel domain, the lemma follows from (38), (4).

7.7. LEMMA. Let G’ be a real algebraic semi-simple subgroup of G.
Then there exists a € G such that G, = a -G - a™ verifies condition (a)
of 7.5.

Let g = £ + p be the Cartan decomposition associated to . By 1.1 and
1.8, there exists b € G such that G, =b-G'-b™" is stable under 6. Then
g, = (tNgy) + (pNg,) is a Cartan decomposition of the Lie algebra g, of G,.
Let a, be a maximal subalgebra of pNg, and ' a maximal subalgebra
of p containing a,. By E. Cartan’s conjugacy theorem (see e.g. [12, Lemma
33]), there exists k € Ksuchthatk-a’ - k™ = a. ThegroupG; =k -G, k™
is then still invariant under ¢, and g;Na = q, is a maximal subalgebra of
P, = g, Np. Let us now choose orderings on a* and a; such that the re-
striction to a, of a positive element of a* is =0, for instance take the
lexicographic orderings with respect to a basis whose first elements span
a,. Let then m e M* be such that Adm transforms the positive Weyl
chamber of a for this ordering into the positive Weyl chamber for the
ordering defined by N. Then a = m - k - b fulfills our conditions.

7.8. THEOREM. Let G be a semi-simple algebraic Lie group, defined
over Q. Then Gg/Gz has finite Haar measure.

We may assume G to be contained in SL(n, C) (see 2.1), and also to be
connected, since (G°); has finite index in Gg. We now apply 7.7, with G’
and G replaced respectively by Gr and SL(n, R), ¢ and K- A - N by the
standard Cartan involution and Iwasawa decomposition of SL(%n, R), and
take a € SL(n, R) such that G’ =a-G-a™" is self-adjoint and satisfies
condition (a) of 7.5. Let & be a standard Siegel domain of SL(n, R). By
6.5, there exist finitely many elements b; € SL(n, Z) such that G = U. G,
with

Ij= Ui (a“-@-bi)ﬂGR .

We want to prove that U has finite Haar measure on Gg. It is enough to
show that (a~-&-b,) N G has finite measure, hence also that &-b;-a™* NGy
has finite Haar measure on Gi. By 7.5 (with G and G, replaced by
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SL(n, R) and Gg), © - b, - ¢ NG} is contained in a finite union of translates
of a Siegel domain of G%. Since a Siegel domain of a semi-simple Lie
group has finite volume (4.3), our contention is proved.

8. Remarks on characters of algebraic groups

8.1. Let G be an algebraic group. The group of rational characters of
G, that is of rational homomorphisms of G into C*, is denoted by X(G).
It is a finitely generated commutative group, free when G is connected
[23; 26]. If K is a field of definition for G, then X (G) will be the group
of rational characters defined over K.

A rational homomorphism f: G — G’ obviously induces a homomorphism
S’ X(G') - X(G), which maps X (G’) into X.(G) if K is a field of defini-
tion for G, G’ and f.

Let G be reductive, connected, defined over K, S = Z(G)° the identity
component of its center, and G’ the derived group of G. Then the
restriction map X(G) — X (S) is injective, and identifies X(G) and X(G)
with subgroups of finite index of X(S) and X.(S) respectively. In fact,
we have X(G') = 1, since G’ is semi-simple, hence the restriction is in-
jective. Conversely, given x in X (S) or in Xz(S), x™ (m = order of G'N S)
is trivial on SNG’, and therefore extends to a character of G.

8.2. Let now G = T be an algebraic torus, K a field of definition for
T. Let I'(T) be the group of rational homomorphisms of C* into 7', and
I'x(T) the group of rational homomorphisms of C* into 7 which are
defined over K. Both X(T') and I'(T) are free, of rank n = dim 7. Given
aeI(T),be X(T), the homomorphism boa:C* — C* has the form
x—>2™(m €Z). The map (a, b) —> {a,b> = m is an integral valued non-
degenerate bilinear form on I'(T') x X(T), which puts these two groups
in duality [8; Exp. 9, No. 5]. A rational homomorphism f: T— T’ induces
a homomorphism f,: I'(T)— I'(T'), and we have {f,a,b> = <a, f>
(@ e(T),be X(T")).

8.3. An algebraic torus T is said to split over K if it is defined over K
and isomorphic over K to a product of groups C*. If TcGL(%, C), thisis
equivalent to the existence of # € GL(%, K) such that « - T - ' is diagonal
[26, Prop. 5]. If T splits over K, then X (T) = X(T), Tx(T) =1(T),
the subtori and the homomorphic images (over K) of T split over K.
Therefore, if a e I'x(T), a # 0, then a(C*) is a one-dimensional subtorus
of T which splits over K, and if T'p(T) = I'(T), then T splits over K.
That the two latter conditions are also equivalent to X (7T) = X(T)
follows from the following lemma:
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8.4. LEMMA. Let T be an algebraic torus, K a field of definition for
T. Then

(a) Given any subtorus S of T, defined over K, there exists a subtorus
S’, defined over K, such that S-S’ = T, and SNS’ is finite.

(b) X(T)and Tg(T) have equal ranks. In particular, X (T) =+ {0} if
and only if T contains a subtorus S # (e) which splits over K.

The torus 7 certainly splits over K [1, Chap. II], therefore there exists
a finite Galois extension K’ of K over which T splits. Let A be the Galois
group of K’ over K. It operates in a natural fashion on I'(T'), X(T'), and
we have

{o(a), s®)) =<a, by  (aeT(T),be X(T),ceA).

The corresponding linear representations p, 0’ of A in I'(T) ® Q and
X(T)® Q are therefore contragredient to each other. The fixed points
of Ain I'(T) and X(T) are I'x(T) and X (T) respectively. Consequently,
the ranks of I'y(7T) and X (T) are equal to the dimension of the fixed
point sets of o, 0’. Since p and o’ are contragredient to each other, these
dimensions are equal, whence the first part of (b). The second one follows
then from 8.3. Let now S be a subtorus of T, defined over K. Then I'(S)
may be identified with a submodule of I'(7"), which is invariant under A.
Since A is finite, there is a subspace V of I'(T) Q Q, supplementary to
I'(S) ® Q, and invariant under A. The images v(C*), (veI(T)N V), are
subtori defined over K’ which are permuted by A. They generate a sub-
torus S’ of T, invariant under A, hence defined over K, and such that
'S’y = VNI(T). We have then I‘(S)ﬂl"(S’) = (0), and T'(S) + I'(S’)
has finite index in I'(T'), whence (a).

9. The finiteness of the volume

9.1. Let G be a Lie group, H a discrete subgroup. Then a Haar
measure on G induces on G/H a measure g, such that g(¢) = x(9) - ¢,
where x(9) = |det Adg|. If u(G/H) < =, then x(9) = 1(ge @), ¢ is in-
variant and G is unimodular (any left invariant Haar measure is right
invariant).

9.2. LEMMA. Let G*,G be connected algebraic groups defined over Q,
n:G* — G an isogeny over Q. Then Gy is unimodular and G%/G} has
Sfinite invariant measure, if and only if Gy s unimodular, and Gg/G,
has finite invariant measure.

It is clear that Gy is unimodular if and only if G is so. Let N be the
kernel of 7. By 6.11, G has a subgroup M of finite index, whose image
(M) is a subgroup of finite index of G,. We have G/ M- N=Gg/n(M), and
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G1/Gy (resp. Gg/Gz) has finite measure if and only if G{/M- N (resp.
Ggr/m(M)) has, whence the lemma.

9.8. Let T be an algebraic torus, defined over Q. We shall use here
and in § 10 the fact that if X (7T) = 1, then Ty/T) is compact, proved by
Ono [22]. (It is not stated explicitly there, but is an immediate conse-
quence of the compactness of the quotient J(T)/ T, of the idele group of
T by the principal ideles.)

On the other hand, if T is diagonal, then 7 is obviously finite. By 8.8,
it follows that 7T, is finite whenever T splits over Q. In that case,
t(Tg/T,) is of course infinite (7" =+ (e)).

9.4. THEOREM. Let G be an algebraic group, defined over Q. Then
G ts unimodular, and Gg/G, of finite invariant measure if and only if
Xo(G) = 1.

1t is clearly enough to prove this when G is connected. Assume first
that G = T is a torus. If Xy(G) =1, then Ty/T, is compact by Ono’s
result (9.8). If Xy(G) # 1, then, by 8.4, we have T'= S-S’, where S, S’
are subtori of strictly positive dimension, and S splits over Q. We have a
natural isogeny S x S’ — T, and it follows from 9.2, 9.8 that p(Ty/Ty) is
infinite.

Let now G be reductive, G = S -G’ its standard decomposition, where
S = Z(G)", and G’ is the derived group of G. Therefore G is the quotient
of S x G' by a finite group. By 7.8, Gi/G}, has finite invariant measure.
By 8.1, X(G) and Xy(S) have equal ranks. Our assertion in this case
follows therefore from the above and 9.2.

In the general case, G = H- N is the semi-direct product of a reductive
group H and of an invariant unipotent group N, both defined over Q,
and Ny/N, is compact (6.10). Of course, X(N) = 1, hence X(G) = X (H),
Xo(G) = Xo(H).

Let X,(G) =1. Then X (H) =1, and Hg/H, has finite invariant
measure by the above. Moreover, the determinant of Ad%|n(he H) is
one, since h— det (Ad 2 |n) is an element of X,(H). Therefore, Gy is uni-
modular, and a Haar measure on Gy, is the product of Haar measures on Hg
and N;. We have Hy = A - H,, N, = B+ N, with A, Bopen, of finite Haar
measure, whence G = A-N-H; = A-B- G, with A - B of finite measure.

Assume now Gy to be unimodular, and Gy/G; to have finite invariant
measure. Since, Gy, Hg, Ny are unimodular, we must have det (Adk|n) =
1(k € H), and the Haar measure on Gy is the product of Haar measures
on Hy and Ng. The subgroup Hy - N, has finite index in G, (6.4), and
Ggr/Hy, - Ny has finite measure. The projection Gg/N, — Gg/Ny = Hgpis a
fiber map with compact fibre Ni/N;, which commutes with the action of
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H, defined by right translations. Therefore Hy/H, must also have finite
invariant measure; by the above, this implies Xo(H) =1, hence Xo(G) = 1.

19. Closed conjugacy classes

10.1. PROPOSITION. Let G be a real or complex algebraic group, x € G,
yeg, and C(x) = {g-x-97%, g€G}, C(y) = Ad G(y) the conjugacy classes
of x and y. Then

(a) If x (resp. ad y) is semi-simple, C(x) (resp. C(y)) is closed.

(b) If G is reductive, and x (resp. ad y) is not semi-simple, G(x) (resp.
C(y)) is not closed.

PrOOF OF (a) Going over to the complexification, if necessary, it is
enough, by 2.3, to consider the case where G is complex algebraic. For
an endomorphism A of a vector space, we denote by C(A4, \) its character-
istic polynomial det(4 — X\ -Id.) and by M,(\) its minimal polynomial,
where \ is an indeterminate. Let

P,={zeg,C(adz,\) = C(ady, \), M., (adz) = 0} .

This is an algebraic subset of g, clearly invariant under G. The minimal
polynomial of ad 2(z € P,) divides the minimal polynomial of ad y, hence
has only simple factors, and ad z is also semi-simple. In particular, the
dimension of the centralizer Z(z) of 2z in (7 is equal to the multiplicity of
the eigen-value zero of ad z. But ad z has the same eigenvalues as ad ¥,
hence dim Z(2) = dim Z(y). The orbit AdG(z) of z, whose dimension is
equal to dim G —dim Z(z), has therefore the same dimension as AdG(y), and
P, is a disjoint union of orbits of the same dimension. Since the boundary
of an orbit is a union of orbits of strictly smaller dimension [1, § 15], it
follows that Ad G(2) is closed for every z € P,.
The proof for «x is entirely analogous. We introduce the set

P,={zeG,C(Adz,\) = C(Adx, \), M4, (Ad 2) = 0} .

This is an algebraic set, invariant under G. The dimension of Z(z) will
be equal to the multiplicity of the eigenvalue one of Adz, hence equal to
dim Z(x), and P, consists again of orbits of the same dimension.

ProoF OF (b) Let first G = SL(2, R) or SL(2, C) and z #* 1 be unipotent
(resp. ¥ # 0 be nilpotent). After a suitable inner automorphism, we may

assume
(1 1) ( (o 1
X = . = .
0 1 TeR-T = 0))

Let g, = diag (t, t*). Then
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1 ¢ 0 &
gt-w-g:‘=(0 1) (resp.Adgt(y)=(O 0)),

hence the identity (resp. the origin) belongs to C(x) (resp. C(y)).

Let now G be reductive, and ady be not semi-simple. We may write
Yy =2 + ¥, with z central, ¥’ € 9g, hence ady’ = ady not semi-simple.
It is clearly enough to show that the conjugacy class of %’ in the semi-
simple part of g is not closed; we may therefore assume G to be semi-
simple. We have then y =s + n, with [s, n] =0, ad s semi-simple, ad n nil-
potent and not zero [5, §6, No. 3]. The centralizer 3(s) of s in g is reductive,
its center consists of semi-simple elements [4, Prop. 4.1], D3(s) is semi-
simple, and contains n. By the Jacobson-Morosow theorem [15], there
exists a three-dimensional subalgebra n1, isomorphic to 2l(2, R), or 8/(2, C),
containing n. The analytic subgroup M generated by m in Ad g is a homo-
morphic, locally isomorphic, image of SL(2, R) or SL(2, C). By the above,
the conjugacy class of » in m has zero in its closure; since M centralizes
s, it follows that the semi-simple element s belongs to the closure of C(y).

For x, the proof is similar. We write x = 2.2, with z central, semi-
simple, and &’ in the semi-simple part of G, and not semi-simple. It is
enough to show that C(z’) is not closed, hence we may assume G to be semi-
simple. We have =, - %, with z, - x, = x, - x,, 2, semi-simple, @, + e uni-
potent [1, § 8]. Applying the Jacobson-Morosow theorem to log «,, in the
derived algebra of 3(x,), we see that x, belongs to a group M, which is a
homomorphic, locally isomorphic image of SL(2,R) or SL(2,C), and
centralizes x,. By the above, the conjugacy class of z, in M contains e,
hence C(x) contains x,.

10.2. REMARK. The proof of (b) shows more precisely that the semi-
simple part of x (resp. y) belongs to C(x) (resp. C(y)), and, in the real
case, that it belongs to the closure of the conjugacy class of x (resp. ¥)
with respect to the identity component G° of G, hence with respect to any
open subgroup. Now, if G is a real (resp. complex) semi-simple Lie group,
then Ad g is of finite index in a real algebraic group (resp. is an algebraic
group). If G is moreover linear, it is of finite index in a real (resp. com-
plex) algebraic group. Consequently, 10.1 yields the following:

10.3. COROLLARY. Let G be a real or complex semi-simple Lie group,
and y€g. Then Ad G(y) is closed if and only if ad y is semi-simple. If
G 1s linear, the conjugacy class in G of an element x € G is closed if and
only if x 1s semi-simple.
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11. Groups of units with compact fundamental sets

11.1. LEMMA. Let G be a locally compact separable group, M a
locally compact separable space on which G operates continuously on the
right, me M, and H a closed subgroup. If m - H is closed, and H\G is
compact, then m -G 1s closed.

It follows from our assumption that G = H- K with K compact. If
m«h;-k;— p(h;e H, k;e K), then, assuming, as we may, k; >k c K, we
have m -« h; — p-k=*. Since m - H is closed, there exists ke H such that
pk*=m-h, whencep =m-h-kem-G.

11.2. Let G act on itself by inner automorphisms. If H is discrete, the
conjugacy class in H of h € H is of course a closed subset of G; therefore,
if H\G is compact, then the conjugacy class in G of any element of H is
closed. Lemma 11.1 was suggested by this remark, which is due to
Selberg. Together with 10.8, it shows that if G is a linear semi-simple
Lie group, H a discrete subgroup such that H\G is compact, then any
element of H is semi-simple.

11.3. PROPOSITION. Let G be a connected algebraic group defined over
Q, and ©: G — GL(V) a rational representation of G defined over Q. If
Gr/Gz is compact, then the orbit under Gy of an element v € Vi 18 closed.

By 6.3, there exists a lattice I'C V which contains v and is invariant
under G,. Therefore, v-7m(G,) is a discrete set, and 11.3 follows from
11.1.

11.4. LEMMA. Let G be a connected reductive algebraic group, k a
field of definition for G. Then the following conditions are equivalent:

(a) Xu(G) =1, and g, consists of semi-simple elements;

(b) X.(G) =1, and G, consists of semi-simple elements:

() Xu(S) =1 for every algebraic subtorus S of G which is defined
over k.

If k is a number field, and J its ring of integers, these conditions are
equivalent to:

(d) X.(G) =1, and G, consists of semi-simple elements.

(a) = (b). The group G, being algebraic, contains the unipotent and
semi-simple parts of its elements [1, Chap. II], therefore, if G, contains a
non-semi-simple element, it also contains a unipotent element g # e.
But then log g is a non-zero nilpotent element of g,.

(b) = (c). Assume (c) to be false. By 8.4, there exists then a one-
dimensional subtorus S of G which splits over k. It is not central, since
otherwise 8.4 and 8.1 would imply X,(G) #+ 1. The image of S in Autgq
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then also splits, which means that it can be diagonalized over k. The
weights of the Lie algebra 8, of S, in g, are then elements of (3,)*, and g,
is a direct sum of subspaces g,.(x€(3,*)), where as usual, §,.,=
{x eg.|[s, ] = a(s)x, s€8,}. Since S is not central, g, , + 0 for at least
one o # 0. But then it is well known that an element « € g, ,, is nilpotent.
If 2+ 0, then ¢ is a unipotent element in G, different from the identity,
which contradicts (b).

(¢) = (a). By 8.1, (c) implies that X,(G) = 1. Assume now that g, does
not consist of semi-simple elements. Being algebraic, it contains then a
nilpotent element x # 0 [7a, p. 165], which necessarily belongs to 9g.
Applying the Jacobson-Morosow theorem to 9g,, we get a three dimen-
sional subalgebra mc 9g,, containing 2z, isomorphic over k to the Lie
algebra of SL(2, k). There exists therefore in G an algebraic subgroup M,
with Lie algebra m & C, defined over &, and which is the image of SL(2, C)
under a rational homomorphism with finite kernel, defined over k. The
image of the group of diagonal matrices in SL(2, C) is then a one di-
mensional subtorus of G, which splits over k. Let now %k be a number
field, J the ring of integers of k. Clearly, (a) = (d). Assume now (a) to
be false. As remarked at the beginning of the proof, there exists then
2 € g, which is nilpotent and not zero. Let s be a positive rational integer
such that 2 =0, ¢ an element of J such that ¢-x has integral coeffi-
cients, and m = s!-t. Then e¢™ is a unipotent element, different from
the identity contained in G;, in contradiction with (d).

11.5. COROLLARY. Let G be a conmnected reductive algebraic group.
If G satisfies the conditions of 11.4, then every connected subgroup of G
which is defined over k is reductive, and satisfies those conditions.

Let M be a connected algebraic subgroup of G, defined over k. As
recalled in 6.10, M = H - N is the semi-direct product of a reductive group
H and of a unipotent invariant subgroup N, both defined over k. In our
case N, = (e) by the condition (b), hence N = (¢), and M = H is reductive.
Then it clearly satisfies (c).

11.6. THEOREM. Let G be a reductive algebraic group, defined over Q.
Then Gg|Gy is compact if and only if Xo(G°) =1 and Gq consists of
semi-simple elements.

The group G° has finite index in G, therefore Gy/G; is compact if and
only if (G°)/(G")z is. In the sequel, we assume G to be connected. Our
assertion is then that the conditions (a) to (d) of 11.4 are equivalent to
the compactness of Gg/G5.

Let first Gg/G, be compact. If X,(G) # 1, there exists a non-trivial
one dimensional rational representation 7: G — C*, defined over Q. But
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then 7(G) = C*, and 7(GyR) contains the multiplicative group R* of strictly
positive real numbers. The orbit under Gy of any element in Q* (in fact
in C*) has the origin in its closure, and is not closed, in contradiction with
11.8. Thus X(G@) = 1. The condition on G follows from 10.1 and 11.3.

From now on, G is assumed to verify the conditions of 11.4, and we
prove the compactness of G/G by induction on dim G. There is nothing
to prove in dimension zero, therefore we may assume 11.6 to be true for
all groups (connected or not) of dimension strictly smaller than dim G. In
particular, in view of 11.5, Hy/H, is compact for every proper algebraic
subgroup H of G which is defined over Q.

We have G = S-G with S = Z(G)", G’ semi-simple invariant, S and
@’ defined over Q. If 0 < dim S < dim G, then, by the above Sy = A+ Sy,

* =BG} with A and B compact, hence S -Gy = A+ B-S;-Gj. Since
Sk - G has finite index in Gy, and Sz - G;CGy, it follows that Gg/G is
compact. If G = S, see 9.3.

Let now G = G’ be semi-simple. Every element of gq is semi-simple
(11.4), and therefore its conjugacy class under G is closed (10.1). The
adjoint representation is consequently a locally faithful rational represen-
tation of G, defined over Q, in which all rational points have closed orbits.
Since, as pointed out above, Hy/H, is compact for every proper algebraic
subgroup of G which is defined over Q, it will be enough, in order to
conclude the proof of 11.6, to prove the following lemma.

11.7. LEMMA. Let G be a connected semi-simple algebraic group
defined over Q. Assume that Hy/H, is compact for every proper alge-
braic subgroup of G defined over Q, and that there exists a locally
faithful rational representation w: G — GL(V) defined over Q in which
all points of Vo have closed orbits. Then Gg/G, is compact.

The representation 7 being fully reducible, we may take out the trivial
representations, and assume

Q) G,+G (xeV,e+0).

We fix a lattice I in V, which is invariant under G, (see 6.3), and take
coordinates in V with respect to a basis of I'. Let P be the set of poly-
nomials on V which are invariant under G. Since 7 is defined over Q, we
have P = P’ ® C, where P’ is the set of invariant polynomials with
rational coefficients. By the theorem of invariants, applied to z: gq —
al(Vy),, [5, §6, No. 9], P’ is a finitely generated algebra over Q. It is
therefore generated by 1, and by finitely many homogeneous polynomials
P, ..., P, which we may assume to have integral coefficients and
degrees = 1.
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Let : V— C* be the map v — (P(v), «++, Py(v)). It is continuous,
maps I, Vg, Vi in Z¢, Q°, R® respectively. By assumption, any v € Vg has
a closed orbit. Since the P,’s, together with 1, generate Pover C, and the
invariant polynomials separate the closed orbits (3.3), we see that

@) v,v' € Vg, 0(v) =0(@)=>vev-G.

The origin is a closed orbit, hence is the only closed orbit on which all P’s
are zero, and
3) o(w) =0 (ve Vo—0).
The group G being semi-simple, connected, #(G) consists of trans-
formations of determinant one, and #(Gy) leaves invariant the euclidean
measure on V, identified with R" by means of the basis chosen above. By
Minkowski’s classical idea, there exists a compact set Cin V;, containing
zero such that C- w(g) N T # {0} for any g € Gg. (For the sake of complete-
ness, we recall the proof: let C, be a compact set in Vg with measure
strictly greater than 1. Then the projection V;— V/I is not injective on
Co-m(g) whence the existence of z e I' — 0 such that C, - 7(g) N (C,+7(g) + 2)
# @. Therefore C = {x — y; «, y € C,;} fulfills our condition.) The image
d(C) of C is compact, (C)NZ* is finite, and we may find finitely many
elements w; eI' — 0(1 < 5 < t) such that

a(C)Na(l' — 0) = {o(w,), +++, a(w,)} .

By (2), the intersection o7*(o(v)) NI'(v € Vq), belongs to the orbit of v,
which is closed by assumption, hence (6.9) consists of a finite number of
orbits of G,. There exists therefore a finite number of elements
¥y, +++, v, €' — 0 such that

(4) Ui v: - (Gy) = 07 (a(C)Na(r — 0))NT .

Let now g € Gz. There exist ce C and veT' — 0 such that ¢- (g™ = w.
The polynomials P; being invariant under G, we have then

o(v) = a(c-m(g7) = a(c) e a(C)Na(l — 0) ,

hence v € 07(a(C) N (T — 0)); by (4), there exists an index i(1 <1 < m)
such that

c-w(g™) =vev,-n(G,) .

Given g€ Gy, we have thus found an index ¢, and be G4, such that
v;+7(b+g)e C. This shows that

Gr=U:G, X, (Xi={g9eGglv;-n(9)eC}).

Let G; be the isotropy group of v,(1 < ¢ < m). The orbit v, - 7(G) is closed,
hence so is v; - 7(Gy) (see 2.3); there exists a compact set B; CGy, such that
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X, =G+ B; (5.2). We have then
Gg =U:G;,-Gig* B; (B; compact) .

But G, is defined over Q, since v; € V, and is a proper subgroup since
v; # 0 (see (1)). Therefore G,z = G,z C;, with C; compact, and finally
Ggr = G,+ A with A = |, C; - B; compact.

REMARK. The preceding proof is an adaptation of A. Weil’s argument,
pertaining to groups of automorphisms of algebras with involution “which
do not represent zero” [80, Theorem 4.1.1], and was in part suggested by
it.

11.8. THEOREM. Let G be an algebraic group defined over Q. Then
Ggr/Gq ts compact if and only if Xy(G°) = 1, and every unipotent element
of G, or, equivalently, of G, belongs to the radical of G.°

As in 11.6, we may restrict ourselves to the case of a connected group
G. Then G = H- N is the semi-direct product of a reductive group H and
of an invariant unipotent group N, both defined over Q, and Ny/Ny is
compact (see 6.10 for references). In view of 11.6, it will be enough to
show:

(i) Gg/Gy is compact if and only if Hg/H, is compact.

(ii) H verifies the conditions of 11.4 if and only if X(G) = 1, and every
unipotent element of G, (resp. of G,) belongs to N.

PROOF OF (i). Let Gy/G, be compact. Since H - Ny is of finite index in
G, (6.4), we have Gy, = K- H,- N;, with K compact, whence Hy =
n(K) - H;, where 7 is the natural projection of G onto H. Let now H, =
A - H, with A compact. Then

Gp=A-H,Ny=A-Ny-H,=A-B-N,-Hy,,

with B compact, since Ny/N, is compact, whence G = K-G,, with
K = A - B compact.

ProoF OF (ii). A unipotent group has only the trivial rational character,
hence X(G) and X((G) are naturally isomorphic to X(H) and Xy(H).
Assume H to verify the conditions of 11.4. Then X (G) = 1. Moreover,
since a rational representation maps unipotent elements into unipotent
elements [1, Chap. II], the unipotent elements of G belong to the kernel
of m, that is to N.

Assume now that Xo(G) =1, and that every unipotent element of G,
belongs to N. We have then X (H) = 1, by the initial remark of the
proof of (ii). If x € Gy is unipotent, then a suitable power az™ of x is a

5 Another proof of Theorem 11.8 has been given by G. D. Mostow and T. Tamagawa,
to appear in Ann. of Math.



530 ARMAND BOREL AND HARISH-CHANDRA

unipotent element of G, (see the proof of (d) = (a) in 11.4). It belongs to
N by assumption, hence so does the one parameter group generated by
log 2™ = m - log #, and therefore x € N. Thus every unipotent element.
of Gg is in N. Since H, contains the semi-simple and unipotent parts of
its elements [1, Chap. II], we see that H, has only semi-simple elements.

12. Groups over number fields

12.1. Notation. K is a number field, J the ring of algebraic integers.
of K, ® the set of distinct isomorphisms of K into C, and ¢ the composi-
tion of o€ ® with the complex conjugation. @' will be a subset of ®
which contains exactly one representative of each pair (g, ). As usual,
27 is the image of x € K under ¢, and K° the image of K. The completion
of K° with respect to the absolute value in C is denoted by L,. Thus
L, =Cif ¢ #+ 7, and L, = R otherwise. This notation is used throughout
this paragraph.

12.2. Let Gc GL(n, C) be a connected algebraic group defined over K,
and I the ideal of polynomials on M(n, C), with coefficients in K, which
vanish on G. The algebraic group defined by the ideal I° is denoted by G°.
It has K as a field of definition. For a subset + of ®, we put

(1) G'!” = Ho-e‘;ll‘ GU ’ G%»" = IIO'G'W‘ Gzo' °

In Gy, or in Gy, we identify G, (resp. Gx) with the set of elements
(@),ev(® € Gy, resp. ® € Gg).

There exists an algebraic group G' = R oG, the group obtained from.
G by restriction of the ground field from K to Q, which is defined over Q,
and is isomorphic over K to G,. It is essentially unique up to isomorphism
over Q [30, Chap. I], and is isomorphic to G» by an isomorphism £’ of the:
form (#°)see, where p: G’ — G is a rational homomorphism defined over
K, which verifies
(2) HGy) =G,, MGy =Gk (G’ = Rgio0) -
The homomorphism £ also induces in a natural way an isomorphism of
X(G) onto Xo(G'). Let o # 6. The standard embedding of GL(%, C) into:
GL(2%, R) induces an isomorphism of GZ_ onto the set of real points of an
algebraic group R xG° CGL(2n, C); from this, one deduces the existence
of an isomorphism of real algebraic groups 8: G — Go.., which also maps.
Gz and Gg onto G; and G respectively.

In general, G, is not discrete in G7_, however, it is clear from the above,
that G, is discrete in Gy or in Go.. More generally, if + contains all
o € D' for which G7_ vs not compact, then G is discrete in Gy.,.

To see this, it is enough to show that given & > 0, there are only
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finitely many b€ J which occur as coefficients of matrices in G,, and
which verify |b7| < 8(b€). If G €+, then |b7| < 6. If 0,5 ¢+, then
G¢, is compact, hence | b7 | < ¢, where ¢ depends only on G7,. Our asser-
tion follows then from the familiar fact that J has only finitely many
elements b, all of whose conjugates b°(b € @) are in absolute value under
a given bound.

When this condition is fulfilled, G, is called an arithmetically defined
subgroup, or a group of units of Gy.,. In view of the possibility of restrict-
ing the groundfield, it is clear that there is no essential loss in generality
in limiting oneself to the case K = Q, J = Z, and that the main results of
the preceding paragraphs extend automatically to the groups of units
considered here. We state this formally for some of them for the con-
venience of reference, and leave the reformulation of the others to the
reader.

12.3. THEOREM. We keep the notation of 11.1. Let G be a connected
algebraic group defined over K, and  a subset of ®' containing all o
for which G5, is not compact. Then

(a) Gy is finitely generated.

(b) Gy, is the union of open subsets U having the following properties:

(i) Gy, =U-Gy;
(ii) K- U = U for a suitable maximal compact subgroup of Gy.,;
(iii) U*-UNnx-G,-y is finite for ¢, y € Gg.

(¢) Gy.|G; has finite Haar measure if and only 1f Xg(G) =1; it 1s
compact if and only if Xg(G) = 1, and every unipotent element of G or,
equivalently, of G;, belongs to the radical of G.

The first assertion follows from 12.2 and 6.5. When q/r @', (b) and (c)
follow from 12.2, 6.5, 6.7, 9.4 and 11.8. Let now + # @' and @ be the
complement of « in ®. Then G, is compact, and Go.,, = Gy, X G,,.
Let U be an open set verifying the properties (i) to (iii) for 4» = ®'. Since
G,., is compact, and invariant, it belongs to all maximal compact subgroups
of G+ ,, and the maximal compact subgroups of G, . are the products of
Gy, with the maximal compact subgroups of Gy.,. By (ii) we have
Gy, U= U, hence U = Gy, x U’ with U’ open in Gy ,; it is then obvious
that U’ has the properties (i) to (iii).

Let us write A and B for the images of G, in Gy, and Go., under the
canonical imbeddings. We have then clearly A - G,, = B G,,,, therefore
Gy /A = Go ,|A-G,, = Gs ,|B-G,, is the base space of a fibration of
Go ./B with fibre G,,. Since G,, is compact, Gy ./A is compact (or of
finite measure) if and only if G ./B is, and (c) follows from the above.

12.4. COROLLARY. Let G be a connected algebraic group defined over
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K. We keep the assumptions of 11.3, and assume moreover that there is
at least one a € ® for which G is compact. Then Gy.,|G, is compact if
and only if X (G) = 1.

If G7, is compact, then it is reductive, and all its elements are semi-
simple. Of course, x € G is semi-simple if and only if 2° is semi-simple
(0 € ®), in our case, G, consists therefore of semi-simple elements, and
12.4 follows from 12.3(c).

13. Appendix: Remarks on algebraic groups

This appendix contains some remarks about algebraic groups which are
actually not needed in the paper, but bring natural complements to some
auxiliary results proved in §§ 1, 8. In A, unlike in §2, the universal field
underlying the definition of an algebraic group may have arbitrary charac-
teristic.

A. Algebraic tori

13.1. Let T be an algebraic torus, K a field of definition for 7. Then
there always exists a separable finite Galois extension K’ of K over which
T splits (see Ono, Ann. of Math. 74 (1961), 61-139, Prop. 1.2.1). This
being taken into account, it is clear that 8.2, 8.8, and 8.4 go over without
change to the general case. It follows from 8.4 that if S is a subtorus of
T, defined over K, and if y € Xx(S), then there exists an integer m such
that y™ extends to a rational character of 7. In fact we take S’ asin 8.4a,
and m such that y™ is trivial on the finite group SN S’. Since the character
groups are finitely generated, this can also be expressed by saying that
the injection ¢ : S — T induces a homomorphism ¢° of X (7') (resp. Xg(T))
onto a subgroup of finite index of X (S) (resp. Xx(S)).

13.2. PROPOSITION. Let T be an algebraic torus defined over a field
K. Then T contains two subtori T,, T, defined over K such that X (T,) =
1, T, splits over K, T.N T, ts finiteand T = T,- T,. IfSisanalgebraic
torus and f: S — T a rational homomorphism, both defined over K, then
f(S)C T, and f(S,)c T.,.

Let K’ be a Galois extension of K over which T splits, and A the Galois
group of K’ over K. Let T, be the identity component of the intersection
of the kernels of the characters defined over K, and T, be the subtorus
generated by the images of the elements v &€ I'x(T). They are defined
over K', and invariant under A. Since K’ is separable over K, T,and T,
are defined over K. By 8.2, T, splitsover K. By 138.1, X(T.) = 1. Thus
T, has no non-trivial subtorus which splits over K (8.4), and T.N T, is
finite. Lemma 8.4 also implies that dim T, + dim T, = dim T, whence
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T=T,-T,. Letnow f:S— T be a rational homomorphism defined over
K. We have fy(I'k(S))CI(T), hence f(S,)CT.. If ye Xg(T), then
xof € Xe(S), hence S,eKer(xof), and f(S)eKery, which implies
f(S)cT..

B. Real algebraic reductive groups

13.3. PROPOSITION. Let TcGL(n, C) be an algebraic torus defined
over R, and ty the Lie algebra of Ty. Then T,y is a torus, T, x is real
diagonalizable, the Lie algebra of T,y (resp. T, ) ts the set of elements
of tg with purely imaginary (resp. real) eigenvalues.

Let t' (resp. t”’) be the set of elements of t; with real (resp. purely
imaginary) eigenvalues. Then tp =t + t”, and t’,t” are algebraic (see
1.4). The irreducible real algebraic group T’ with Lie algebra t’' is then
a real algebraic torus which splits over R, and is contained in 7T, ;. The
analytic subgroup of GL(n, R) generated by t" is closed, and belongs to
a compact group hence is a torus in the usual sense (compact connected
commutative Lie group). Since a compact linear group is algebraic
[7b, p. 230], T" is also the irreducible real algebraic subgroup of Ty with
Lie algebra t”. Clearly, every element of Xi(7') is trivial on T, therefore
T"=T.g T" =T,

13.4. The preceding proposition shows that the decomposition m =
n + 1, of a fully reducible commutative algebraic Lie algebra corre-
sponds to the global decomposition of 13.3. In particular (13.3) it is com-
patible with rational representations, and has therefore an intrinsic
meaning, independent of the imbedding. From this and 1.10, 1.11, it follows
that the notion of Cartan involution of a real reductive algebraic group is
independent from the imbedding in GL(%, R), up to birational isomorphism.
Since a real representation of a semi-simple Lie algebra is always rational,
the following proposition generalizes a fact mentioned in 1.1:

13.5. PROPOSITION. Let G be a real algebraic, reductive group, 0 a
Cartan involution of G, and p: G — GL(m, R) a rational representation.
Then there exists a Cartan involution ' of GL(m, R) such that 0(6(g)) =
6'(0(9))-

Let ¢ be the center of g. The image g’ of g is the direct product of o(c)
and of p(9g) = Dg’. By 13.4, o(c) is completely reducible, and therefore
g’ is reductive in gl(m, R). By a general theorem [7a, p. 140], ¢’ is alge-
braic. Let G’ be the real algebraic subgroup of GL(m, R) with Lie algebra
a’, and M be the centralizer of o(c). The group M is algebraic, and its Lie
algebra m is reductive [4]. Thus (1.2) G’ and M are real algebraic, reduc-
tive. As was recalled in 1.1, the image of a Cartan decomposition of 9g
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is a Cartan decomposition of 9g’. It follows therefore from 1.6 and the
conjugacy of Cartan decompositions of 9g’ that we may find a Cartan in-
volution 8" of GL(m, R) which leaves M, G’ invariant and induces the
given Cartan involution of 9g’. By 13.4 and 1.4, the f- and p-parts of o(c)
with respect to 6" are necessarily the images of the f- and p-parts of 6.
The Cartan involution 6" verifies therefore pod = 6" o 0 on g, hence also
on G°, and leaves G’ invariant. It is defined by a positive non-degenerate
quadratic form F'which is invariant under the identity component of o(K),
where K is the fixed point set of 6 in G. Let F’ be the average of F,
over o(K). The corresponding Cartan involution ¢’ will then fulfill our
conditions.
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