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Introduction

Le but de ce cours est l’interrelation entre la théorie des nombres
et la théorie ergodique à travers la théorie des groupes. Les espaces
homogènes de volume fini et plus particulièrement la dynamique des
actions par translation sur ces espaces seront l’objet central de ce
cours.

Un réseau est un sous-groupe discret de covolume fini. Les pro-
totypes de réseaux sont les sous-groupes qui, comme le sous-groupe
SL(d,Z) du groupe SL(d,R), sont construits par des méthodes arith-
métiques. D’une part, l’existence de ce volume fini permet d’utiliser
des méthodes issues des systèmes dynamiques et de la théorie ergo-
dique. D’autre part, la provenance arithmétique de ces groupes est à
la source de nombreuses applications. Enfin, l’utilisation de tous les
corps locaux permet d’étendre considérablement le champ d’applica-
tions.

Sommaire prévu :
- Structure des groupes de Lie semisimples, décomposition de Cartan.
- Exemples de réseaux.
- Mélange. Théorème de Howe-Moore.
- Comptage de points dans les réseaux. Théorème d’Eskin-McMullen.
- Variété drapeau. Théorème de Furstenberg.
- Représentation des réseaux. Théorème de superrigidité de Margulis.
- Corps locaux. Théorème d’arithméticité de Margulis.
- Récurrence. Théorème de Dani-Margulis.
- Théorème ergodique de Birkhoff. Entropie.
- Flots unipotents, mesures invariantes, équidistribution et fermés invariants.
- Théorèmes de Ratner et applications.
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4.3 Actions algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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11.3 Algébricité des valeurs propres . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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1 Construction de réseaux

Ce premier chapitre donne un bon aperçu de l’ensemble du cours.
On y trouvera déjà la mixture théorie des nombres + théorie er-
godique + théorie des groupes propre à ce cours. En effet, nous y
montrerons, pour les groupes orthogonaux, le théorème de Borel et
Harish-Chandra qui affirme que “les groupes arithmétiques sont des
réseaux”.

D’une part, les motivations de cet énoncé sont arithmétiques : il s’agit d’une
impressionante généralisation non commutative du théorème des unités de Diri-
chlet.

D’autre part la méthode due a Margulis que nous allons utiliser pour le dé-
montrer est issue de la théorie ergodique : nous allons utiliser des propriétés de
récurrence de marches aléatoires ainsi que des propriétés de croissance exponen-
tielle des marches aléatoires linéaires. Pour faire fonctionner cette méthode, nous
aurons besoin de diverses propriétés de l’espace des réseaux de Rd dont le critère
de compacité de Mahler.

Ceci nous permettra de démontrer le théorème de Borel Harish-Chandra pour
les groupes orthogonaux (il est dû a Siegel dans ce cas).

Enfin, c’est grâce à la compréhension de la structure des groupes algébriques
que nous démontrerons par les même méthodes dans le chapitre 5 une version
générale du théorème de Borel et Harish-Chandra.

1.1 Un exemple : le groupe orthogonal

Nous allons détailler dans cette section notre objectif principal
(proposition 1.3). Pour cela, nous devons définir ce qu’est un réseau.

Soit G un groupe localement compact. Rappelons que G admet une mesure
(borélienne) positive λG invariante par toutes les translations à droite x 7→ xg,
que cette mesure est unique à multiplication près par un scalaire positif et qu’elle
est appelée la mesure de Haar à droite de G.

Rappelons qu’un sous-groupe Γ de G est dit discret si la topologie de G induite
sur Γ est discrète. La projection p : g 7→ gΓ de G dans X := G/Γ est alors un
revêtement. On note alors λX la mesure sur X qui cöıncide localement via p avec
la mesure de Haar λG,

Définition 1.1 Un sous-groupe discret Γ de G est un réseau si λX(X) <∞.

Autrement dit, un sous-groupe discret Γ de G est un réseau si il existe une
partie mesurable F de G telle que λG(F ) <∞ et FΓ = G.

Par exemple les sous-groupes discrets cocompacts, i.e. ceux pour lesquels le
quotient X est compact, sont des réseaux.

Commençons par une simple remarque.
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Lemme 1.2 Un groupe localement compact G qui contient un réseau Γ est uni-
modulaire

Autrement dit, la mesure de Haar à droite est aussi invariante à gauche. La
mesure λX est donc aussi invariante par translation à gauche.

Démonstration La translation à gauche x 7→ gx par un élément g de G multiplie
la mesure de Haar à droite λG par un scalaire ∆(g). Donc la translation à gauche
sur X par un élément g de G multiplie aussi la mesure λX par ∆(g). Comme Γ
est un réseau, le volume total λX(X) est fini. Ce volume est préservé par g, on a
donc ∆(g) = 1. �

Proposition 1.3 (Siegel) Soient d ≥ 3, Q(x1, . . . , xd) =
∑
ai,jxixj une forme

quadratique non dégénérée à coefficients entiers, GR le groupe des transformations
orthogonales à coefficients réels et GZ le sous-groupe discret des transformations
orthogonales à coefficients entiers :
GR = O(Q,R) = {g ∈ GL(d,R) | Q ◦ g = Q} et GZ = GR ∩GL(d,Z).
Alors GZ est un réseau dans GR.

Remarques - Nous verrons que cette proposition est un cas particulier d’un
énoncé bien plus général valable pour tous les “Q-groupes sans Q-caractère”.

- La méthode traditionnelle pour montrer cette proposition consiste à construire
explicitement un domaine F dit “domaine de Siegel” et à calculer λG(F ). C’est la
“théorie de la réduction”, c.f. [6]. Comme annoncé, nous allons suivre une méthode
plus rapide mais qui ne donne pas d’estimation sur le domaine fondamental.

- Cet énoncé est encore vrai pour d = 2 lorsque la forme quadratique Q est
anisotrope sur Q i.e. lorsque l’équation Q(x) = 0 n’a pas de solutions entières
non nulles. Cela résulte de ce que, pour tout entier p ≥ 2 non carré, l’équation
de Pell-Fermat n2 − pm2 = 1 a une infinité de solutions entières (n,m).

- Mais cet énoncé est faux pour d = 2 lorsque la forme quadratique Q est
isotrope sur Q i.e. lorsque l’équation Q(x) = 0 n’a pas de solutions entières non
nulles.

1.2 Récurrence des marches aléatoires

Nous allons commencer par donner dans le corollaire ci-dessous un
critère qui assure que le volume d’une mesure invariante est fini. Ce
critère est basé sur des propriétés de récurrence de marches aléatoires.

Soient G un groupe localement compact, X un espace localement compact
et (g, x) 7→ gx une action continue de G sur X. Rappelons qu’une application
continue est propre si l’image inverse de tout compact est compacte.

On suppose

HC Il existe une fonction propre f : X → [0,∞[, une probabilité µ sur G et des
constantes a < 1, b > 0 telles que Aµ(f) ≤ af + b
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où Aµ est l’opérateur de moyennisation donné par, pour tout x dans X,

Aµ(f)(x) =

∫
G

f(gx)dµ(g)

Cet opérateur Aµ est donc l’opérateur de convolution par la probabilité µ̌ image
de µ par l’inversion g → g−1.

Remarque Cette hypothèse HC signifie que la moyennisation par µ contracte,
à une constante près, une fonction propre f sur X .

Lemme 1.4 Sous l’hypothèse HC, pour tout ε > 0, il existe un compact K ⊂ X
tel que, pour tout point x ∈ X, il existe M = Mx tel que pour tout n ≥M ,

Anµ(1K)(x) ≥ 1− ε .

où 1K est la fonction caractéristique de K.
En outre, l’entier Mx est uniforme sur les compacts de X.

Ce lemme est un lemme de récurrence pour les marches aléatoires sur X. En
effet, il affirme que si on marche au hasard sur X en partant du point x, avec
des déplacements donnés par la loi µ, à partir d’un moment, la probabilité d’être
hors de K est au plus ε.

Démonstration D’après l’hypothèse HC, on a, pour tout n ≥ 1

Anµ(f) ≤ anf + b(1 + · · ·+ an−1) ≤ anf +B

avec B = b
1−a . Comme f est propre, on peut prendre pour compact

K = {y ∈ X | f(y) ≤ 2B

ε
}

de sort que 1Kc ≤ ε
2B
f . On a alors les majorations

Anµ(1Kc)(x) ≤ ε

2B
Anµ(f)(x) ≤ εan

2B
f(x) +

ε

2
≤ ε

dès que n est suffisamment grand pour que f(x) ≤ B
an

. �

Rappelons qu’une mesure de Radon sur X est une mesure borélienne finie sur
les compacts.

Corollaire 1.5 Sous l’hypothèse HC, toute mesure de Radon G-invariante ν sur
X est finie.
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Remarque Nous allons uniquement utiliser l’égalité, pour toute fonction positive
f sur X, ∫

G

Aµ(f)dν(x) =

∫
G

fdν(x),

c’est-à-dire le fait que la mesure ν sur X est µ-stationnaire.

Démonstration D’après le lemme 1.4 avec ε = 1
2
, il existe un compact K ⊂ X

tel que pour tout compact L ⊂ X et n suffisamment grand on a

ν(L) ≤ 2

∫
X

Anµ(1K)(x)dν(x) = 2

∫
X

1K(x)dν(x) = 2ν(K).

L’hypothèse HC assure aussi que X est une réunion dénombrable de compacts,
on a donc ν(X) = supL ν(L) ≤ 2ν(K). �

1.3 Marches aléatoires linéaires

Dans cette partie, nous construisons des fonctions ϕi sur lequelles
la moyennisation Aµ est une contraction. Cette propriété de contrac-
tion est liée à une propriété de croissance exponentielle pour la marche
aléatoire linéaire associée à une probabilité µ.

Munissons Rd d’une norme ‖.‖ associée à un produit scalaire euclidien 〈., .〉 et
notons aussi ‖.‖ la norme euclidienne induite sur l’espace des matrices M(d,R).

Le lemme suivant est un cas particulier élémentaire d’un théorème de Fursten-
berg sur la croissance exponentielle des marches aléatoires matricielles.

Notons G = GL(d,R) le groupe linéaire et S+ ⊂ G l’ensemble des matrices
symétriques définies positives. Soit µ une probabilité sur G. Notons supp(µ) le
support de µ et Γµ le plus petit sous-groupe fermé de G le contenant. On dit que
µ est symétrique si µ = µ̌.

Lemme 1.6 On suppose µ symétrique, supp(µ) ⊂ S+ et
∫
G
| log ‖g‖|dµ(g) <∞.

Alors pour tout v ∈ Rd non nul,∫
G

log(
‖gv‖
‖v‖

)dµ(g) ≥ 0

avec égalité ssi Γµ stabilise la droite Rv.

Démonstration Notons Iv le membre de gauche. On calcule en appliquant tout
d’abord l’égalité µ = µ̌ puis l’inégalité de Cauchy-Schwarz et enfin le fait que les
matrices g sont µ-presque surement symétriques :

2

∫
G

log(‖gv‖)dµ(g) =

∫
G

log(‖gv‖‖g−1v‖)dµ(g)

≥
∫
G

log(〈gv, g−1v〉)dµ(g)

= 2

∫
G

log(‖v‖)dµ(g)
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Ceci donne la majoration Iv ≥ 0. Par Cauchy-Schwarz, le cas d’égalité dans cette
inégalité n’est atteint que si v est vecteur propre de g2 pour µ-presque tout g.
Comme les matrices g sont µ-presque sûrement définies positives, v est alors aussi
vecteur propre de g et la droite engendrée par v est stabilisée par Γµ. �

Pour 1 ≤ i ≤ d, on note encore ‖.‖ la norme euclidienne naturelle sur les
puissances extérieures ΛiRd : c’est l’unique norme euclidienne pour laquelle le
produit extérieur v = v1 ∧ · · · ∧ vi d’une famille orthonormée est de norme 1. Le
groupe G = GL(d,R) agit naturellement sur ΛiRd par l’égalité gv = gv1∧· · ·∧gvi.
Il laisse invariant le cône Wi ⊂ ΛiRd des vecteurs décomposables non nuls

Wi := {v = v1 ∧ · · · ∧ vi 6= 0 | vj ∈ Rd}.

Le quotient Gd
i de ce cône Wi par les homothéties positives est la Grassmanienne

des i-plans de Rd. On note ϕi : Wi →]0,∞[ la fonction sur Wi donnée par

ϕi(v) = ‖v‖−1 pour tout v ∈ Wi.

Corollaire 1.7 On suppose µ symétrique, supp(µ) ⊂ S+, supp(µ) compact et
que l’action de Γµ dans Rd est irréductible. Alors il existe δ > 0 et a0 < 1 tels
que, pour tout 0 < i < d, on a Aµ(ϕδi ) ≤ a0ϕ

δ
i .

Remarques - L’hypothèse d’irréducibilité signifie que Rd ne contient pas de sous-
espace vectoriel Γµ invariant.
- La mesure G-invariante sur Wi est de masse totale infinie... cela ne contredit
pas le corollaire 1.5 car la fonction ϕδi : Wi → [0,∞[ n’est pas propre.

Démonstration Le lemme 1.6 assure que pour tout v dans Wi, l’intégrale
Iv =

∫
G

log(‖gv‖‖v‖ )dµ(g) est non négative : Iv ≥ 0. Mieux, comme l’hypothèse d’ir-

réducibilité assure que l’action de Γµ sur la grassmanienne Gd
i n’a pas de points

fixes, on a Iv > 0. Comme la grassmanienne est compacte et que l’application
v → Iv est continue, il existe une constante C > 0 telle que Iv ≥ 2C, pour tout
v ∈ Wi.

Posons M = sup{log(max(‖g‖d, ‖g‖−d)) | g ∈ supp(µ)}. On remarque que
pour tout réel t ∈ [−1, 1], on a la majoration

et ≤ 1 + t+ t2.

On calcule alors, avec δ = min(1/M,C/M2),

Aµ(ϕδi )(v)

ϕδi (v)
=

∫
G

e−δ log(
‖gv‖
‖v‖ )dµ(g)

≤ 1− δ
∫
G

log(
‖gv‖
‖v‖

)dµ(g) + δ2

∫
G

(
log(
‖gv‖
‖v‖

)

)2

dµ(g)

≤ 1− 2Cδ +M2δ2 ≤ 1− Cδ.

Il suffit de prendre a0 = 1− Cδ. �
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1.4 L’espace des réseaux

Pour construire la fonction f vérifiant HC, nous aurons besoin de
quelques propriétés de l’espace des réseaux de Rd, que nous démon-
trons dans cette section. Nous réutiliserons plus tard ces propriétés
pour démontrer les théorèmes de Ratner.

Rappelons qu’un réseau de Rd est un sous-groupe discret de Rd qui est abélien
libre de rang d. L’ensemble X ′ des réseaux de Rd est une variété comme espace
quotient X ′ := GL(d,R)/SL±(d,Z). Par définition de la topologie quotient, une
suite ∆n de réseaux de Rd converge vers un réseau ∆ de Rd ssi il existe une base
fn,1, . . . , fn,d de ∆n qui converge vers une base f1, . . . , fd de ∆.

Soit ∆ un réseau de Rd. Un sous-espace vectoriel L de Rd est dit ∆-rationnel
si ∆ ∩ L est un réseau de L. On note alors d(L) = d∆(L) := ‖v1 ∧ · · · ∧ vi‖ où
v1, . . . , vi est une base de ∆∩L. Cette quantité ne dépend pas du choix de la base.
Le réel d∆ = covol(∆) := d∆(Rd) est le covolume de ∆. On note X l’ensemble
des réseaux de covolume 1.

Pour construire notre fonction propre f , nous aurons besoin d’un critère simple
et utile de compacité dans l’espace des réseaux. Le voici.

Proposition 1.8 (Mahler) Une partie Y ⊂ X ′ de l’espace des réseaux de Rd
est relativement compacte ssi il existe α, β > 0 tels que, pour tout ∆ ∈ Y

d∆ ≤ α et inf
v∈∆−0

‖v‖ ≥ β.

Autrement dit les parties relativement compactes sont caractérisées par une
majoration du covolume et de l’inverse de la systole α1(∆) = ( inf

v∈∆−0
‖v‖)−1.

Corollaire 1.9 La fonction α1 : X → [0,∞[ est continue et propre.

Pour montrer le critère de compacité de Mahler, nous utiliserons l’inégalité
d’Hermite-Minkowski si utile en théorie des nombres. Notons vd le volume de la
boule euclidienne de rayon 1 dans Rd : v1 = 2, v2 = π,...

Lemme 1.10 (Hermite, Minkowski) Tout réseau ∆ de Rd contient un vecteur

non nul de norme ‖v‖ ≤ 2(d∆/vd)
1
d .

Démonstration du lemme 1.10 Notons p la projection de Rd sur le quotient
Td = Rd/∆ et introduisons le plus grand rayon R tel que cette projection p est
injective sur la boule ouverte de rayon R. La comparaison des volumes donne la
majoration vdR

d ≤ d∆. D’autre part, la maximalité de R assure que, pour tout
ε > 0, il existe deux vecteurs u1, u2 de norme au plus R+ ε qui ont même image
dans Td. Le vecteur non nul vε = u1−u2 est dans ∆ et de norme au plus 2R+2ε.
Le groupe discret ∆ contient donc un vecteur v non nul de norme au plus 2R.�
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Démonstration de la proposition 1.8 et du corollaire 1.9 Les fonctions
g → |det(g)| et g → α1(gZd) sont continues sur GL(d,R). Donc les fonctions
∆ → d∆ et ∆ → α1(∆) sont des fonctions continues sur X ′. Si Y est une partie
relativement compacte, ces deux fonctions sont donc bornées sur Y .

Réciproquement, montrons que toute partie Y de X ′ sur laquelle ces deux
fonctions sont bornées est relativement compacte. On veut donc montrer que toute
suite ∆n dans Y sous-converge dans X ′. On raisonne par récurrence sur d. C’est
clair pour d = 1. Choisissons un vecteur non nul vn ∈ ∆n de norme minimum.
Comme α1(∆n) est majoré, les normes ‖vn‖ sont positivement minorées. En outre
par l’inégalité d’Hermite-Minkowski et la majoration du covolume de ∆n, les
normes ‖vn‖ sont majorées. La suite vn sous-converge donc vers un vecteur non
nul v∞ ∈ Rd que l’on peut supposer de norme ‖v∞‖ = 1. Quitte à modifier chacun
des ∆n par une petite similitude, on peut aussi supposer que vn = v∞. Les images
∆′n de ∆n dans l’orthogonal (Rv∞)⊥ sont des réseaux dont le volume est majoré

par α et dont la systole est minoré par
√

3
2
β. Par hypothèse de récurrence, ces

réseaux ∆′n sous-convergent vers un réseau de (Rv∞)⊥. La suite ∆n sous-converge
alors vers un réseau de Rd. �

Dans la partie suivante nous aurons aussi besoin des lemmes techniques sui-
vants.

Lemme 1.11 Soient ∆ un réseau de Rd et L, M deux sous-espaces ∆-rationnels
de Rd. Alors les sous-espaces L + M et L ∩ M sont ∆-rationnels et on a la
majoration

d(L ∩M)d(L+M) ≤ d(L)d(M).

Remarque Par convention, on a posé d(0) = 1 pour le sous-espace nul.

Démonstration On peut supposer que ∆ = Zd. On remarque alors qu’un sous-
espace est ∆-rationnel ssi il est engendré par des vecteurs à coefficients rationnels.
Ceci prouve que L+M est ∆-rationnel.

On remarque aussi qu’un sous-espace est ∆-rationnel ssi il est défini par des
équations linéaires à coefficients rationnels. Ceci prouve que L∩M est ∆-rationnel.

Pour montrer la majoration, on part d’une base u1, . . . , uk de ∆ ∩ L ∩ M
que l’on complète en une base u1, . . . , uk, v1, . . . , v` de ∆ ∩ L et en une base
u1, . . . , uk, w1, . . . , wm de ∆ ∩M . La famille u1, . . . , uk, v1, . . . , v`, w1, . . . , wm est
alors libre et engendre un sous-groupe d’indice fini de ∆ ∩ (L + M). On note
u = u1 ∧ · · · ∧ uk, v = v1 ∧ · · · ∧ v` et w = w1 ∧ · · · ∧ wm. Notre assertion résulte
alors de la majoration

‖u‖‖u ∧ v ∧ w‖ ≤ ‖u ∧ v‖‖u ∧ w‖.

Cette dernière inégalité se montre en remplaçant, à l’aide du procédé d’ortho-
gonalisation de Gramm-Schmidt, la famille u1, . . . , uk, v1, . . . , v`, w1, . . . , wm par
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une famille u′1, . . . , u
′
k, v
′
1, . . . , v

′
`, w

′
1, . . . , w

′
m telle que les deux familles

u′1, . . . , u
′
k, v
′
1, . . . , v

′
` et u′1, . . . , u

′
k, w

′
1, . . . , w

′
m sont orthogonales et telle que

u = u′1 ∧ · · · ∧ u′k, u ∧ v = u ∧ v′1 ∧ · · · ∧ v′` et u ∧ w = u ∧ w′1 ∧ · · · ∧ w′m.

Lemme 1.12 Notons Si(∆) := {sous-espaces ∆-rationnels de dimension i}.
a) Pour tout C > 0, on a #{L ∈ Si(∆) | d∆(L) ≤ C} <∞.
b) Les application X →]0,∞[ ; ∆ 7→ min

L∈Si(∆)
d∆(L) sont continues.

Démonstration a) On peut supposer ∆ = Zd. Si e1, . . . , ei est une base de
L ∩ Zd, l’élément e1 ∧ · · · ∧ ei est dans Λi(Z) et de norme bornée par C. Cela ne
laisse qu’un nombre fini de possibilités.

b) Cela résulte des inégalités ‖g−1‖−dd∆(L) ≤ dg∆(gL) ≤ ‖g‖dd∆(L). �

1.5 Construction d’une fonction f

En combinant les résultats des deux dernières sections, nous allons
maintenant construire explicitement la fonction f vérifiant HC dont
nous avons besoin pour montrer la proposition 1.3.

Pour 0 < i ≤ d, définissons une fonction αi de l’espace des réseaux X ′ dans
[0,∞[. Pour tout réseau ∆ de Rd,

αi(∆) := sup{d∆(L)−1 | L ⊂ Rd ∆-rationnel, dimL = i}.

On notera α0 = 1. La fonction α1 cöıncide avec celle introduite dans la partie
précédente. On a vu que αi est continue.

Reprenons les notation du corollaire 1.7. On a donc une probabilité µ sur
G = GL(d,R) telle que

HI µ est symétrique, le support de µ est compact et inclus dans S+, et l’action
du groupe Γµ dans Rd est irréductible.

Le lemme suivant permettra de construire la fonction f que nous cherchons.

Lemme 1.13 Soit µ une probabilité sur GL(d,R) qui vérifie [HI]. Alors il existe
a0 < 1 et b0 > 0 tels que, pour tout 0 < i < d, on a

Aµ(αδi ) ≤ a0α
δ
i + b0 max

j>0
(αδi−jα

δ
i+j)

1
2 .

où le max est pris sur les entiers j avec 0 < j ≤ min(i, d− i).

Démonstration On veut majorer, pour ∆ ∈ X, l’intégrale Aµ(αδi )(∆).
Choisissons a0 < 1 et δ > 0 comme dans le corollaire 1.7 et posons cette fois,

r = sup{max(‖g‖d, ‖g−1‖d) | g ∈ supp(µ)} de sorte que, pour tout sous-espace
∆-rationnel L ⊂ Rd, on ait, pour µ-presque tout g,

r−1d∆(L) ≤ dg∆(gL) ≤ rd∆(L).
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Choisissons un sous-espace ∆-rationnel Li ⊂ Rd de dimension i tel que

d∆(Li) = αi(∆)−1

et introduisons l’ensemble (fini)

Ψi := {L ⊂ Rd | ∆-rationnel, dimL = i, d∆(L) ≤ r2d∆(Li)}.
On va distinguer deux cas.
1er cas : Ψi contient un seul élément Li. Alors, pour tout sous-espace ∆-

rationnel L de dimension i, et µ-presque tout g, on a

dg∆(gL) ≥ dg∆(gLi)

d’où, par le corollaire 1.7,

Aµ(αδi )(∆) =

∫
G

1

dg∆(gLi)δ
dµ(g) ≤ a0

1

d∆(Li)δ
= a0α

δ
i (∆).

2ème cas : Ψi contient un autre élément L′i. Notons j := dim(Li +L′i)− i. On
a alors, grâce au lemme 1.11, pour µ-presque tout g,

αi(g∆) ≤ rαi(∆) = rd∆(Li)
−1

≤ r2(d∆(Li)d∆(L′i))
− 1

2

≤ r2(d∆(Li ∩ L′i)d∆(Li + L′i))
− 1

2

≤ r2(αi−j(∆)αi+j(∆))
1
2 .

et donc, avec b0 = r2δ,

Aµ(αδi )(∆) ≤ b0 max
j>0

(αδi−j(∆)αδi+j(∆))
1
2 .

On obtient la majoration annoncée en combinant ces deux cas. �

Voici enfin la construction de la fonction f cherchée.

Corollaire 1.14 Soit µ une probabilité sur SL(d,R) qui vérifie [HI]. Alors il
existe δ > 0 et ε > 0 tels que la fonction f : X → [0,∞[

f :=
∑

0<i<d ε
(d−i)iαδi

vérifie [HC] : elle est propre et il existe a < 1, b > 0, tels que Aµ(f) ≤ af + b.

Démonstration La propreté de f résulte du corollaire 1.9.
Notons βi = ε(d−i)iαδi de sorte que f =

∑
0<i<d βi. Appliquons le lemme 1.13,

l’égalité
2(d− i)i = (d− i− j)(i+ j) + (d− i+ j)(i− j) + 2j2.

et la majoration 2(st)
1
2 ≤ s+ t, pour tout s, t ≥ 0.

On obtient alors avec a0 < 1 et b0 > 0,

Aµf ≤ a0

∑
0<i<d βi + b0 maxj>0 ε

j2(βi−jβi+j)
1
2 ≤ (a0 + b0εd)

∑
0<i<d βi + b0εd

et donc Aµf ≤ af + b avec a = a0 + b0εd et b = b0εd. On a bien a < 1 si ε est
choisi suffisamment petit. �
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1.6 Application au groupe orthogonal

Terminons cette partie en montrant comment les idées ci-dessus
s’organisent pour montrer que le groupe GZ = O(Q,Z) est un réseau
du groupe GR = O(Q,R).

Nous reprendrons ces idées plus en détail dans un cadre général
dans le chapitre 5

Démonstration de la proposition 1.3 Ce groupe GR est unimodulaire (parce
qu’il est engendré par des éléments d’ordre 2 : les réflexions hyperplanes). La
mesure ν sur le quotient GR/GZ induite par la mesure de Haar est donc GR-
invariante. On veut montrer que cette mesure ν est finie.

Notons HR = SL±(d,R) et HZ = SL±(d,Z). On remarque tout d’abord que

l’injection i : GR/GZ ↪→ HR/HZ est propre.

Pour vérifier cela, on doit montrer que si une suite gnHZ avec gn ∈ GR converge
dans HR/HZ, alors la suite gnGZ converge dans GR/GZ. Notons hn une suite de
HZ telle que gnhn converge dans HR. Comme l’injection GZ\HZ ↪→ GR\HR est
d’image discrète (elle s’identifie à un ensemble de formes quadratiques à coeffi-
cients entiers), on peut écrire, pour n grand hn = γnh avec γn ∈ GZ et h ∈ HZ.
La suite gnγn est donc convergente et l’injection i est propre.

La mesure ν peut donc être vue comme une mesure de Radon sur l’espace
HR/HZ des réseaux de covolume 1. On veut bien sûr appliquer une combinaison
des corollaires 1.5 et 1.14. Pour cela, il suffit de construire une probabilité µ
portée par GR vérifiant la condition [HI]. Remarquons que cette condition ne
fait plus intervenir le groupe GZ. Notons (p, q) la signature de Q. On peut choisir
un produit scalaire euclidien de Rd et une base orthonormée de Rd tels que,
Q(x1, . . . , xp+q) = x2

1 + · · ·x2
p − x2

p+1 − · · · − x2
p+q. On décompose l’algèbre de Lie

g de GR en une somme directe g = k⊕ q, où

k = {M ∈ g |M = −tM} = {
(
A 0
0 D

)
| A = −tA , D = −tD},

q = {M ∈ g |M = tM} = {
(

0 B
C 0

)
| C = tB}.

On prend pour µ la mesure sur GR image par l’application exponentielle d’une
probabilité symétrique µ0 sur q dont le support est une boule centrée en 0. On
vérifie facilement l’égalité k = [q, q]. Le groupe Γµ est donc la composante connexe
du groupe GR.

Comme d ≥ 3, l’action de la composante connexe de GR sur Rd est irréductible.
Cette probabilité µ vérifie bien la condition [HI]. �

La même démonstration permet de retrouver le

Corollaire 1.15 Pour d ≥ 2, le groupe SL(d,Z) est un réseau de SL(d,R).
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2 Algèbres de Lie semisimples

Ce chapitre est constitué de quelques rappels sur les algèbres de
Lie semisimples

2.1 Algèbres de Lie nilpotentes et résolubles

Commençons par étudier les algèbres de Lie résolubles c’est-à-dire
celles obtenues par extensions successives d’algèbres abéliennes.

Toutes nos algèbres de Lie sont de dimension finie sur un corps k de caracté-
ristique nulle.

Définition 2.1 Une algèbre de Lie est un k-espace vectoriel g muni d’une appli-
cation bilinéaire antisymétrique à valeurs dans g notée [., .] vérifiant l’identité de
Jacobi : pour tout X, Y, Z ∈ g,

[X, [Y, Z]] = [[X, Y ], Z] + [Y, [X,Z]]

Exemples fondamentaux - L’algèbre de Lie d’un groupe de Lie G, c’est-à-dire
l’espace des champs de vecteurs invariants par translation à gauche, est une R-
algèbre de Lie. Rappelons que toute R-algèbre de Lie g est l’algèbre de Lie d’un
groupe de Lie connexe et simplement connexe. Celui-ci est uniquement déterminé
par g.

- L’algèbre de Lie End(kd) avec le crochet [A,B] = AB − BA. Remarquons
que, même si nous n’utiliserons pas ce fait, toute algèbre de Lie s’identifie à une
sous-algèbre de Lie de End(V ), par le théorème d’Ado.

- Un endomorphisme D ∈ End(g) d’une algèbre de Lie g est une dérivation si

D([Y, Z]) = [DY,Z] + [Y,DZ], pour tout Y, Z ∈ g.

L’ensemble Der(g) des dérivations de g est une sous-algèbre de Lie de End(g).
Pour tout X dans g, on note adX la dérivation intérieure donnée par adX(Y ) =
[X, Y ], pour tout Y ∈ g. L’application ad : g→ Derg est un morphisme d’algèbres
de Lie, i.e. ad[X, Y ] = [adX, adY ], pour tout X, Y ∈ g. Ce morphisme est appelé
le morphisme adjoint, son noyau est le centre z de g, z := {X ∈ g | [X, g] = 0}.
Historiquement, le mot dérivation est un raccourci pour l’expression “dérivation
d’un groupe à un paramètre d’automorphismes”.

Définition 2.2 Un idéal de g est un sous-espace h tel que [g, h] ⊂ h.
Une algèbre de Lie g est abélienne si [g, g] = 0. Elle est nilpotente (resp. réso-

luble) si il existe un drapeau d’idéaux 0 = g0 ⊂ · · · ⊂ gi ⊂ · · · ⊂ gp = g tels que
[g, gi] ⊂ gi−1 (resp. gi/gi−1 est abélienne), pour tout i = 1, . . . , p.
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Exemples fondamentaux - L’algèbre de Lie ad ⊂ End(kd) des matrices dia-
gonales est abélienne.

- L’algèbre de Lie = u+
d ⊂ End(kd) des matrices strictement triangulaires su-

périeures est nilpotente.
- L’algèbre de Lie p+

d = ad ⊕ u+
d des matrices triangulaires supérieures est

résoluble.

Les deux théorèmes suivants expliquent en quoi ces exemples sont fondamen-
taux.

Théorème 2.3 (Engel) Soit V un k-espace vectoriel de dimension d et g ⊂
End(V ) une sous-algèbre de Lie dont tout élément est nilpotent. Alors il existe
une base de V telle que g ⊂ u+

d .

Remarque L’algèbre de Lie g = C
(

0 1
1 0

)
est nilpotente, car abélienne, mais

ses éléments ne sont pas nilpotents.

Démonstration On procède par récurrence sur dim g. Il suffit de trouver un
vecteur v dans V annulé par g.

On remarque tout d’abord que, pour X ∈ g, adX est nilpotent. En effet, pour
tout Y ∈ EndV ,

(adX)n(Y ) =
∑

0≤r≤n(−1)rCr
nX

n−rY Xr

est nul pour n ≥ 2 dimV .
Soit h  g une sous-algèbre de Lie maximale. L’hypothèse de récurrence

appliquée à l’action adjointe de h dans g/h prouve qu’il existe un sous-espace
h′ = kX ⊕ h de g tel que [h, h′] ⊂ h. Comme [X,X] = 0, h′ est une sous-algèbre
de Lie de g. Par maximalité de h, on a h′ = g et h est un idéal de codimension 1
dans g.

Posons alors W = {w ∈ V | hw = 0}. C’est un sous-espace g-invariant de V . Il
suffit de prendre v dans le noyau de la restriction de X à W . �

Théorème 2.4 (Lie) Soient K un corps algébriquement clos, V un K-espace
vectoriel de dimension d et g ⊂ End(V ) une sous-algèbre de Lie résoluble. Alors
il existe une base de V telle que g ⊂ p+

d .

Remarque L’algèbre de Lie g = R
(

0 1
1 0

)
est résoluble, car abélienne, mais

elle ne stabilise pas de droite dans R2.

Démonstration En procédant par récurrence sur dimV , il suffit de trouver dans
V une droite g-invariante. Soient h un idéal de codimension 1 de g et X ∈ gr h.
En raisonnant par récurrence sur dim g, on peut supposer qu’il existe un vecteur
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v0 ∈ V et une forme linéaire λ ∈ h∗ tels que, pour tout H ∈ h, on a Hv0 =
λ(H)v0. Posons vi = X iv0 et notons W l’espace vectoriel engendré par tous les
vi. On vérifie par récurrence sur i que Hvi − λ(H)vi est combinaison linéaire
de v0, . . . , vi−1. En particulier, W est h-invariant. On en déduit que λ([H,X]) =

1
dimW

trW ([H,X]) = 0. On peut alors préciser le calcul précédent par récurrence
sur i et obtenir Hvi = λ(H)vi, pour tout H ∈ h. Il suffit alors de prendre pour v
un vecteur propre de X dans W . Un tel vecteur existe car K est algébriquement
clos. �

2.2 Algèbres de Lie semisimples

Comme pour les algèbres associatives de dimension finie, ce sont
les algèbres de Lie semisimples qui sont à la fois les plus utiles, les
plus subtiles et les mieux comprises.

Définition 2.5 La forme de Killing B = Bg d’une algèbre de Lie g est la forme
bilinéaire symétrique sur g donnée par B(X, Y ) = trg(adXadY ).

Le radical r de g est le plus grand idéal résoluble de g.

Remarques - Le radical r existe. En effet, la somme de deux idéaux résolubles
de g est encore un idéal résoluble.

- Le radical r est invariant par toute dérivation D de g. En effet, on peut pour
le vérifier, supposer k = C. Mais r est invariant par tous les automorphismes de
g et en particulier par les automorphismes etD, pour tout t ∈ k.

Définition 2.6 Une algèbre de Lie g est semisimple si tout idéal abélien de g est
nul.

Une algèbre de Lie g est simple si 0 et g sont les seuls idéaux de g et si
dim g > 1.

Voici d’autres définitions équivalentes pour les algèbres de Lie semisimples

Théorème 2.7 Les quatre affirmations suivantes sont équivalentes
i) Tout idéal abélien de g est nul.
ii) Le radical r est nul.
iii) g est une somme directe d’idéaux simples g = ⊕igi.
iv) La forme de Killing Bg est non dégénérée.

Remarques - Comme corollaire, la semisimplicité est invariante par changement
de corps de base : pour toute extension de corps k ⊂ K, une k-algèbre de Lie g

est semisimple ssi son extension g⊗k K est une K-algèbre de Lie semisimple.
- Comme autre corollaire, une algèbre de Lie semi-simple g n’a qu’un nombre

fini d’idéaux simples : ce sont les gi. En effet, si a est un idéal simple différent de
tous les gi, on a [a, gi] ⊂ a∩gi = 0 et donc a est dans le centre de g. Contradiction.
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Lemme 2.8 Soit a un idéal d’une algèbre de Lie g.
a) L’orthogonal a⊥ := {X ∈ g | B(X, a) = 0} est un idéal de g.
b) La forme de Killing de a est la restriction de celle de g.

Démonstration du lemme 2.8
a) Cela résulte de l’égalité B([X, Y ], Z) +B(Y, [X,Z]) = 0, pour X, Y, Z ∈ g.
b) Cela résulte de l’inclusion adXadY (g) ⊂ a, pour X, Y ∈ a. �

Démonstration du théorème 2.7
i)⇒ ii) Si r 6= 0, on pose D0r = r, Dj+1r = [Djr, Djr]. Le dernier idéal dérivé

non nul Djr est un idéal abélien de g.
iii) ⇒ iv) Comme [gi, gj] = 0 et, par suite, B(gi, gj) = 0 pour i 6= j, on peut

supposer g simple. Remarquons qu’on a g = [g, g] car, comme dim g > 1, g ne
peut pas être abélienne. Le noyau de la forme de Killing B est un idéal de g. Il
est soit nul, soit égal à g.

Il suffit de montrer que B est non nul. C’est le point le plus délicat de la
démonstration. Supposons par l’absurde que B est nul. On note A = adg et
M := {ϕ ∈ Endg | [ϕ,A] ⊂ A}.

Montrons que, pour a ∈ A et ϕ ∈ M , on a tr(ϕa) = 0. On peut pour cela
supposer que a = [b, c] avec b, c ∈ A, car on a g = [g, g] et donc A = [A,A]. On a
alors tr(ϕa) = tr([ϕ, b]c) = 0 car la forme de Killing est nulle.

Comme A est inclus dans M , le lemme ci-dessous prouve que tout élément de
A est nilpotent, donc par le théorème de Engel, l’algèbre de Lie A est nilpotente.
Contradiction.
iv)⇒ i) Soit a un idéal abélien de g. On a B(a, g) = 0, donc a = 0.
ii) ⇒ iii) Par récurrence sur dim g. Soit a un idéal non nul minimal de g.

D’après les remarques suivant la définition 2.5, le radical résoluble de a est un
idéal de g. Il est donc nul. Par l’implication iii) ⇒ iv), la forme de Killing de a

est non dégénérée. On en déduit que g = a ⊕ a⊥ et que la forme de Killing de
l’idéal a⊥ est non dégénérée. Par récurrence, a⊥ est une somme directe d’idéaux
simples et g aussi. �

On a utilisé le

Lemme 2.9 Soit V = kd, A un k-sous-espace vectoriel de EndV et M = {ϕ ∈
EndV | [ϕ,A] ⊂ A}. Soit ψ ∈ M tel que, pour tout ϕ ∈ M , on a tr(ϕψ) = 0.
Alors ψ est nilpotent.

Démonstration On peut supposer que k = C. Ecrivons ψ = ψs + ψn la dé-
composition de Jordan de ψ. On peut supposer ψs diagonale et ψn strictement
triangulaire supérieure. L’égalité ad(ψ) = ad(ψs) + ad(ψn) est aussi la décompo-
sition de Jordan de ad(ψ). La partie semisimple ψs est donc aussi dans M . Son
conjugué ϕ = ψs est aussi dans M . On a alors, en notant λi les valeurs propres
de ψ,

∑
i |λi|2 = tr(ϕψ) = 0. Donc ψs = 0. �
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Proposition 2.10 Toute dérivation d’une algèbre de Lie semisimple g est inté-
rieure.

Démonstration L’algèbre de Lie a := adg est un idéal de l’algèbre de Lie
d := Derg car on a l’égalité [D, adX] = ad(DX), pour tout D ∈ d et X ∈ g.
Notons a⊥ l’orthogonal dans d de a pour la forme de Killing de d. Comme la
forme de Killing de a est non dégénérée, on a l’égalité d = a⊕ a⊥.

Il suffit pour conclure de montrer que tout élément D ∈ a⊥ est nul. Cela résulte
de l’égalité, ad(DX) = [D, adX] ∈ a∩ a⊥ = 0, pour tout X ∈ g et de l’injectivité
de l’application adjointe. �

Comme l’application adjointe ad : g → Derg est injective, cette proposition
permet d’identifier g avec l’algèbre de Lie Derg des dérivations de g. C’est très
utile car cela permet de voir toute algèbre de Lie semisimple comme l’algèbre de
Lie d’un groupe algébrique : le groupe de ses automorphismes. Voici une applica-
tion utile de ce fait.

Définition 2.11 Un élément X d’une algèbre de Lie semisimple est dit nilpotent
si l’endomorphisme adX est nilpotent. Un élément X est dit semisimple si adX
est semisimple.

Proposition 2.12 (décomposition de Jordan) Soit g une algèbre de Lie
semisimple. Tout élément X de g admet une décomposition unique X = Xs +Xn

avec Xs semisimple, Xn nilpotent et [Xs, Xn] = 0.

Démonstration
Unicité La décomposition de Jordan de adX est ad(Xs) + ad(Xn).
Existence Il suffit de voir que la partie semisimple (adX)s de adX est une

dérivation car la proposition 2.10 prouvera qu’il existe Xs dans g tel que ad(Xs) =
(adX)s.

On peut supposer k = C. Soit gλ =
⋃
p≥1 Ker((adX − λ)p) de sorte que g =

⊕λ∈Cgλ. L’élément (adX)s agit sur gλ par multiplication par λ. Il suffit donc
de vérifier que [gλ, gµ] ⊂ gλ+µ. Ce qui résulte de la formule suivante que l’on
démontre par récurrence sur p :

(adX − λ− µ)p[Y, Z] =
∑

0≤r≤pC
r
p [(adX − λ)rY, (adX − µ)p−rZ]

pour tout X, Y, Z ∈ g. �

Remarque Lorsque k = R, Un élément X de g est dit elliptique (resp. hyperbo-
lique) si adX est semisimple à valeurs propres imaginaires pures (resp. réelles).
On a encore une écriture unique X = Xe + Xh + Xn avec Xe elliptique, Xh

hyperbolique et Xn nilpotent qui commutent deux à deux.
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2.3 Représentations de sl2

L’algèbre de Lie s = sl(2, k) est une algèbre de Lie simple de
dimension minimale. Son étude est fondamentale car, sur un corps al-
gébriquement clos, toute algèbre de Lie semisimple contient de nom-
breuses copies de s.

Définition 2.13 Une représentation d’une k-algèbre de Lie g dans un k-espace
vectoriel V est un morphisme de g dans EndV . On dit aussi que V est un g-
module.

Elle est dite simple ou irréductible si les seuls sous-espaces g-invariants sont 0
ou V .

Exemples fondamentaux - La représentation adjointe ad.
- L’algèbre de Lie s = sl(2, k) admet, pour tout d ≥ 0, une représentation dans

le k-espace vectoriel Vd de dimension d+ 1 des polynômes homogènes de degré d
sur k2. Décrivons plus précisément ces représentations. Une base de l’algèbre de
Lie s = sl(2, k) est X,H, Y avec

X :=
(

0 1
0 0

)
, H :=

(
1 0
0 −1

)
, Y :=

(
0 0
1 0

)
qui vérifient les relations

[H,X] = 2X , [H,Y ] = −2Y et [X, Y ] = H.

L’action de cette base dans Vd est donnée par X → x ∂
∂y

, H → x ∂
∂x
− y ∂

∂y
et

Y → y ∂
∂x

. Cette représentation de s dans Vd est appelée la représentation de plus
haut poids d car d y est la plus grande valeur propre de H.

Proposition 2.14 Soit V un sl(2, k)-module de dimension finie.
a) V est somme directe de représentations simples.
b) Si V est simple alors V est isomorphe à une des représentations Vd de plus
haut poids d.

On représente parfois Vd par un diagramme ”ficelles” formé de d + 1 noeuds
labellés par les valeurs propres−d,−d+2, . . . , d−2, d deH, les ficelles symbolisant
l’action de X et Y sur les vecteurs propres de H correspondant.

Démonstration a) Nous allons utiliser un argument transcendant appelé l’astuce
unitaire de Weyl. Il suffit de montrer que tout sous-espace s-invariant V ′ ⊂ V
admet un supplémentaire V ′′ s-invariant. Notons p : V → V/V ′ la projection
naturelle. On peut supposer que le corps de base est C car l’ensemble

{σ ∈ Homs(V/V ′, V ) | p ◦ σ = Id}

est un espace affine défini sur k : s’il a un point à coefficients dans une extension
de k il en a aussi un à coefficients dans k. En effet, tout système d’équations
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affines à coefficients dans k qui a des solutions dans une extension de k en a aussi
dans k.

Notons alors K = SU(2) le groupe spécial unitaire

K := {
(
a −b
b a

)
| a, b ∈ C , |a|2 + |b|2 = 1}

Son algèbre de Lie k = {matrices antihermitiennes de trace nulle} est une forme
réelle de s i.e. s ' k⊗RC. Comme K est simplement connexe, toute représentation
de s s’intègre donc en une représentation de K. Munissons V , grâce à la mesure
de Haar de K, d’un produit scalaire hermitien K-invariant. Il suffit de prendre
pour V ′′ l’orthogonal de V ′. Ce sous-espace est K-invariant. Il est donc aussi
s-invariant.

b) Décomposons V en somme directe V = ⊕µ∈CVµ de sous-espaces caractéris-
tiques de H pour la valeur propre µ. On a

X(Vµ) ⊂ Vµ+2 et Y (Vµ) ⊂ Vµ−2

car on a les formules dans EndV , pour tout j ≥ 1,

(H − µ− 2)jX = X(H − µ)j et (H − µ+ 2)jY = Y (H − µ)j.

Soit v0 un vecteur propre de H pour une valeur propre λ de partie réelle
maximum. On a Hv0 = λv0 et Xv0 = 0.

Soit n ≥ 0 tel que Y nv0 6= 0 et Y n+1v0 = 0. et posons vi = Y iv0, pour i ≥ 0.
Par récurrence, on a la formule dans EndV ,

[X, Y j+1] = (j + 1)Y j(H − j).

Donc, on a 0 = XY n+1v0 = (n + 1)(λ − n)vn. On a donc λ = n. Cette même
formule permet de calculer, pour 0 ≤ i ≤ n,

Y vi = vi+1 , Hvi = (n− 2i)vi , Xvi = (n− i+ 1)ivi−1.

Comme V est simple, v0, . . . , vn est une base de V . On reconnait le s-module Vn
à l’aide de l’identification vi 7→ n(n− 1) · · · (n− i+ 1)xn−iyi.

Réciproquement, il est facile de vérifier que Vn est un s-module simple. �

2.4 Eléments nilpotents et sl2-triplets

Une des raisons qui rend très utile la classification des représenta-
tions de sl2 est la théorie des sl2-triplets.

Un triplet (x, h, y) dans une algèbre de Lie qui vérifie les relations de commu-
tation [h, x] = 2x , [h, y] = −2y et [x, y] = h est appelé un sl2-triplet.

Théorème 2.15 (Jacobson, Morozov) Tout élément nilpotent x d’une al-
gèbre de Lie semisimple g fait partie d’un sl2-triplet (x, h, y).
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Commençons par un lemme.

Lemme 2.16 Soient X et Z deux éléments de End(kd) tels que X est nilpotent
et [X, [X,Z]] = 0. Alors le produit XZ est nilpotent.

Démonstration du lemme 2.16 On peut supposer le corps k algébriquement
clos. Soit W := [X,Z]. Comme X et W commutent, on a, pour tout p ≥ 1,
W p = [X,ZW p−1] et donc tr(W p) = 0. Par suite, W est nilpotent.

Remarquons que [Xp, Z] = pWXp−1. Soit v un vecteur propre de XZ pour la
valeur propre λ et p le plus petit entier tel que Xpv = 0. Cet entier existe car
X est nilpotent. On a λXp−1v = XpZv = pWXp−1v. Donc λ/p est une valeur
propre de W qui est nilpotent. Donc λ = 0 et XZ est nilpotent. �

Démonstration du théorème 2.15
Construction de h L’endomorphisme (adx)2 est autoadjoint pour la forme

de Killing de g, c’est-à-dire que, pour y, z ∈ g, on a

B((adx)2y, z) = B(y, (adx)2z).

D’autre part, d’après le lemme 2.16, pour tout z dans le noyau N2 de (adx)2, le
produit adx adz est nilpotent et donc B(x, z) = 0. C’est-à-dire que x est dans
l’orthogonal N⊥2 de N2 pour la forme de Killing. Comme B est non dégénérée,
N⊥2 est aussi l’image de (adx)2. Il existe donc y′ ∈ g tel que, en notant h = [x, y′],
on a [h, x] = 2x.

Construction de y Notons u := [h, y′] + 2y′. On aimerait que u soit nul.
Par Jacobi, on a [x, u] = 0. On cherche donc un élément z := y′ − y de g tel que
[x, z] = 0 et [h, z] + 2z = u. Remarquons que le noyau N1 de adx est invariant
par adh car [h, x] = 2x. Il suffit donc de voir que −2 n’est pas valeur propre de
adh dans N1. Cela résulte du lemme suivant. �

Lemme 2.17 Soient X,H, Y ′ ∈ End(kd) trois matrices telles que [X, Y ′] = H
et [H,X] = 2X. Alors les valeurs propres de H dans le noyau KerX sont des
entiers positifs.

Démonstration On peut supposer k algébriquement clos. On reprend la partie
de la démonstration de la classification des sl(2, k)-modules simples qui est encore
valable pour (X,H, Y ′) :

On montre par récurrence sur p ≥ 0 que [Y ′, Xp+1] = (p + 1)Xp(H − p). Soit
v un vecteur non nul du noyau de X qui est vecteur propre de H pour la valeur
propre λ. Comme v est dans le noyau de X, il existe un plus grand entier p ≥ 0
tel que v soit dans l’image de Xp. Notons u un vecteur tel que Xpu = v. On a
l’égalité (p+ 1)(λ− p)v = Xp+1(Y ′u). Donc on a λ = p. �

21



2.5 Systèmes de racines

Dans cette section g est une algèbre de Lie semisimple complexe.
Nous rappelons maintenant la structure de g. Les deux outils clefs
sont la construction de sl2-triplets à l’aide de la forme de Killing et la
classification des représentations de sl(2).

Définition 2.18 Une sous-algèbre de Cartan h de g est une sous-algèbre com-
mutative formée d’éléments semisimples et qui est maximale pour ces propriétés.

L’intérêt de cette notion, est qu’on peut diagonaliser simultanément g sous
l’action adjointe des éléments de h : pour α ∈ h∗, on pose

gα = {X ∈ g | [H,X] = α(H)X pour tout H ∈ h}.

L’ensemble
∆ = {α ∈ h∗ | gα 6= 0 et α 6= 0}

est appelé le système de racines de g. L’espace gα associé à une racine α ∈ ∆ est
appelé l’espace radiciel. On a la décomposition

g = g0 ⊕ (⊕α∈∆ gα) .

Définition 2.19 Soit E un espace vectoriel réel muni d’un produit scalaire eu-
clidien 〈., .〉. Pour α ∈ E, α 6= 0 on note sα la symétrie orthogonale sα : E →
E; β 7→ β − 2 〈α,β〉〈α,α〉α. On appelle “système de racines abstrait” une partie ∆ telle

que, pour tout α, β ∈ ∆, on a 2 〈α,β〉〈α,α〉 ∈ Z et sα(β) ∈ ∆.
Le système de racines abstrait ∆ est dit “réduit” si α ∈ ∆⇒ 2α 6∈ ∆.

Le théorème suivant affirme en particulier que le système de racines de g est
un système de racines abstrait.

Théorème 2.20 Soit g une algèbre de Lie semisimple complexe.
a) On a g0 = h. En particulier, h est commutative maximale.
b) ∆ = −∆ et la forme de Killing B restreinte à h est non dégénérée.
c) Pour λ ∈ h∗, on note Hλ ∈ h l’élément tel que B(Hλ, H) = λ(H) pour tout
H ∈ h. Alors, pour tout X±α ∈ g±α, on a [X−α, Xα] = B(X−α, Xα)Hα.
d) Pour tout α ∈ ∆, on a α(Hα) 6= 0. Notons H ′α := 2Hα

α(Hα)
et choisissons X ′α ∈ gα

tels que B(X ′α, X
′
−α) = 2

α(Hα)
. Alors (X ′α, Hα, X

′
−α) est un sl2-triplet.

e) i) dim gα = 1 pour tout α ∈ ∆.
ii) [gα, gβ] = gα+β pour tout α, β ∈ ∆.
iii) α et −α sont les seules racines proportionnelles à α.
f) La forme B est définie positive sur hR :=

∑
α∈∆RHα et on a h = hR ⊕ ihR.

g) ∆ est un système de racines abstrait réduit de l’espace euclidien dual E = h∗R.
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Remarques - On a E =
∑

α∈∆Rα et le produit scalaire sur E est donné par
〈α, β〉 = B(Hα, Hβ), pour tout α, β ∈ E.

- Nous verrons que toutes les sous-algèbres de Cartan sont conjuguées. Donc,
à chaque algèbre de Lie semisimple complexe est associé un unique système de
racines abstrait réduit.

- On appelle rang de g ou rang de ∆, la dimension r de E.
- Réciproquement, on peut montrer que tout système de racines abstrait réduit

provient d’une unique algèbre de Lie semisimple complexe. En outre, on peut
classifier les systèmes de racines abstraits.

Démonstration Nous utiliserons fréquemment l’inclusion [gα, gβ] ⊂ gα+β.
a) Soit X ∈ g0. Notons X = Xs + Xn sa décomposition de Jordan (voir

proposition 2.12). Comme Xs commute à h, Xs est dans h. On peut donc supposer
que X = Xn est nilpotent. Par le théorème 2.15 de Jacobson Morozov, il existe
H ∈ g tel que [H,X] = 2X. Quitte à remplacer H par sa projection sur g0

parallèlement à [h, g], on peut supposer que H est dans g0. Notons H = Hs +Hn

la décomposition de Jordan de H. L’élément Hs commute encore à h, il est donc
dans h. Ce qui contredit l’égalité [Hs, X] = 2X. Sauf si X = 0. Donc g0 = h.

b) On a B(gα, gβ) = 0 si α+β 6= 0. Comme B est non dégénérée, B induit une
dualité non dégénérée entre gα et g−α.

c) En effet, B([Xα, X−α], H) = B(Xα, [X−α, H]) = B(Xα, X−α)α(H).
d) Si α(H) = 0. On choisit X±α ∈ g±α tels que B(Xα, X−α) = 1. Alors on

a [Hα, Xα] = [Hα, X−α] = 0 et [Xα, X−α] = Hα. Le théorème de Lie appliqué à
l’algèbre de Lie résoluble RX−α⊕RHα⊕RXα prouve que Hα est nilpotent. Donc
Hα = 0. Contradiction.

Comme α(H ′α) = 2, on a bien [H ′α, X
′
α] = 2X ′α, [H ′α, X

′
−α] = −2X ′−α et

[X ′α, X
′
−α] = H ′α. On note gα la sous-algèbre de Lie de g engendrée par ce sl2-

triplet.
e) i) Si dim gα ≥ 2, il existe X ′′α ∈ gα un élément tel que B(X ′−α, X

′′
α) = 0.

Mais alors [X ′−α, X
′′
α] = 0 et X ′′α engendre un sα-module de plus bas poids 2. Cela

n’existe pas d’après la proposition 2.14.
ii) Si [gα, gβ] = 0. La somme V ′ := ⊕n∈N gβ−nα est un sα-sous-module de la

somme V := ⊕n∈Z gβ+nα. Ce sous-module V ′ a pour plus haut poids β(H ′α) et
V/V ′ a pour plus bas poids β(H ′α) + 2. Donc, d’après la proposition 2.14, on a
β(H ′α) ≥ 0 et β(H ′α) + 2 ≤ 0. Contradiction.
iii) Quitte à remplacer α par α/2, on peut supposer que α/2 n’est pas une

racine. On peut décomposer le sα-module V := ⊕z∈C gzα en modules ficelles.
Comme 1 n’est pas valeur propre de H ′α et que 2 est une valeur propre de multi-
plicité 1, on a d’après la proposition 2.14, V = g−α ⊕ g0 ⊕ gα.

f) Montrons que la restriction de B à hR est positive. Pour tout H ∈ hR, on a

B(H,H) =
∑

α∈∆ α(H)2 =
∑

α∈∆B(Hα, H)2 (1)
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Il suffit donc de voir que, pour α, β ∈ ∆, B(Hα, Hβ) est réel. Or

B(Hα, Hβ) = β(Hα) = 1
2
α(Hα)β(H ′α).

Comme H ′α fait partie d’un sl2-triplet, ses valeurs propres β(H ′α) sont dans Z. Il
reste à voir que α(Hα) est réel. Cela résulte des égalités

α(Hα) = B(Hα, Hα) = 1
4
α(Hα)2B(H ′α, H

′
α) = 1

4
α(Hα)2

∑
β∈∆ β(H ′α)2.

Remarquons maintenant que ∆ engendre h∗. En effet, si un élément H ∈ h est
dans le noyau de toutes les racines, il est dans le centre de g et donc H = 0.

Montrons que B est non dégénérée sur hR. En effet, d’après (1), un élément
H ∈ hR tel que B(H,H) = 0 serait dans le noyau de toutes les racines et serait
donc nul.

On en déduit que B est défini négatif sur ihR. Donc on a hR ∩ ihR = 0, puis,
comme ∆ engendre h, on en déduit h = hR ⊕ ihR.

c) L’espace E = h∗R est euclidien et on a l’équivalence λ ∈ E ⇔ Hλ ∈ hR. En
particulier ∆ est inclus dans E et engendre E. Montrons que ∆ est un système
de racines abstrait. Soient α, β ∈ ∆, q = 2 〈α,β〉〈α,α〉 . On doit vérifier que q ∈ Z et que
β−qα ∈ ∆. On peut supposer q ≥ 0. Il résulte de la proposition 2.14 appliqué au
sα-module V := ⊕n∈Z gβ+nα que la valeur propre q = β(H ′α) est un entier et que
(adX ′−α)q(X ′β) 6= 0. En effet, les valeurs propres de H ′α dans les modules ficelles
sont entières et symétriques par rapport à l’origine. Donc gβ−qα est non nul et
β − qα est une racine. �

Donnons pour finir la liste de toutes les algèbres de Lie simples complexes, liste
qui se déduit de celle des systèmes de racines abstraits. Les quatre familles dites
classiques et les cinq algèbres simples dites exceptionnelles

Ar = sl(r + 1,C) (r ≥ 1),
Br = so(2r + 1,C) (r ≥ 2),
Cr = sp(r,C) (r ≥ 3),
Dr = so(2r,C) (r ≥ 4)
E6, E7, E8, F4, G2.
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3 Groupes de Lie semisimples

Nous démontrons entièrement dans ce chapitre un certains nom-
bres de résultats classiques dûs à E. Cartan sur la structure des
groupes et des algèbres de Lie semisimples. En particulier, l’existence
d’une involution de Cartan, la décomposition de Cartan G = KA+K
et la décomposition d’Iwasawa G = KAU+. Résultats que nous utili-
sons à plusieurs reprises dans ce cours. Comme dans le cas complexe,
le language des systèmes de racines permet de gérer tous les groupes
de Lie semisimples réels. Néanmoins, nous rappellerons la signification
de ces concepts pour G = SL(d,R).

3.1 Groupes de Lie compacts

Commençons par la descriptions des groupes de Lie compacts.

Pour tout groupe de Lie U , on note u = Lie(U) son algèbre de Lie et uC :=
u⊗RC son algèbre de Lie comlexifiée. On note Ad l’action adjointe : pour u ∈ U ,
Adu est la dérivée de la conjugaison g 7→ ugu−1. Ad est un morphisme de groupes
de Lie de U dans le groupe des automorphismes Aut(u).

Théorème 3.1 L’application U → uC met en bijection{
groupes de Lie compacts
connexes à centre trivial

}
←→

{
algèbres de Lie

semisimples complexes

}
.

Remarques - Il s’agit bien sûr d’une bijection “modulo isomorphisme” ou, plus
précisément d’une “équivalence de catégories”.

- On en déduit, avec la section 2.5, que tout groupe simple compact est, modulo
le centre, un des groupes classiques Ar = SU(r+1), Br = SO(2r+1), Cr = Sp(r),
Dr = SO(2r) ou un des cinq groupes exceptionnels E6, E7, E8,F4, G2.

Démonstration du théorème 3.1 Comme AdU est compact, il existe une
forme bilinéaire définie positive B0 sur u qui est AdU -invariante. Pour tout X ∈ u

non nul, adX est antisymétrique pour B0, donc tr((adX)2) < 0. La forme de
Killing B de u est définie négative. Donc u est semisimple et uC aussi.

L’injectivité de l’application U → uC sera montrée dans la section 3.2.
On va montrer dans cette partie la surjectivité. �

Soit g une algèbre de Lie semisimple complexe.

Définition 3.2 On appelle forme réelle de g une sous-algèbre de Lie réelle gR
telle que g = gR⊗RC. Une forme réelle gR est dite compacte si la forme de Killing
de gR est définie négative.
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Il suffit de montrer que g a une forme réelle compacte u. Car alors la composante
connexe U := Aut(u)e du groupe des automorphismes de u convient. C’est un
groupe compact car il est fermé et préserve la forme de Killing. Son algèbre de
Lie est isomorphe à u car toute dérivation de u est intérieure.

Pour montrer que g a une forme réelle compacte, reprenons les notations de
la section 2.5. Pour α ∈ ∆, choisissons Xα dans gα tels que [X−α, Xα] = Hα et
définissons, pour α, β ∈ ∆ avec α + β 6= 0, le nombre Nα,β par

[Xα, Xβ] = Nα,βXα+β si α + β est dans ∆ et par Nα,β = 0 sinon.

Proposition 3.3 On peut choisir les Xα de sorte que Nα,β = −N−α,−β.
Les nombres Nα,β sont alors réels.

Grace à cette proposition, on peut prendre pour forme réelle compacte de g

u = ihR ⊕ (⊕α∈∆Ri(Xα+X−α))⊕ (⊕α∈∆R(Xα−X−α)) .

En effet, par construction, les facteurs de cette somme directe sont orthogonaux
et B est donc définie négative sur u. Les égalités Nα,β = −N−α,−β ∈ R assurent
que u est une algèbre de Lie.

Remarque Pour g = sl(2,C), on obtient la base de su(2)

iH =
(

i 0
0 i

)
, i(X+Y ) =

(
0 i
i 0

)
, X−Y =

(
0 1
−1 0

)
.

Lemme 3.4 a) Pour α, β ∈ ∆, on a Nα,β = −Nβ,α.
b) Pour α, β, γ ∈ ∆ avec α + β + γ = 0, on a

Nα,β = Nβ,γ = Nγ,α et Nα,βN−α,−β < 0.
c) Pour α, β, γ, δ ∈ ∆ non deux à deux colinéaires, on a

Nα,βNγ,δ +Nβ,γNα,δ +Nγ,αNβ,δ = 0.

Démonstration du lemme 3.4 a) Clair.
b) Comme α + β + γ = 0, on a Hα + Hβ + Hγ = 0. Or, l’identité de Jacobi

appliquée à Xα, Xβ, Xγ donne Nβ,γHα + Nγ,αHβ + Nα,βHγ = 0. Donc Nα,β =
Nβ,γ = Nγ,α.

D’autre part, la proposition 2.14 qui classifie les sl(2)-modules prouve que
[X ′−α, [X

′
α, Xβ]] = aα,βXβ où aα,β est un entier strictement positif. On en déduit

que Nα,βN−α,α+β > 0.
c) Appliquer l’identité de Jacobi à Xα, Xβ, Xγ.

Démonstration de la proposition 3.3 Choisissons un ordre total sur h∗R tel
que la somme de deux éléments positifs est positif ; par exemple l’ordre lexicogra-
phique pour les coordonnées dans une base de h∗R. On note ∆+ = {α ∈ ∆ | α > 0}
l’ensemble des racines positives.

Pour ρ ∈ ∆+, posons ∆ρ = {α ∈ ∆ | −ρ ≤ α ≤ ρ} et montrons par récurrence
sur #∆ρ qu’on peut choisir les Xα, pour α ∈ ∆ρ tels que

Nα,β = −N−α,−β pour tout α, β, α+β ∈ ∆ρ (2)
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Le nombre Nα,β est alors automatiquement réel par b).
Par hypothèse de récurrence, il ne reste à choisir que Xρ car X−ρ s’en déduit.
Si on ne peut pas écrire ρ = γ+δ avec γ, δ ∈ ∆+, on choisit Xρ arbitrairement.
Si on peut écrire ρ = γ + δ avec γ, δ ∈ ∆+, on prend Xρ = λ[Xγ, Xδ] et

X−ρ = λ[X−γ, X−δ] où λ ∈ C∗ est choisi de sorte que B(Xρ, X−ρ) = 1. Il reste à
vérifier (2). Grace à b), il suffit de vérifier (2) lorsque α + β = ρ. Ce qui résulte
de l’égalité du c) appliquée à α, β,−γ,−δ et à −α,−β, γ, δ et de l’hypothèse de
récurrence. �

Remarque On peut montrer que tout groupe topologique compact simple con-
nexe est de Lie. Le théorème 3.1 donne donc la classification des groupes compacts
connexes simples. C’est un des grands achèvement du début du vingtième siècle.
Il ouvre la voie à la classification des groupes finis simples. Signalons que c’est
seulement à la fin du vingtième siècle que cette dernière sera complétée.

3.2 Involutions de Cartan

Ce sont les involutions de Cartan qui nous permettront de com-
prendre la structure des groupes de Lie semisimples et leurs liens avec
les espaces symétriques.

Définition 3.5 Une involution de Cartan d’une algèbre de Lie semisimple réelle
g est un automorphisme θ tel que θ2 = 1 et tel que la forme bilinéaire symétrique
Bθ donnée par Bθ(X, Y ) = B(θX, Y ) est définie positive.

On a alors la décomposition de Cartan g = k⊕ q où k = {X ∈ g | θ(X) = X}
et q = {X ∈ g | θ(X) = −X}. Ces sous-espaces k et q sont orthogonaux pour la
forme de Killing B qui est définie négative sur k et définie positive sur q.

Exemples - Pour g = sl(d,R) ou g = so(p, q), on peut prendre θ(X) = −tX.
- L’algèbre de Lie gC considérée comme une algèbre de Lie réelle admet comme

involution de Cartan la conjugaison σ par rapport à une forme réelle compacte
u. On a alors k = u et q = iu.

Proposition 3.6 a) Toute algèbre de Lie semisimple réelle g admet une involu-
tion de Cartan θ.
b) Deux involutions de Cartan θ et θ1 de g sont toujours conjuguées.

Remarques - Conjugué signifie “conjugué par un élément de Aut(g)e”.
- Le point b) prouve l’injectivité de l’application U → uC du théorème 3.1.

Démonstration de la proposition 3.6 a) Soient τ la conjugaison complexe
par rapport à g et N l’automorphisme de gC produit N = στ où σ est comme
dans l’exemple. Pour tout X, Y ∈ g, on a

Bσ(NX, Y ) = B(τX, Y ) = B(X, τY ) = Bσ(X,NY ).
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Donc N est semisimple à valeurs propres réelles. Soit P l’élément P := N2. On
peut donc écrire P = P 1 pour un groupe à un paramètre t → P t de bjections
linéaires de l’espace vectoriel réel gC qui sont semisimples à valeurs propres posi-
tives. Pour tout t, P t est dans Aut(gC), P t commute à N et on a σP tσ−1 = P−t.
En effet, cela résulte de la remarque du lemme 4.9 car ces affirmations sont po-
lynomiales et vraies pour t entiers. On pose alors Q = P−

1
4 et σ′ = QσQ−1. On

calcule

σ′τ = QσQ−1τ = Q2στ = P−
1
2N = N−1P

1
2 = τσQ−2 = τQσQ−1 = τσ′.

On en déduit que σ′(g) ⊂ g et que θ := σ′|g est une involution de Cartan de g.

b) Comme en a), on peut poser Q := ((θθ1)2)−
1
4 ∈ Aut(g), θ′ := Qθ1Q

−1 et
prouver que θ et θ′ commutent.

On diagonalise alors simultanément θ et θ′ : on a

g = (k ∩ k′)⊕ (k ∩ q′)⊕ (q ∩ k′)⊕ (q ∩ q′)

où g = k ⊕ q et g = k′ ⊕ q′ sont les décompositions de Cartan de g pour θ et θ′.
La forme de Killing est définie négative sur k et k′ et est définie positive sur q et
q′. Donc, on a k ∩ q′ = q ∩ k′ = 0, puis k = k′ et q = q′, c’est-à-dire θ = θ′. �

Remarques - Les éléments de k sont elliptiques. Ceux de q sont hyperboliques.
- Notons G = Aut(g)e le groupe de Lie connexe à centre trivial d’algèbre de

Lie g. Le sous groupe K = {g ∈ G | gθ = θg} est donc un sous-groupe compact
maximal de G. L’espace G/K, muni de la métrique riemannienne G-invariante
donnée par la forme de Killing sur q est un “espace symétriques riemanniens
simplement connexe à courbure négative ou nulle sans facteur euclidien”. L’appli-
cation g←→ G/K est une bijection entre les algèbres de Lie semisimples réelles
et ces espace symétriques. Cette bijection est due à E. Cartan.

3.3 Sous-algèbres de Cartan

Soit g une algèbre de Lie semisimple réelle.

Définition 3.7 Une sous-algèbre de Cartan h de g est une sous-algèbre commu-
tative formée d’éléments semisimples et maximale pour cette propriété.

Proposition 3.8 Soit h une sous-algèbre de Cartan de g et θ une involution de
Cartan de g. Alors
a) La complexifiée hC est une sous-algèbre de Cartan de gC.
b) Il existe un conjugué de h qui est θ-stable.

Démonstration a) La démonstration du théorème 2.20.a est valable pour k = R.
Donc h est commutative maximale et hC aussi.
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b) D’après la proposition 3.6, il suffit de construire une involution de Cartan
θ′ de g telle que θ′(h) = h. Soit u une forme réelle compacte de gC construite à
partir de hC par la méthode de la section 3.1. Notons σ (resp. τ) la conjugaison
complexe par rapport à u (resp. g). Comme dans la proposition 3.6.a, on peut

poser Q := ((στ)2)−
1
4 , σ′ := Q ◦ σ ◦ Q−1, θ′ := σ′|g et montrer que θ′ est une

involution de Cartan de g. Comme Q(hC) = hC, on a θ′(h) = h. �

3.4 Sous-espaces de Cartan

Soit g une algèbre de Lie semisimple réelle.

Définition 3.9 Un sous-espace de Cartan a de g est une sous-algèbre commuta-
tive formée d’éléments hyperboliques et maximale pour cette propriété.

Par définition tout élément hyperbolique fait partie d’un sous-espace de Cartan.

On peut diagonaliser g sous l’action adjointe de a. On désigne par Σ l’ensemble
des racines restreintes, i.e. l’ensemble des poids non triviaux pour cette action.
Comme en 2.5, la théorie des sl2-triplets permet de montrer que Σ est un système
de racines abstrait (pas toujours réduit). On a une décomposition

g = l⊕ (⊕λ∈Σ gλ), où

gλ := {Y ∈ g / ∀X ∈ a , adX(Y ) = λ(X)Y }
est l’espace radiciel associé à λ et l est le centralisateur de a.

Soient g = k ⊕ q une décomposition de Cartan associée à une involution de
Cartan θ et K := {g ∈ Aut(g) | θg = gθ}. Ce groupe K est compact et son
algèbre de Lie est k.

Proposition 3.10 a) Tout sous-espace de Cartan a de g est conjugué à un sous-
espace de Cartan inclus dans q.
b) Deux sous-espaces de Cartan inclus dans q sont toujours conjugués par un
élément de Ke.

Démonstration a) Mettons a dans une sous-algèbre de Cartan h de g. On peut
supposer grâce à la proposition 3.8 que h est θ-stable. Mais alors h = (h ∩ k) ⊕
(h∩ q). Comme h∩ q est l’ensemble des éléments hyperboliques de h, on a a ⊂ q.

b) Soient a1, a2 deux sous-espaces de Cartan dans q. Choisissons Xi ∈ ai en
dehors des noyaux des racines restreintes de sorte qu’un élément X de g qui
commute à Xi commute aussi à ai.

On peut supposer que la fonction définie sur K g 7→ B(X1, gX2) atteint son
minimum pour g = e. On a alors, pour tout Z ∈ k, B(X1, [Z,X2]) = 0 et donc
B(Z, [X1, X2]) = 0. Comme [X1, X2] est dans k, on en déduit [X1, X2] = 0, puis
[a1, a2] = 0 et enfin a1 = a2. �
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Corollaire 3.11 Soit gC (resp. g, u) une algèbre de Lie semisimple complexe
(resp. réelle, réelle compacte).
a) Toutes les sous-algèbres de Cartan de u sont conjuguées.
b) Toutes les sous-algèbres de Cartan de gC sont conjuguées.
c) g n’a qu’un nombre fini de classes de conjugaison de sous-algèbres de Cartan.

La dimension commune des sous-algèbres (resp. sous-espaces) de Cartan de g

est appelé le rang (resp. rang réel) de g.

Démonstration a) L’égalité uC = u⊕ iu est une décomposition de Cartan. Si t

est un sous-algèbre de Cartan de u, it est un sous-espace de Cartan de uC inclus
dans iu. On peut donc appliquer la proposition 3.10.b.

b) Soient h1 et h2 deux sous-algèbres de Cartan de gC. D’après la construction
du théorème 3.1, il existe des formes réelles compactes ui telles que ti := ui ∩ hi
est une sous-algèbre de Cartan de ui. D’après la proposition 3.6, on peut supposer
u1 = u2. On applique alors le a).

c) Fixons un sous-espace de Cartan a dans p. Chaque classe de conjugaison
contient une sous-algèbre de Cartan θ-stable h1. D’après la proposition 3.10.b, on
peut supposer que a1 := h1∩q est inclus dans a. Soient Σ1 := {λ ∈ Σ | λ(a1) = 0}
et a′1 := {X ∈ a1 | λ(X) = 0 pour tout λ ∈ Σ1}. Comme a′1 contient a1 et que
tout élément de a′1 commute au commutant de a1, par maximalité de h1, on a
a1 = a′1. Donc a1 est entièrement déterminé par Σ1 qui ne peut prendre qu’un
nombre fini de valeurs.

Il reste à comprendre que, si h2 est une autre sous-algèbre de Cartan θ-stable
telle que h2∩q = a1, alors h1 et h2 sont conjuguées. Soient m1 le centralisateur de
a1 dans k, z1 le centre de m1 et m′1 = m1/z1. L’algèbre de Lie m′1 est semisimple
compacte et les t′i := (hi ∩ k)/z1 sont des sous-algèbres de Cartan de m′1. Le a)
permet alors de conclure. �

Notons Σ+ un système de racines positives de Σ, c’est à dire une partie de Σ
telle que Σ+ ∩ −Σ+ = ∅, Σ+ ∪ −Σ+ = Σ et (Σ+ + Σ+) ∩ −Σ+ = ∅.

L’ensemble Π des racines simples de Σ+, c’est à dire des éléments minimaux de
Σ+, est une base de a?. Les sous algèbres u± := ⊕λ∈Σ± gλ sont nilpotentes et la
sous-algèbre p = l⊕ u+ est appelée la sous-algèbre parabolique minimale associée
à Σ+.

Lemme 3.12 On a la décomposition d’Iwasawa g = k⊕ a⊕ u+.

Démonstration Cela résulte de l’égalité θ(gλ) = g−λ.

3.5 Décomposition de Cartan et Iwasawa

Soit G un groupe de Lie semisimple connexe de centre fini d’algèbre de Lie g.
On garde les notations ci-dessus. On a, en particulier, choisi une involution de
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Cartan θ de G, un sous-espace de Cartan a ⊂ q et un système de racines positives
Σ+. Notons a+ := {X ∈ a / ∀α ∈ Σ+ , α(X) ≥ 0} la chambre de Weyl dans a

associée à Σ+.
Notons K l’ensemble des points fixes de θ dans G et A := exp(a). Par définition,

le rang réel de G est la dimension de A. L’ensemble des caractères réels du groupe
de Lie A peut être identifié au dual a?. Notons aussi

A+ := {a ∈ A / ∀α ∈ Σ+ , α(a) ≥ 1}

la chambre de Weyl dans A associée à Σ+.

On a la décomposition de Cartan.

Théorème 3.13
a) L’application K × q→ G; (k,X) 7→ keX est un difféomorphisme.
b) On a l’égalité G = KA+K.

Démonstration On peut supposer G à centre trivial i.e. G = Aut(g)e.
a) C’est la même que pour SL(d,R). On veut écrire g = kq avec k ∈ K

et q ∈ exp(q). Comme θ(g)−1g est symétrique définie positive pour la forme
Bθ, on peut écrire θ(g)−1g = e2X avec etX groupe à un paramètre de matrices
symétriques définies positives. On utilise encore la remarque du lemme 4.9 pour
conclure que le groupe à un paramètre etX est dans G. On prend q = eX et
k = gq−1.

b) Utiliser le a) et la proposition 3.10 qui assure que tout élément de q est
conjugué sous K à un élément de a. Utiliser enfin la théorie des petits sl2 qui
permet, pour λ ∈ Σ, de relever les symétries sλ en des éléments du normalisateur
de a dans K et donc de conjuguer tout élément de a en un élément de la chambre
de Weyl a+. �

Le normalisateur P := NG(p) est appelé le sous-groupe parabolique minimal
associé à Σ+. Notons L le centralisateur de a dans G et U± les sous-groupes
connexes d’algèbre de Lie u±.

On a la décomposition d’Iwasawa.

Théorème 3.14
a) La multiplication donne un difféomorphisme K×A×U+ ' G.
b) Le quotient P/AU+ est compact.
c) La multiplication m : U− × P → G est un difféomorphisme sur un ouvert de
mesure pleine.

Un élément g de G est dit hyperbolique si on peut écrire g = eX avec X ∈ g

hyperbolique i.e. si il est conjugué à un élément de A.
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Un élément g de G est dit unipotent si on peut écrire g = eX avec X ∈ g

nilpotent i.e. si il est conjugué à un élément de U+.
Un élément g de G est dit elliptique si il est conjugué à un élément de K.

Démonstration du théorème 3.14 On peut supposer G à centre trivial.
a) Notons W le groupe résoluble W = AU+ et w son algèbre de Lie. Comme

A ∩ U+ = {e}, la multiplication A× U+ → W est un difféomorphisme.
Comme w ne contient pas d’élément elliptique, w ne rencontre aucun conjugué

de k et donc, les doubles classes KgW sont ouvertes. Elles sont donc aussi fermées.
Donc G = KW . Comme W ne contient pas de sous-groupe compact, on a K ∩
W = {e}.

b) Comme AU+ est inclus dans P , ce la résulte du a).
c) On montre tout d’abord une version complexifiée de cette assertion. Notons

GC = Aut(gC), U±C les sous-groupes connexes d’algèbre de Lie u±C =: u± ⊗R C
et PC le normalisateur de pC := p ⊗R C. L’intersection PC ∩ U−C est triviale car
l’action adjointe d’un élément g de PC ∩ U−C doit préserver les pC-sous-modules
et les u−C -sous-modules de gC, il doit donc préserver tous les espaces radiciels
complexifiés (gλ)C et agir trivialement dessus. Comme en outre u−C ⊕ pC = gC,
La multiplication mC : U−C × PC → GC est injective d’image ouverte. Comme
ces groupes sont algébriques, d’après la proposition 4.4, l’image est un ouvert de
Zariski. Par injectivité de mC, on a U−P = U−C PC ∩ G. Donc le complémentaire
de U−P est un fermé de Zariski de G. Il est donc de mesure nulle. �

3.6 Sous-groupes paraboliques

Pour toute partie θ ⊂ Π, on note <θ> l’espace vectoriel engendré par θ,

Σθ := Σ∩ <θ> , Σ±θ := Σθ ∩ Σ±,

lθ := l⊕⊕α∈Σθ gα , u±θ := ⊕α∈Σ±rΣ±θ
gα,

U±θ les groupes connexes associés, Aθ := {a ∈ A / ∀α ∈ θ , α(a) = 1}, A+
θ :=

A+∩Aθ, Lθ le centralisateur de Aθ dans G. Soit pθ := lθ⊕u+
θ and Pθ := LθU

+
θ les

sous-algèbres et sous-groupes paraboliques associés à θ. On a alors les assertions.

Proposition 3.15 a) Tout sous-groupe contenant P est égal à l’un des Pθ.
b) Pθ est engendré par les sous-groupes P{α} pour α ∈ θ.
c) Si θ1 ⊂ θ2, alors Σθ1 ⊂ Σθ2, Pθ1 ⊂ Pθ2 et U+

θ1
⊃ U+

θ2
.

Démonstration

3.7 Exemples

Décrivons explicitement ces notations pour G = SL(d,R). On peut prendre
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K = SO(d,R),
A = {a = diag(a1, . . . , ad) / ai > 0 , a1 · · · ad = 1},
A+ = {a ∈ A / a1 ≥ · · · ≥ ad},
Σ = {εi − εj , i 6= j , 1 ≤ i, j ≤ d},
Σ+ = {εi − εj , 1 ≤ i < j ≤ d},
Π = {εi+1 − εi , 1 ≤ i < d}, où εi ∈ a? est donné par : εi(a) = ai,
gεi−εj = REi,j avec Ei,j = e?j ⊗ ei,
l = a

u+ =

8>>><>>>:
0BBB@

0 ∗
. . .

0 0

1CCCA
9>>>=>>>; , p =

8>>><>>>:
0BBB@
∗ ∗

. . .
0 ∗

1CCCA
9>>>=>>>; , u− =

8>>><>>>:
0BBB@

0 0
. . .

∗ 0

1CCCA
9>>>=>>>; .

u+
θ =


 0 ∗ ∗

0 0 ∗
0 0 0

 , pθ =


 ∗ ∗ ∗0 ∗ ∗

0 0 ∗

 , u−θ =


 0 0 0
∗ 0 0
∗ ∗ 0

 ,

lθ =


 ∗ 0 0

0 ∗ 0
0 0 ∗

 , Aθ =

{ b1Id 0 0
0 b2Id 0
0 0 b3Id

 ∈ A
}

,

A+
θ = Aθ∩A+. On a pris θc avec seulement deux racines simples. Une autre partie

θ aurait donné un nombre et des tailles différentes de matrices blocs.
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4 Groupes algébriques

Rappelons quelques définitions de la théorie des groupes algé-
briques. Nous avons choisi un point de vu näıf, probablement pas
suffisamment précis, intrinsèque et général pour le puriste, mais qui
suffit bien pour une première approche de ce sujet... et pour les ap-
plications que nous avons en vue.

4.1 Variétés algébriques

Tout d’abord quelques mots sur les variétés algébriques.

Soient K un corps algébriquement clos de caractéristique nulle, k un sous-corps
de K, Vk ∼ kd un k-espace vectoriel, V = K ⊗k Vk ' Kd et k[V] l’anneau des
polynomes sur Vk à valeurs dans k.

Une variété (algébrique) affine Z ⊂ V ou fermé de Zariski est un sous-ensemble
qui est l’ensemble des zéros d’une famille de polynômes sur V. On note I(Z) ⊂
K[V] l’idéal des polynômes nuls sur Z.

On dit que Z est une k-variété si I(Z) est engendré par l’intersection Ik(Z) :=
I(Z) ∩ k[V]. L’anneau quotient k[Z] := k[V]/Ik(Z) est l’anneau des fonctions
k-régulières sur Z. L’ensemble Zk := kd ∩ Z est l’ensemble des k-points de Z.

Un k-morphisme ou application k-régulière de k-variétés ϕ : Z1 → Z2 est une
application telle que, pour tout f dans k[Z2], la composée f ◦ ϕ est dans k[Z1].

La topologie de Zariski sur Z est la topologie dont les fermés sont les sous-
variétés de Z. La toplogie induite sur Zk s’appelle aussi topologie de Zariski. On
parlera ainsi de parties Zariski connexes ou de parties Zariski denses.

Une variété Z est dite k-irréductible si on ne peut pas l’écrire comme réunion de
deux k-sous-variétés propre ou, ce qui est équivalent, si l’anneau k[Z] est intègre.
On note alors k(Z) le corps des fractions de k[Z]. Les éléments de k(Z) sont les
fonctions k-rationnelles. Par noethérianité de k[Z], toute k-variété est réunion
finie de k-sous-variétés k-irréductibles.

La dimension dim Z d’une variété k-irréductible Z est le degré de transcendance
sur k de k(Z). L’espace tangent TzZ à Z en un point z ∈ Z est l’intersection
des différentielles dP (z) des polynômes P de l’idéal I(Z). Un point z ∈ Z est
lisse si m = dim(TzZ) est minimum. L’ensemble des points lisses d’une k-variété
est donc un ouvert de Zariski non vide défini sur k. En un point lisse z, on a
dim(TzZ) = m = dim Z. Autrement dit, localement au voisinage de z, Z s’identifie
aux zéros de d−m polynômes Pi tels que TzZ = ∩idPi(z). On dit que Z est lisse
si tous ses points sont lisses.

Lorsque Z est lisse et que le corps de base k est R, C ou une extension finie de
Qp, i.e. k est un corps local de caractéristique nulle, l’ensemble Zk des k-points de
Z est une sous-variété k-analytique lisse de kd de dimension dim Z dont l’espace
tangent en un k-point z s’identifie aux k-points de l’espace tangent en z à la
k-variété Z.
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Disons, de façon heuristique, que l’intérêt de ce point de vue qui consiste à
“travailler avec les points dans une clôture algébrique K mais avec des formules à
coefficients dans k”, est qu’il permet de développer le sujet sans savoir s’il existe
des k-points.

Il est souvent utile d’étendre les définitions ci-dessus à un cadre projectif.
Ainsi une k-variété (algébrique) projective Z ⊂ P(V) ou fermé de Zariski est un

sous-ensemble qui est l’ensemble des zéros d’une famille de polynômes homogènes
sur V à coefficients dans k. L’ensemble Zk := P(kd)∩Z est l’ensemble des k-points
de Z. On a encore une notion d’applications k-régulières, de topologie de Zariski
sur Z et sur Zk...

Une k-variété (algébrique) quasiprojective est un ouvert de Zariski défini sur k
d’une k-variété projective.

Le théorème suivant est au coeur de la théorie de l’élimination des quantifica-
teurs ou théorie des ensembles constructibles.

Théorème 4.1 (Chevalley) Soit ϕ : Z1 → Z2 une application régulière entre
deux variétés algébriques. Alors l’image ϕ(Z1) contient un ouvert de son adhé-
rence (pour la topologie de Zariski).

Remarque ϕ((Z1)k) ne contient pas toujours un ouvert de Zariski de l’ensemble
des k-points de ϕ(Z1). Par exemple ϕ : R→ R; t 7→ t2.

Démonstration On peut supposer que les variétés Z1 et Z2 sont affines et irré-
ductibles sur K et que ϕ(Z1) est Zariski dense dans Z2. L’application ϕ induit
alors une injection entre les anneaux de fonctions régulières A := K[Z2] ↪→ B :=
K[Z1]. Remarquons que la donnée d’un point x de Z1 équivaut à la donnée d’un
morphisme d’anneaux ψ : B → K : le morphisme donné par ψ(P ) = P (x) pour
tout P ∈ B. Le théorème est donc une conséquence du lemme suivant. �

Lemme 4.2 Soit A ↪→ B des K-algèbres telles que B est une A-algèbre de type
fini intègre. Alors pour tout b ∈ B non nul, il existe a ∈ A tel que, tout morphisme
ψ : A → K tel que ψ(a) 6= 0 se prolonge en un morphisme ψ̃ : B → K tel que

ψ̃(b) 6= 0.

Démonstration Par récurrence sur le nombre de générateurs de B comme A-
algèbre, on peut supposer que B est engendré par un élément x. Notons alors
P (T ) =

∑
0≤i≤` piT

i ∈ A[T ] un polynôme non nul de degré minimal ` tel que
P (x) = 0. Remarquons tout d’abord que si le polynôme P n’existe pas alors
B ' A[T ] et la conclusion du lemme 4.2 est claire. Notons L le corps des fractions
deA. L’idéal I := {P1 ∈ L[T ] | P1(x) = 0} annulateur de x dans L[T ] est engendré
par P .

Notons aussi Q =
∑
qiT

i ∈ A[T ] un polynôme non nul de degré au plus `− 1
tel que b divise Q(x). On prend alors a = p` qi où qi est un des coefficients non
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nuls de Q. Notons λ ∈ K une racine du polynôme
∑

0≤i≤` ψ(pi)T
i ∈ K[T ] qui est

de degré `. La formule ψ̃(
∑
aix

i) =
∑
ψ(ai)λ

i définit bien un morphisme de B

dans K qui prolonge ψ et tel que ψ̃(b) divise
∑

i ψ(qi)λ
i 6= 0. �

Soit ϕ : Z1 → Z2 une application k-régulière entre deux variétés algébriques
irréductibles. On dit que ϕ est dominante si ϕ induit une injection k[Z2]→ k[Z1]
i.e. si l’image de ϕ est Zariski dense. On dit que ϕ est un plongement si ϕ induit
une surjection k[Z2]→ k[Z1] i.e. si ϕ est injective d’image Zariski fermée.

Remarque Le théorème de Chevalley dit que l’image de tout morphisme domi-
nant contient un ouvert de Zariski dense. Si on examine la preuve du théorème
de Chevalley, on obtient la précision suivante :

Corollaire 4.3 Soit ϕ : Z1 → Z2 une application régulière dominante entre
deux variétés algébriques irréductibles. Alors, il existe un ouvert de Zariski dense
Z′1 ⊂ Z1 lisse défini sur k sur lequel ϕ est une submersion i.e. sur lequel la
différentielle dϕ est surjective.

Démonstration Remplacer dans la preuve du lemme 4.2, la constante a = p` qi
par a = δp` qi où δ est le discriminant de P . �

4.2 Groupes algébriques

Nous ne parlerons ici que de groupes algébriques linéaires. Voici
donc quelques définitions.

Un groupe algébrique (linéaire) défini sur k ou, plus brièvement un k-groupe
est une k-variété G ⊂ GL(V) ⊂ End(V) qui est un groupe pour la composition
des endomorphismes.

Par exemple, le k-groupe additif Ga := {
(

1 x
0 1

)
| x ∈ K},

le k-groupe multiplicatif Gm := {
(
y 0
0 z

)
| y, z ∈ K, xy = 1}

ou le k-groupe linéaire GL(V) ' {(g, δ) ∈ End(V)×K | δ detg = 1} .
On a k[Ga] = k[x] et k[Gm] = k[y, y−1].

On note Gk := G∩GL(d, k) le groupe des k-points de G, et plus généralement,
pour tout sous-anneau A de K, GA = G ∩GL(d,A) est un sous-groupe de G.

Un k-morphisme de k-groupes ϕ : G1 → G2 est un k-morphisme de k-variétés
qui est aussi un morphisme de groupes.

Une k-isogénie est un k-morphisme surjectif de noyau fini (on notera que le
morphisme entre les k-points n’est pas toujours surjectif ; exemple : y → y2 dans
Gm).

Un k-caractère de G est un k-morphisme χ : G→ Gm.
Un k-cocaractère de G est un k-morphisme χ : Gm → G.
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Une k-représentation de G dans un k-espace vectoriel Wk est un k-morphisme
ρ : G→ GL(W).

Une k-action de G sur une k-variété Z est une action G × Z → Z qui est
donnée par une application k-régulière.

L’algèbre de Lie g d’un k-groupe G est l’ensemble des dérivations invariantes
à gauche de l’algèbre K[G]. L’algèbre de Lie g s’identifie à l’espace tangent en e
à G, c’est à dire à l’intersection des noyau Ker(dP (e)), pour P ∈ I(G). On note
gk les k-points de g. Lorsque k = R, C ou une extension finie de Qp, gk est aussi
l’algèbre de Lie du groupe de Lie k-analytique Gk.

Avant de poursuivre cette importante liste de définitions, faisons une pause
pour décrire quelques propriétés des k-groupes et leurs actions.

4.3 Actions algébriques

L’un des intérêts majeurs des “groupes et actions algébriques” est
la propriété suivante de leurs orbites qui contraste fortement avec les
orbites des actions ergodiques.

Proposition 4.4 Les orbites d’une k-action algébrique sont ouvertes dans leur
adhérence (pour la topologie de Zariski).

Démonstration Le théorème 4.1 prouve qu’au moins un point de l’orbite est
dans l’intérieur de l’adhérence cette l’orbite. Ils y sont donc tous. �

Corollaire 4.5 L’image ϕ(G) d’un k-morphisme de k-groupes ϕ : G → H est
un k-sous-groupe.

Démonstration L’adhérence de Zariski ϕ(G) est un k-sous-groupe. D’après la
proposition 4.4, l’image ϕ(G) est ouverte dans cette adhérence. Or un sous-groupe
ouvert est aussi fermé. �

Nous aurons souvent besoin de la proposition suivante qui joue un rôle central
dans la théorie des groupes algébriques et qui affirme que tout espace homogène
G/H de k-groupes peut se réaliser comme une orbite dans l’espace projectif d’une
k-représentation de G.

Proposition 4.6 (Chevalley) Soit G un k-groupe et H ⊂ G un k-sous-groupe.
Alors, il existe une k-représentation de G dans un espace vectoriel Vk et un
point x dans l’espace projectif P(Vk) dont le stabilisateur dans G est H, i.e.
H = {g ∈ G / g x = x}.

En particulier, l’espace homogène G/H a une structure naturelle de k-variété
quasiprojective.
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Démonstration de la proposition 4.6 Nous aurons besoin des notations :
I(H) := {P ∈ K[G] | P |H = 0}, Km[G] := {P ∈ K[G] | d◦P ≤ m} et Im(H) :=
I(H)∩Km[G]. Puisque K[G] est noethérien, on peut trouver m tel que Im(H) en-
gendre l’idéal I(H) de K[G]. L’action de G sur Km[G] donnée par (π(g)P )(g′) :=
P (g′g) est une k-représentation. La k-représentation que nous cherchons est la
représentation dans la pième puissance exterieure V := Λp(Km[G]), où p :=
dim Im(H) et x est la droite de V définie par x := Λp(Im(H)). Par construc-
tion, on a l’égalité requise H = {g ∈ G / g x = x}. �

Corollaire 4.7 Soit G un k-groupe et H ⊂ G un k-sous-groupe. Supposons que
H n’a pas de k-caractère non trivial. Alors, il existe une k-représentation de G
dans un espace vectoriel Vk et un point v ∈ Vk dont le stabilisateur dans G est
H, i.e. H = {g ∈ G / g v = v}.

Démonstration L’action de H sur la droite x est triviale puisque tous les k-
caractères de H sont triviaux. On prend v sur cette droite. �

Lorsque le corps k n’est pas algébriquement clos, on ne peut pas espérer des
énoncés aussi nets que la proposition 4.4 au niveau des k-points. Néanmoins
lorsque le corps de base k est R, C ou une extension finie de Qp on obtient de tels
énoncés au niveau des k-points mais pour la topologie analytique, i.e. celle issue
de la topologie du corps localement compact k.

Proposition 4.8 Soient k = R, C ou une extension finie de Qp et G un k-
groupe.
a) Si G est Zariski-connexe, le groupe Gk est Zariski dense dans G.
b) Soit ρ : G× Z→ Z une k-action de G sur une k-variété Z. Alors, pour tout
v ∈ Zk, les orbites de Gk dans (Gv)k := Gv ∩Zk sont ouvertes et fermées (pour
la topologie analytique).

Remarque l’assertion a) est encore vraie sans aucune hypothèse sur le corps
infini k. Voir [7] cor. 18.3.

Démonstration a) Le groupe Gk est un groupe de Lie sur k dont l’algèbre de
Lie gk s’identifie aux k-points de l’algèbre de Lie de G. L’adhérence de Zariski
H de Gk est un k-sous-groupe de G dont l’algèbre de Lie contient g. On a donc
H = G.

b) On peut supposer que Z = Gv. En particulier, G et Z sont des k-variétés
lisses. Leurs k-points Gk et Zk sont donc des k-variétés analytiques lisses dont
les espaces tangents analytiques s’identifient aux k-points des espaces tangents
algébriques à G et Z. Notons ρv : G→ Z; g 7→ gv l’application orbitale. C’est une
application surjective. Par le corollaire 4.3, sa différentielle est donc surjective sur
un ouvert de Zariski non vide. Par G-invariance, la différentielle dρv : TeG→ TvZ
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est surjective. Par le théorème des fonctions implicites, l’application ρv : Gk → Zk

est donc ouverte au voisinage de e. Donc les Gk-orbites dans (Gv)k sont ouvertes
dans (Gv)k. Par suite ces orbites sont aussi fermées. �

Remarques - On peut aussi montrer que Gk n’a qu’un nombre fini d’orbites
dans Gv ∩ Zk.

- Lorsque k = R, ces Gk-orbites dans (Gv)k sont des unions de composantes
connexes analytiques de (Gv)k.

4.4 Eléments semisimples et unipotents

Rappelons dans ce cadre les définitions d’éléments semisimple et
unipotent et leurs principales propriétés.

Un élément g ∈ End(V) est semisimple si il est diagonalisable sur K et uni-
potent si g − 1 est nilpotent. Le lemme suivant est la classique décomposition de
Jordan.

Lemme 4.9 Soient g ∈ GL(V) et G ⊂ GL(V) un k-groupe.
i) g peut s’écrire de façon unique g = su = us avec s semisimple et u unipotent.
ii) Tout sous-espace W ⊂ V invariant par g est aussi invariant par s et u.
iii) g ∈ G =⇒ s, u ∈ G.
iv) g ∈ Gk =⇒ s, u ∈ Gk.

Démonstration i) Classique.
ii) Les composantes s et u peuvent être exprimées comme des polynômes en g.
iii) Considérer l’action de G sur Km[EndV] := {P ∈ K[EndV] / d◦P ≤ m}

donnée par (π(g)P )(x) := P (xg). On remarque tout d’abord que l’action sur
Km[EndV] d’un élément semisimple ou unipotent de GL(V) est encore semi-
simple ou unipotente.

Le sous-espace Im[G] := I[G] ∩ Km[EndV] est invariant par g. Donc il est
aussi invariant par sa composante semisimple et unipotente qui n’est autre que
π(s) et π(u). Donc pour tout P ∈ Im[G], on a P (s) = (π(s)P )(1) = 0 et P (u) =
(π(u)P )(1) = 0. Donc s et u sont dans G.
iv) Par unicité, s et u sont invariants par le groupe de Galois Gal(K/k). �

Remarques - Soit g ∈ Gk. Comme chark = 0, on peut écrire u = eN avec N
nilpotent. La même preuve assure que, pour tout t ∈ k, l’élément ut := etN est
dans Gk.

- Lorsque k = R, on peut écrire de façon unique s = hk = kh avec h = eH

où H est diagonalisable sur R et k semisimple à valeurs propres de module 1. La
même preuve assure que, pour tout t ∈ R, l’élément ht := etH est dans GR.

Lemme 4.10 Soient ρ : G→ H un k-morphisme de k-groupes et g ∈ G.
a) g est semisimple =⇒ ρ(g) est semisimple.
b) g est unipotent =⇒ ρ(g) est unipotent.
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Proof. On peut supposer que k = K et que G est le plus petit K-groupe contenant
g. Le point principal est alors de prouver que tous les k-morphismes ϕ : Ga → Gm

et ψ : Gm → Ga sont triviaux. On a k[Ga] = k[x] et k[Gm] = k[y, y−1]. Alors
y ◦ ϕ est un élément inversible de k[x], donc est une constante, et x ◦ ψ est un
élément F (y) ∈ k[y, y−1] tel que F (y) = F (yn)/n pour tout n ≥ 1, et est donc
une constante. �

4.5 Groupes algébriques (suite)

Reprenons maintenant la liste des définitions relatives aux groupes
algébriques.

Voici tout d’abord des notions stables par changement de corps de base.
Un k-groupe G est connexe si il est connexe pour la topologie de Zariski (lorsque

k = C, cela équivaut à la connexité pour la topologie analytique).
Un k-groupe G est simplement connexe si toute k-isogénie H → G avec H

connexe est injective (lorsque k = C, cela équivaut à la simple connexité pour la
topologie analytique).

Un k-groupe est unipotent si tous ses éléments sont unipotents.
Le radical unipotent d’un k-groupe est le plus grand sous-groupe distingué

unipotent.
Un k-groupe est un k-tore si il est abélien et si tous ses éléments sont semi-

simples i.e. s’il est isomorphe sur K à une puissance (Gm)r du groupe multipli-
catif.

Un k-groupe est réductif si son radical unipotent est trivial.
Un k-groupe est semisimple si il ne contient pas de k-sous-groupe distingué

connexe abélien. Autrement dit il est semisimple ssi il est réductif à centre fini.
Un k-groupe semisimple est dit adjoint si son centre est trivial.
Une k-représentation d’un k-groupe est semisimple si tout k-sous-espace inva-

riant admet un supplémentaire invariant.

Voici maintenant des notions qui dépendent fortement du corps de base.
Un k-tore est k-déployé si il est isomorphe sur k à une puissance (Gm)r.
Un k-groupe est k-déployé si il contient un k-sous-tore maximal qui est k-

déployé.
Un k-groupe G est dit k-isotrope si il contient un k-sous-tore k-déployé non

trivial et k-anisotrope sinon.
Un k-groupe G est dit k-quasisimple si il est connexe et si tout k-sous-groupe

distingué propre est fini.
Une k-représentation d’un k-groupe G est k-irréductible si 0 et W sont les

seuls k-sous-espaces G-invariants.

Proposition 4.11 Lorsque G est semisimple, on a l’équivalence : G est k-
isotrope ssi Gk contient des éléments unipotents non triviaux.
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Démonstration Pour l’implication directe on diagonalise l’algèbre de Lie g pour
l’action adjointe d’un tore k-isotrope T. Chaque espace propre gχ associé à un
caractère non trivial χ de T est défini sur k et est formé d’éléments nilpotents.
On retrouvera cet argument en montrant le lemme 5.5.b.

La réciproque résulte de la proposition 2.14 et du théorème 2.15 de Jacobson
Morozov. Chaque élément nilpotent X de gk fait partie d’un sl2-triplet (X,H, Y )
dont l’élément H engendre l’algèbre de Lie d’un k-tore déployé de dimension 1.�

Proposition 4.12 Une k-représentation d’un k-groupe semisimple G est semi-
simple.

Démonstration Pour montrer cela on peut, comme pour la proposition 2.14
supposer k = C, et appliquer l’astuce unitaire avec le sous-groupe compact K ⊂
GC dont l’algèbre de Lie k est une forme réelle compacte de l’algèbre de Lie g de
GC. On a vu que ce groupe K existe dans le théorème 3.1. �

Remarque La catégorie des R-groupes semisimples simplement connexes G est
équivalente la catégorie des groupes de Lie semisimples réels simplement connexes
G ou à celle des algèbres de Lie semisimples réelles g. Une équivalence entre ces
catégories est donnée par les foncteurs G 7→ G 7→ g où G est le revêtement
universel de GR et g := Lie(G). C’est un yoga utile de passer d’un language à
l’autre.

Par exemple, un sous-espace de Cartan a de g n’est rien d’autre que “l’algèbre
de Lie des points réels d’un tore R-déployé maximal A de G”. Ou encore, la
catégorie des représentations de dimension finie de g est équivalente à la catégorie
des R-représentations de G.

Les géomètres différentiels et les analystes préfèrent souvent le deuxième lan-
guage car il est plus adapté aux questions géométriques et topologiques. Les
géomètres algébristes et les arithméticiens préfèrent souvent le premier language
car il ouvre la voie à des extensions à d’autres corps que R. Ces languages parlent
presque du même objet, tout comme le coffee américain et le caffè italien dési-
gnent presque la même boisson...

On a vu à plusieurs reprises ces deux points de vue s’éclairer l’un l’autre.
Rappelons en deux exemples particulièrement importants : L’astuce unitaire pour
montrer la semisimplicité des k-représentations. La décomposition de Jordan dans
G pour montrer la décomposition de Cartan de G.
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5 Groupes arithmétiques

Nous avons montré dans le chapitre 1, que, pour une forme qua-
dratique entière non dégénérée, le sous-groupe GZ des matrices or-
thogonales entières est un réseau dans le groupe GR des matrices
orthogonales réelles.

Le but de ce chapitre est de montrer comment la preuve s’adapte
à tous les Q-groupes et d’obtenir ainsi le théorème de Borel et Harish-
Chandra.

5.1 Groupes arithmétiques

Donnons tout d’abord la définition d’un sous-groupe arithmétique
d’un Q-groupe et vérifions qu’elle ne dépend pas, à commensurabilité
près, du plongement du Q-groupe dans un groupe de matrices.

Rappelons que l’expression Q-groupe est un raccourci pour groupe algébrique
linéaire défini sur Q. On renvoie au chapitre 4 pour les définitions précises des
notions relatives aux groupes algébriques que nous utiliserons.

Définition 5.1 Soit G un Q-groupe. Le sous-groupe GZ de G est appelé sous-
groupe arithmétique.

Cette définition 5.1 est provisoire : nous l’étendrons dans le chapitre 11.

Deux sous-groupes Γ1 et Γ2 d’un groupe Γ sont dits commensurables si l’inter-
section Γ1 ∩ Γ2 est d’indice fini à la fois dans Γ1 et Γ2.

Le corollaire ci-dessous affirme que le sous-groupe arithmétique d’un Q-groupe
G est bien défini à commensurabilité près, indépendamment de “la réalisation de
G comme groupe de matrices”.

Lemme 5.2 Soit ρ une Q-représentation d’un Q-groupe G dans un Q-espace
vectoriel VQ. Alors,
a) Le groupe GZ préserve un réseau ∆ ⊂ VQ.
b) Tout réseau ∆0 ⊂ VQ est préservé par un sous-groupe d’indice fini de GZ.

Démonstration a) Choisissons une base de VQ. Les coefficients des matrices
ρ(g)−1 s’expriment comme des polynômes à coefficients dans Q en les coefficients
des matrices g−1. Le coefficient constant de ces polynômes est nul. Donc il existe
un entier m ≥ 1 tel que, si g est dans le sous-groupe de congruence

Γm := {g ∈ GZ / g = 1 mod m},

alors ρ(g)a des coefficients entiers. Puisque Γm est d’indice fini dans GZ, ce groupe
GZ préserve aussi un réseau de VQ.
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b) C’est une conséquence du a) puisqu’on peut trouver des entiers N,N0 ≥ 1
tels que N∆ ⊂ N0∆0 ⊂ ∆. �

On en déduit facilement le corollaire suivant.

Corollaire 5.3 Soit ϕ : G1 → G2 un Q-isomorphisme de Q-groupes. Alors les
groupes ϕ(G1,Z) et G2,Z sont commensurables.

Le but principal de ce chapitre est de démontrer le théorème suivant dont le
point a) est dû à Borel, Harish-Chandra et le point b) à Godement.

Théorème 5.4 Soit G un Q-groupe.
a) Si G n’a pas de Q-caractère non trivial, alors GZ est un réseau de GR.
b) Si G n’a pas de Q-cocaractère non trivial, alors GZ est cocompact dans GR.

Remarque Les réciproques des points a) et b) sont vraies et beaucoup plus
facile :

Lemme 5.5 Soit G un Q-groupe.
a) Si G a un Q-caractère non trivial, alors GZ n’est pas un réseau de GR.
b) Si G a un Q-cocaractère non trivial, alors GZ n’est pas cocompact dans GR.

Remarque Un k-groupe G a un k-caractère non trivial ssi il a un k-cocaractère
central non trivial. En effet, pour le vérifier, on peut supposer, en quotientant G
par son radical unipotent, que G est réductif. Comme G est presque produit de
son centre connexe et de son groupe dérivé, on peut supposer que G est un tore.
On remarque alors que G est presque produit d’un tore k-isotrope par un tore
k-anisotrope. On renvoie à [7] pour plus de détails.

Démonstration du lemme 5.5 a) Par la proposition 4.8, l’image χ(GR)
contient R?+, alors que, par le lemme 5.2, l’image χ(GZ) est incluse dans (Gm)Z =
{±1}.

b) D’après le lemme 4.10, l’algèbre de Lie de l’image d’un Q-cocaractère est
de dimension 1 et est engendrée par un élément H diagonalisable. Comme les
seuls caratères du groupe multiplicatif Gm sont les puissances z 7→ zn, on peut
supposer que les valeurs propres de H sont entières. Par le a) et la remarque
ci-dessus, cet élément H n’est pas dans le centre de g. Il existe donc un entier
p 6= 0 et un élément non nul X ∈ g à coefficients entiers tel que [H,X] = pX.
Par le théorème 2.4 de Lie, cet élément X est nilpotent. En particulier, l’orbite
adjointe AdGR(X) contient 0 dans son adhérence. Si GZ était cocompact dans
GR, comme AdGZ(X) est un ensemble discret formée de matrices à coefficients
entiers, l’orbite adjointe AdGR(X) serait fermée. Contradiction. �

Corollaire 5.6 Soit G un Q-groupe semisimple.
a) Alors GZ est un réseau de GR.
b) GZ est cocompact dans GR ssi GZ n’a pas d’élément unipotent non trivial.

43



Remarque On a les équivalences : GZ n’a pas d’élément unipotent non trivial
⇔ GQ n’a pas d’élément unipotent non trivial ⇔ gQ n’a pas d’élément nilpotent
non nul.

En effet, l’application X → eX−1 et son inverse X → log(1+X) sont données
par des polynômes à coefficients rationnels quand on les applique à des matrices
nilpotentes.

Démonstration de : théorème 5.4 ⇒ corollaire 5.6
a) Un groupe semisimple n’a pas de caractère.
b) On a déjà vu dans la démonstration du point b) du lemme 5.5 que si G

a des Q-cocaractères non triviaux alors gQ contient des éléments nilpotents non
nuls.

Réciproquement, lorsque G est semisimple, un réseau cocompact Γ de GR ne
peut pas contenir d’élément unipotent non trivial. Voici pourquoi.

D’une part, la classe de conjugaison d’un élément unipotent contient e dans son
adhérence : c’est facile pour SL(2,R), le cas général s’en déduit par le théorème
2.15 de Jacobson Morozov.

D’autre part, la classe de conjugaison d’un élément γ0 ∈ Γ est fermée car
l’ensemble des conjugués {γγ0γ

−1 | γ ∈ Γ} est discret et GR/Γ est compact. �

Remarque Soit G un Q-groupe sans Q-caractère. Alors GR est unimodulaire.
En effet, comme l’application adjointe Ad est définie sur Q, le caractère g 7→
det(Ad(g)) est un Q-caractère. Il est donc trivial. Or, la fonction module est la
valeur absolue de la restriction à GR de ce caractère.

5.2 Stratégie de démonstration du théorème 5.4.a

Soit G un Q-groupe sans Q-caractère. On veut montrer que la
mesure GR-invariante λ sur GR/GZ est finie.

La première étape est un joli argument de plongement (proposition 5.7) qui
permettra, dès qu’on se donne une Q-représentation fidèle de G dans VQ, de
voir cette mesure λ comme une mesure de Radon sur l’espace X des réseaux de
volume 1 de VR.

On veut alors appliquer encore une combinaison des corollaires 1.5 et 1.14. Pour
cela, il suffit de construire une probabilité µ portée par GR vérifiant la condition
[HI]. Remarquons de nouveau que cette condition ne fait plus intervenir le groupe
GZ. Cette stratégie aboutira uniquement lorsque G est Q-simple, adjoint et Q-
isotrope. Ce sera la deuxième étape du raisonnement. Notons que cette étape est
la plus délicate, le groupe GZ y apparaissant comme un réseau non cocompact.

La troisième étape, le cas où G est Q-simple, adjoint et Q-anisotrope, est une
application du critère de Mahler. Elle prouvera que dans ce cas le quotient GR/GZ
est compact. Cette étape contient le critère de compacité de Godement.
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Dans la quatrième étape, on passera du cas Q-simple adjoint au cas réduc-
tif sans Q-caractère. Ce sera de nouveau une application du critère de Mahler
(proposition 5.11). Cette étape importante contient le cas où G est un tore Q-
anisotrope. Elle contient donc en particulier le théorème des unités de Dirichlet.

Enfin, dans la cinquième et dernière étape, la décomposition de Levi pour les
Q-groupes G = RU comme produit semidirect d’un Q-groupe reductif R et
d’un Q-groupe unipotent U (décomposition que nous admettrons) permettra de
montrer le théorème pour tous les Q-groupes sans Q-caractère. �

5.3 Le plongement dans l’espace des réseaux

Le plongement suivant permet de relier l’étude du quotient GR/GZ
à celle de l’espace des réseaux de Rd.

Proposition 5.7 Soit G ⊂ H = GL(d,C) un Q-groupe sans Q-caractère non
trivial. Alors l’injection GR/GZ ↪→ X = HR/HZ est propre.

Autrement dit, cette injection est un homéomorphisme sur une partie fermée
de X

Démonstration Nous devons montrer que pour toute suite gn ∈ GR, telle que
gnHZ converge dans dans HR/HZ, la suite gnGZ converge dans GR/GZ.

D’après la proposition 4.6 (avec H pour G et G pour H), il existe une Q-
représentation de H dans un Q-espace vectoriel VQ et un pointr x ∈ P(VQ) dont
le stabilisateur dans H est G. Puisque tous les Q-caractères de G sont triviaux,
le stabilisateur de tout point non nul v sur la droite x est aussi égal à G. Par le
lemme 5.2, le groupe HZ stabilise un réseau ∆ ⊂ VQ. On peut choisir ∆ contenant
v. Donc la HZ-orbite de v est discrète dans VR.

Soit hn ∈ HZ tel que lim
n→∞

gnhn = h. La suite h−1
n v converge vers h−1v et est

donc constante pour n grand. On peut donc écrire, pour n grand, hn = γnh avec
γ ∈ GZ, h ∈ HZ. La suite gnγn est alors convergente. �

5.4 Le cas Q-simple et Q-isotrope

Voici un cas particulier du théorème de Borel et Harish-Chandra
qui se trouve être le cas le plus délicat.

Lemme 5.8 Soit G un Q-groupe Q-simple, adjoint et Q-isotrope Alors GZ est
un réseau de GR

Démonstration Le premier point est de voir que, comme G est adjoint, G admet
une Q-représentation fidèle ρ qui est R-irréductible. La représentation adjointe est
somme directe ρ1⊕· · ·⊕ρ` de représentations irréductibles de G = G1×· · ·×G`

qui correspondent aux idéaux gi de l’algèbre de Lie de G. Chaque représentation
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ρi est irréductible sous l’action de Gi et ces représentations sont permutées par le
groupe de Galois Gal(C,Q). On prend pour ρ le produit tensoriel ρ = ρ1⊗· · ·⊗ρ`
de ces représentations. C’est une représentation fidèle de G définie sur Q qui est
C-irréductible. Elle est donc R-irréductible.

Le deuxième point est de voir que, comme G est Q-simple et Q-isotrope, le
groupe GR n’a pas de facteur compact. En effet, comme G est Q-simple, un
tel facteur est le groupe (Gi)R des R-points d’un facteur R-simple Gi de G vu
comme R-groupe. Mais, comme G est Q-simple et Q-isotrope, un tel facteur est
R-isotrope et donc non compact.

Le troisième point est d’utiliser le lemme 5.9 suivant qui permet de construire
une probabilité µ portée par GR vérifiant la condition [HI]. Ce qui permet de
conclure grâce à la stratégie décrite ci-dessus. �

Lemme 5.9 Soit G ⊂ GL(d,C) un R-groupe semisimple.Alors
a) il existe un produit scalaire euclidien sur Rd tel que, pour tout g dans G,
l’adjoint tg est aussi dans G.
b) Dans ce cas, si GR n’a pas de facteur compact, GR est engendré par GR ∩ S+

Rappelons que S+ est l’ensemble des matrices symétriques définies positives.

Démonstration L’algèbre de Lie gR de GR admet une involution de Cartan
θ qui correspond à une décomposition de Cartan gR = k ⊕ q (voir chapitre 3).
La sous-algèbre u = k⊕ iq a une forme de Killing définie négative. Elle est donc
l’algèbre de Lie d’un sous-groupe compact UR de GL(d,C). Ce groupe UR préserve
une forme hermitienne sur Cd. On prend pour produit scalaire la partie réelle de
la restriction à Rd de cette forme hermitienne.

b) Dans la décomposition gR = k⊕ q, les éléments M de q sont symétriques et
leurs exponentielles exp(M) sont symétriques définies positives. Comme [q, q]⊕ q

est un idéal de gR et que GR n’a pas de facteur compact, on a l’égalité gR =
[q, q]⊕ q et GR est engendré par exp(q). �

5.5 Le cas Q-simple et Q-anisotrope

Cette étape est plus simple que la précédente : Elle n’utilise que
le plongement et le critère de Mahler.

Corollaire 5.10 Soit G un Q-groupe Q-simple et Q-anisotrope.
Alors GZ est un réseau cocompact de GR

Démonstration Comme G est adjoint, on peut supposer que G est inclus dans
le groupe Aut(g) des automorphismes de l’algèbre de Lie g.

Par la proposition 5.7, le quotient GR/GZ est homéomorphe au sous-ensemble
fermé {Adg(gZ) | g ∈ GR} de l’ensemble des réseaux de gR. En outre tous ces
réseaux sont de même covolume. Si le quotient n’était pas compact, le critère de
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compacité de Mahler, i.e. la proposition 1.8, assurerait qu’il existerait gn ∈ GR
et Xn ∈ gZ − {0} tel que Ad(gn)(Xn) converge vers 0. Pour tout i ≥ 1, la suite
d’entiers n → tr(X i

n) converge vers 0. Elle donc nulle pour n grand. Donc pour
n grand, Xn est nilpotent. Et G n’est pas Q-anisotrope. Contradiction.

5.6 Le cas réductif

Le lemme clef pour passer du cas Q-simple adjoint au cas réductif
est la proposition suivante.

Proposition 5.11 Soit G un Q-groupe réductif, C le centre de G et H le Q-
groupe quotient H = G/C. On suppose que G n’a pas de Q-caractère. Alors,
l’application induite π : GR/GZ → HR/HZ est une application propre.

Remarques Ce quotient H est un Q-groupe semisimple adjoint. Il est donc
produit de groupes Q-simples adjoints.

Démonstration Soit G ⊂ End(V) notre Q-groupe et A := EndC(V) le com-
mutant de C dans End(V). Comme le centre C est réductif et défini sur Q,
l’algèbre associative A est semisimple et définie sur Q, en particulier, l’anneau
AZ = A∩End(VZ) est un réseau de AR := A∩End(VR) que l’on peut supposer
de covolume 1.

Le groupe G agit de deux façons sur l’algèbre A : l’action ρ par translation à
gauche et l’action σ par conjugaison qui factorise en une action de H. Rappelons
que G n’a pas de Q-caractère. En appliquant deux fois la proposition 5.7 on
obtient, d’une part, que le quotient GR/GZ est homéomorphe à l’ensemble des
translatés {gAZ | g ∈ GR} et, d’autre part, le quotient HR/HZ est homéomorphe
à l’ensemble des conjugués {h(AZ) | h ∈ HR}. En outre tous ces réseaux sont de
covolume 1. Supposons par l’absurde que l’application π n’est pas propre, il existe
donc une suite gn ∈ GR telle que gnAZ n’est pas bornée tandis que gnAZg

−1
n est

bornée.
Le critère de compacité de Mahler, i.e. la proposition 1.8, assure qu’il existe

une suite an ∈ AZ−{0} telle que gnan converge vers 0 et que toute suite a′n ∈ AZ
telle que gna

′
ng
−1
n converge vers 0 est nulle pour n grand.

Puisque l’algèbre associative semisimple A est somme directe de ses idéaux
bilatères définis sur Q minimaux B, on peut supposer que an est dans l’un des
BZ − {0}. Soit bi une base de BZ. Puisque detBgn = 1, par le lemme 1.10 de
Minkowski, on peut trouver C0 > 0 et des éléments non nuls cn ∈ BZ tels que
‖cng−1

n ‖ ≤ C0. Les éléments gnanbicng
−1
n convergent aussi vers 0. Donc, pour

n � 0, on a successivement, anbicn = 0, anBcnB = 0, anB = 0, et an = 0.
Contradiction. �

Corollaire 5.12 Soit ϕ : G→ H une Q-isogénie entre deux Q-groupes réductifs.
Alors les groupes ϕ(GZ) et HZ sont commensurables.
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Démonstration Quitte à remplacer G et H par l’intersection des noyaux de
leurs Q-caractères, on peut supposer G et H sans Q-caractère. Notons ZG le
centre de G et ZH le centre de H. On remarque que l’application ϕ induit un
isomorphisme G/ZG ' H/ZH. On applique alors deux fois la proposition 5.11 à
G puis à H pour en déduire que l’application GR/GZ → HR/HZ est propre. �

Remarque L’analogue de ce corollaire pour les Q-points est inexact : les groupes
ϕ(GQ) et HQ ne sont pas toujours commensurables. Prendre par exemple G =

SL(2) et H = PGL(2) et regarder les éléments de HQ donnés par
(
p 0
0 1

)
.

5.7 Conclusion

En utilisant la structure des Q-groupes, nous pouvons maintenant
terminer par récurrence notre raisonnement.

Démonstration du théorème 5.4 Remarquons tout d’abord que si G = HnN
est une décomposition d’un Q-groupe G en un produit semidirect d’un Q-sous-
groupe H et d’un Q-sous-groupe distingué N, alors le groupe HZNZ est inclus
dans GZ. En particulier si HZ est un réseau de HR et NZ est un réseau de NR,
alors GZ est un réseau de GR

D’après la décomposition de Levy, valable sur tout corps k de caractéristique
0, tout k-groupe G est un produit semidirect LnU d’un k-groupe réductif L et
d’un k-sous-groupe distingué unipotent U.

En outre, tout k-groupe unipotent de dimension n ≥ 1 est un produit semidirect
du k groupe additif Ga de dimension 1 et d’un k-sous-groupe distingué unipotent
U ′ de dimension n− 1.

Puisque le sous-groupe arithmétique (Ga)Z ' Z est un réseau cocompact du
groupe de Lie (Ga)R ' R, ces remarques ramènent la démonstration du théorème
5.4 au cas réductif que nous avons obtenu dans la proposition 5.11. �
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6 Mélange et comptage

Ce chapitre est encore au coeur des thèmes de ce cours reliant théo-
rie des nombres et théorie ergodique à travers la théorie des groupes.

L’objectif arithmétique est de donner l’asymptotique en r du nom-
bre de matrices de SL(d,Z) de norme au plus r. Nous obtiendrons plus
généralement un tel asymptotique pour tous les réseaux Γ des groupes
de Lie quasisimples G.

La propriété ergodique est ici le mélange de l’action des éléments
de G sur le quotient de volume fini G/Γ.

La théorie des représentations unitaires joue un rôle central dans
cette propriété de mélange.

Les démonstrations ci-dessous sont self-contained pour SL(d,Z),
sauf pour une formule explicite pour la mesure de Haar dans la dé-
composition de Cartan . Dans le cas général, nous utiliserons en plus
quelques propriétés sur la structure des groupes de Lie semisimples
réels, décompositions de Cartan et d’Iwasawa, que nous avons démon-
trées au chapitre 3.

6.1 Représentations unitaires et mélange

Commençons par la partie théorie des représentations unitaires et
énonçons une propriété générale, due à Howe et Moore, de décrois-
sance des coefficients des représentations unitaires.

Définition 6.1 Une représentation unitaire π d’un groupe localement compact
G dans un espace de Hilbert (séparable) Hπ est un morphisme de G dans le
groupe U(Hπ) des transfomations unitaires de Hπ, tel que, pour tout v dans Hπ,
l’application G→ Hπ; g 7→ π(g)v est continue.

Pour tout v, w dans Hπ, le coefficient est la fonction continue cv,w : G → C
donnée par cv,w(g) = <π(g)v, w>.

Exemples - La représentation triviale est la représentation constante π(g) = Id.
Ses coefficients sont des fonctions constantes.
- Quand G est compact, toute représentation unitaire est une somme hilbertienne
orthogonale de représentations unitaires irréductibles. Par Peter-Weyl, elles sont
de dimension finie.
- Supposons que G agisse continûment sur un espace localement compact X en
préservant une mesure de Radon ν. Alors la formule (π(g)ϕ)(x) := ϕ(g−1x) définit
une représentation unitaire π de G dans L2(X, ν) Pour montrer la continuité des
applications g 7→ π(g)ϕ, on la montre tout d’abord pour les fonctions continues
à support compact puis on utilise la densité de ces fonctions dans L2(X, ν).

Les coefficients

cϕ,ψ : g →
∫
X

ϕ(x)ψ(gx)dν(x)
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de cette représentation sont aussi appelés coefficients de corrélation.

Pour tout sous-groupe H de G, notons

HH
π := {v ∈ Hπ / ∀h ∈ H, π(h)v = v}

le sous-espace des vecteurs H-invariants.

Rappelons qu’un groupe de Lie G est semisimple si son algèbre de Lie g est
semisimple, et que G est quasisimple si g simple (voir chapitre 3). Par exemple
les groupes de Lie SL(d,R) et SO(p, q) sont quasisimples pour d ≥ 2 et p+ q ≥ 3.

Théorème 6.2 (Howe, Moore) Soit G un groupe de Lie réel connexe semi-
simple à centre fini et π une représentation unitaire de G. Supposons que HGi

π = 0
pour tout sous-groupe connexe normal Gi 6= 1.

Alors, pour tout v, w dans Hπ, on a lim
g→∞

<π(g)v, w> = 0.

Remarques - La preuve de ce théorème est reportée à la section 6.3.
- Le symbole g →∞ signifie que g sort de tout compact de G.
- D’après le théorème 2.7, il n’y a qu’un nombre fini de Gi.
- Quand g est simple, l’hypothèse est HG

π = 0.

Corollaire 6.3 Soit G un groupe de Lie réel connexe semisimple à centre fini et
π une représentation unitaire de G sans vecteur G-invariant non nul. Soit H un
sous-groupe fermé de G dont les images dans tous les groupes quotients G/Gi 6= 1
sont non compactes. Alors HH

π = 0.

Remarque - Quand g est simple, l’hypothèse sur H équivaut à H non compact.

Démonstration Par récurrence, en écrivant Hπ = HGi
π ⊕ (HGi

π )⊥, on peut sup-
poser que HGi

π = 0 pour tout i. Soit v un vecteur H-invariant. Le coefficient cv,v
est constant sur H. Par le théorème 6.2, il doit être nul. Donc v = 0. �

Corollaire 6.4 Soit G un groupe de Lie réel connexe quasisimple à centre fini,
Γ ⊂ G un réseau. Alors l’action de G est mélangeante sur X = G/Γ, i.e. on a la
propriété suivante de “décroissance des corrélations” : pour tout ϕ, ψ ∈ L2(X, dx),

lim
g→∞

∫
X

ϕ(x)ψ(gx)dx =

∫
X

ϕ(x)dx

∫
X

ψ(x)dx.

- Pour simplifier, on a noté dx = λX la probabilité G-invariante sur X.
- Une extension aux réseaux irréductibles sera donnée dans le corollaire 7.7.

Remarque En particulier, pour tout élément g ∈ G qui engendre un sous-groupe
non-borné de G, l’action de g sur X est ergodique, i.e. toute partie mesurable g-
invariante A de X vérifie λX(A) = 0 ou 1 (voir chapitre 8).
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Démonstration du corollaire 6.4 Ecrivons L2(X, dx) = C1 ⊕ L2
0(X, dx)

où L2
0(X, dx) désigne le sous-espace des fonctions d’intégrale nulle. D’après le

théorème 6.2, il suffit de remarquer que les fonctions G-invariantes ϕ de L2
0(X, dx)

sont nulles. Cela résulte de Fubini car si, pour tout g dans G, ϕ(gx) = ϕ(x) pour
presque tout x ∈ X, alors on peut trouver x ∈ X tel que, ϕ(gx) = ϕ(x) pour
presque tout g ∈ G. Et donc ϕ est presque sûrement constante. Donc ϕ = 0. �

6.2 Vecteurs invariants pour SL(2)

Commençons par une preuve directe du corollaire 6.3 pour le
groupe SL(2,R).

Pour t > 0 et s dans R, soit

at :=
(

t 0
0 t−1

)
, us :=

(
1 s
0 1

)
, u−s :=

(
1 0
s 1

)
.

Proposition 6.5 Soit π une représentation unitaire de G = SL(2,R), t 6= 1,
s 6= 0 et v ∈ Hπ. Si v est soit at-invariant, us-invariant ou u−s -invariant alors, il
est G-invariant.

Remarque La proposition 6.5 et sa démonstration sont encore valables pour
le groupe S revêtement universel de SL(2,R), en remplaçant les groupes à un
paramètre at, us et u−s par leur relèvement dans S.

On utilisera le lemme suivant.

Lemme 6.6 (Mautner) Soit π une représentation unitaire d’un groupe loca-
lement compact G. Pour v dans Hπ, notons Sv = {g ∈ G / π(g)v = v} son
stabilisateur dans G. Alors
a) Sv = {g ∈ G / cv,v(g) = ‖v‖2}.
b) Soit g dans G tel qu’il existe gn dans G, sn, s

′
n dans Sv avec

lim
n→∞

gn = g , lim
n→∞

sngns
′
n = e. Alors g est dans Sv.

Démonstration a) Utiliser l’égalité ‖π(g)v − v‖2 = 2 ‖v‖2 − 2 Re(cv,v(g)).
b) Faire tendre n vers l’infini dans l’égalité cv,v(gn) = cv,v(sngns

′
n) pour obtenir

cv,v(g) = ‖v‖2. �

Démonstration de la proposition 6.5 Il suffit de montrer que l’invariance
de v par l’un des trois at, us, u

−
s implique l’invariance par les deux autres. Grâce

aux symétries, il n’y a que deux cas à traiter :

at-invariant =⇒ us-invariant. On peut supposer t > 1. On utilise le
lemme 6.6.b avec gn = g = us, sn = a−nt et s′n = ant . On vérifie facilement
que lim

n→∞
sngns

′
n = lim

n→∞
ut−2ns = e.
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us-invariant =⇒ at-invariant. On peut supposer que t est rationnel, t = p
q
.

On utilise le lemme 6.6.b avec g = at, gn =
( p

q 0
t−1
snp

q
p

)
, sn = u−nps and s′n = unqs .

On vérifie facilement que lim
n→∞

sngns
′
n = lim

n→∞

(
1 0
t−1
snp 1

)
= e. �

6.3 Décroissance des coefficients

Dans cette section, nous donnons la preuve du théorème 6.2.

Nous aurons besoin du lemme suivant qui est un cas spécial du corollaire 6.3
que nous n’avons pas encore démontré.

Lemme 6.7 Soit π une représentation unitaire d’un groupe de Lie réel connexe
quasisimple G à centre fini, a 6= 1 un élément hyperbolique de G, et u 6= 1 un
élément unipotent de G. Si un élément v de Hπ est soit a-invariant ou u-invariant
alors il est G-invariant.

Rappelons qu’un élément g ∈ G est unipotent (resp. hyperbolique) si g = eX

avec X ∈ g et adX nilpotent (resp. diagonalisable sur R).

Démonstration 1er cas : v est a-invariant. Ecrivons a = eX et décomposons
g en g = u⊕ l⊕ u− où u (resp. l, u−) sont la somme des espaces propres de adX
associés aux valeurs propres strictement négatives (resp. nulles, strictement posi-
tives). Ce sont des sous-algèbres de Lie. On note U (resp L, U−) les sous-groupes
de Lie connexes correspondants. Le même argument que dans la proposition 6.5
montre que v est invariant par U et U−. On conclut que v est G-invariant grâce
au fait suivant : les deux groupes U et U− engendrent G. Pour montrer ce fait,
on remarquera juste que la somme directe u− ⊕ ([u−, u] ∩ l)⊕ u est un idéal de g

et est donc égal à g.
2ème cas : v est u-invariant. Notons u = eN avec N ∈ g nilpotent. D’après le

théorème 2.15 de Jacobson-Morozov, il existe une sous-algèbre de Lie s ' sl(2,R)
de g contenant X. Par la proposition 6.5, v est invariant par le sous-groupe S
d’algèbre de Lie s. La proposition 2.14 qui classifie les représentations de s prouve
que S contient des éléments hyperboliques, nous sommes de nouveau dans le
premier cas. �

Remarque Lorsque g = sl(d,R), la démonstration du théorème de Jacobson
Morozov est très facile. On veut montrer que toute matrice nilpotente N est dans
l’image d’une représentation de l’algèbre de Lie s = sl(2,R). Rappelons que s a
pour base X,H, Y avec

X :=
(

0 1
0 0

)
, H :=

(
1 0
0 −1

)
, Y :=

(
0 0
1 0

)
.

qui vérifient les relations

[H,X] = 2X , [H,Y ] = −2Y et [X, Y ] = H.
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Dans une base convenable, N est une matrice formée de blocs de Jordan. On se
ramène facilement au cas où N est un seul bloc de Jordan. Or la représentation
ρd de sl(2,R) dans l’espace vectoriel Vd des polynômes de degré d − 1 sur R2

envoie X,H, Y respectivement sur

x ∂
∂y

, x ∂
∂x
− y ∂

∂y
et y ∂

∂x
.

En particulier, dans la base xd−1, xd−2y, . . . , yd−1, ρd(X) est un bloc de Jordan de
taille d et ρd(H) est diagonale. C’est ce que l’on voulait.

Démonstration du théorème 6.2 L’idée est d’utiliser la compacité faible de
la boule unité de Hπ et la décomposition de Cartan G = KA+K de G pour
construire dans Hπ un vecteur v0 invariant par un unipotent u ∈ G.

La décomposition de Cartan de G (voir chapitre 3) affirme qu’il existe un sous-
groupe compact K de G et une partie A+, appelée chambre de Weyl, d’un sous
groupe commutatif A formé d’éléments hyperboliques tels que G = KA+K.

Si le coefficient <π(g)v, w> ne décroit pas vers 0, on peut trouver des suites
gn = knank

′
n ∈ G = KAK telles que

lim
n
<π(gn)v, w>= ` 6= 0 , lim

n
kn = k , lim

n
k′n = k′ ,

et pour certaines racines α de A dans g, lim
n
α(an) = ∞. En particulier,il existe

un élément unipotent u ∈ G non trivial tel que a−1
n uan → e. On peut supposer

que k = k′ = e.
La compacité faible de la boule unité de Hπ affirme que, toute suite vn ∈ Hπ

avec ‖vn‖ ≤ 1 a une sous-suite vnk qui converge faiblement vers un vecteur v∞
i.e. pour tout v′ ∈ Hπ, on a limk→∞〈vnk , v′〉 = 〈v∞, v′〉.

On peut donc, quitte à extraire, supposer que la suite π(an)v a une limite faible
v0 ∈ Hπ. Vérifions que ce vecteur v0 est non nul.
Comme limn ‖π(k′n)v − v‖ = limn ‖π(k−1

n )v − v‖ = 0, on a bien

<v0, w> = lim
n
<π(an)v, w> = lim

n
<π(an)π(k′n)v, π(k−1

n )w>

= lim
n
<π(gn)v, w>6= 0

En outre, ce vecteur est u-invariant, parce que, comme a−1
n uan → e, on a

‖π(u)v0 − v0‖ ≤ lim
n
‖π(an)(π(a−1

n uan)v − v)‖ = 0 .

Ceci contredit le lemme 6.7. �

Remarque Pour G = SL(d,R), le groupe K est le groupe SO(d,R) et la chambre
de Weyl A+ est l’ensemble des éléments diagonaux de G à coefficients positifs et
rangés en ordre décroissant. La décomposition de Cartan G = KA+K est une
conséquence des deux faits élémentaires suivants. Primo : toute matrice réelle
inversible est (de façon unique) le produit d’une matrice orthogonale et d’une
matrice symétrique définie positive. Secundo : toute matrice symétrique définie
positive est diagonalisable dans une base orthonormée.
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6.4 Comptage des points d’un réseau

Rappelons que notre objectif dans ce chapitre est de compter les
points dans SL(d,Z). Ce comptage sera un corollaire immédiat du
théorème général suivant dû à Duke, Rudnick et Sarnak.

Soit G ↪→ SL(d,R) un sous-groupe de Lie quasisimple connexe, K un sous-
groupe compact maximal de G, ‖‖ une norme euclidienne K-invariante sur Rd.
On note de la même façon la norme induite sur les matrices.

Notons Br := {g ∈ G | ‖g‖ ≤ r} la trace sur G de la boule de rayon r.
Soit Γ un réseau de G. On veut estimer #(Γ ∩ Br). Notons λG la mesure de

Haar sur G que l’on normalise de sorte que la mesure induite λX sur le quotient
X := G/Γ soit de volume 1. Posons vr := λG(Br).

Lorsque f et g sont deux fonctions positives sur ]0,∞[, on dira que f et g sont

asymptotiquement équivalentes et on notera f ∼ g lorsque lim
r→∞

f(r)

g(r)
= 1.

Théorème 6.8 (Duke, Rudnick, Sarnak) #(Γ ∩Br) ∼ vr

La fin de ce chapitre est consacrée à la démonstration du théorème 6.8. Nous
suivrons la démonstration d’Eskin et Mc Mullen.

Corollaire 6.9 Soit ‖‖ une norme euclidienne sur Rd et, pour g ∈ GL(d,R),
notons ‖g‖ = sup‖v‖=1 ‖gv‖. Alors, il existe c > 0, tel que,

#{g ∈ SL(d,Z) | ‖g‖ ≤ r} ∼ c rd
2−d.

Remarques - Il est possible, à partir du raisonnement ci-dessous de calculer
explicitement la constante c.

- La croissance de vr est donc exponentielle... comme fonction de R := log r.

6.5 Equidistribution des grandes sphères

La première étape de la démonstration consiste à pousser une pro-
babilité K-invariante sur le quotient X = G/Γ par de grands éléments
de G et à montrer que les mesures obtenues ainsi s’équirépartissent
i.e. ces mesures convergent vers la probabilité G-invariante sur X.

Notons x0 = Γ le point base de X = G/Γ, Y = Kx0 sa K-orbite et λY la
probabilité K-invariante sur Y .

Proposition 6.10 On a lim
g→∞

g?λY = λX .
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Cette limite est la limite pour la convergence faible des mesures. Elle signifie
que pour toute fonction continue à support compact ϕ ∈ Cc(X),

lim
g→∞

∫
Y

ϕ(gy)dλY (y) =

∫
X

ϕ(x)dλX(x).

Remarque Cette proposition a une signification géométrique importante : elle
implique que l’image dans le quotient Γ\G/K des “grandes sphères de l’espace
symétrique riemannien”G/K s’équirépartissent dans ce quotient.

Démonstration On va non seulement utiliser la décomposition de Cartan G =
KA+K de G comme dans la démonstration du théorème 6.2 mais aussi la décom-
position d’Iwasawa G = U−AK où U− est le groupe de Lie connexe dont l’algèbre
de Lie u− est la somme des espaces radiciels associés aux racines négatives (voir
chapitre 3).

1er cas : Supposons que g = a est dans A+. Fixons ε > 0. Par uniforme
continuité de ϕ, il existe un voisinage ouvert Gε de e dans G tel que

|ϕ(ux)− ϕ(x)| ≤ ε pour tout u ∈ Gε et x ∈ X.

Soit W le groupe résoluble W = U−A. La décomposition d’Iwasawa donne un
difféomorphisme W ×K → G; (w, k) 7→ wk. Dans cette carte, la mesure de Haar
λG de G est le produit λW ⊗ λK de la mesure de Haar à gauche de W et de la
mesure de Haar de K.

Comme l’action adjointe de A+ sur l’algèbre de Lie de W est simultanément
diagonalisable avec des valeurs propres toujours de modules au plus 1, on peut
trouver un ouvert Wε ⊂ W ∩Gε tel que

aWεa
−1 ⊂ Wε pour tout a ∈ A+.

Par compacité de K, on peut aussi supposer Wε suffisamment petit pour que
l’application Wε × Y → X; (w, y) 7→ wy soit un difféomorphisme sur son image
WεY ⊂ X. Notons alors βε la fonction L2 sur X, βε = 1

λX(WεY )
1WεY . On veut

montrer que, lorsque a ∈ A+ tend vers l’infini, l’intégrale

Ia :=

∫
Y

ϕ(ay)dλY (y)

converge vers I :=
∫
X
ϕ(x)dλX(x). Pour cela on compare l’intégrale Ia à l’intégrale

Ja :=

∫
X

ϕ(ax)βε(x)dλX(x).

D’une part, la propriété de mélange pour l’action de G sur X (corollaire 6.4)
prouve que

lim
a→∞

Ja = I.
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D’autre part, pour tout a ∈ A+, on a

Ja =
1

λW (Wε)

∫
Wε×Y

ϕ(awy)dλW (w)dλY (y)

et, par le choix de Wε, on a, en écrivant awy = (awa−1)ay,

|ϕ(awy)− ϕ(ay)| ≤ ε pour tout w ∈ Wε et a ∈ A+.

On en déduit la majoration,

|Ia − Ja| ≤ ε pour tout a ∈ A+.

Donc pour a suffisamment grand, on a |Ia − I| ≤ 2ε et donc lim
a→∞

Ia = I.

2ème cas : Cas général. On peut supposer que g tend vers l’infini selon une suite
gn. Ecrivons grâce à la décomposition de Cartan gn = knank

′
n avec kn, k

′
n ∈ K

et an ∈ A+. La K-invariance de λY permet de supposer k′n = 1. Comme K est
compact, on peut aussi supposer que la suite kn converge vers un élément k∞ ∈ K.
La suite de fonctions ϕ ◦ kn converge alors uniformément vers ϕ ◦ k∞. On a donc,
en utilisant le premier cas,

lim
n→∞

∫
Y

ϕ(gny)dλY (y) = lim
n→∞

∫
Y

ϕ(k∞any)dλY (y)

=

∫
X

ϕ(k∞x)dλX(x) =

∫
X

ϕ(x)dλX(x).

C’est ce que l’on voulait. �

Remarque Pour G = SL(d,R), La décomposition d’Iwasawa G = U−AK est
une conséquence du procédé d’orthonormalisation de Gramm-Schmidt qui affirme
que toute matrice réelle inversible est (de façon unique) le produit d’une matrice
orthogonale et d’une matrice triangulaire inférieure à coefficients diagonaux po-
sitifs.

6.6 Comptage faible

Dans la deuxième étape de la démonstration du théorème 6.8,
plutôt que d’estimer directement le nombreNr de points de Γ dans une
boule Br, on va tout d’abord estimer une moyenne sur g du nombre
de points des translatés gΓ dans ces boules Br.

On introduit donc la fonction

Fr : X → N
x = gΓ 7→ Fr(x) := #(Br ∩ gΓ) =

∑
γ∈Γ

1Br(gγ).
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Lemme 6.11 On a la convergence faible lim
r→∞

Fr
vr

= 1.

Autrement dit, pour toute fonction continue à support compact ϕ ∈ Cc(X),

lim
r→∞

1

vr

∫
X

Fr(x)ϕ(x)dλX(x) =

∫
X

ϕ(x)dλX(x).

Démonstration On commence par un simple calcul du membre de gauche, en
remarquant que la boule Br est K-invariante.

1

vr

∫
X

Fr(x)ϕ(x)dλX(x) =
1

vr

∫
G/Γ

∑
γ∈Γ

1Br(gγ)ϕ(gx0)dλX(gΓ)

=
1

vr

∫
G

1Br(g)ϕ(gx0)dλG(g)

=
1

vr

∫
Br

(∫
K

ϕ(gkx0)dλK(k)

)
dλG(g)

La proposition 6.10 assure que la fonction g →
∫
K
ϕ(gkx0)dλK(k) converge pour

g → ∞ vers la constante
∫
X
ϕ(x)dλX(x). La moyenne de cette fonction sur la

boule Br a la même limite pour r →∞ car le volume vr tend vers l’infini. �

6.7 Estimation de volumes

La dernière étape de la démonstration du théorème 6.8 consiste
à déduire le comptage à partir du comptage faible. Pour cela on a
besoin d’un équivalent asymptotique pour le volume vr. Nous ne dé-
montrerons cet équivalent que pour G = SL(d,R).

Lemme 6.12 Il existe a > 0, b ≥ 0, c > 0 tels que vr ∼ c ra(log r)b.

Montrons tout d’abord comment on en déduit le comptage.

Démonstration du théorème 6.8 Fixons ε > 0. Introduisons l’ouvert de G,
Gε := {g ∈ G | max(‖g‖, ‖g−1‖) ≤ eε}. C’est, pour ε petit, un petit voisinage de
l’identité dans G que l’on peut identifier via la projection p : G→ X = G/Γ à un
voisinage de x0. Choisissons une fonction continue positive ϕ̃ ∈ Cc(G) d’intégrale
égale à 1 et dont le support est inclus dans Gε. Notons ϕ ∈ Cc(X) la fonction à
support dans p(Gε), donnée par ϕ(p(g)) = ϕ̃(g), pour tout g ∈ Gε. On a donc les
inégalités

ϕ̃(g)1Bre−ε (gγ) ≤ ϕ̃(g)1Br(γ) ≤ ϕ̃(g)1Breε (gγ),

En sommant ces inégalités pour γ ∈ Γ et en les intégrant pour g ∈ Gε, on obtient,

1

vr

∫
X

ϕ(x)Fre−ε(x)dλX(x) ≤ 1

vr
Nr ≤

1

vr

∫
X

ϕ(x)Freε(x)dλX(x).
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En faisant tendre r vers l’infini, on obtient, grâce au lemme 6.11 de comptage
faible et au lemme 6.12 qui donne l’asymptotique du volume

e−aε = lim
r→∞

vre−ε

vr
≤ lim inf

r→∞

Nr

vr
≤ lim sup

r→∞

Nr

vr
≤ lim

r→∞

vreε

vr
= eaε.

Comme ε > 0 est arbitrairement petit, le quotient Nr
vr

tend bien vers 1. �

Pour montrer le lemme 6.12, nous aurons besoin de la formule suivante pour la
mesure de Haar dans la décomposition de Cartan G = KA+K. On note, comme
dans la section 3.5, Σ+ l’ensemble des racines positives de A+ dans g et mα la
dimension de l’espace radiciel gα associé à une racine α.

Lemme 6.13 Il existe c0 > 0, tel que, pour tout f ∈ Cc(G), on a∫
G

f(g)dg = c0

∫
K×a+×K

f(keXk′)

( ∏
α∈Σ+

sinh(α(X))mα

)
dkdXdk′.

Nous avons simplifié dans cette formule les notations dλG(g) et dλK(k) en dg
et dk, et nous avons considéré les racines restreintes α comme des formes linéaires
sur a et noté a+ = log(A+) = {X ∈ a | α(X) ≥ 0, pour tout α ∈ Σ+}.

Nous admettrons cette formule 6.13 dont la démonstration se ramène à un
calcul de Jacobien et peut être trouvée dans le livre de Helgason p.186.

Démonstration du corollaire 6.9 et du lemme 6.12 pour SL(d,R)
C’est un calcul dont nous donnons simplement les grandes lignes. Appliquons
la formule pour la mesure de Haar pour G = SL(d,R), en notant les éléments
X ∈ a+ sous la forme

X = diag(u, u− t1, . . . , u− t1 − · · · − td−1),

avec u = 1
d

((d− 1)t1 + (d− 2)t2 + · · ·+ td−1). On obtient,

vr = c0

∫
[0,∞[d−1

1{eu≤r}
∏

1≤i<j≤d−1

sinh(ti + · · ·+ tj)dt1 . . . dtd−1.

On cherche un équivalent pour vr. Pour tout ε > 0, on obtiendra le même équi-
valent en restreignant l’intégrale au cône donné par max(t1, . . . , td−2) ≤ εtd−1.
On peut donc remplacer les d − 1 facteurs sinh(ti + · · · + td−1) par 1

2
eti+···+td−1

sans changer l’équivalent. On intègre alors en la variable td−1 sur l’intervalle
[0, d log r − (d− 1)t1 − · · · − 2td−2]. Tous calculs faits, on obtient, avec une inté-
grale qui est finie,

vr ∼
c0 r

d(d−1)

(d−1)2d−1

∫
[0,∞[d−2

∏
1≤i<j≤d−2

sinh(ti + · · ·+ tj)
∏

1≤i≤d−2

e−d(d−i−1)tidt1 . . . dtd−2.

On obtient bien l’équivalent vr = c rd(d−1) annoncé où c/c0 est un nombre ration-
nel. �
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7 Réseaux

Nous étudions dans cette partie les réseaux Γ des groupes de Lie
semisimples réels. En particulier comment une action de Γ induit une
action Γ-équivariante entre les bords. L’étude des propriétés de cette
application aux bords sera la clef de la superrigidité. Les applica-
tions les plus intéressantes de ces méthodes, par exemple le théorème
d’arithméticité, nous obligent à travailler non seulement sur R ou C
mais aussi sur des extensions finies de Qp.

7.1 Zariski densité des réseaux

Le théorème suivant, dû à Borel, est souvent bien utile. La dé-
monstration ci-dessous, due à Furstenberg, est bien dans l’esprit de
ce cours : Elle utilise, d’une part, un théorème de Chevalley sur les es-
paces homogènes de groupes algébriques et, d’autre part, l’étude des
groupes de transformations linéaires qui préservent une probabilité
sur l’espace projectif.

Théorème 7.1 Soient k = R et G = Gk le groupe des k-points d’un k-groupe
Zariski connexe. On suppose qu’il n’existe pas de sous-groupe distingué Zariski
fermé G′  G tel que le quotient G/G′ est compact. Alors tout réseau Γ de G est
Zariski dense.

Remarque L’hypothèse du théorème 7.1 est très facile à vérifier en pratique.
Elle est satisfaite par exemple lorsque G est quasisimple et isotrope.

Plus généralement, soit G le produit d’un nombre fini de groupes Gp avec p
premier ou∞, où Gp est le groupe des Qp-points d’un Qp-groupe Zariski connexe
et où Q∞ = R. On appelle topologie de Zariski sur G la topologie produit des
topologies de Zariski sur les Gp. Alors, la même preuve donnera aussi.

Théorème 7.1 (bis) Soit G le produit d’un nombre fini de groupes Gp avec p
premier ou∞, où Gp est le groupe des Qp-points d’un Qp-groupe Zariski connexe.

On suppose qu’il n’existe pas de sous-groupe distingué Zariski fermé G′  G tel
que le quotient G/G′ est compact. Alors tout réseau de G est Zariski dense dans
G.

Démonstration du théorème 7.1 Soit H l’adhérence de Zariski de Γ. D’après
le lemme 7.2 ci-dessous, le groupe H est défini sur k. D’après le théorème 4.6 de
Chevalley, il existe une k-représentation ρ de G dans un espace vectoriel V = Kd

de dimension d et une droite x0 ∈ P(kd) dont H est le stabilisateur : H = {g ∈ G |
ρ(g)x0 = x0}. On peut supposer que l’orbite Gx0 engendre Kd. Par la proposition
4.8, le groupe G est Zariski dense dans G et donc Gx0 engendre l’espace vectoriel
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kd. Cette même proposition et le corollaire 4.5 prouvent aussi que le groupe image
ρ(G) est fermé dans les k-points du groupe algébrique image ρ(G) ⊂ PGLd.

Comme x0 est Γ-invariant, on a une application G-équivariante i : G/Γ →
P(kd) donnée par i(gΓ) = ρ(g)x0. La probabilité i∗(µ) image de la probabilité G
invariante µ sur G/Γ est une probabilité ρ(G)-invariante sur P(kd). Le lemme 7.3
ci-dessous prouve alors que ρ(G) est compact pour la topologie analytique. Ceci
contredit notre hypothèse à moins que ρ(G) = 1. On a donc H = G. �

Lemme 7.2 Soit k ⊂ K deux corps, V = Kd et Z ⊂ Kd une K-variété telle que
l’ensemble des k-points Zk est Zariski dense dans Z. Alors Z est définie sur k.

Démonstration du lemme 7.2 Soit I ⊂ K[V] l’idéal annulateur de Z et
Im = I ∩Km[V]. Comme Zk est Zariski dense dans Z, les sous-espaces Im sont
définis par un système d’équations linéaires à coefficients dans k. Ils ont donc une
base à coefficients dans k. L’idéal I aussi. �

Lemme 7.3 (Furstenberg) Soit k = R, C ou une extension finie de Qp. Soient
E = kd, P(E) l’espace projectif de E, PGL(E) le groupe des transformations
projectives de E et ν une probabilité sur P(E). Supposons que le support de ν ne
peut être inclus dans une réunion P(E1) ∪ P(E2) pour deux sous-espaces propres
E1, E2  E tels que dimE1 + dimE2 = dimE. Alors
a) le stabilisateur S := {g ∈ PGL(E) | g∗ν = ν} de ν est compact.
b) Plus généralement, il n’existe pas de probabilité µ sur P(E) et de suite gp ∈ G
non bornée telle que lim

p→∞
(gp)∗µ = ν.

Démonstration Il est clair que S est fermé. Il suffit donc de montrer le point b).
Supposons par l’absurde que µ et gp existent. Quitte à extraire, on peut supposer
que la suite gp a une limite g ∈ P(EndE) qui n’est pas inversible. Notons Kerg
et Img le noyau et l’image de g. Plus précisément il s’agit du noyau et de l’image
communs à tous les éléments non nuls de la droite g. On peut supposer que la
limite E1 = lim

p→∞
gp(Kerg) existe et on pose E2 = Img.

Remarquons que si x 6∈ P(Kerg), alors lim
p→∞

gpx = gx ∈ P(E2) et que si x ∈
P(Kerg), alors toutes les valeurs d’adhérence de la suite gpx sont dans P(E1).

Donc, pour toute fonction ϕ continue à support dans P(E)−(P(E1) ∪ P(E2)),
le théorème de convergence dominée prouve que∫

P(E)

ϕ ◦ gp dµ −→ 0.

Mais cette limite est
∫

P(E)
ϕdν. Donc cette intégrale est nulle. Le support de ν

est inclus dans P(E1) ∪ P(E2). Contradiction. �
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7.2 Réseaux irréductibles

Nous montrons dans cette section que l’étude des réseaux des
groupes de Lie semisimples se ramène à celle des réseaux irréductibles.

On dit qu’un groupe localement compact G est presque produit de sous-groupes
distingués fermés Hi si la multiplication

∏
iHi → G a un noyau fini et une image

d’indice finie dans G. On dit qu’un groupe G est sans facteur compact si il n’admet
pas de décomposition en presque produit H1H2 avec H1 compact infini.

Par exemple, soit k = R, C ou une extension finie de Qp. Le groupe G des
k-points d’un k-groupe G semisimple est presque produit des groupes Gj des
k-points de ses facteurs k-quasisimples Gj. Le groupe G est sans facteur compact
ssi le k-groupe G n’a pas de facteur Gj qui soit k-anisotrope.

Définition 7.4 Un réseau Γ d’un groupe localement compact G est dit réductible
si G admet une décomposition en presque produit H1H2 où H1 et H2 sont des
sous-groupes distingués fermés infinis tels que (Γ ∩H1)(Γ ∩H2) est d’indice fini
dans Γ.

Le réseau Γ est dit irréductible sinon.

Exemples - Tout réseau du groupe G = Gk des k-points d’un k-groupe G
connexe k-quasisimple est irréductible.

- Le groupe Γ = {(g, gσ) | g ∈ SL(2,Z[
√

2])}, où σ est l’automorphisme non
trivial du corps Q[

√
2], est un réseau irréductible de SL(2,R)× SL(2,R).

- Le groupe Γ = {(g, g) | g ∈ SL(2,Z[1
p
])} est un réseau irréductible de

SL(2,R)× SL(2,Qp).

Proposition 7.5 Soit k = R et G = Gk le groupe des k-points d’un k-groupe
G semisimple connexe. On suppose G sans facteur compact. Donnons-nous une
décomposition G = H1H2 de G en presque produit de deux sous-groupes distingués
Hi et notons Γi := Γ ∩ Hi et πi : G → G/Hi la projection. Alors les assertions
suivantes sont équivalentes :
i) π1(Γ) est discret.
ii) Γ1 est un réseau de H1.
iii) π2(Γ) est discret.
iv) Γ2 est un réseau de H2.
v) Γ1Γ2 est d’indice fini dans Γ.

Remarque Plus généralement, la conclusion et la démonstration de la proposi-
tion 7.5 est valable pour un groupe G sans facteur compact qui est produit d’un
nombre fini de groupes Gp avec p premier ou∞, où Gp est le groupe des Qp-points
d’un Qp-groupe semisimple connexe.

Démonstration de la proposition 7.5
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i)→ ii) Cela résulte de la fibration H1/Γ1 → G/Γ→ H2/π1(Γ).
ii)→ iii) Le groupe Γ′1 := π2(Γ1) est donc un réseau de H ′1 := G/H2 normalisé

par le groupe ∆1 := π2(Γ). Or, le normalisateur N de Γ′1 dans H ′1 est discret. En
effet, les petits éléments de N commutent avec les éléments de Γ′1, donc l’algèbre
de Lie n de N est centralisé par les éléments de Γ′1. Comme G est sans facteur
compact, le théorème de densité de Borel prouve que H ′1 centralise n. Donc n = 0,
N est discret et ∆1 aussi.
iii)→ iv) et iv)→ i) se montrent comme ci-dessus.
ii) + iv)→ v) Le groupe Γ1Γ2 est un réseau de G inclus dans le réseau Γ. Il est

donc d’indice fini égal au rapport des covolumes.
v)→ ii) + iv) Si l’un des Γi n’est pas un réseau dans Hi le groupe discret Γ1Γ2

ne peut pas être un réseau dans le presque produit H1H2. �

Lemme 7.6 Soit k = R et G = Gk le groupe des k-points d’un k-groupe G se-
misimple connexe. On suppose G sans facteur compact. Pour tout réseau Γ de G,
il existe une décomposition G = H1 · · ·Hm en presque produit de k-sous-groupes
distingués connexes Hi tels que, pour tout i, Γ∩Hi est un réseau irréductible du
groupe Hi des k-points de Hi.

Cette décomposition est unique

Démonstration On prend pour Hi les k-sous-groupes distingués connexes mi-
nimaux de G pour lesquels Γ ∩Hi est un réseau du groupe Hi.

Par minimalité, Γ∩Hi est un réseau irréductible de Hi. En effet un sous-groupe
distingué fermé de Hi est ouvert dans son adhérence de Zariski.

D’après la proposition 7.5, le produit des Hi est égal à G. Il reste à vérifier
que, pour tout i 6= j, Hi ∩Hj est fini. Grace à la proposition 7.5, il suffit pour
cela de remarquer que, comme les images de Γ dans G/Hi et G/Hj sont discrètes,
l’image de Γ dans G/(Hi ∩Hj) est aussi discrète. �

Le théorème d’ergodicité de Howe Moore s’étend facilement aux réseaux irré-
ductibles.

Corollaire 7.7 Soient k = R et G = Gk le groupe des k-points d’un k-groupe
semisimple, Γ ⊂ G un réseau irréductible. Notons Ge le plus petit sous-groupe
ouvert de G et supposons que ΓGe = G. Alors, l’action de G est mélangeante sur
X = G/Γ. En particulier, pour tout élément g ∈ G qui engendre un sous-groupe
non-borné de G, l’action de g sur X est ergodique

Remarque Comme k = R, le groupe Ge est la composanre connexe de G. Mais
bien sûr, le corollaire est encore valable pour une extension finie k de Qp.

Démonstration du corollaire 7.7 D’après le théorème 6.2, il suffit de remar-
quer que pour tout sous-groupe distingué fermé non compact G′ de G les seules
fonctions G′-invariantes de L2(X, dx) sont les fonctions constantes.

62



Soit ϕ une telle fonction. On peut supposer que G′ est le plus grand sous-groupe
distingué laissant ϕ invariante. On peut aussi supposer ϕ bornée. Supposons par
l’absurde que dimG′ < dimG. CommeG′ est distingué, on peut voir ϕ comme une
fonction mesurable sur G invariante par translation à droite par le groupe G′Γ.
Comme la translation de G sur L∞(G) pour la topologie faible est continue, ϕ est
aussi invariante par le groupe H adhérence de G′Γ. Comme Γ est irréductible, la
proposition 7.5 prouve que l’on a dimH > dimG′. Par Zariski densité, l’algèbre
de Lie h de H est un idéal de g. Ceci contredit la maximalité de G′. Donc G′ est
ouvert dans G. L’hypothèse G = ΓGe assure alors que G′ = G. �

7.3 Groupes moyennables

Un espace vectoriel topologique localement convexe est dit espace de Fréchet
s’il est métrisable et complet.

Définition 7.8 Un groupe topologique G est moyennable si, pour tout espace de
Fréchet E, tout compact convexe non vide C ⊂ E et toute action linéaire continue
de G sur E laissant stable C, il existe un point fixe c de G dans C.

Voici quelques exemples.

Lemme 7.9 a) Un groupe compact est moyennable.
b) Un groupe abélien est moyennable.
c) Une extension de groupes moyennables est moyennable.
d) Un groupe de Lie semisimple connexe non compact n’est pas moyennable.

Démonstration a) Notons G ce groupe compact et dg sa probabilité de Haar.
Alors, pour tout point v ∈ C, le barycentre c :=

∫
G
g.v dg convient.

b) Notons G ce groupe abélien. Pour tout sous-groupe H de G, on note EH le
Fréchet EH := {v ∈ E | Hv = v} et CH le compact convexe CH := C ∩ EH . On
veut montrer que CG est non vide. Montrons tout d’abord que si H est engendré
par un élément g, alors CH est non vide. On emploie l’argument classique de
Kakutani. On part d’un point v ∈ C et on considère la suite vn = 1

n
(v+· · ·+gn−1v)

dans C. Elle admet une valeur d’adhérence c ∈ C. Comme gnv reste dans C, la
suite gvn − vn = 1

n
(gnv − v) converge vers 0. Donc le point c est g invariant.

Par récurrence sur le nombre de générateurs, on en déduit que, pour tout sous-
groupe H de type fini de G, on a CH 6= ∅. Cette famille de compacts non vide
CH est stable par intersection finie, donc l’intersection CG de tous ces compacts
est non vide. Le groupe G a bien un point fixe dans C.

c) Notons 1→ H → G→ K → 1 cette extension où H et K sont moyennable.
Comme H est moyennable l’ensemble CH := {v ∈ C | Hv = v} est un compact
convexe non vide du Fréchet EH := {v ∈ E | Hv = v} sur lequel le groupe
moyennable K = G/H agit continument. Le groupe K a donc un point fixe dans
CH , c’est le point cherché.
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d) Notons G ce groupe de Lie semisimple, P un sous-groupe parabolique mi-
nimal de G, X = G/P , E = M(X) l’espace des mesures finies sur X. Comme
X est compact, E est le dual de l’espace C(X) des fonctions continues sur X.
On munit C(X) de la norme ‖ϕ‖∞ = supx∈X |ϕ(x)|. On munit E de la topologie
faible : elle est définie par la famille de semi-normes pϕ : µ → pϕ(µ) =

∣∣∫
X
ϕdµ

∣∣
avec ϕ ∈ C(X). C’est un Fréchet.

Soit C = P(X) ⊂ E le convexe des probabilités sur X. Ce convexe C est un
fermé dans la boule unité de E pour la norme forte ‖µ‖ = sup‖ϕ‖∞=1 |Pϕ(µ)|.
Comme la boule unité est faiblement compact, C aussi.

Mais G n’a pas de points fixes dans C. En effet, le compact maximal K de G
agit transitivement sur X. Il y a donc une seule probabilité K-invariante ν sur
X. Malheureusement cette probabilité n’est pas invariante par un élément a de
l’intérieur de la chambre de Weyl car, en notant x0 le point base de G/P , pour
tout x dans l’ouvert U−x0, on a limn→∞ a

nx = x0. �

Corollaire 7.10 a) Un groupe de Lie connexe est moyennable ssi le quotient par
son radical résoluble est compact.
b) Soit G un groupe de Lie réel semisimple connexe et P un sous-groupe parabo-
lique minimal de G. Alors P est moyennable.

Démonstration a) Cela résulte directement du lemme 7.9.
b) Cela résulte du théorème 3.14.b et du lemme 7.9. �

Remarques - On a donc trouvé dans G un sous-groupe moyennable P tel que
le quotient G/P est compact.

- Plus généralement, soit k = R, C ou une extension finie de Qp. Soit G un
k-groupe semisimple et P un k-sous-groupe parabolique minimal. Alors le groupe
Pk est moyennable et le quotient Gk/Pk est compact.

7.4 L’application aux bords

Partant de l’action d’un réseau Γ sur un espace compact X, on va
construire une application aux bords.

Proposition 7.11 (Furstenberg) Soient G un groupe de Lie semisimple, Γ ⊂
G un réseau et P ⊂ G un sous-groupe parabolique minimal. Pour toute action
continue de Γ sur un espace métrique compact X, il existe une application mesu-
rable Γ-équivariante Φ : G/P → P(X).

- Rappelons qu’on a noté C(X) := {fonctions continues sur X}, M(X) :=
{mesures bornées sur X} et P(X) := {probabilités sur X}.

- Nous avons muni implicitement G/P d’une mesure G-quasiinvariante, par
exemple une mesure K-invariante ν0.
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- Mesurable signifie que pour toute partie borelienne E ′ de l’espace métrique
compact P(X), l’image inverse Φ−1(E ′) est mesurable dans G/P i.e. égale à une
partie borélienne G/P modulo une partie négigable.

- Γ-équivariante signifie que pour tout γ ∈ Γ et presque tout ξ ∈ G/P , on a
Φ(γξ) = γΦ(ξ).

- L’application Φ est appelée application aux bords, puisque G/P peut être vue
comme un bord de l’espace symétrique G/K.

Démonstration Soit F := L1
Γ(G,C(X)) l’espace des applications mesurables

Γ-équivariantes f : G → C(X) telles que ‖f‖ :=

∫
Γ\G
‖f(g)‖∞dg < ∞. Soit

E := L∞Γ (G,M(X)) l’espace des applications mesurables bornées Γ-équivariantes
m : G→M(X). La dualité

<m, f >:=

∫
Γ\G

<m(g), f(g)> dg

identifie E avec le dual continu F , parce que si Y est un domaine fondamental
de Γ dans G, on a F ' L1(Y,C(X)) et E ' L∞(Y,C(X)?) ' F ?. La partie
A = L∞Γ (G,P(X)) ⊂ E est convexe, fermée et bornée, elle est donc faiblement
compacte. La translation à droite sur G induit des actions continues de G sur F ,
E et A.

Par le corollaire 7.10.b, le groupe P est moyennable, il a donc un point fixe
Φ dans A. Ce point Φ est l’application mesurable cherchée. En effet, un élément
P -invariant de E est presque sûrement égal à une fonction mesurable qui est
constante sur les orbites de P . �

- Cette application au bord jouera pour le théorème de superrigidité le rôle de
l’application au bord construite par Mostow par des méthodes géométriques pour
montrer son théorème de rigidité. Nous aurons besoin d’outils issus de la théorie
ergodique pour l’exploiter
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8 Théorie ergodique

Ce court chapitre est constitué de rappels de théorie ergodique, en
vue de leur utilisation dans la démonstration du théorème de super-
rigidité et du théorème de Ratner.

8.1 Probabilités ergodiques

Soit (X,B, µ, f) un système dynamique probabilisé, autrement dit B est une
σ-algèbre de parties de X, µ est une mesure de probabilité sur B et f : X → X
une application B-mesurable qui préserve µ.

Plus généralement, soit f une transformation B-mesurable qui préserve la classe
de µ.

Définition 8.1 On dit que f est ergodique (pour µ) si toute partie mesurable f -
invariante est négligeable ou de complémentaire négligeable, i.e. pour tout A ∈ B,
f−1(A) = A =⇒ µ(A) = 0 ou 1.

Remarque Lorsque la transformation f est sous-entendue, c’est la mesure µ que
l’on qualifie d’ergodique.

La proposition suivante donne une interprétation L2 de l’ergodicité d’une trans-
formation f qui préserve une probabilité µ. Cette interprétation relie donc les
propriétés dynamiques de f aux propriétés spectrales de l’opérateur unitaire
Uf : ϕ 7→ ϕ ◦ f de L2(X,µ).

Proposition 8.2 La transformation f est ergodique ssi les fonctions constantes
sont les seuls éléments f -invariants de L2(X,µ).

Démonstration ⇐ La fonction caractéristique ϕ = 1A d’une partie f -invariante
est un élément f -invariant de L2(X,µ). On a donc ϕ = 0 ou ϕ = 1.
⇒ Soit ϕ ∈ L2(X,µ) un élément f -invariant. Cela signifie que ϕ ◦ f = ϕ

µ-presque sûrement. Une telle fonction ϕ est µ-presque sûrement égale à une
fonction ϕ0 telle que ϕ0(x) = ϕ0(f(x)) pour tout x ∈ X. Les parties At =
ϕ−1

0 ([t,∞)) sont f -invariantes et donc de mesure 0 ou 1. La fonction ϕ0 est donc
presque sûrement constant. �

8.2 Dynamique des transformations ergodiques

Voici une proposition qui permet de comprendre la force de la no-
tion d’ergodicité. Cette proposition étaye l’intuition“je passe partout”
sous-jacente au mot ergodique dans un contexte topologique.
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Proposition 8.3 Soit X un espace métrique localement compact séparable, µ
une probabilité borélienne sur X et f : X → X un homéomorphisme qui préserve
la classe µ. Si f est ergodique alors µ-presque toute orbite Ox := {fn(x) | n ∈ Z}
est dense dans supp(µ).

Démonstration On peut supposer que X = supp(µ) Soient D une partie dé-
nombrable dense de X et D l’ensemble des boules ouvertes centrées en D de rayon
rationnel positif. Pour tout B ∈ D, l’ensemble AB := ∪p∈Zf

−p(B) des points dont
l’orbite passe dans B vérifie f−1(AB) = AB. Par ergodicité de f , on a µ(AB) = 1.
L’intersection A = ∩B∈DAB vérifie aussi µ(A) = 1. Les orbites des points de A
sont denses dans X. �

Remarque Toute transformation continue f d’un espace compact X préserve
au moins une probabilité borélienne. Cela résulte du lemme 7.9.b. En outre, cette
probabilité f -invariante peut-être choisie ergodique. Cela résulte du théorème de
Krein-Milman car une probabilité G-invariante est ergodique ssi c’est un point
extrémal du convexe fermé P(X)G des probabilités G invariantes sur X.

Plus généralement, soit G un groupe localement compact séparable qui agit de
façon mesurables sur un espace probabilisé (X,B, µ) en préservant la classe de
µ. Cette action est dite ergodique si les seules parties mesurables G-invariantes
vérifient µ(A) = 0 ou 1.

On a l’extension suivante de la proposition 8.3.

Proposition 8.4 Soit X un espace métrique localement compact séparable, µ
une probabilité borélienne sur X et G un groupe localement compact séparable qui
agit continument sur X en préservant la classe de µ. On suppose l’action de G
ergodique. Alors µ-presque toute orbite Gx est dense dans supp(µ).

Démonstration C’est la même que celle de la proposition 8.3.

Corollaire 8.5 On garde les notations et hypothèses de la proposition 8.4. Soit
R une relation d’équivalence sur X dont les classes d’équivalence sont localement
fermées et G-invariantes. Alors il existe une classe d’équivalence Ω telle que
µ(Ω) = 1.

Démonstration Soit Ω une classe d’équivalence rencontrant une des orbites Gx
dont l’adhérence est Gx = supp(µ). On a donc supp(µ) ⊂ Ω. Si µ(Ω) = 0, comme
Ω est localement fermée, on aurait supp(µ) ⊂ Ω r Ω, ce qui contredirait le fait
que x est dans supp(µ). Par ergodicité, on a donc µ(Ω) = 1. �

Remarque Ce corollaire est utile lorsque G est un sous-groupe d’un groupe HR
où H est un R-groupe agissant de façon algébrique sur une R-variété X : comme
les HR-orbites dans XR sont localement fermées, les mesures G-ergodiques sur
XR sont alors portées par des HR-orbites.
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8.3 Théorème ergodique

Le théorème ergodique de Birkhoff exprime de façon précise une
idée intuitive pour une transformation ergodique : pour toute partie
mesurable A, la proportion de temps passé dans A par presque toutes
les orbites est égale à la mesure de A.

Théorème 8.6 (Birkhoff) Soit (X,B, µ, f) un système dynamique probabilisé.
Pour tout ϕ ∈ L1(X,µ), on note ϕn(x) =

∑
0≤i<n ϕ(f i(x)).

a) La limite ϕ̃(x) := lim
n→∞

1
n
ϕn(x) existe µ-presque partout.

b) On a ϕ̃ ◦ f = ϕ̃ µ-presque partout.
c) On a ‖ϕ̃‖L1 ≤ ‖ϕ‖L1.
d) La convergence a lieu dans L1, i.e. lim

n→∞
‖ 1
n
ϕn − ϕ̃‖L1 = 0.

e) Pour toute partie f -invariante A de X, on a
∫
A
ϕ̃ dµ =

∫
A
ϕdµ.

f) En particulier, si µ est ergodique, on a ϕ̃(x) =
∫
X
ϕdµ µ-presque partout.

Remarques - La somme ϕn(x) s’appelle somme orbitale ou somme de Birkhoff de
ϕ. L’intégrale

∫
X
ϕdµ s’appelle la moyenne spatiale de ϕ. Le théorème de Birkhoff

affirme donc, dans le cas ergodique, que les moyennes orbitales convergent presque
partout vers la moyenne spatiale.

- L’assertion e) signifie que ϕ̃ est l’espérance conditionnelle de ϕ relativement
à la σ-algèbre Bf des parties f -invariantes : ϕ̃ = E(ϕ|Bf ).

Lemme 8.7 (inégalité maximale) Soient ϕn ∈ L1
R(X,µ) une suite sous-

additive i.e. telle que, pour tout m,n ≥ 1, on a ϕm+n ≤ ϕm ◦ fn + ϕn. On

note ϕ = ϕ1 et ϕ∗ = sup
n≥1

ϕn. Alors, on a

∫
{ϕ∗>0}

ϕdµ ≥ 0.

Démonstration Soient ψn = max{0, ϕ, ϕ2, . . . , ϕn} et En = {x ∈ X | ψn(x) >
0}. Sur En, on a ψn ≤ ϕ + ψn−1 ◦ f tandis que sur le complémentaire Ec

n, on a
ψn = 0 et ψn−1 ◦ f ≥ 0. On a donc∫

En

ϕ ≥
∫
En

ψn −
∫
En

ψn−1 ◦ f ≥
∫
X

ψn −
∫
X

ψn−1 ◦ f ≥
∫
X

ψn − ψn−1 ≥ 0.

Or {ϕ∗ > 0} = ∪En. On a donc

∫
{ϕ∗>0}

ϕdµ ≥ 0. �

Démonstration du théorème 8.6 a) Pour démontrer l’existence de la limite,
il suffit de voir que, pour tous rationnels α < β, l’ensemble

Eα,β := {x ∈ X | lim inf
n→∞

1
n
ϕn(x) < α < β < lim sup

n→∞

1
n
ϕn(x)}
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est de mesure nulle. Remarquons que

lim
n→∞

1
n
(ϕn+1(x)− ϕn(f(x))) = lim

n→∞
1
n
ϕ(x) = 0

et donc que f−1(Eα,β) = Eα,β. On peut donc appliquer l’inégalité maximale sur
la partie Eα,β aux fonctions ϕ− β et α− ϕ. On obtient∫

Eα,β

(ϕ− β) ≥ 0 et

∫
Eα,β

(α− ϕ) ≥ 0.

On en déduit
∫
Eα,β

(α− β) ≥ 0 et donc µ(Eα,β) = 0.

b) C’est clair car 1
n
(ϕn+1(x)− ϕn(f(x))) converge vers 0.

c) On peut supposer que ϕ est positive. Cela résulte alors du lemme de Fatou :∫
X

ϕ̃ =

∫
X

lim
n→∞

1
n
ϕn(x) ≤ lim

n→∞
1
n

∫
X

ϕn(x) =

∫
X

ϕ.

d) Lorsque ϕ est bornée, cela résulte du théorème de convergence dominée. Le
cas général s’en déduit par densité. En effet, pour tout ε > 0, on peut trouver ψ
bornée telle que ‖ϕ−ψ‖L1 ≤ ε/3. On a donc, pour tout n ≥ 1, ‖ 1

n
ϕn− 1

n
ψn‖ ≤ ε/3

et, par c), ‖ϕ̃− ψ̃‖L1 ≤ ε/3. Pour n grand, on a alors ‖ 1
n
ψn − ψ̃‖ ≤ ε/3 et donc

‖ 1
n
ϕn − ϕ̃‖ ≤ ε. C’est ce que l’on voulait.
e) Cela résulte de d) car

∫
A
ϕ =

∫
A

1
n
ϕn.

f) Par b), la fonction ϕ̃ est constante presque partout. �

La proposition suivante due à Egorov permet de remplacer dans le théorème
de Birkhoff la convergence presque sure par une convergence uniforme en dehors
d’un ensemble de mesure arbitrairement petite.

Proposition 8.8 Soit (X,B, µ) un espace probabilisé et fn une suite de fonctions
mesurables sur X qui converge µ-presque sûrement vers une fonction f .

Alors pour tout ε > 0, il existe une partie mesurable Z ⊂ X tel que µ(Zc) ≤ ε
et la convergence fn(x)→ f(x) est uniforme pour x ∈ Z.

Démonstration Posons Zm,n := {x ∈ X | |fi(x) − fj(x)| ≤ 1
m
, pour i, j ≥ n}.

Choisissons une suite nm telle que µ(Zm,nm) ≥ 1−ε/2p et posons Z = ∪m≥1Zm,nm .
Par construction, la convergence fn(x) → f(x) est uniforme pour x ∈ Z et on a
µ(Z) ≥ 1− ε. �

8.4 Martingales

Le théorème des martingales est avec le théorème de Birkhoff l’un
des piliers de la théorie des probabilités.

Soit (X,B, µ) un espace probabilisé et Bn une suite croissante de sous-σ-
algèbres.

69



Définition 8.9 Soit fn une suite de fonctions intégrables et Bn-mesurables.
La suite fn est une martingale si fn = E(fn+1|Bn).
La suite fn est une sousmartingale si fn ≤ E(fn+1|Bn).
La suite fn est une surmartingale si fn ≥ E(fn+1|Bn).

Pour t ∈ R, on note t+ = max(t, 0).

Remarques - Une martingale peut être vue comme un objet dont les fn ne sont
que des approximations. Un peu comme la donnée d’un réel par son développe-
ment décimal.

- Seules les martingales nous seront utiles par la suite. Nous n’utiliserons les
sousmartingales et surmartingales. que pour démontrer le théorème de conver-
gence des martingales. Elles sont utiles car si une suite fn est une sousmartingale,
les suites f+

n et |fn| sont encore des sousmartingales.

Exemple Soient X = {0, 1}N∗ muni de la probabilité de Bernoulli µ = α⊗N

avec α = 1
2
(δ0 + δ1), pn : X → {0, 1}n l’application donnée par pn(x1, x2, . . .) =

(x1, . . . , xn) et Bn la σ-algèbre formée des parties p−1
n (E) pour E ⊂ {0, 1}n. Dans

ce cas la donnée d’une martingale fn équivaut à la donnée d’une mesure bornée
ν sur X. Le lien entre les deux est donné par fn(x) = 2−nν(Fn(x)), pour x ∈ X,
où Fn(x) est la fibre de pn contenant x. Le fait que ces deux données soient
équivalentes est dû au théorème de Carathéodory.

Comme dans l’exemple ci-dessus, dans la plupart des applications, l’espace X
est muni d’une famille de surjections mesurables pn : (X,B)→ (Yn, Cn) telles que
Bn = p−1

n (Cn). Ces surjections sont de plus en plus fines de sorte que la suite Bn
est croissante. La martingale est donc un objet sur X dont les fonctions fn ne
sont que ses “moyennes sur les fibres de pn” .

Voici le théorème de convergence ps des martingales

Théorème 8.10 (Doob) Soit fn une sous-martingale sur (X,B, µ) telle que
sup
n≥0
‖fn‖L1 <∞. Alors la limite f∞(x) = lim

n→∞
fn(x) existe µ-presque sûrement..

Nous dirons que fn est L1-bornée si sup
n≥0
‖fn‖L1 <∞.

Exemple Reprenons l’exemple ci-dessus et écrivons grâce au théorème de dé-
composition des mesures ν = fµ + νs avec νs étrangère à µ. On a alors l’égalité
f∞ = f . La limite presque sûre ne donne donc aucun renseignement sur la partie
singulière νs.

Remarque En général la limite presque sûre f∞ d’une martingale ne permet
pas de reconstituer la martingale. C’est le cas si et seulement si la convergence
de fn vers f∞ est une convergence L1. On a alors fn = E(f∞|Bn). Une condition
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suffisante qui l’assure est sup
n≥0
‖fn‖L logL < ∞ où cette norme est la norme L1 de

la fonction |fn| log+ |fn|.

Démonstration du théorème de Doob Elle résulte des trois lemmes 8.11,
8.12 et 8.13 suivants. �

Le premier lemme est la décomposition de Kricheberg.

Lemme 8.11 Toute sousmartingale L1-bornée fn s’écrit fn = mn − sn où mn

est une martingale positive L1-bornée et sn une surmartingale positive L1-bornée.

Démonstration La suite f+
n est une sousmartingale positive et on a, pour k ≥ n

E(f+
k |Bn) ≤ E(f+

k+1|Bn).

Notons mn = lim
k→∞

E(f+
k |Bn). C’est une martingale positive telle que E(mn) ≤

supn≥0E(f+
n ) <∞ car l’espérance conditionnelle commute à la limite croissante.

Donc mn est L1-bornée et sn = mn − fn est une surmartingale L1-bornée. �

Le deuxième lemme affirme qu’une surmartingale est un jeu défavorable quelle
que soit la stratégie : plus on arrête tard la surmartingale plus l’espérance de gain
est faible.

On appelle temps d’arrêt une application B-mesurable σ : X → N ∪ {∞} telle
que, pour tout n ≥ 0, l’ensemble σ−1(n) est Bn-mesurable.

On note alors sτ : ω → sτ(ω)(ω) avec la convention s∞ = 0.

Lemme 8.12 Soit sn une surmartingale positive et σ, τ deux temps d’arrêt avec
σ ≤ τ . Alors

∫
X
sσ dµ ≥

∫
X
sτ dµ.

Démonstration Pour m ≤ n, on a∫
{σ=m, τ>n}

sn ≥
∫
{σ=m, τ>n}

sn+1

car τ et σ sont des temps d’arrêt et sn est une surmartingale. On en déduit, en
notant τ ∧ n := inf(τ, n), ∫

{σ=m}
sτ∧n ≥

∫
{σ=m}

sτ∧(n+1)

et donc en mettant bout à bout ces inégalités pour n ≥ m, en se souvenant que
τ ≥ σ, et en utilisant Fatou∫

{σ=m}
sm ≥ · · · ≥

∫
{σ=m}

sτ∧n ≥ · · · ≥
∫
{σ=m}

sτ

d’où, en sommant sur m,
∫
X
sσ ≥

∫
X
sτ . �
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Lemme 8.13 Toute surmartingale positive sn converge µ-presque sûrement.

Démonstration Pour démontrer l’existence de la limite de sn, il suffit de voir
que, pour tous rationnels α < β, l’ensemble

Eα,β := {x ∈ X | lim inf
n→∞

sn(ω) < α < β < lim sup
n→∞

sn(ω)}

est de mesure nulle pour µ-presque tout ω. Pour cela, on introduit par récurrence
des temps d’arrêt τi par τ0 = 0 et, pour i ≥ 1,

τ2i+1 = inf{n > τ2i | sn > β}
τ2i = inf{n > τ2i−1 | sn < α}.

On a alors, en notant pi := µ({τi <∞}), et en utilisant le lemme 8.12

β p2i+1 ≤
∫
X

sτ2i+1
≤
∫
X

sτ2i ≤ αp2i ≤ αp2i−1.

Donc µ(Eα,β) ≤ p2i+1 ≤ (α
β
)ip1 pour tout i ≥ 1 et µ(Eα,β) = 0. �
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9 Mesures stationnaires

Les mesures stationnaires sont des mesures qui décrivent le com-
portement asymptotique des marches aléatoires.

Nous montrons dans ce chapitre comment les utiliser pour montrer
des théorèmes d’existence et d’unicité pour des “applications mesu-
rables équivariantes entre les bords”.

9.1 Existence d’une mesure limite

Soit G un groupe localement compact séparable, µ une probabilité borélienne
sur G et X un espace localement compact métrisable muni d’une action continue
de G. On note P(X) l’espace des probabilités boréliennes sur X.

Pour toute probabilité (borélienne) ν sur X, on note µ ∗ ν la convolée

µ ∗ ν :=
∫
G
g∗ν dµ(g).

On note µ∗n la probabilité µ ∗ . . . ∗µ convolée de n probabilités toutes égales à µ.

Définition 9.1 Une probabilité borélienne ν sur X est dite µ-harmonique ou
µ-stationnaire si on a µ ∗ ν = ν.

Remarque Le terme harmonique vient de ce que ν coincide avec la moyenne de
ses translatées. Le terme stationnaire exprime le fait que ν est une loi asympto-
tique possible pour une “marche aléatoire sur X dont les lois de transitions sont
indépendantes et données par µ”.

Lemme 9.2 Lorsque X est compact, il existe toujours des mesures stationnaires.

Démonstration Comme X est compact, l’espace P(X) est un convexe compact
dans le Fréchet M(X) des mesures bornées muni de la topologie faible. L’argu-
ment de Kakutani prouve l’existence d’un point fixe par l’opérateur de convolution
par µ : on part de n’importe quelle probabilité ν0 ∈ P(X) et on prend pour ν
une valeur d’adhérence de la suite νn := 1

n
(ν0 + µ ∗ ν0 + · · · + µ∗n ∗ ν0) ∈ P(X).

Comme νn − µ ∗ νn tend vers 0, la probabilité ν est µ-stationnaire. �

On note Ω l’espace produit Ω = GN, B sa tribu borélienne et µ la probabilité
produit sur (X,B). C’est l’unique probabilité dont l’image dans chaque Gn est
la probabilité produit µ⊗n. Par le théorème de Carathéodory, cette probabilité µ
existe et est unique. On note gi : Ω→ G;ω → gi(ω) les fonctions coordonnées.

Lemme 9.3 a) La limite

νω := lim
n→∞

g0(ω)∗ · · · gn(ω)∗ν ∈ P(X)
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existe pour µ-presque tout ω.
b) Pour tout k ≥ 1, on a l’égalité, pour µ∗k-presque tout g et µ-presque tout ω,

lim
n→∞

g0(ω)∗ · · · gn(ω)∗g∗ν = νω.

c) On a l’égalité ν =
∫

Ω
νω dµ(ω).

Démonstration Nous ne donnerons la preuve que pour X compact.
a) Notons Bn = 〈g0, . . . , gn〉 la σ-algèbre engendrée par les fonctions g0, . . . , gn.

Pour ϕ ∈ C(X), on note Φ ∈ C(G) la fonction

g 7→ Φ(g) = (g∗ν)(ϕ) =

∫
X

ϕ(gx)dν(x).

Le fait que ν soit µ-stationaire se traduit par l’égalité, pour tout g ∈ G,

Φ(g) =

∫
G

Φ(gh)dµ(h).

La suite de fonction fn ∈ L∞(Ω)

fn : ω 7→ Φ(g0(ω) · · · gn(ω))

est une martingale pour Bn. En effet, on a l’égalité, pour tout n ≥ 1,

E(fn+1|Bn)(ω) =

∫
G

Φ(g0(ω) · · · gn(ω)g)dµ(g)

= Φ(g0(ω) · · · gn(ω)) = fn(ω).

Comme cette martingale est bornée par ‖ϕ‖∞, le théorème 8.10 de Doob prouve
qu’elle converge µ-ps. En utilisant une famille dénombrable dense de fonctions
ϕ ∈ C(X), la limite νω = lim

n→∞
g0(ω)∗ · · · gn(ω)∗ν existe pour µ-presque tout ω.

b) En plus des fonctions Φ et fn ci-dessus, introduisons les fonctions f gn ∈
L∞(Ω) pour g ∈ G données par

f gn : ω 7→ Φ(g0(ω) · · · gn(ω)g)

et calculons les intégrales

In =

∫
Ω

∫
G

|fn(ω)− f gn(ω)|2 dµ∗k(g) dµ(ω)

=

∫
G

∫
G

|Φ(h)− Φ(hg)|2 dµ∗k(g) dµ∗(n+1)(h)

=

∫
Ω

|fn(ω)− fn+k(ω)|2 dµ(ω)

= ‖fn+k‖2
L2 − ‖fn‖2

L2 .
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Dans ce calcul, on a utilisé le fait que fn est une martingale à travers l’égalité∫
Ω

fnfn+k dµ =

∫
Ω

|fn|2 dµ.

On déduit de ce calcul que
∞∑
0

In ≤ k‖ϕ‖2
∞.

On en déduit que la fonction suivante est intégrable

∞∑
0

|fn(ω)− f gn(ω)|2 ∈ L1(Ω×G,µ⊗ µ∗k).

En particulier, pour µ∗k-presque tout g et µ-presque tout ω, la suite fn(ω)−f gn(ω)
converge vers 0.

c) Par le théorème de convergence dominée et le point a), on a∫
Ω

lim
n→∞

g0(ω)∗ · · · gn(ω)∗ν dµ(ω) = lim
n→∞

∫
Ω

g0(ω)∗ · · · gn(ω)∗ν dµ(ω)

= lim
n→∞

µ∗n ∗ ν = ν

D’où
∫

Ω
νω dµ(ω) = ν. �

9.2 Contraction et proximalité

Dans cette section, on montre qu’une marche aléatoire linéaire
contracte presque sûrement autant que son support peut le permettre.

Soit k = R, C ou une extension finie de Qp. Dans cette partie µ est une
probabilité sur le groupe G = GL(d, k). Ce groupe G agit sur V = kd ainsi que
sur l’espace projectif X = P(V ).

On note Γµ le plus petit sousgroupe fermé de G qui contient le support de µ.

Définition 9.4 On dit qu’un sous-groupe Γ ⊂ G est fortement irréductible (sur
V ) si Γ ne laisse invariant aucune union finie de sous-espaces propres de V .

Il est équivalent de dire que la composante connexe de l’adhérence de Zariski
de Γ agit de façon irréductible sur V .

On note p = pΓ le plus petit entier non nul pour lequel il existe une matrice
π ∈M(d, k) de rang p telle que π = limn→∞ λnγn avec λn ∈ k et γn ∈ Γ.

Définition 9.5 On dit que Γ est proximal si pΓ = 1.

La proposition suivante donne les premières propriétés des marches aléatoires
linéaires.
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Proposition 9.6 Soit µ une probabilité borélienne sur G = GL(d, k) telle que
Γµ est fortement irréductible. On note p = p

Γµ
.

a) Il existe une application mesurable J : Ω→ Grp(V );ω 7→ Jω de Ω = GN dans
la Grassmannienne des p-plans de V telle que, pour µ-presque tout ω ∈ Ω, toute
valeur d’adhérence non nulle M d’une suite λn g0(ω) · · · gn(ω), avec λn ∈ k, a
pour image Im(M) = Jω.
b) Pour tout hyperplan W ⊂ V , on a µ({ω ∈ Ω | Jω ⊂ W}) = 0.

La démonstration repose sur l’étude des probabilités µ-stationnaires sur P(V ).
On sait par le lemme 9.2 qu’il en existe toujours.

Lemme 9.7 Soit µ une probabilité borélienne sur G = GL(d, k) telle que Γµ est
fortement irréductible. Soit ν une probabilité µ-stationnaire sur P(V ).

Pour tout hyperplan W ⊂ V , on a ν(P(W )) = 0.

Démonstration du lemme 9.7 Soit r la plus petite dimension d’un espace
W ⊂ V tel que ν(P(W )) 6= 0. On a, pour tous sous-espacesW1 6= W2 de dimension
r,

ν(P(W1) ∪ P(W2)) = ν(P(W1)) + ν(P(W2)).

De sorte que, pour tout α > 0, il n’existe qu’un nombre fini de sous-espaces W
de dimension r tels que ν(P(W )) ≥ α. Notons

α0 = max{ν(P(W )) | dimW = r},

F = {W | dimW = r et ν(P(W )) = α0}.

Cet ensemble F est fini. Comme ν est µ-stationnaire, on a l’égalité

ν(P(W )) =

∫
G

ν(P(gW )) dµ(g).

On en déduit que F est Γµ-invariant. Ceci contredit la forte irréductibilité de Γµ.

Démonstration de la proposition 9.6 Par définition, la valeur d’adhérence
M est de rang ≥ p.

Soit ν une probabilité µ-stationnaire sur P(V ). Notons Jω le plus petit sous-
espace vectoriel de V tel que P(Jω) contient le support de νω. Par le lemme 9.7,
on a ν(P(KerM)) = 0. La probabilité M∗ν a donc un sens et on a, par le lemme
9.3.a, l’égalité

M∗ν = νω.

En conséquence, par le même lemme 9.7, l’image ImM est le plus petit sous-espace
W tel que P(W ) contient le support de νω. On a donc ImM = Jω.
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Ceci prouve simultanément que l’image ImM ne dépend pas du choix de la va-
leur d’adhérence M , que Jω ne dépend pas du choix de la probabilité stationnaire
ν et que dim Jω ≥ p.

Il reste à montrer que dim Jω = p. Le même raisonnement avec le lemme 9.3.b
prouve que, pour µ∗k-presque tout g, on a

M∗g∗ν = νω.

Par continuité, cette égalité est encore vraie, pour tout g ∈ Γµ. Choisissons une
limite non nulle π de rang p d’une suite λngn avec λn ∈ k et gn ∈ Γµ. On peut
supposer, par irréductibilité de Γµ que Imπ 6⊂ KerM . On a encore

M∗π∗ν = νω.

Donc Im(M ◦ π) = Jω et dim Jω ≤ p. On a bien dim Jω = p.

9.3 Proximalité

Dans cette section, on montre que dans une situation proximale,
la probabilité stationnaire ν est unique.

On en déduit des résultats d’existence et d’unicité d’applications
mesurables équivariantes entre les bords qui joueront un rôle central
dans la démonstration du théorème de superrigidité.

Proposition 9.8 Soit µ une probabilité borélienne sur G = GL(d, k) telle que
Γµ est proximal et fortement irréductible.
a) Il existe une unique probabilité µ-stationnaire ν ∈ P(P(V )).
b) Il existe une unique probabilité µ-stationnaire σ ∈ P(P(P(V ))). Son support
est inclus dans l’ensemble δP(V ) des masses de Dirac sur P(V ).

Démonstration L’existence de ν et de σ résulte du lemme 9.2.
a) On note j : Ω → P(kd);ω 7→ jω l’application donnée par la proposition 9.6

de sorte que νω = δjω . D’après le lemme 9.3, la probabilité ν est donc donnée par
ν =

∫
Ω
δjω dµ(ω).

b) Notons νσ le centre de gravité de σ,

νσ =

∫
P(P(V ))

λ dσ(λ) ∈ P(P(V )).

Cette probabilité νσ est aussi µ-stationnaire. Par le lemme 9.3, pour µ-presque
tout ω, on a

lim
n→∞

g0(ω)∗ · · · gn(ω)∗νσ = δjω

On en déduit que, pour µ-presque tout ω, pour tout ε > 0, pour toute fonction
ϕ ∈ C(P(V )),

lim
n→∞

σ({λ | (g0(ω)∗ · · · gn(ω)∗λ)(ϕ)− ϕ(jω) ≥ ε}) = 0
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et donc, en notant d une distance compatible sur l’espace métrisable compact
P(P(V )),

lim
n→∞

σ({λ | d(g0(ω)∗ · · · gn(ω)∗λ, δP(V )) ≥ ε}) = 0.

Par le théorème de convergence dominée, on a donc

lim
n→∞

σ ⊗ µ({(λ, ω) | d(g0(ω)∗ · · · gn(ω)∗λ, δP(V )) ≥ ε}) = 0.

Comme σ est µ-stationnaire, cette suite est constante égale à

σ({λ | d(λ, δP(V )) ≥ ε}) = 0.

Donc σ est portée par le fermé δP(V ) ⊂ P(P(V )) des masses de Dirac sur P(V ).
Elle peut donc être vue comme une probabilité sur P(V ). Cette probabilité est
µ-stationnaire, elle est donc égale à ν. �

Proposition 9.9 Soient Γ un groupe localement compact métrisable séparable,
µ ∈ P(Γ) une probabilité telle que Γµ = Γ. Soient X0 un espace compact métri-
sable sur lequel Γ agit continument et ν0 ∈ P(X0) une probabilité µ-stationnaire.

On se donne aussi une représentation proximale et fortement irréductible de Γ
dans un espace vectoriel V .
a) Toute application mesurable Γ-équivariante ϕ : X0 → P(P(V )) prend ν0-
presque sûrement ses valeurs dans l’ensemble δP(V ) des masses de Dirac.
b) Il existe au plus une application ν0-mesurable Γ-équivariante Φ : X0 → P(V ).

Le point a) permettra, dans la section 10.3, de construire des applications ν0-
mesurable Γ-équivariante ϕ : X0 → P(V ).

Démonstration a) La probabilité σ = ϕ∗(ν0) ∈ P(P(P(V ))) est µ-stationnaire.
D’après la proposition 9.8, elle est portée par des masses de Dirac.

b) Soient Φ1,Φ2 : X0 → P(V ) deux applications ν0-mesurables Γ-équivariantes.
D’après le point a), l’application ϕ : X0 → P(P(P(V ))); ξ 7→ 1

2
(δΦ1(ξ) + δΦ2(ξ))

prend ses valeurs dans l’espace des masses de Dirac. Donc, pour ν0-presque tout
ξ ∈ X0, on a Φ1(ξ) = Φ2(ξ). �

9.4 Mesures stationnaires K-invariantes

Pour tout réseau Γ d’un groupe de Lie semisimple réel G, on
construit une probabilité µ de support Γ dont l’unique mesure station-
naire ν0 sur G/P est K-invariante. On pourra alors appliquer dans la
section 10.3 la proposition 9.9 à cette probabilité K-invariante.

Soient k = R, G un k-groupe semisimple et G = Gk. Soient P un sous-groupe
parabolique de G et K un sous-groupe compact de G tel que G = KP (voir
théorème 3.14) et ν0 la probabilité K-invariante sur la variété drapeau X0 = G/P .
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Proposition 9.10 Pour tout réseau Γ ⊂ G, il existe une probabilité µ ∈ P(Γ)
de support Γ et telle que µ ∗ ν0 = ν0.

Remarques - Comme l’action de K sur G/P est transitive, il y a une unique pro-
babilité K-invariante ν0 sur G/P . En particulier, pour toute mesure K-invariante
µ0 ∈ P(G), on a l’égalité µ0 ∗ ν0 = ν0.

- Autrement dit, en dépit du caractère discret de Γ, les trajectoires sur G/P
de la marche aléatoire indépendante sur Γ de loi µ s’équirépartissent sur le bord
G/P selon la probabilité K-invariante ν0.

Démonstration de la proposition 9.10 Soit µ0 une probabilité K-invariante
sur G à support compact et ayant une densité non nulle par rapport à la mesure
de Haar sur un ouvert U de G dont les puisances Un recouvrent G.

Posons

τ(g) = inf{t ∈ [0, 1] | g∗ν0 = (1−t)µ′ ∗ν0 + tµ′′ ∗ν0 , µ
′, µ′′ ∈ P(G) , suppµ′ = Γ}.

On espère bien sûr que cette fonction est constante égale à 0.
a) Montrons tout d’abord que, pour tout g ∈ G, on a τ(g) < 1. Remarquons

que pour tout γ ∈ Γ, on peut trouver nγ ≥ 1 et εγ > 0 tels que

g∗µ
∗nγ
0 > εγγ∗µ0.

Donc
g∗ν0 = εγγ∗ν0 + µ′′γ ∗ ν0

avec µ′′γ = g∗µ
∗nγ
0 −εγ∗µ0. On choisit alors une famille aγ > 0 telle que

∑
γ∈Γ aγ =

1. Une somme de ces égalités pondérées par aγ donne

τ(g) ≤ 1−
∑
γ∈Γ

aγεγ < 1.

b) Montrons maintenant que τ(g) est une fonction constante. Cela va résulter
de l’ergodicité de l’opérateur de convolution par µ0 dans L2(X,λX) où X = Γ\G
et λX est la probabilité G-invariante sur X. Plus précisément, remarquons que
d’une part, pour tout γ ∈ Γ, on a τ(γg) = τ(g), et, d’autre part, comme ν0 est
µ0-harmonique τ(g) ≤

∫
G
τ(gh) dµ0(h). On note encore τ : X → [0, 1] la fonction

induite sur X. Elle vérifie donc

τ(x) ≤
∫
G

τ(xh) dµ0(h).

C’est une fonction µ0-sous-harmonique bornée. Elle est donc constante. En effet,
dans le calcul suivant basé sur l’inégalité de Cauchy-Schwartz et sur Fubini∫

X

τ(x)2dλX(x) ≤
∫
X

∫
G

τ(xh)2 dλX(x) dµ0(h) ≤
∫
X

τ(x)2 dλX(x),
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on doit avoir égalité dans ces inégalités et donc la fonction h → τ(xh) est µ0-
presque sûrement constante. Donc τ est constante.

c) Il résulte de ces arguments qu’il existe ` < 1 tel que τ(g) < `, pour tout
g ∈ G. En particulier, on peut écrire, pour tout µ1 ∈ P(G),

µ1 ∗ ν0 = (1− `)µ′1 ∗ ν0 + `µ2 ∗ ν0

= (1− `)µ′1 ∗ ν0 + (1− `)`µ′2 ∗ ν0 + `2µ3 ∗ ν0

= (1− `)µ′1 ∗ ν0 + (1− `)`µ′2 ∗ ν0 + (1− `)`2µ′3 ∗ ν0 + · · ·

avec µi ∈ P(G) et µ′i ∈ P(Γ). Si on part de µ1 = δe, on obtient donc l’égalité
ν0 = µ ∗ ν0 avec µ = (1− `)

∑
i≥1 `

i−1µ′i ∈ P(Γ). �
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10 Superrigidité

Le but de ce chapitre est de montrer le théorème de superrigidité
de Margulis.

10.1 Superrigidité

Le théorème de superrigidité permet de décrire toutes les repré-
sentations des réseaux d’un groupe de Lie semisimple réel G.

Pour pouvoir utiliser ce théorème de superrigidité pour montrer
le théorème d’arithméticité, on doit considérer non seulement des re-
présentations dans des espaces vectoriels réels mais aussi dans des
espaces vectoriels p-adiques.

Nous verrons en outre que ces théorèmes s’étendent à des groupes
G produit de groupes semisimples réels et p-adiques.

Théorème 10.1 (Margulis) Soient ` = R, G = G` le groupe des `-points
d’un `-groupe semisimple G connexe. On suppose G sans facteur compact et
rang`(G) ≥ 2. Soit Γ un réseau irréductible de G.

Soit k = R, C ou une extension finie de Qp, H = Hk le groupe des k-points
d’un k-groupe simple H. Soit π : Γ → H un morphisme dont l’image π(Γ) est
Zariski dense et non bornée.

Alors π s’étend en un morphisme continu de G dans H.

Remarque Lorsque k est un corps p-adique, il n’existe pas de morphisme continu
non constant de G dans H. La conclusion du théorème dans ce cas est donc qu’un
tel morphisme π : Γ→ H ne peut pas exister.

La démonstration occupe l’ensemble de ce chapitre.

Commençons par quelques commentaires sur les hypothèses de ce théorème.

L’hypothèse G sans facteur compact n’est pas très contraignante, on s’y ra-
mène en remplaçant Γ par un sous-groupe fini sans torsion puis en considérant le
réseau image de Γ dans le quotient de G par son sous-groupe distingué compact
maximal. De même, l’hypothèse π(Γ) Zariski dense n’est pas très restrictive. On
peut souvent s’y ramener.

Exemple A Vérifions que l’hypothèse π(Γ) non bornée est indispensable.
Notons q la forme quadratique sur R5, q(x) = x2

1 + x2
2 + x2

3−
√

2x2
4−
√

2x2
5. Le

groupe Γ = SL(5,Z[
√

2]) ∩ SO(q,R) est un réseau de SO(q,R).
En effet, notons σ l’automorphisme non trivial du corps Q[

√
2] et qσ l’image

de q par σ. Le groupe {(g, gσ) | g ∈ SL(5,Z[
√

2]) ∩ SO(q,R)}, est un sous-
groupe arithmétique du Q-groupe dont les points réels sont le produit SO(q,R)×
SO(qσ,R). Comme le groupe SO(qσ,R) est compact, Γ est bien un réseau.
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Remarquons que le morphisme π : Γ → SO(qσ,R) donné par π(g) = gσ ne se
prolonge pas à G. Dans ce cas, le groupe image est borné.

Exemple B Voici un deuxième exemple avec image p-adique qui met en valeur
l’hypothèse π(Γ) non bornée.

Le réseau Γ = SL(d,Z) du groupe G = SL(d,R) s’injecte dans le groupe p-
adique H = SL(d,Qp). Cette injection ne se prolonge pas en un morphisme de G
dans H. Dans ce cas aussi, le groupe image est borné.

Exemple C L’hypothèse de rang sur G est aussi importante : il n’existe pas de
tels phénomènes de superrigidité pour les groupes G = SO(n, 1) qui sont de rang
réel 1. Par exemple, pour n = 2, G contient des réseaux Γ qui sont des groupes
libres non abéliens ou des π1 de surface compacte. Il existe alors de nombreux
morphismes π : Γ → G qui sont d’image dense, ceux-ci ne se prolongent pas en
des morphismes de G dans G.

Exemple D L’hypothèse d’irréductibilité est aussi importante : le produit de
deux réseaux Γ1 × Γ2 ⊂ G × G avec G = SO(2, 1) fournit aisément des contre-
exemples.

Exemple E L’hypothèse de simplicité sur H est aussi utile même si on s’y ramène
facilement en composant π par la projection sur les facteurs simples de H.

Par exemple, si Γ est le réseau du groupe G = SL(d,R) donné par Γ = {g ∈
SL(d,Z) | g ≡ Id mod 2}. Comme le groupe dérivé [Γ,Γ] est formé de matrices
congrues à l’identité modulo 4, il existe des morphismes non triviaux ε : Γ →
{±1}. Mais alors le morphisme π : Γ→ H = SL(d,R), donné par π(γ) = ε(γ)γ,
ne se prolonge pas en un morphisme de G dans H.

De même, si Γ est l’image dans G = PGL(d,R) du groupe Γ0 = {g ∈ SL(d,Z) |
g ≡ Id mod 3}. Le relèvement π : Γ→ Γ0 ⊂ H = SL(d,R) ne se prolonge pas en
un morphisme de G dans H.

Exemple F Lorsque G est simplement connexe et k = R, le morphisme π s’étend
alors en une R-représentation de G dans H.

L’hypothèse de simple connexité sur G est utile pour cela. Par exemple, les
R-groupes G = PGL(3) et H = SL(3) ont des points réels isomorphes GR ' HR
sans être R-isomorphe.

- Le théorème de superrigidité et sa démonstration sont valables dans un cadre
beaucoup plus large : non seulement, on peut remplacer le corps ` = R par un
corps p-adique, mais, plus généralement, on peut prendre pour G un groupe sans
facteur compact qui est un produit fini G =

∏
Gp, avec p premier ou ∞ et avec

Gp le groupe des Qp-points d’un Qp-groupe semisimple simplement connexe sous
l’hypothèse

∑
p rangQpGp ≥ 2.
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Stratégie de la démonstration du théorème 10.1
Soit P un sous-groupe parabolique minimal de G, K un sous-groupe compact

maximal de G, V une k-représentation de H. Le groupe H := Hk agit donc dans
V := Vk. On note ν0 la probabilité K-invariante sur la variété des drapeaux G/P .

Dans la section 7.4, on a montré qu’il existe une application ν0-mesurable Γ-
équivariante

ϕ : G/P → P(P(V ))

de la variété des drapeaux G/P muni d’une probabilité K-invariante ν0 dans
l’espace des probabilités sur l’espace projectif P(V ). On vérifie tout d’abord en
10.2 que l’on peut choisir la représentation de H dans V de sorte que π(Γ) soit
proximal.

La deuxième étape en 10.3 consiste à remplacer l’espace d’arrivée par l’espace
projectif P(V ) lui-même en montrant que l’image de ϕ est formée de masses
de Dirac. Pour cela, on utilise la probabilité sur Γ dont la mesure stationnaire
correspondante sur G/P est ν0, probabilité que nous avons construit dans la
section 9.4. On obtient ainsi une application mesurable Γ-équivariante

Φ : G/P → P(V ).

En utilisant aussi la représentation duale, on pourra remplacer cet espace projectif
par un espace vectoriel W . Le prix à payer sera de perdre une partie de la P -
invariance : on obtiendra une application mesurable Γ-équivariante

Θ : G→ W

qui est seulement invariante à droite par un sous-espace de Cartan A de G.
La troisième étape en 10.4 consiste à montrer que l’espace vectoriel E engendré

par les translatés à droite de Θ par les éléments de G est de dimension finie. C’est
dans cette étape que l’on utilise l’hypothèse de rang au moins 2 via l’ergodicité
des sous-groupes A′ de codimension 1 dans A.

La dernière étape en 10.5 consiste à remarquer que la représentation de G dans
E est mesurable et donc continue, par suite que l’application Θ est aussi continue.
C’est grâce à l’application δ : E → W d’évaluation en e que l’on construira alors
le morphisme de G dans H qui prolonge π.

10.2 Valeurs propres de même module

Dans cette section, on montre que, comme π(Γ) n’est pas borné,
on peut remplacer la k-représentation irréductible de H dans V par
une dans laquelle π(Γ) est proximal (c.f. définition 9.5).

Pour cela, on appliquera le lemme suivant au groupe ∆ := π(Γ).

Lemme 10.2 Soit k = R, C ou une extension finie de Qp. Soient V = kd et
∆ ⊂ End(V ) un sous-groupe tel que V est irréductible et tel que tout élément de
∆ a toutes ses valeurs propres de module 1. Alors ∆ est borné.
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Remarque L’hypothèse ”V irréductible” est utile, comme le prouve le groupe
des matrices unipotentes triangulaires supérieures.

Démonstration du lemme 10.2 Le sous-espace vectoriel A de End(V ) engen-
dré par ∆ est une algèbre.

Vérifions tout d’abord que la forme bilinéaire symétrique sur A donnée par
(a, b)→ tr(ab) est non dégénérée. Soit I le noyau de cette forme bilinéaire, c’est
un idéal de A. Pour tout a ∈ I, on a tr(a) = tr(a2) = · · · = tr(ad) = 0. Donc a est
nilpotent. Le théorème 2.3 d’Engel assure que le sous-espace V ′ := ∩a∈IKer(a)
est non nul. Ce sous-espace est A-invariant. Il est donc égal à V . Mais alors I = 0.
C’est ce que l’on voulait

Montrons maintenant que ∆ est borné. Choisissons une famille (δi) d’éléments
de ∆ qui forment une base de l’espace vectoriel A et notons (ei) la base de A
duale. On a l’égalité, pour tout g dans ∆ : g =

∑
i Tr(gδi)ei. Les éléments gδi

sont dans ∆. L’hypothèse sur les valeurs propres des éléments de ∆ assure que,
pour tout i, |Tr(gδi)| ≤ d. Donc ∆ est borné. �

Proposition 10.3 Sous les hypothèses du théorème 10.1, il existe une k-repré-
sentation irréductible de H dans un espace vectoriel V telle que π(Γ) est proximal.

Démonstration D’après le lemme 10.2, il existe au moins un élément δ0 ∈ π(Γ)
qui admet une valeur propre de module différent de 1. Notons V0 le sous-espace
de V somme des sous-espaces caractéristiques de δ0 associés aux valeurs propres
de module maximum. Comme H est simple, il agit sur V par des matrices de
déterminant 1 et l’entier d0 := dim V0 est inférieur à d. Comme H est simple,
on peut décomposer la représentation de H dans Λd0V en représentations irré-
ductibles (proposition 4.12). Notons V′ la sous-représentation irréductible Λd0V
dans laquelle apparait l’unique valeur propre de module maximum de Λd0δ0. L’ac-
tion de π(Γ) sur P(V ′) est proximale, car, par construction, la suite n 7→ Λd0δn0
convenablement renormalisée converge vers un opérateur de rang 1. �

10.3 Construction de Θ

Dans cette section, on utilise tous les préparatifs du chapitre 9
pour construire l’application aux bord Φ : G/P → P(V ) ainsi que
l’application Θ.

Rappelons que ν0 est la probabilité K-invariante sur G/P .

Proposition 10.4 Sous les hypothèses du théorème 10.1. Soit V une k-repré-
sentation irréductible de H dans laquelle π(Γ) est proximal.
a) Toute application ν0-mesurable Γ-équivariante ϕ : G/P → P(P(V )) prend ses
valeurs dans l’ensemble δP(V ) des masses de Dirac.
b) Il existe une et une seule application ν0-mesurable Γ-équivariante Φ : G/P →
P(V ).
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Remarque Nous n’utiliserons pas l’unicité de Φ dans la suite du raisonnement.
Il est néanmoins rassurant de savoir que cette application au bord Φ est unique.

Démonstration a) D’après la proposition 9.10, il existe une probabilité µ ∈
P(Γ) de support Γ telle que ν0 est µ-stationnaire. Le point a) résulte alors de la
proposition 9.9.a.

b) L’existence d’une application ϕ résulte de la proposition 7.11 de Furstenberg.
L’existence de l’application Φ s’en déduit par a). L’unicité de l’application Φ
résulte de la proposition 9.9.b. �

Notre tache consiste maintenant à “remplacer” l’espace projectif P(V ) par un
k-espace vectoriel W . C’est ce que fait la proposition suivante. Notons A un
sous-espace de Cartan de G.

Proposition 10.5 Sous les hypothèses du théorème 10.1. Il existe une k-repré-
sentation ρ de H dans un espace vectoriel W et une application mesurable Γ-
équivariante non constante Θ : G→Wk, qui est A-invariante.

De façon plus précise, notons W = Wk, FΓ(G,W ), le k-espace vectoriel des
(classes de) fonctions mesurables Γ-équivariantes de G dans W , c’est-à-dire des
fonctions f : G → W telles que f(γg) = ρ(γ)f(g), pour tout γ ∈ Γ, g ∈ G.
Le groupe G agit sur FΓ(G,W ) par, pour tous g, x ∈ G, (T (g)f)(x) = f(gx) .
La proposition 10.5 affirme que l’espace FΓ(G,W ) contient une fonction Θ non
constante telle que T (A)Θ = Θ.

Démonstration de la proposition 10.5 On applique la proposition 10.4 à la
représentation de H dans V donnée par la proposition 10.3 ainsi qu’à sa représen-
tation duale. On obtient ainsi deux applications ν0-mesurables et Γ-équivariantes
ϕ : G/P → P(V ) et ψ : G/P → P(V ∗). On a donc une application ν0 ⊗ ν0-
mesurable et Γ-équivariante

ϕ× ψ : G/P ×G/P → P(V )× P(V ∗).

Vérifions tout d’abord que le produit G/P × G/P s’identifie à un quotient
de G/A, à une partie ν0 ⊗ ν0-négligeable près. Conformément aux notations de
la section 3.5, fixons un sous-espace de Cartan A de G, une chambre de Weyl
A+ ⊂ A, une involution de Cartan θ de G telle que θ(A) = A. On peut supposer
que le parabolique minimal P est celui associé à A+. On note P− le parabolique
opposé et on note K le sous-groupe compact maximal K = Gθ. Par le même
argument que dans la démonstration du théorème 3.13.b, on construit un élément
w0 ∈ K tel que w0 normalise A et tel que w0(A+) est la chambre de Weyl opposée
de sorte que P− = w0Pw

−1
0 . Autrement dit, le stabilisateur dans G du point

w0P ∈ G/P est le groupe P−.
Par le théorème 3.14.c, la P -orbite de cet élément w0P ∈ G/P est ouverte de

mesure pleine dans G/P ' G/P−. Donc la G-orbite dans G/P × G/P du point
(P,w0P ) est ouverte, de mesure pleine et de groupe d’isotropie P ∩ P−.
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Vérifions maintenant que l’image de ϕ × ψ ne rencontre pas la quadrique
Q(V ) := {(x, y) ∈ P(V ) × P(V ∗) | y(x) = 0}. Cela résulte de ce que la me-
sure image (ϕ× ψ)∗(ν0 ⊗ ν0) est une mesure produit et que, par le lemme 9.7, la
probabilité µ-stationnaire ϕ∗(ν0) ne masse pas les hyperplans.

On note W l’espace vectoriel End(V ). Pour tout (x, y) ∈ P(V )×P(V ∗)rQ(V ),
on note px,y ∈ W le projecteur sur x parallèlement à y. La formule

Θ(g) = pϕ(gP ),ψ(gw0P )

donne alors l’application Θ cherchée. �

10.4 L’espace E des translatés de Θ

Nous disposons enfin d’une application Γ-équivariante, A-inva-
riante, non constante Θ de G dans un espace vectoriel W . On étudie
dans cette section la représentation de G dans l’espace E des trans-
latés de Θ.

Rappelons que ρ est la représentation de H dans W et que FΓ(G,W ) est le
k-espace vectoriel des fonctions mesurables Γ-équivariantes de G dans W . Géo-
métriquement, ce sont les sections mesurables d’un fibré vectoriel sur Γ\G appelé
le fibré induit par W . Rappelons aussi que nous avons noté T l’action mesurable
du groupe G sur FΓ(G,W ) Cette action est donnée par, pour tous g, x ∈ G,

(T (g)f)(x) = f(xg) .

Par construction la fonction Θ est un élément A-invariant de FΓ(G,W ). Cette
action T est mesurable si on munit FΓ(G,W ) de la convergence en mesure.

Proposition 10.6 Si rangR(G) ≥ 2, l’espace vectoriel E = 〈T (g)Θ | g ∈ G〉 est
de dimension finie.

En outre, la fonction Θ est continue.

Remarque En particulier, comme Θ n’est pas constante, le corps k ne peut pas
être totalement discontinu. On a donc que k = R ou C.

Cette proposition 10.6 sera une conséquence des trois lemmes 10.7 et 10.8 ci-
dessous.

Lemme 10.7 Soit A′ ⊂ A un sous-groupe non trivial, Z(A′)le centralisateur de
A′ dans G et I ⊂ FΓ(G,W ) un sous-espace vectoriel A-invariant de dimension
finie. Alors le sous-espace vectoriel I ′ = 〈T (g)f | g ∈ Z(A′) , f ∈ I〉 est encore
A-invariant et de dimension finie.
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Démonstration du lemme 10.7 Comme A normalise A′, ce sous-espace vec-
toriel I ′ est bien A-invariant. Montrons que I ′ est de dimension finie. Regardons
pour cela I comme un A′-module. Il suffit de montrer que le k-espace vectoriel
S = HomA′(I, FΓ(G,W )) est de dimension finie, car chaque élément g de Z(A′)
agit sur I via un élément de cet espace vectoriel S. Or on a une identification
naturelle

S ' FΓ(G,Hom(I,W ))A
′

de S avec l’ensemble des sections mesurables A′-invariantes du fibré sur Γ\G
induit par Hom(I,W ).

CommeA′ 6= 1, le corollaire 7.7 affirme que l’action deA′ sur Γ\G est ergodique.
Nous allons en déduire que S est de dimension finie.

Plus précisément, pour toute famille f1, . . . , fi ∈ S et g ∈ G , on note,

m(g) := dim(〈fj(g) | 1 ≤ j ≤ i〉).

La fonction mesurable m : G→ N vérifie, pour tout γ ∈ Γ, a′ ∈ A′

m(γga′) = m(g), pour presque tout g.

Par ergodicité, la fonction m est donc constante égale à un entier m0. Cet entier
m0 est majoré par dim(Hom(I,W )). On peut choisir la famille f1, . . . , fi de sorte
que m0 soit maximal. On peut aussi choisir cette famille de sorte que i = m0.
Soit f ∈ S. Par maximalité de m0, on peut trouver des fonctions mesurables
cj : G→ k telles que, pour presque tout g ∈ G, on ait

f(g) =
∑

1≤j≤m0
cj(g)fj(g).

L’indépendance des fj(g) et les propriétés de Γ-équivariance et de A′-équivariance
des fonctions f et fj prouvent que, pour tout γ ∈ Γ, a′ ∈ A′

cj(γga
′) = cj(g), pour presque tout g.

De nouveau, par ergodicité, les fonctions cj sont constantes. L’espace vectoriel S
est donc de dimension finie. �

Lemme 10.8 Soient G un R-groupe semisimple connexe, G = GR et A un sous-
espace de Cartan de G. Si rangR(G) ≥ 2, il existe une suite A1, . . . , As de sous-
groupes non triviaux de A telle que, en notant Z(Ai) le centralisateur de Ai dans
G, la multiplication

Z(A1)× · · · × Z(As) −→ G
(z1, . . . , zs) 7→ z1 · · · zs

est surjective.
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Démonstration Notons Σ+ = {λ1, . . . λt} un système de racines positives de A
dans G et Ai ⊂ A le noyau de λi. Comme rangR(G) ≥ 2, ces groupe Ai sont
non triviaux. L’ensemble X = Z(A1) · · ·Z(At) contient le parabolique minimal
P associé à Σ+ ainsi que le parabolique opposé P−. Donc l’ensemble Y = X X
contient l’ouvert U = P−P . D’après la démonstration du théorème 3.14.c, cet
ouvert est dense dans G. Donc G = Y Y . C’est ce que l’on voulait. �

C’est le lemme 10.9.b ci-dessous qui nous fera passer du monde mesurable au
monde continu.

Lemme 10.9 Soient G1 et G2 deux groupes localement compacts séparables.
a) Pour toute partie W1 ⊂ G1 de mesure positive pour la mesure de Haar de G1,
l’ensemble W1W

−1
1 contient un voisinage de e.

b) Tout morphisme de groupes mesurable ϕ : G1 → G2 est continu.

Démonstration a) On note µ1 la mesure de Haar de G1. Quitte à réduire W1,
on peut supposer que µ1(W1) < ∞. Or si α, β ∈ L2(G1, µ1), la convolée g 7→
(α∗β)(g) =

∫
G
α(gx)β(x−1)dµ1(x) est une fonction continue : on le vérifie d’abord

pour α, β continues à support compact et on conclut par densité.
Donc la fonction 1W1 ∗ 1W−1

1
est une fonction continue qui vaut µ(W1) en

l’identité. Elle est donc strictement positive dans un voisinage de l’identité. Or
elle est nulle en dehors de W1W

−1
1 . Donc W1W

−1
1 contient un voisinage de e.

b) Soit V2 ⊂ G2 un voisinage de l’identité dans G2. On veut montrer que V1 :=
ϕ−1(V2) est un voisinage de l’identité dans G1. Choisissons un ouvert W2 ⊂ G2

tel que W2W
−1
2 ⊂ V2. Comme G2 est séparable, il existe une famille dénombrable

d’éléments gp ∈ G2 tels que les translatés W2gp recouvrent G2. Mais alors les
images inverses ϕ−1(W2gp) recouvrent G1. L’une d’elles W1 = ϕ−1(W2gp0) est
donc de mesure non nulle. Comme W1W

−1
1 ⊂ V1, on conclut à l’aide du a). �

Démonstration de la proposition 10.6 Posons I0 := 〈Θ〉 et, pour i = 1, . . . , s,
posons Ii = 〈T (Z(Ai))Ii−1〉. Par une application répétée du lemme 10.7, l’espace
I` est de dimension finie. Par le lemme 10.8, il est égal à E.

Montrons maintenant la continuité de Θ. Plus généralement, on va montrer que
toute fonction f ∈ E est continue. Comme E est de dimension finie, le lemme
10.9 prouve que le morphisme mesurable T : G → GL(E) est continu. Notons
f1, . . . , fi une base de E. On a donc des fonctions continues cj : G→ k telles que,
pour tout g dans G, on a

T (g)f =
∑

j cj(g)fj.

Par Fubini, pour presque tout x0 ∈ G, on a l’égalité

f(gx0) =
∑

j cj(g)fj(x0)

pour presque tout g ∈ G. Donc f est continue et Θ aussi. �
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Remarque Comme Θ n’est pas constant, cela ne peut se produire que si k = R
ou C.

10.5 Prolongement de π à G

Nous pouvons maintenant construire le prolongement de π que
nous cherchons grâce à la représentation de G dans E et grâce à
l’évaluation en e qui relie E et W .

Notons δ : E → W ; f 7→ f(e) l’évaluation en l’identité et rappelons que ρ est
la représentation de H dans W .

Lemme 10.10 a) L’application δ est Γ-équivariante, i.e. pour tout γ ∈ Γ, on a
δ ◦ T (γ) = ρ(π(γ)) ◦ δ.
b) L’application δ est injective.
c) Son image δ(E) est un sous-espace H-invariant de W .

Démonstration Comme G = GR est semisimple et connexe, la représentation
T de G s’étend en une R-représentation de G encore notée T . C’est vrai du moins
si G est le quotient du R-groupe algébrique simplement connexe G̃ dont l’algèbre
de Lie est Lie(G)C par le noyau Z du morphisme (G̃)R → G, ce que l’on peut
supposer. Rappelons aussi que ρ est la restriction d’une R-représentation ρ de H.

a) On a les égalités, pour f ∈ E,

δ ◦ T (γ) (f) = f(γ) = ρ(π(γ))(f(e)) = ρ(π(γ)) ◦ δ (f).

b) Le noyau Ker(δ) est un sous-espace Γ-invariant de E. Par le théorème 7.1
de densité de Borel, le réseau Γ est Zariski dense dans G, et donc le noyau
Ker(δ) est aussi G-invariant. Donc, si f est dans Ker(δ), pour tout g ∈ G, on a,
f(g) = δ(T (g)f) = 0 et f = 0.

c) L’ image δ(E) est π(Γ)-invariante. Par hypothèse π(Γ) est Zariski dense dans
H. Donc δ(E) est H-invariant. �

Fin de la démonstration du théorème 10.1 On sait déjà que k = R ou
C. Grace au lemme 10.10, on peut identifier E avec son image δ(E). On dispose
donc dans E d’une représentation T de G et d’une représentation ρ de H telles
que, pour tout γ ∈ Γ, on a

T (γ) = ρ(π(γ)).

Par le corollaire 4.5, l’image ρ(H) est Zariski fermée. Par le théorème 7.1 de
densité de Borel, le réseau Γ est Zariski dense dans G. Donc T (G est inclus dans
ρ(H) . Comme H est simple, ρ est injectif et est donc un R-isomorphisme sur son
image. Le R-morphisme ρ−1 ◦ T : G −→ H prolonge π. �
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11 Arithméticité

Nous avons montré dans le chapitre 5 le théorème de Borel Harish-
Chandra qui affirme que “tout groupe arithmétique est un réseau”. Le
but de ce chapitre est de démontrer le théorème d’arithméticité de
Margulis qui en est une réciproque en rang réel au moins 2.

11.1 Groupes arithmétiques

Nous devons tout d’abord étendre légèrement la définition 5.1 de
groupes arithmétiques

Définition 11.1 Soit G = GR le groupe des R-points d’un R-groupe semisimple
connexe à centre trivial. Un réseau Γ ⊂ G est dit arithmétique si il existe un
Q-groupe semisimple H et un morphisme continu surjectif p : HR → G de noyau
compact tel que les réseaux p(HZ) et Γ sont commensurables.

Théorème 11.2 (Margulis) Soit G = GR le groupe des R-points d’un R-
groupe semisimple. On suppose G sans facteur compact et rangR(G) ≥ 2.

Alors tout réseau irréductible Γ ⊂ G est arithmétique.

Exemple Reprenons l’exemple A de la section 10.1.
Pour la forme quadratique q sur R5, q(x) = x2

1 + x2
2 + x2

3 −
√

2x2
4 −
√

2x2
5, le

groupe Γ = SL(5,Z[
√

2])∩SO(q,R) est un sous-groupe arithmétique de SO(q,R).
En effet, le groupe HZ = {(g, gσ) | g ∈ SL(5,Z[

√
2]) ∩ SO(q,R)} est un sous-

groupe arithmétique d’un Q-groupe noté H = RQ[
√

2]|Q(SO(q)) tel que HR =
SO(q,R)×SO(qσ,R). Comme le groupe SO(qσ) est compact, Γ est bien un groupe
arithmétique.

Stratégie de démonstration du théorème 11.2
On vérifie tout d’abord que Γ est un groupe de type fini de sorte que le corps

K engendré par les traces des éléments de Γ est un corps de type fini.
On rappelle ensuite comment construire de nombreux plongements des corps

de type fini dans les corps locaux.
On utilise ces plongements pour construire des représentations de Γ à coeffi-

cients dans les corps locaux, représentations auxquelles on applique le théorème
de superrigidité pour montrer que le corps K est une extension finie de Q.

Cela permet alors, grâce à la “restriction de Weil” de construire une repré-
sentation de Γ à coefficients dans Q, représentation à laquelle on applique la
superrigidité p-adique pour montrer que les dénominateurs qui apparaissent dans
les coefficients matriciels sont uniformément bornés. On aura ainsi réalisé un
sous-groupe d’indice fini Γ′ de Γ comme un sous-groupe de GL(d,Z).

On verra que Γ′ est d’indice fini dans le groupe des points entiers de son adhé-
rence de Zariski. La superrigidité réelle sera utile pour cela.
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11.2 Les réseaux sont de type fini

Nous admettrons dans cette section un point certes crucial mais
pas très surprenant.

Proposition 11.3 Un réseau Γ du groupe des R-points G = GR d’un R-groupe
G est de type fini.

Cette proposition s’étend aux réseaux des produits finis G =
∏
Gp de groupes

réels et p-adiques.

Nous admettrons cette proposition 11.3 dans sa généralité. Néanmoins, il y a
un cas où la démonstration est assez rapide :

1er cas : Si Γ est cocompact dans G.
Dans ce cas, Γ est le groupe fondamental d’une variété compacte. Il est donc

de type fini, et même de présentation finie.

2ème cas : Si G ne contient pas de facteurs quasisimples Gi de rang réel 1.
Dans ce cas, la proposition est due à Kazhdan et la démonstration repose sur

la propriété T de Kazhdan. Elle est détaillée dans le chapitre 3 de [4] dans un
esprit très proche de ce cours. Je ne la recopie pas ici. Les grandes lignes sont :
comme rangR(Gi) ≥ 2, le groupe G a la propriété T de Kazhdan, donc le réseau
Γ aussi et donc Γ est de type fini.

3ème cas : Si G contient un facteur quasisimple de rang réel 1.
Le fait que Γ soit de type fini est dû à Raghunathan, voir [21] corollaire 13.10.

11.3 Algébricité des valeurs propres

Dans cette section on utilise la superrigidité pour montrer l’algé-
bricité des valeurs propres des éléments de AdΓ.

Proposition 11.4 Sous les hypothèses du théorème 11.2.
Pour tout γ ∈ Γ, les valeurs propres de Adγ sont des nombres algébriques.

Pour montrer cette proposition, nous aurons besoin de construire des plonge-
ments des extensions de type fini de Q.

Lemme 11.5 Soit K une extension de type fini de Q, λ un élément de K trans-
cendant sur Q. Alors il existe un corps local p-adique k et un morphisme de corps
σ : K → k tel que |σ(λ)| > 1.

Démonstration du lemme 11.5 Mettons λ dans une famille maximale λ1 =
λ , λ2 , . . . , λr d’éléments de K algébriquement indépendants sur Q et notons
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K ′ = Q(λ1, . . . , λr) ⊂ K. Il est facile de trouver un plongement σ′ : K ′ → Qp tel
que |σ′(λ)| > 1. On étend alors ce plongement en un morphisme de l’extension
finie K de K ′ vers une extension finie k de Qp. �

Démonstration de la proposition 11.4 Décomposons l’algèbre de Lie g de
G en somme d’idéaux simples et fixons une base de ces idéaux. Soit K0 le corps
engendré par les coefficients matriciels d’une famille finie génératrice du groupe
AdΓ. Ce corps est de type fini. Le groupe adjoint G′ de G est donc un groupe
semisimple défini sur K0 tel que AdΓ ⊂ G′K0

.
Supposons que l’adjoint Adγ d’un élément γ ∈ Γ a une valeur propre λ trans-

cendante sur Q. Le lemme 11.4 permet de construire un morphisme de corps
K0[λ]→ k dans un corps local p-adique tel que |σ(λ)| > 1.

Comme le groupe G′ est un produit de groupes k-simples et que l’image de Γ
est Zariski dense dans G′, le théorème 10.1 de superrigidité affirme que l’image
de Γ dans G′k est bornée. Mais par construction, le groupe engendré par Adγ
n’est pas borné. Contradiction. �

Remarque On a basé la démonstration de la proposition 11.4 sur la superrigidité
p-adique. On aurait pu aussi bien utiliser ici la superrigidité réelle.

11.4 Corps de définition de G

Nous déterminons dans cette section le plus petit corps de défini-
tion de Γ

Notons K le corps engendré par les traces Tr(Adγ) pour γ ∈ Γ.

Proposition 11.6 Sous les hypothèses du théorème 11.2.
a) Le corps K est un corps de nombre i.e. une extension finie de Q.
b) Il existe un R-morphisme injectif i : G→ GL(m) tel que i(Γ) ⊂ SL(m,K)
c) Le groupe i(G) est défini sur K.

Démonstration de la proposition 11.6
a) D’après la proposition 11.4, le corps K est une extension algébrique de Q.

Or ce corps K est une extension de type fini de Q. C’est donc une extension finie
de Q.

b) Notons R[G] l’anneau des fonctions régulières et réelles sur G. Le groupe G
agit sur R[G] par translation à droite. Pour tout ϕ ∈ R[G] et g, x ∈ G

(T (g)ϕ)(x) = ϕ(xg)

Soit ϕ0 l’élément de R[G] donné par ϕ0(g) = Tr(Adg) et E := 〈T (G)ϕ0〉 le R-
sous-espace vectoriel de dimension finie m engendré par les translatés de ϕ0. Le
morphisme i = T |E provient d’un R-morphisme i : G→ GL(m).
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Montrons que i est injectif. Soit g ∈ G un élément du noyau de i. Pour tout
x ∈ G on a donc

Tr(AdxAdg) = Tr(Adx).

On a donc pour tout n ≥ 0

Tr(Adgn) = Tr(Adgn−1) = · · · = dim g.

L’élément g est donc unipotent. Le noyau de i est donc un sous-groupe semisimple
de G dont tous les éléments sont unipotents. Il est donc trivial. Le morphisme i
est bien injectif.

Montrons qu’il existe une base ϕ1, . . . , ϕm de E dans laquelle les éléments de
i(Γ) sont à coefficients dans K. Par le théorème 7.1 de densité de Borel, Γ est
Zariski dense dans G et il existe γ1, . . . , γm ∈ Γ tels que les m translatés ϕi =
T (γi)ϕ0 forment une base de E. Ecrivons, pour γ ∈ Γ,

T (γ)ϕj =
∑
i

aγi,jϕi .

De nouveau, comme Γ est Zariski dense dans G, les restrictions des fonctions ϕj
sont encore linéairement indépendantes. On peut donc trouver γ′1, . . . , γ

′
m ∈ Γ tels

que la matrice (ϕi(γ
′
k)) est une matrice m×m inversible. Les égalités∑

i

aγi,j ϕi(γ
′
k) = (T (γ)ϕj)(γ

′
k) = ϕ0(γ′kγγj) ∈ K

prouvent que les coefficients aγi,j sont dans K.
c) D’après le corollaire 4.5, le groupe i(G) est algébrique. Le fait qu’il soit défini

sur K résulte du théorème 7.1 de densité de Borel et du lemme 7.2. �

11.5 Restriction de K à Q
La dernière étape consiste à remplacer le corps de nombre K par

Q grâce au procédé de restriction à la Weil.
On utilise dans cette étape, à la fois la superrigidité réelle et la

superrigidité p-adique.

Le théorème 11.2 d’arithméticité est une conséquence de la proposition sui-
vante.

Proposition 11.7 Sous les hypothèses du théorème 11.2.
Il existe un Q-groupe semisimple H à centre trivial, un morphisme ϕ : Γ → HQ
et un morphisme continu p : HR → G tels que
a) π = p ◦ ϕ.
b) Le sous-groupe Γ′ := {γ ∈ Γ | ϕ(Γ) ∈ HZ est d’indice fini dans Γ.
c) Le noyau Ker p est compact.
d) Les groupes Γ et p(HZ) sont commensurables.
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Démonstration de la proposition 11.7
D’après la proposition 11.6, on peut supposer que G ⊂ GL(m) est défini sur

un corps de nombre K et que Γ ⊂ GK .
a) Commençons par rappeler la construction et les propriétés de la “restriction

de Weil” H = RK|Q(G). Identifions K à un sous-corps de R et notons σ1, . . . , σr1
les morphismes de K dans R, avec σ1 = Id, et σr1+1, . . . , σr1+r2 , σr1+1, . . . , σr1+r2

les morphismes de K dans C de sorte que le morphisme σ

R⊗Q K
σ−→ Rr1 × Cr2

k 7→ (σ1(k), . . . , σr1+r2(k))

soit un isomorphisme d’algèbres. Regardons K comme un Q-espace vectoriel de
dimension `. Notons

ϕ : GL(m,K) −→ GL(m`,Q)

le morphisme de groupes qui s’en déduit. Ce morphisme a son image dans

GL(m,R⊗Q K) ' GL(m,R)r1 ×GL(m,C)r2 ⊂ GL(m`,R).

Notons
p : GL(m,R⊗Q K) −→ GL(m,R)

la projection sur le premier facteur.
Le groupe GL(m,K) s’identifie ainsi au groupe RQ des Q-points d’un Q-

sous-groupe R de GL(m`), dont le groupe des R-points s’identifie à RR '
GL(m,R)r1 × GL(m,C)r2 . Ce Q-groupe est noté RK|Q(GL(m)) et est appelé
la restriction de K à Q de GL(m).

Notons H = RK|Q(G) l’adhérence de Zariski de ϕ(GK). Comme ϕ(GK) est
inclus dans GL(m`,Q), le lemme 7.2 affirme que H est un Q-groupe. En outre,
par construction, on a, pour tout algèbre A contenant Q, l’égalité HA ' GK⊗QA.
En particulier, H est encore un Q-groupe dont les Q-points s’identifient aux K-
points de G. Le morphisme ϕ s’étend en un Q-morphisme encore noté ϕ de G
dans H. Le groupe des points complexes HC s’identifie à (GC)r1+2r2 . On en déduit
que le Q-groupe H est donc semisimple. Par construction, on a p(HR) = G et
p(ϕ(γ)) = γ, pour tout γ ∈ Γ.

b) Comme Γ est de type fini, il existe des nombres premiers p1, . . . , pr tels que

ϕ(Γ) ⊂ HZ[p−1
1 ,..., p−1

r ].

Soit ϕi la composée Γ → HQ ⊂ HQpi . D’après le théorème de superrigidité,
l’image ϕi(Γ) est relativement compacte dans HQpi . Notons Zp l’anneau des en-
tiers de Qp. Comme le sous-groupe HZpi est ouvert dans HQpi , le sous groupe

Γ′ := ∩iϕ−1
i (HZpi ) est d’indice fini dans Γ et vérifie ϕ(Γ′) ⊂ HZ.

c) Montrons que le noyau Ker(p) est compact. Sinon, on pourrait décomposer
H en produit de R-groupes H = G×F×F′ où p est la projection sur le premier
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facteur et où F est simple et FR non compact. Notons q la projection sur ce
deuxième facteur. L’image q ◦ϕ(Γ) est Zariski dense dans F. En particulier, cette
image n’est pas bornée. Le théorème 10.1 de superrigidité prouve que q ◦ ϕ se
prolonge en un morphisme continu ψ : G → F . L’image ϕ(Γ) serait alors inclus
dans le sous-groupe fermé Graphe(ψ) × F ′. Ce groupe n’est pas Zariski dense
dans H. Ceci contredit la Zariski densité de ϕ(Γ) dans H. Donc le noyau Ker(p)
est compact.

d) D’après le c) ϕ(Γ′) est un réseau de HR. Donc ϕ(Γ′) est d’indice fini dans
HZ et Γ et p(HZ) sont commensurables. �

Remarques (voir [16].IX) - Comme pour le théorème de superrigidité, le théo-
rème d’arithméticité et sa démonstration sont valables dans un cadre beaucoup
plus large : on peut prendre pour G un produit fini G =

∏
Gp, avec p premier

ou ∞ et Gp le groupe des Qp-points d’un Qp-groupe semisimple sous l’hypothèse∑
p rangQpGp ≥ 2.
- On peut en outre remplacer cette hypothèse de rang par

Γ est d’indice infini dans son commensurateur Com(Γ)
où Com(Γ) := {g ∈ G | gΓg−1 et Γ sont commensurables }.

- Si k = R ou C, le groupe Gk des k-points d’un k-groupe semisimple G contient
toujours des réseaux cocompacts et des réseaux non cocompacts.

- Si k est un corps p-adique, le groupe Gk des k-points d’un k-groupe semisimple
G contient toujours des réseaux et ceux-ci sont toujours cocompacts.

- Si k est un corps local de caractéristique non nulle, le groupe Gk des k-points
d’un k-groupe semisimple G contient toujours des réseaux non cocompacts mais
pas toujours des réseaux cocompacts.
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12 Mesures invariantes

12.1 Mesures U-invariantes sur SL(2,R)/Γ

Dans cette partie, nous montrons le théorème mesuré de Ratner
pour G = SL(2,R). Il est dû à Dani dans ce cas.

Proposition 12.1 Soit G = SL(2,R), U = {us :=
(

1 s
0 1

)
| s ∈ R}. Soient

Γ ⊂ G un sous-groupe discret et µ une probabilité U-invariante U-ergodique sur
le quotient X = G/Γ.

Alors ou bien cette probabilité µ est portée par une U-orbite périodique ou bien
cette probabilité µ est G-invariante.

Remarques - Lorsque Γ est cocompact, le premier cas est impossible car Γ ne
contient pas d’élément unipotent non trivial. (voir la démonstration du corollaire
5.6.b)

- Lorsque Γ n’est pas un réseau, le deuxième cas est impossible car µ(X) = 1.

Dans cette section on notera aussi A = {at :=
(

t 0
0 t−1

)
| t > 0}, B=AU,

U− = {u−s :=
(

1 0
s 1

)
| s ∈ R} et B− = AU−.

Démonstration de la proposition 12.1 Elle résulte des lemmes suivants. �

Lemme 12.2 Si µ n’est pas portée par une U-orbite périodique, alors µ est A-
invariante.

Lemme 12.3 Si µ est B-invariante, alors µ est G-invariante.

Démonstration du lemme 12.2 Expliquons tout d’abord la démarche que
nous allons suivre. Soit

Z = {x ∈ X | lim
t→∞

1

t

∫ t

0

ϕ(usx)ds =

∫
X

ϕdµ pour tout ϕ ∈ Cc(X)}.

Le théorème 8.6 de Birkhoff appliqué à une famille dénombrable dense de fonc-
tions de Cc(X) prouve que µ(Z) = 1. L’idée est de prendre deux points proches
x et gx dans Z et de comparer les moyennes orbitales de ϕ issues de x et de gx.
On écrit

usgx = D(s)ud(s)x

avec D(s) dans B−. La quantité d(s) est la dérive du paramétrage et D(s) la
dérive transverse. On verra que, lorsque g n’est pas dans B, on peut trouver un
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“long” intervalle de temps I pendant lequel D(s) est presque égal à un élément
non trivial a de A. On aura alors, en posant ϕa(y) = ϕ(ay),∫

X

ϕdµ ' 1

`(I)

∫
I

ϕ(usgx)ds ' 1

`(I)

∫
I

ϕa(ud(s)x)ds '
∫
X

ϕa dµ.

Ce qui implique que µ est A-invariant, à moins que g ne soit toujours dans B.
Il reste à justifier ces '. C’est l’objet de la démonstration que nous détaillons
maintenant.

Pour tout ε0 > 0, on peut trouver une partie compacte Z0 ⊂ Z de mesure
µ(Z0) ≥ 1− ε0 telle que, pour tout ϕ ∈ Cc(X), la limite

lim
t→∞

1

t

∫ t

0

ϕ(usx)ds =

∫
X

ϕdµ (3)

soit uniforme pour x dans Z0.
En effet, la proposition 8.8 d’Egorov appliquée à une fonction f d’une partie

dénombrable dense F de Cc(X) permet de construire des parties compactes Zϕ
de mesure µ(Zϕ) ≥ 1 − εϕ telles que la limite (3) soit uniforme pour x ∈ Zϕ. Il
suffit de prendre Z0 = ∩ϕ∈FZϕ où les εϕ sont choisis de sorte que

∑
ϕ∈F εϕ ≤ ε0.

En effet, l’ensemble des fonctions ϕ ∈ Cc(X) pour lesquelles la limite (3) soit
uniforme pour x ∈ Z0 est un fermé de Cc(X).

Distinguons deux cas.

1er cas : Il existe une suite gn ∈ G, gn 6∈ B, gn → e telle que gnZ0 ∩ Z0 6= ∅.
Notons gn =

(
αn βn
γn δn

)
et choisissons xn ∈ Z0 tel que gnxn ∈ Z0. On peut

supposer γn > 0. Un calcul matriciel avec λn = γ−1
n →∞ donne

uλnsgn = Dn(s)uλndn(s)

où

Dn(s) =
(
αn + s 0
γn

1
αn+s

)
−→ D(s) :=

(
1 + s 0

0 1
1+s

)
et

αn(s) =
βnγn + δns

αn + s
−→ α(s) :=

s

1 + s
.

Soient ϕ ∈ Cc(X) et a =
(

1 + t0 0
0 1

1+t0

)
∈ A. On va montrer que

∫
X
ϕdµ =∫

X
ϕadµ, ce qui prouvera que µ est A-invariante. On peut supposer que ‖ϕ‖∞ ≤ 1.

Par définition de Z0, on a, pour tout t1 < t2, la convergence uniforme pour
x ∈ Z0,

lim
λ→∞

1

t2 − t1

∫ t2

t1

ϕ(uλsx)ds =

∫
X

ϕdµ.
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En effet, par simple soustraction pondérée de moyennes sur [0, t2] et [0, t1], on
peut se ramener à de telles moyennes sur des portions d’orbites. En particulier,
pour tout t1 < t2,

lim
n→∞

1

t2 − t1

∫ t2

t1

ϕ(uλnsgnxn)ds =

∫
X

ϕdµ. (4)

De la même façon, pour s1 < s2, qu’on prend égal à s1 = d(t1) et s2 = d(t2), on a

lim
n→∞

1

s2 − s1

∫ s2

s1

ϕa(uλnσxn)dσ =

∫
X

ϕa dµ. (5)

Expliquons tout d’abord dans quel ordre on choisit les paramètres. Soit ε > 0,
on peut choisir t1 < t2 suffisamment proche de t0 pour que, pour s ∈ [t1, t2], on
ait

‖ϕD(s) − ϕa‖∞ ≤ ε (6)

et ∣∣∣∣ 1

d′(s)

s2 − s1

t2 − t1
− 1

∣∣∣∣ ≤ ε. (7)

On choisit alors n0 tel que, pour tout n ≥ n0 et s ∈ [t1, t2], on ait

‖ϕDn(s) − ϕD(s)‖∞ ≤ ε, (8)

|ti − d−1
n (si)| ≤ ε(t2 − t1) (9)

pour i = 1, 2 et ∣∣∣∣s2 − s1

t2 − t1

∣∣∣∣ ∣∣∣∣ 1

d′n(s)
− 1

d′(s)

∣∣∣∣ ≤ ε. (10)

On a alors, pour n ≥ n0∣∣∣∣ 1

t2 − t1

∫ t2

t1

ϕ(uλnsgnxn)ds− 1

t2 − t1

∫ t2

t1

ϕa(uλndn(s)xn)ds

∣∣∣∣ ≤ 2ε

d’après (6) et (8)∣∣∣∣ 1

t2 − t1

∫ t2

t1

ϕa(uλndn(s)xn)ds− 1

t2 − t1

∫ s2

s1

ϕa(uλnσxn)
1

|d′n(s)|
dσ

∣∣∣∣ ≤ 2ε

d’après (9), où σ = dn(s)

∣∣∣∣ 1

t2 − t1

∫ s2

s1

ϕa(uλnσxn)
1

|d′n(s)|
dσ − 1

s2 − s1

∫ s2

s1

ϕa(uλnσxn)dσ

∣∣∣∣ ≤ 2ε

d’après (7) et (10).
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Ces trois majorations avec (4) et (5) donnent∣∣∣∣∫
X

ϕdµ−
∫
X

ϕa dµ

∣∣∣∣ ≤ 6ε.

Comme ε est arbitraire, on a
∫
X
ϕdµ =

∫
X
ϕa dµ.

2ème cas : Il n’y a pas de suite gn ∈ G, gn 6∈ B, gn → e avec gnZ0 ∩ Z0 6= ∅.
Montrons tout d’abord que µ est portée par une B-orbite. Pour cela, notons D

un voisinage de e dans G tel que les éléments g ∈ D, g 6∈ B vérifient gZ0∩Z0 = ∅.
Il existe un point x = gΓ ∈ Z0 tel que µ(Dx∩Z0) > 0. Cette intersection Dx∩Z0

est incluse dans l’orbite Bx. Donc µ(Bx) > 0 et par ergodicité, µ(Bx) = 1.
Le groupe ∆ := B ∩ gΓg−1 est un sous-groupe discret de B et µ est une

probabilité U -invariante sur B/∆. Il est facile de décrire tous les sous-groupes
discrets de B. A conjugaison près, on a soit ∆ ⊂ A ou ∆ ⊂ U . Dans les deux cas,
toutes les orbites de U dans B/∆ sont fermées. Comme µ est ergodique, µ est
portée par une U -orbite (cf. proposition 8.3). Ce qui termine la démonstration
du lemme 12.2. �

Démonstration du lemme 12.3 Remarquons que µ est B-invariante et U -
ergodique. On en déduit que µ est A-ergodique. En effet, un élément ϕ ∈ L2(X,µ)
qui est A-invariant est forcément U -invariant à cause du lemme 6.6 de Mautner
et de l’égalité lim

t→0
atusa

−1
t = e.

Pour x ∈ X et ϕ ∈ Cc(X), on note

ϕ̃(x) = lim inf
t→∞

1

t

∫ t

0

ϕ(aesx) ds et Y = {x ∈ X | ϕ̃(x) =

∫
X

ϕdµ}.

D’après le théorème 8.6 de Birkhoff, on a µ(Y c) = 0. Soit λ une mesure G-
invariante sur G/Γ. Montrons que λ(Y c) = 0.

Remarquons que, par uniforme continuité de ϕ, pour tout u−s ∈ U−

lim
t→∞

(ϕ(aetu
−
s x)− ϕ(aetx)) = lim

t→∞
(ϕ(u−e−2tsaetx)− ϕ(aetx)) = 0.

Ce calcul traduit le fait que les deux géodésiques issues de x et de u−s x se rap-
prochent exponentiellement vite vers +∞. On dit qu’elles sont sur la même feuille
stable du flot géodésique. On en déduit que ϕ̃(u−s x) = ϕ̃(x) puis que U−Y = Y .

Comme la probabilité µ est B-invariante, et que µ(Y ) = 1, le théorème de
Fubini prouve que, pour µ-presque tout x ∈ X, l’ensemble Bx = {b ∈ B | bx ∈ Y }
est de complémentaire négligeable pour la mesure de Lebesgue de B.

La multiplication induit un difféomorphisme entre

U− ×B et {g =
(
α β
γ δ

)
∈ G | α 6= 0}.

On déduit des trois paragraphes précédents que λ(Y c) = 0. C’est-à-dire que
ϕ̃(x) =

∫
X
ϕdµ pour λ-presque tout x.
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Montrons que λ(X) <∞. Pour cela choisissons ϕ ≥ 0 tel que
∫
X
ϕdµ = 1. Le

lemme de Fatou donne alors

λ(X) =

∫
X

ϕ̃ dλ ≤ lim inf
t→∞

∫
X

(
1

t

∫ t

0

ϕ(aesx) ds

)
dλ =

∫
X

ϕdλ <∞.

On peut donc supposer que λ(X) = 1. Pour conclure, on peut soit reprendre le
calcul précédent en remplaçant le lemme de Fatou par le théorème de convergence
dominée et les limites inférieures par des limites. On peut aussi remarquer que λ
est A-invariante et A-ergodique par le corollaire 6.4 de Howe-Moore. Donc, par
le théorème 8.6 de Birkhoff, on a ϕ̃(x) =

∫
X
ϕdλ pour λ-presque tout x. On en

déduit que
∫
X
ϕdλ =

∫
X
ϕdµ. C’est-à-dire µ = λ. �

12.2 Petites valeurs des formes quadratiques

Dans cette section, on donne une démonstration directe et rapide
de la conjecture d’Oppenheim qui fut la première des motivations des
travaux de Ratner.

Proposition 12.4 (Margulis) Soit Q une forme quadratique sur R3 de signature
(1, 2) qui n’est pas multiple d’une forme quadratique entière. Alors Q prend des
valeurs arbitrairement petites sur Z3 r 0.

Cette proposition sera une conséquence de la version faible suivante du théo-
rème topologique de Ratner.

Proposition 12.5 Soient G = SL(3,R), Γ = SL(3,Z), X = G/Γ et H =
SO(2, 1). Alors toute H-orbite bornée Hx ⊂ X est compacte.

Remarques - Bornée signifie relativement compacte.
- La démonstration directe que nous suivons ne se généralise pas pour décrire

les adhérences de toutes les H-orbites. Son défaut principal est de ne faire appel a
aucun argument de théorie ergodique. En contre-partie, elle est assez élémentaire.

La stratégie de la preuve de la proposition 12.5 consiste à partir d’un fermé U -
invariant minimal K de l’adhérence de l’orbite F = Hx. Par un argument proche
de l’argument de dérive de la section 12.1, on montre que K est A-invariant puis
que l’image de K par un sous-semigroupe de G reste dans F , semigroupe trop
gros pour avoir des orbites bornées dans X.

Démonstration de l’implication Proposition 12.5 =⇒ Proposition 12.4
L’argument qui suit, dû à Raghunathan, n’est pas propre à la dimension 3.
Supposons par l’absurde qu’il existe ε > 0 tel que Q(Z3 r 0) ne rencontre pas

] − ε, ε[. Notons x0 le réseau Z3, H = SO(Q,R) et Hx0 la H-orbite de x0 dans
X. La proposition 12.5 est bien sûr aussi valable pour ce groupe H. Le critère 1.8
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de Mahler prouve que cette orbite est relativement compacte. En effet, l’ouvert
Ω := Q−1(] − ε, ε[) est un voisinage de 0 qui ne rencontre qu’en 0 les réseaux
Λ ∈ Hx0. La proposition 12.5 prouve alors que cette orbite Hx0 est compacte.

Montrons que cela implique que Q est multiple d’une forme quadratique entière.

Ecrivons Q(x) =
∑

ai,jxixj avec ai,j = aj,i.

On peut supposer que l’un des coefficients ai,j est égal à 1. Montrons que Q est

alors à coefficients dans Q. Soit σ ∈ Gal(C|Q) et Qσ(x) =
∑

aσi,jxixj. Il suffit de

montrer que Q = Qσ. Remarquons que le groupe Γ∩H est un réseau cocompact
de H. Par le théorème 7.1 de densité de Borel, il est donc Zariski dense dans H.
Comme on a l’inclusion Γ ∩H ⊂ SO(Qσ,C), on en déduit que H ⊂ SO(Qσ,C).
Soit µ ∈ C tel que Qσ−µQ est dégénérée. Le groupe H préserve donc le noyau de
Qσ−µQ. L’irréductibilité de l’action de H sur C3 prouve que Qσ = Q. Forcément
µ = 1 et Qσ = Q. �

Le lemme suivant est basé sur l’aspect polynomial des flots unipotents. Cet
argument nous est maintenant bien familier. Il jouera le rôle de l’argument de
dérive de la section 12.1.

Lemme 12.6 Soient E un R-espace vectoriel de dimension d < ∞, U = {us |
s ∈ R} un groupe à un paramètre de transformations unipotentes et F l’ensemble
des points fixes de U dans E. Soient D une partie de E r F et v0 un point de
D ∩ F . Alors UD ∩ F contient un chemin polynomial non constant passant par
v0.

Démonstration du lemme 12.6 Soient vn une suite de points de D tels que
lim
n→∞

vn = vn. On choisit λn > 0 tels que

sup
s∈[−1,1]

‖uλnsvn − vn‖ = 1.

C’est possible car l’application s 7→ usvn est polynomiale non constante de degré
borné par d.

En outre, on a lim
n→∞

λn =∞ car v0 est un point fixe de U . La suite des polynômes

ϕn : s 7→ uλnsvn est bornée sur [−1, 1]. Quitte à extraire, on peut supposer qu’elle
converge uniformément sur [−1, 1] vers un polynôme ϕ. Ce polynôme est non
constant car ϕ(0) = 0 et

sup
s∈[−1,1]

‖ϕ(s)− v0‖ = 1.

Par construction, on a ϕ(R) ⊂ UD. En outre, ϕ prend ses valeurs dans F car,
pour ut ∈ U , on a

utϕ(s) = lim
n→∞

utϕn(s) = lim
n→∞

ϕn(s+ t/λn) = ϕ(s)
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par uniforme convergence. �

Certains sous-groupes à un paramètre de G vont jouer un rôle important dans la
démonstration. Fixons les notations : on peut supposer que la forme quadratique
s’écrit, pour v = (x1, x2, x3) ∈ R3, Q(v) = x2

2−2x1x3. Le groupe H contient alors
les deux groupes

A = {at :=

 et 0 0
0 1 0
0 0 e−t

 | t ∈ R} , U = {us :=

 1 s s2/2
0 1 s
0 0 1

 | s ∈ R}.
Notons V = {vs :=

 1 0 s
0 1 0
0 0 1

 | s ∈ R}. Le groupe V n’est pas inclus dans

H. On vérifie facilement que U et V commutent, que A normalise U et V , que
les produits B := AU et W := UV sont des groupes et que le normalisateur de
U est le groupe NG(U) = AUV . On notera V ± := {vs ∈ V | ±s > 0}.

Les gros sous-semi groupes dont nous parlions ci-dessus sont AUV ±.

Lemme 12.7 Pour tout y ∈ X, les orbites AUV +y et AUV −y ne sont pas
bornées dans X.

Démonstration Le point y ∈ X est un réseau de R3. On peut choisir un point
p = (x1, x2, x3) dans ce réseau tel que x3 6= 0 et ±(x2

2 − 2x1x3) > 0. On pose

gt = at u−x2/x3 v(x2
2−2x1x3)/2x2

3
∈ AUV ±

et on calcule gtp = (0, 0, e−tx3) → 0 quand t → ∞. Le critère 1.8 de Mahler
prouve donc que AUV ±y n’est pas relativement compact. �

Démonstration de la proposition 12.5 Rappelons que, par un argument à la
Zorn, tout compact U -invariant non vide de X contient un compact U -invariant
minimal. Soit F = Hx. On suppose par l’absurde que F 6= Hx.

On va appliquer deux fois le lemme 12.6. La première fois via le lemme 12.8.
La deuxième fois via le lemme 12.9.

Soit K un compact U -invariant minimal de F . D’après le lemme 12.8, ce com-
pact K est aussi AU -invariant. D’après le lemme 12.8, on a soit AUV +(K) ⊂ F
ou AUV −(K) ⊂ F . Mais, d’après le lemme 12.7, les ensembles AUV ±(K) ne sont
pas bornés dans X. Contradiction. �

Dans cette démonstration, on a utilisé les deux lemmes suivants.

Lemme 12.8 Soit K un compact U-invariant minimal du compact F = Hx.
Alors K est AU-invariant.

Démonstration du lemme 12.8 Remarquons tout d’abord que K n’est pas
une U -orbite compacte. Sinon, on pourrait trouver y dans K et s 6= 0 tels que
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usy = y. On aurait alors ue−tsaty = aty. Or les points de X ont un stabilisateur
discret dans G et lim

t→∞
ue−ts = e. Donc aty tend vers l’infini, ce qui contredit la

compacité de F .
L’ensemble M := {g ∈ G | gK ∩K 6= ∅} vérifie les trois propriétés suivantes.

M est U-invariant à droite et à gauche.
M est fermé.
Il existe une suite gn dans M r U convergeant vers e.
Pour vérifier cette dernière affirmation, on choisit un point y ∈ K. Par minimalité
de K, il existe une suite usn ∈ U avec sn →∞ telle que usny → y. On écrit alors
y = gnusny avec gn → e.

Pour pouvoir appliquer le lemme 12.6 à l’image D de la suite gn dans G/U ,
remarquons qu’il existe une représentation linéaire de G dans un espace vectoriel
E de dimension finie et un point v0 ∈ E tel que Gv0 ' G/U . Cela résulte du
résultat général 4.7 de Chevalley. On peut être aussi très explicite en prenant

E = { formes quadratiques sur R3} × R3 et v0 = (Q, (1, 0, 0)).
L’ensemble des points fixes de U dans G/U est égal à NG(U)/U ' AV .
Le lemme 12.6 et les trois propriétés ci-dessus prouvent que l’on est dans l’un

des deux cas suivants :
1er cas La suite gn est dans AV U pour n� 0.
2ème cas Il existe une application continue non constante ϕ : R→ AV ∩M .

Notons L la composante connexe du groupe engendré par M ∩ AV . Dans les
deux cas, c’est un sous-groupe de Lie connexe non trivial de AV . Montrons que K
est L-invariant. Pour tout g dans dans M ∩AV , le fermé gK ∩Kest U -invariant
et non vide et, par minimalité de K, on a gK = K. Donc K est bien L-invariant.

Pour conclure, il reste à montrer que L contient A.
Supposons par l’absurde que ce ne soit pas vrai. On est alors dans l’un des

deux cas suivants : L = V ou vs0Av−s0 avec s 6= 0. Dans ce deuxième cas, on a
V + ⊂ AL, car atvs0a

−tv−s0 = a(e2t−1)s0 . Dans les deux cas, pour tout y ∈ K, on
a donc AUV +y ⊂ HLy ⊂ F. Ce qui contredit le lemme 12.7. �

Lemme 12.9 On suppose que l’orbite Hx n’est pas compacte. Soit K un compact
AU-invariant minimal du compact F = Hx.

Alors on a soit AUV +(K) ⊂ F ou AUV −(K) ⊂ F .

Démonstration du lemme 12.9 Le raisonnement est très proche de celui du
lemme 12.8.

Comme H/AU est compact et que l’orbite Hx n’est pas compacte, K ne peut
pas être inclus dans Hx.

L’ensemble M := {g ∈ G | gF ∩ K 6= ∅} vérifie alors les trois propriétés
suivantes.
M est H-invariant à droite et AU-invariant à gauche.
M est fermé.
Il existe une suite gn dans M rH convergeant vers e.
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Pour vérifier cette dernière affirmation, on prend un point y ∈ K hors de l’orbite
Hx. On a alors une suite hn ∈ H telle que hnx → y. On écrit alors y = gnhnx
avec gn → e.

Pour appliquer le lemme 12.6 à l’image D de la suite gn dans G/H, on remarque
de nouveau à l’aide du corollaire 4.7 qu’il existe une représentation linéaire de
G dans un espace vectoriel E de dimension finie et un point v0 ∈ E tel que
Gv0 ' G/H. On peut être aussi explicite que dans le lemme 12.8 en prenant

E = { formes quadratiques sur R3} et v0 = Q.
Comme tous les sous-groupes unipotents de H sont conjugués, l’ensemble des

points fixes de U dans G/U est égal à NG(U)H/H = V H/H ' V .
Le lemme 12.6 et les trois propriétés ci-dessus prouvent que l’on est dans l’un

des deux cas suivants :
1er cas La suite gn est dans V H pour n� 0.
2ème cas Il existe une application continue non constante ϕ : R→ V ∩M .

Dans les deux cas, on a M ∩ V 6= e. Comme M est invariant par conjugaison
par A, on en déduit que V + ⊂M ou V − ⊂M .

Supposons par exemple V − ⊂M . Pour tout v ∈ V −, l’intersection vF ∩K est
non vide et U -invariante. Le lemme 12.8 assure que K est un fermé U -invariant
minimal. On a donc K ⊂ vF , puis V +K ⊂ F et enfin AUV +K ⊂ AU F = F . �
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13 Récurrence des groupes unipotents

Le but de ce chapitre est de montrer des propriétés de récurrence
pour les flots unipotents sur les espaces homogènes X de volume fini.

A cause du théorème d’arithméticité de Margulis le cas crucial est celui où
X = SL(d,R)/SL(d,Z) est l’espace des réseaux de volume 1 dans Rd. Ce que
nous supposerons dans ce chapitre.

Notons alors t→ ut = etN un groupe à un paramètre d’éléments unipotents. Le
but de cette section est le théorème suivant. On note |I| la mesure de Lebesgue
d’une partie I de R.

Théorème 13.1 (Dani, Margulis) Soit X = SL(d,R)/SL(d,Z). Pour tout
ε > 0, x ∈ X, il existe un compact K = Kx ⊂ X tel que, pour tout T ≥ 0

|{t ∈ [0, T ] | utx ∈ K}| ≥ (1− ε)T.

On notera l’analogie entre ce théorème 13.1 et le lemme 1.4 de récurrence pour
les marches aléatoires qui s’applique à X.

En outre, le compact Kx peut être choisi uniforme pour tout x dans un compact
K ′ de X. Ce théorème affirme donc que les orbites du flot ut sur X passent la
plus grande partie de leur temps à distance finie.

13.1 Le cas d = 2

Dans le cas d = 2, la démonstration du théorème 13.1 est très
courte :

On note bε la boule de rayon ε dans R2. Le critère de Mahler assure que
l’ensemble des réseaux ∆ ∈ X qui ne rencontrent bε qu’en 0 est un compact.
Choisissons une boule bα avec α ≤ 1 qui ne rencontre le réseau de départ ∆ = x
qu’en 0.

Pour chaque paire ±v ∈ ∆ de vecteurs primitifs, le vecteurs utv se déplace
à vitesse constante. Donc dans l’intervalle de temps Iv qu’il a passé dans bα la
proportion de temps qu’il a passé dans une boule beaucoup plus petite bαε/2 est
au plus ε.

Ces intervalles Iv sont disjoints car, comme ut∆ est de volume 1, la boule bα
contient à chaque instant t au plus une paire de points ±utv avec v ∈ ∆ primitif.
Donc la proportion du temps entre 0 et T pendant lequel ut∆ avait un point dans
cette boule bαε/2 est au plus ε. C’est ce que l’on voulait. �

13.2 Préliminaires sur les réseaux

Nous aurons besoin d’une version plus maniable du critère 1.8 de
compacité de Mahler
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Munissons Rd d’une norme euclidienne ‖.‖. Rappelons que, pour ∆ réseau de
Rd, un sous-espace ∆-rationnel L ⊂ Rd est un sous-espace tel que ∆ ∩ L est un
réseau de L. On note alors

d∆(L) := covolL(∆ ∩ L).

Par exemple d∆ := d∆(Rd) est le covolume de ∆. Notons S(∆) l’ensemble des
sous-espaces ∆-rationnels. On appelle drapeau ∆-rationnel de longueur `, un en-
semble F de ` sous-espaces ∆-rationnels non triviaux qui est totalement ordonné.
On pourrait noter un tel drapeau F sous la forme

F : 0  Li1  · · ·  Li`  R
d.

Nous ne le ferons pas car, au cours de la démonstration, les sous-espaces Li n’ap-
paraitrons pas forcément dans l’ordre croissant. On note alors SF = SF (∆) l’en-
semble des sous-espaces ∆-rationnels propres L tels que F ∪ {L} est un drapeau
∆-rationnel de longueur k + 1. Autrement dit,

SF := {L ∈ S , 0  L  Rd | pour tout M ∈ F , on a M  L ou L  M }.

On dit que le drapeau F est complet si ` = d− 1. Dans ce cas SF (∆) est vide.

Proposition 13.2 (Mahler) Soient X = SL(d,R)/SL(d,Z) et Y ⊂ X. Les
assertions suivantes sont équivalentes.
(i) Y est relativement compact.
(ii) Il existe a > 0 tel que, pour tout ∆ ∈ Y , inf

v∈∆−0
‖v‖ ≥ a.

(iii) Il existe b > 0 tel que, pour tout ∆ ∈ Y , inf
L∈S(∆)

d∆(L) ≥ b.

(iv) Il existe β > α > 0 tels que, pour tout ∆ ∈ Y , il existe un drapeau ∆-rationnel
complet F tels que α ≤ d∆(L) ≤ β, pour tout L ∈ F .

Rappelons tout d’abord quelques affirmations que nous avons déjà utilisées

dans la section 1.4. On note cd la constante cd = 2(1/vd)
1
d où vd = π

d
2

d
2

Γ( d
2

)
est le

volume de la boule euclidienne dans Rd. La valeur précise de cette constante ne
jouera pas de rôle dans la démonstration. On remarque juste que cd ≥ 1 et que
cd crôıt avec d.

Lemme 13.3 a) Tout réseau ∆ ⊂ Rd contient un vecteur v avec 0<‖v‖ ≤ cd d
1
d
∆.

b) Pour tout C > 0, l’ensemble {L ∈ S(∆) | d∆(L) ≤ C} est fini.
c) L’application X →]0,∞[; ∆ 7→ min

L∈S(∆)
d∆(L) est continue.

Démonstration C’est le lemme 1.10 de Minkowski et le lemme 1.12. �

Le lemme suivant permet de compléter les drapeaux ∆-rationnels incomplets
en des drapeaux dont on contrôle les covolumes.
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Lemme 13.4 Soient β ≥ 1, ∆ ∈ X et F un drapeau ∆-rationnel incomplet tel
que, pour tout L ∈ F , d∆(L) ≤ β.

Alors il existe M ∈ SF (∆) tel que d∆(M) ≤ cdβ.

Démonstration Comme le drapeau F est incomplet, on peut trouver deux sous-
espaces ∆-rationnels successifs L1 ⊂ L2 de dimension d1 < d2 avec δ := d2−d1 ≥ 2
avec Li ∈ F ∪ {0,Rd}. En appliquant le lemme 13.3.a de Minkowski à l’image de
L2 ∩∆ dans L2/L1, on peut trouver un vecteur v ∈ L2 r L1 dont l’image v dans
L2/L1 est de norme au plus

‖v‖ ≤ cd(d∆(L2)/d∆(L1))
1
δ .

Le sous-espace M = L1 ⊕ Rv est alors dans SF (∆) et vérifie

d∆(M) ≤ ‖v‖d∆(L1) ≤ cdd∆(L1)1− 1
δ d∆(L2)

1
δ ≤ cdβ.

C’est la majoration cherchée. �

Démonstration de la proposition 13.2 (i)⇐⇒ (ii) C’est la proposition 1.8.
(ii) =⇒ (iii) Cela résulte du lemme 13.3.c. En effet, une fonction continue

strictement positive sur un compact est minorée par une constante strictement
positive.

(iii) =⇒ (iv) La minoration est claire. Pour la majoration, on peut prendre
pour constante β = (cd)

d. Pour cela, on construit le drapeau F par récurrence à
l’aide du lemme 13.4. On perd au plus un facteur cd à chaque étape.

(iv) =⇒ (ii) On peut supposer 0 < α < 1 < β. Soit v un vecteur non nul dans
un des réseaux ∆ ∈ Y . Notons L1  · · ·  Ld−1 le drapeau ∆-rationnel complet
F donné par la condition (iv) et posons L0 = 0 et Ld = Rd. Soit i l’entier tel que
v ∈ Li − Li−1. On a alors

‖v‖ ≥ d(Li)/d(Li−1) ≥ α/β.

C’est la minoration cherchée. �

13.3 Autres lemmes préliminaires

Voici deux lemmes élémentaires dont nous aurons besoin, l’un sur
les polynômes en une variable, l’autre sur les recouvrements d’un in-
tervalle.

Notons Pm l’espace des polynômes sur R de degré au plus m. Le lemme suivant
exprime qu’un polynôme ne peut pas être petit trop longtemps et ce avec un
contrôle uniforme qui ne dépend que du degré du polynôme.
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Lemme 13.5 Pour tout ε > 0, il existe Mε > 0 tel que pour tout intervalle I et

tout polynôme p ∈ Pm, on a
∣∣∣{t ∈ I | |p(t)| ≤ 1

Mε
supI |p| }

∣∣∣ ≤ ε|I|.

Démonstration Sinon il existerait m ≥ 0, ε > 0 et une suite de polynômes pn ∈
Pm telle que sup[0,1] |pn| = 1 et

∣∣{t ∈ [0, 1] | |pn(t)| ≤ 1
n
}
∣∣ ≤ ε. Cet ensemble

est une réunion d’au plus 2m intervalles. Par compacité de la sphère unité de Pm,
cette suite pn une valeur d’adhérence p∞ ∈ Pm. Ce polynôme p∞ est non nul,
mais l’ensemble de ses racines est de mesure au moins ε. Contradiction. �

Lemme 13.6 Soit I = ∪α∈AIα un recouvrement d’un intervalle compact I ⊂ R
par des intervalles Iα ouverts dans I. Alors, il existe un sous-recouvrement I =
∪α∈A′Iα de chevauchement au plus 2.

Le chevauchement est le nombre maximum d’intervalles Iα dont l’intersection est
d’intérieur non vide.

Démonstration On extrait tout d’abord un recouvrement fini. On prend alors
un intervalle Iα0 = [x0, y0[ contenant l’extrémité gauche de I avec y0 maximum.
Puis un intervalle Iα1 =]x1, y1[ contenant y0 avec y1 maximum. Et on continue.
�

Pour montrer le théorème 13.1 de récurrence, on partira d’un point x = ∆ dans
un compact K ′ ⊂ X, ce qui nous donne une constante b par le critère (iii) de
Mahler. On veut contrôler, pour L ∈ S(∆), le covolume dans L de ut(∆∩L). On
introduit donc le polynôme sur R

pL : t→ dut∆(utL)2.

C’est un polynôme de degré au plus 2d2 car on a l’égalité pL(t) = ‖ute1∧· · ·∧utei‖
où e1, . . . , ei est une base de ∆ ∩ L.

13.4 La récurrence qui prouve la récurrence

Pour décrire le compact K dans lequel ut∆ passe plus de 1 − ε
de son temps, on va utiliser le critère (iv) de Mahler. Il s’agira donc
de construire à chaque instant t convenable un drapeau complet F de
sous-espaces ∆-rationnels Li dont on contrôlera les covolumes carrés
pLi(t).

On procèdera par récurrence, en ajoutant à chaque étape, pour tout temps t un
nouveau sous-espace à un drapeau ∆-rationnel de longueur `. Le nombre d’étape
dans cette récurrence est donc d− 1. La proposition technique qui met en place
cette récurrence est la suivante.
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Proposition 13.7 Soit β > 1 > α > 0 et posons β′ = cdβ et α′ = α. Soient I
un intervalle compact et F un drapeau ∆-rationnel incomplet tel que

(a) inf
L∈SF

(sup
t∈I

pL(t)) ≥ α

(b) sup
t∈I

( inf
L∈SF

pL(t)) < β

(c) sup
t∈I

pL(t) < β ∀L ∈ F.

Il existe un recouvrement fini de chevauchement au plus 2 de I par des intervalles
compacts I ′ tels que sur chaque I ′, il existe un drapeau F ′ = F∪{L0} avec L0 ∈ SF
tel que

(a′) inf
L∈SF ′

(sup
t∈I′

pL(t)) ≥ α′

(b′) sup
t∈I′

( inf
L∈SF ′

pL(t)) < β′

(c′) sup
t∈I′

pL(t) < β′ ∀L ∈ F ′

(d′) sup
t∈I′

pL0(t) ≥ α′.

Remarque On ne peut pas en général réduire la taille des intervalles I ′ de sorte
qu’ils soient d’intérieur disjoint sans perdre les conditions (a′) et (d′).

Démonstration de la proposition 13.7 Pour tout t0 ∈ I, on doit fournir un
intervalle I ′ contenant t0 dans son intérieur et un sous-espace L0 ∈ SF vérifiant
(a′), (b′), (c′) et (d′). On extraira alors le sous-recouvrement de chevauchement
au plus 2 à l’aide du lemme 13.6. On distingue deux cas.

1er cas : Il existe L ∈ SF tel que pL(t0) ≤ α.
D’après le lemme 13.3, il n’y a qu’un nombre fini de tels sous-espace ∆ ra-

tionnels L. On choisit donc un intervalle compact I ′ de longueur maximal dont
l’intérieur contient t0, pour lequel il existe L0 ∈ SF tel que sup

t∈I′
pL0(t) ≤ α.

Par la condition (a) et la maximalité de I ′, cette inégalité est une égalité
sup
t∈I′

pL0(t) = α et on a, sup
t∈I′

pL(t) ≥ α, pour tout L ∈ SF .

La condition (a′) est donc vérifiée dès que α′ ≤ α.
Par la condition (c) et le lemme 13.4, la condition (b′) est vraie dès que β′ ≥ c2

dβ.
Par (c) et l’égalité sup

t∈I′
pL0(t) = α, la condition (c′) est vraie dès que β′ ≥ β.

La même égalité prouve que la condition (d′) est valide dès que α′ ≤ α.

2ème cas : Pour tout L ∈ SF , on a pL(t0) ≥ α.
On choisit, grâce à la condition (b) un sous-espace L0 ∈ SF tel que pL0(t0) < β.

On choisit alors un intervalle compact I ′ dont l’intérieur contient t0 sur lequel on
a encore sup

t∈I′
pL0(t) < β

Dans ce cas, la condition (a′) est automatique dès que α′ ≤ α.
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Par la condition (c) et le lemme 13.4, la condition (b′) est vraie dès que β′ ≥ c2
dβ.

Par (c) et le choix ci-dessus, la condition (c′) est aussi vérifiée dès que β′ ≥ β.
La minoration pL0(t0) ≥ α garantit la condition (d′) dès que α′ ≤ α. �

Démonstration du théorème 13.1 On applique d−1 fois la proposition 13.7.
On commence la première étape avec I = [0, T ] et F = ∅. Pour valider la

condition (a), il suffit de la comprendre en t = 0. D’après la condition (iii) du
critère 13.2 de Mahler, la condition (a) est vraie avec une constante α = α0 = b2

uniforme pour ∆ dans un compact K ′ de X. Pour valider la condition (b), on
applique le lemme 13.3 de Minkowski : chaque réseau ut∆ contient un vecteur
non nul de norme au plus cd. La condition (b) est donc satisfaite avec β = β0 = c2

d.
Noter qu’à ce stade, la condition (c) est vide.

On construit ensuite successivement d−1 couples de réels αk = αk−1 et βk =
(cd)

2βk−1 ainsi que d−1 recouvrement de [0, T ] par des intervalles compacts. Le
premier ayant un chevauchement au plus 2, le deuxième un chevauchement au
plus 4,... , le dernier un chevauchement au plus 2d−1. Le chevauchement total est
donc au plus 2d. On a donc αd−1 = b2 et βd−1 = (cd)

2d. Posons ε0 = 2−dε. Par
le lemme 13.5 et les conditions (d′), dans chacun des intervalles I ′, on a pour le
sous-espace L0 correspondant

|{t ∈ I ′ | pL0(t) <
αd−1

Mε0

}| ≤ ε0|I ′|.

On retire de chacun de ces intervalles I ′ les points t tels que pL0(t) < αd−1

Mε0
.

L’ensemble J de tous ces points t est de mesure au plus

2dε0T = εT.

Les réseaux ut∆ correspondant aux temps t hors de J contiennent un drapeau
complet de sous-espaces ∆-rationnel dont les covolumes carrés sont dans l’inter-
valle [αd−1

Mε0
, βd−1]. On applique la condition (iv) du critère 13.2 de Mahler avec les

constantes α = b/M
1
2
ε0 et β = (cd)

d. Ces réseaux ut∆ pour t 6∈ J sont donc dans
un compact K qui ne dépend que de ε et de b. �
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