Réseaux des groupes de Lie
(Version préliminaire)

Y ves Benoist

Cours de M2 a Paris 6 en 07-08

Introduction

Le but de ce cours est 'interrelation entre la théorie des nombres
et la théorie ergodique a travers la théorie des groupes. Les espaces
homogenes de volume fini et plus particulierement la dynamique des
actions par translation sur ces espaces seront l'objet central de ce
cours.

Un réseau est un sous-groupe discret de covolume fini. Les pro-
totypes de réseaux sont les sous-groupes qui, comme le sous-groupe
SL(d,Z) du groupe SL(d,R), sont construits par des méthodes arith-
métiques. D’une part, I'existence de ce volume fini permet d’utiliser
des méthodes issues des systemes dynamiques et de la théorie ergo-
dique. D’autre part, la provenance arithmétique de ces groupes est a
la source de nombreuses applications. Enfin, I'utilisation de tous les
corps locaux permet d’étendre considérablement le champ d’applica-
tions.

Sommaire prévu :

- Structure des groupes de Lie semisimples, décomposition de Cartan.
- Exemples de réseaux.

- Mélange. Théoreme de Howe-Moore.

- Comptage de points dans les réseaux. Théoreme d’Eskin-McMullen.
- Variété drapeau. Théoreme de Furstenberg.

- Représentation des réseaux. Théoreme de superrigidité de Margulis.
- Corps locaux. Théoreme d’arithméticité de Margulis.

- Récurrence. Théoreme de Dani-Margulis.

- Théoreme ergodique de Birkhoff. Entropie.

- Flots unipotents, mesures invariantes, équidistribution et fermés invariants.
- Théoremes de Ratner et applications.
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1 Construction de réseaux

Ce premier chapitre donne un bon apercu de I’ensemble du cours.
On y trouvera déja la mixture théorie des nombres + théorie er-
godique + théorie des groupes propre a ce cours. En effet, nous y
montrerons, pour les groupes orthogonaux, le théoreme de Borel et
Harish-Chandra qui affirme que “les groupes arithmétiques sont des
réseaux’.

D’une part, les motivations de cet énoncé sont arithmétiques : il s’agit d'une
impressionante généralisation non commutative du théoreme des unités de Diri-
chlet.

D’autre part la méthode due a Margulis que nous allons utiliser pour le dé-
montrer est issue de la théorie ergodique : nous allons utiliser des propriétés de
récurrence de marches aléatoires ainsi que des propriétés de croissance exponen-
tielle des marches aléatoires linéaires. Pour faire fonctionner cette méthode, nous
aurons besoin de diverses propriétés de 'espace des réseaux de R? dont le critere
de compacité de Mahler.

Ceci nous permettra de démontrer le théoreme de Borel Harish-Chandra pour
les groupes orthogonaux (il est di a Siegel dans ce cas).

Enfin, c’est grace a la compréhension de la structure des groupes algébriques
que nous démontrerons par les méme méthodes dans le chapitre 5 une version
générale du théoreme de Borel et Harish-Chandra.

1.1 Un exemple : le groupe orthogonal

Nous allons détailler dans cette section notre objectif principal
(proposition 1.3). Pour cela, nous devons définir ce qu’est un réseau.

Soit G un groupe localement compact. Rappelons que G admet une mesure
(borélienne) positive Ag invariante par toutes les translations a droite z — zg,
que cette mesure est unique a multiplication pres par un scalaire positif et qu’elle
est appelée la mesure de Haar a droite de G.

Rappelons qu’un sous-groupe I' de G est dit discret si la topologie de GG induite
sur I" est discrete. La projection p : g — gI' de G dans X := G/T" est alors un
revétement. On note alors Ax la mesure sur X qui coincide localement via p avec
la mesure de Haar Ag,

Définition 1.1 Un sous-groupe discret I' de G est un réseau si Ax(X) < oc.

Autrement dit, un sous-groupe discret I' de G est un réseau si il existe une
partie mesurable F' de G telle que \g(F) < oo et FT' = G.

Par exemple les sous-groupes discrets cocompacts, i.e. ceux pour lesquels le
quotient X est compact, sont des réseaux.

Commencons par une simple remarque.
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Lemme 1.2 Un groupe localement compact G qui contient un réseau I' est uni-
modulaire

Autrement dit, la mesure de Haar a droite est aussi invariante a gauche. La
mesure Ay est donc aussi invariante par translation a gauche.

Démonstration La translation a gauche z +— gz par un élément g de G multiplie
la mesure de Haar a droite Ag par un scalaire A(g). Donc la translation a gauche
sur X par un élément g de G multiplie aussi la mesure Ax par A(g). Comme T’
est un réseau, le volume total Ax(X) est fini. Ce volume est préservé par g, on a

donc A(g) = 1. O

Proposition 1.3 (Siegel) Soient d > 3, Q(x1,...,xq4) = > a; ;x;x; une forme
quadratique non dégénérée a coefficients entiers, Gr le groupe des transformations
orthogonales a coefficients réels et Gz le sous-groupe discret des transformations
orthogonales a coefficients entiers :

Gr = 0(Q,R) ={g € GL(d,R) | Qo g = Q} et Gz = Gg N GL(d, Z).

Alors Gz est un réseau dans Gp.

Remarques - Nous verrons que cette proposition est un cas particulier d’un
énoncé bien plus général valable pour tous les “Q-groupes sans Q-caractere”.

- La méthode traditionnelle pour montrer cette proposition consiste a construire
explicitement un domaine F' dit “domaine de Siegel” et a calculer Ag(F'). C’est la
“théorie de la réduction”, c.f. [6]. Comme annoncé, nous allons suivre une méthode
plus rapide mais qui ne donne pas d’estimation sur le domaine fondamental.

- Cet énoncé est encore vrai pour d = 2 lorsque la forme quadratique () est
anisotrope sur Q i.e. lorsque 1'équation Q(x) = 0 n’a pas de solutions entieres
non nulles. Cela résulte de ce que, pour tout entier p > 2 non carré, I’équation
de Pell-Fermat n*> — pm? = 1 a une infinité de solutions entieres (n,m).

- Mais cet énoncé est faux pour d = 2 lorsque la forme quadratique (Q est
isotrope sur Q i.e. lorsque 'équation Q(z) = 0 n’a pas de solutions entieres non
nulles.

1.2 Récurrence des marches aléatoires

Nous allons commencer par donner dans le corollaire ci-dessous un
critere qui assure que le volume d’une mesure invariante est fini. Ce
critere est basé sur des propriétés de récurrence de marches aléatoires.

Soient G un groupe localement compact, X un espace localement compact
et (g,x) — gz une action continue de G sur X. Rappelons qu'une application
continue est propre si I'image inverse de tout compact est compacte.

On suppose

HC 1l existe une fonction propre f : X — [0, 0o, une probabilité p sur G et des
constantes a < 1, b > 0 telles que A,(f) <af+0b
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ou A, est 'opérateur de moyennisation donné par, pour tout x dans X,

A,(f) (@) = /G f(gx)dp(g)

Cet opérateur A, est donc l'opérateur de convolution par la probabilité /i image
de p par l'inversion g — g~ !.

Remarque Cette hypothese HC signifie que la moyennisation par u contracte,
a une constante pres, une fonction propre f sur X .

Lemme 1.4 Sous l’hypothese HC, pour tout € > 0, il existe un compact K C X
tel que, pour tout point x € X, il existe M = M, tel que pour tout n > M,

A1) () > 1—¢.

ou 1g est la fonction caractéristique de K.
En outre, 'entier M, est uniforme sur les compacts de X.

Ce lemme est un lemme de récurrence pour les marches aléatoires sur X. En
effet, il affirme que si on marche au hasard sur X en partant du point x, avec
des déplacements donnés par la loi i, a partir d'un moment, la probabilité d’étre
hors de K est au plus e.

Démonstration D’apres 'hypothese HC, on a, pour tout n > 1

AV(f)<a"f+b(l+---+a" ") <d"f+B

avec B = ﬁ Comme f est propre, on peut prendre pour compact

Kz{y€X|f(y)§?}

de sort que 1xc < % f. On a alors les majorations
n 5 n
An(1ke) () < S AN (@) < S f(a) 4+ 5 < e
deés que n est suffisamment grand pour que f(z) < Z. O

an

Rappelons qu'une mesure de Radon sur X est une mesure borélienne finie sur
les compacts.

Corollaire 1.5 Sous [’hypothese HC, toute mesure de Radon G-invariante v sur
X est finie.



Remarque Nous allons uniquement utiliser I’égalité, pour toute fonction positive
fsur X,

| Ayt = [ gavta)

c’est-a-dire le fait que la mesure v sur X est p-stationnaire.

Démonstration D’apres le lemme 1.4 avec € = %, il existe un compact K C X
tel que pour tout compact L C X et n suffisamment grand on a

v(L) < Q/XAZ(lK)(m)dV(x) = Q/X 1x(z)dv(z) = 2v(K).

L’hypothese HC assure aussi que X est une réunion dénombrable de compacts,
on a donc v(X) =sup, v(L) < 2v(K). O

1.3 Marches aléatoires linéaires

Dans cette partie, nous construisons des fonctions ¢; sur lequelles
la moyennisation A, est une contraction. Cette propriété de contrac-
tion est liée a une propriété de croissance exponentielle pour la marche
aléatoire linéaire associée a une probabilité .

Munissons R¢ d’une norme ||.|| associée & un produit scalaire euclidien (.,.) et
notons aussi ||.|| la norme euclidienne induite sur l’espace des matrices M (d, R).

Le lemme suivant est un cas particulier élémentaire d’un théoreme de Fursten-
berg sur la croissance exponentielle des marches aléatoires matricielles.

Notons G = GL(d,R) le groupe linéaire et ST C G l’ensemble des matrices
symétriques définies positives. Soit p une probabilité sur G. Notons supp(u) le
support de et I', le plus petit sous-groupe fermé de G le contenant. On dit que
W est symétrique si p = fi.

Lemme 1.6 On suppose i symétrique, supp(u) C ST et [, |log||gll|du(g) < co.
Alors pour tout v € R? non nul,

[ roedthaute) = 0

o]
avec €galité ssi I, stabilise la droite Ro.

Démonstration Notons [, le membre de gauche. On calcule en appliquant tout
d’abord 1’égalité . = fi puis 'inégalité de Cauchy-Schwarz et enfin le fait que les
matrices g sont p-presque surement symétriques :

2 / log(llgv])du(g) = /G log(llgvlllg~"ol)dp()
> /G log({gv, g~"))du(g)
_ / log(||v|)dp(g)
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Ceci donne la majoration I, > 0. Par Cauchy-Schwarz, le cas d’égalité dans cette
inégalité n’est atteint que si v est vecteur propre de ¢g? pour pu-presque tout g.
Comme les matrices g sont p-presque stirement définies positives, v est alors aussi
vecteur propre de g et la droite engendrée par v est stabilisée par I',,. O

Pour 1 < i < d, on note encore ||.|| la norme euclidienne naturelle sur les
puissances extérieures A‘R? : c’est I'unique norme euclidienne pour laquelle le
produit extérieur v = v; A - -+ A v; d’'une famille orthonormée est de norme 1. Le
groupe G = GL(d, R) agit naturellement sur A‘R? par I'égalité gv = guv; A- - -Agu;.
Il laisse invariant le cone W; C A'R? des vecteurs décomposables non nuls

Wi::{v:vl/\---/\vi%()|vj€]Rd}.

Le quotient G¢ de ce cone W; par les homothéties positives est la Grassmanienne
des i-plans de RY. On note ; : W; —]0, oo[ la fonction sur W; donnée par

I

wi(v) = |lv pour tout v € W;.

Corollaire 1.7 On suppose pu symétrique, supp(u) C ST, supp(u) compact et
que l'action de I', dans R? est irréductible. Alors il existe § > 0 et ag < 1 tels
que, pour tout 0 < i < d, on a A,(¢)) < agpl.

Remarques - L’hypothese d’irréducibilité signifie que R? ne contient pas de sous-
espace vectoriel I', invariant.

- La mesure G-invariante sur W; est de masse totale infinie... cela ne contredit
pas le corollaire 1.5 car la fonction ¢ : W; — [0, co[ n’est pas propre.

Démonstration Le lemme 1.6 assure que pour tout v dans W;, lintégrale
I, = [, log(””g:””)du(g) est non négative : I, > 0. Mieux, comme I’hypothese d’ir-

réducibilité assure que 'action de '), sur la grassmanienne G¢ n’a pas de points
fixes, on a I, > 0. Comme la grassmanienne est compacte et que ’application
v — I, est continue, il existe une constante C' > 0 telle que I, > 2C', pour tout
veW;.

Posons M = sup{log(max(||g||%, |lgl=%)) | ¢ € supp(u)}. On remarque que
pour tout réel ¢t € [—1, 1], on a la majoration

el <1+t+12
On calcule alors, avec § = min(1/M, C'/M?),

Aupi) () _ / e du(g)
G

2 (v)
2
v v
< 1= [1oed™hauto + [ (et ) anto
a vl G o]l
< 1-206+ M?*¢* <1-C6.
Il suffit de prendre ag =1 — C. O



1.4 L’espace des réseaux

Pour construire la fonction f vérifiant HC, nous aurons besoin de
quelques propriétés de I'espace des réseaux de RY, que nous démon-
trons dans cette section. Nous réutiliserons plus tard ces propriétés
pour démontrer les théoremes de Ratner.

Rappelons qu’'un réseau de R? est un sous-groupe discret de R? qui est abélien
libre de rang d. L’ensemble X’ des réseaux de R? est une variété comme espace
quotient X’ := GL(d,R)/SL*(d,Z). Par définition de la topologie quotient, une
suite A, de réseaux de R? converge vers un réseau A de RY ssi il existe une base
Jnis--s fna de A, qui converge vers une base fi, ..., fq de A.

Soit A un réseau de R?. Un sous-espace vectoriel L de R? est dit A-rationnel
si AN L est un réseau de L. On note alors d(L) = da(L) := |Jvy A -+ A v ou
vy, ..., v; est une base de AN L. Cette quantité ne dépend pas du choix de la base.
Le réel da = covol(A) := da(R?) est le covolume de A. On note X I'ensemble
des réseaux de covolume 1.

Pour construire notre fonction propre f, nous aurons besoin d’un critere simple
et utile de compacité dans I'espace des réseaux. Le voici.

Proposition 1.8 (Mahler) Une partie Y C X' de l’espace des réseaur de R?
est relativement compacte ssi il existe o, 3 > 0 tels que, pour tout A € Y

< 1 > 0.
dan <« et vég€0||v|] >3

Autrement dit les parties relativement compactes sont caractérisées par une
majoration du covolume et de U'inverse de la systole aq(A) = ( iIAlf . |vl])~t
vEA—

Corollaire 1.9 La fonction oy : X — [0, 00[ est continue et propre.

Pour montrer le critere de compacité de Mahler, nous utiliserons 1'inégalité
d’Hermite-Minkowski si utile en théorie des nombres. Notons vy le volume de la
boule euclidienne de rayon 1 dans R? : v, = 2, vy = 7,...

Lemme 1.10 (Hermite, Minkowski) Tout réseau A de R? contient un vecteur
non nul de norme ||v| < 2(da/vq)d.

Démonstration du lemme 1.10 Notons p la projection de R sur le quotient
T¢ = R?/A et introduisons le plus grand rayon R tel que cette projection p est
injective sur la boule ouverte de rayon R. La comparaison des volumes donne la
majoration vaR? < da. D’autre part, la maximalité de R assure que, pour tout
e > 0, il existe deux vecteurs u;, us de norme au plus R + ¢ qui ont méme image
dans T?. Le vecteur non nul v, = u; —us est dans A et de norme au plus 2R + 2¢.
Le groupe discret A contient donc un vecteur v non nul de norme au plus 2R.[]



Démonstration de la proposition 1.8 et du corollaire 1.9 Les fonctions
g — |det(g)| et g — a1(gZ?) sont continues sur GL(d,R). Donc les fonctions
A — da et A — aq(A) sont des fonctions continues sur X’. Si Y est une partie
relativement compacte, ces deux fonctions sont donc bornées sur Y.
Réciproquement, montrons que toute partie Y de X’ sur laquelle ces deux
fonctions sont bornées est relativement compacte. On veut donc montrer que toute
suite A,, dans Y sous-converge dans X’. On raisonne par récurrence sur d. C’est
clair pour d = 1. Choisissons un vecteur non nul v, € A, de norme minimum.
Comme a4 (A,,) est majoré, les normes ||v, || sont positivement minorées. En outre
par l'inégalité d’Hermite-Minkowski et la majoration du covolume de A, les
normes ||v,| sont majorées. La suite v, sous-converge donc vers un vecteur non
nul v, € RY que I'on peut supposer de norme ||vs, || = 1. Quitte & modifier chacun
des A,, par une petite similitude, on peut aussi supposer que v,, = v4,. Les images
Al de A, dans orthogonal (Rvs,)* sont des réseaux dont le volume est majoré
par a et dont la systole est minoré par ‘/7?:6. Par hypothese de récurrence, ces
réseaux A/ sous-convergent vers un réseau de (Rvy)t. La suite A, sous-converge
alors vers un réseau de R 0J

Dans la partie suivante nous aurons aussi besoin des lemmes techniques sui-
vants.

Lemme 1.11 Soient A un réseau de R? et L, M deux sous-espaces A-rationnels
de RY. Alors les sous-espaces L + M et L N M sont A-rationnels et on a la
magjoration

d(LNM)d(L+ M) <d(L)d(M).
Remarque Par convention, on a posé d(0) = 1 pour le sous-espace nul.

Démonstration On peut supposer que A = Z%. On remarque alors qu’un sous-
espace est A-rationnel ssi il est engendré par des vecteurs a coefficients rationnels.
Ceci prouve que L + M est A-rationnel.

On remarque aussi qu’'un sous-espace est A-rationnel ssi il est défini par des
équations linéaires a coefficients rationnels. Ceci prouve que LNM est A-rationnel.

Pour montrer la majoration, on part d’'une base uy,...,uxy de AN LN M
que 'on complete en une base uq,...,ux, v1,...,v, de A N L et en une base
Uy ooy Up, W, - .., Wy, de AN M. La famille uq, ..., ug, v1,...,0w1,...,w, est

alors libre et engendre un sous-groupe d’indice fini de A N (L + M). On note
u=u N---Nug, v=v1A---Avg et w=wi A---A\w,,. Notre assertion résulte
alors de la majoration

[ullllu Av Awl] < fluAolffluAwl]

Cette derniere inégalité se montre en remplacant, a ’aide du procédé d’ortho-
gonalisation de Gramm-Schmidt, la famille wuq, ..., ug, vy,..., v, wy, ..., w, par
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une famille uf, ..., u}, v, ..., v, Wi, ..., w), telle que les deux familles
Uy, .oy Up, VY, .o, Vg et U, L ug, Wy, .. wy, sont orthogonales et telle que
U=uj AN AU, UNV=UuAVI A~ Avjet uANw=uANwyA---ANwl,.

Lemme 1.12 Notons S;(A) := {sous-espaces A-rationnels de dimension i}.
a) Pour tout C >0, on a #{L € S;(A) | da(L) < C} < 0.
b) Les application X —]0,00[; A — min da(L) sont continues.
LeSi(A)

Démonstration a) On peut supposer A = Z% Si e;,...,e; est une base de
LNZ2 élément e; A - -+ A e; est dans AY(Z) et de norme bornée par C. Cela ne
laisse qu'un nombre fini de possibilités.

b) Cela résulte des inégalités ||g*||~?da(L) < dya(gL) < ||gl|%da(L). O

1.5 Construction d’une fonction f

En combinant les résultats des deux dernieres sections, nous allons
maintenant construire explicitement la fonction f vérifiant HC dont
nous avons besoin pour montrer la proposition 1.3.

Pour 0 < ¢ < d, définissons une fonction «; de 'espace des réseaux X' dans
[0, co[. Pour tout réseau A de RY,

a;(A) :=sup{da(L)™' | L ¢ R A-rationnel, dim L = 4}.

On notera oy = 1. La fonction «; coincide avec celle introduite dans la partie
précédente. On a vu que q; est continue.

Reprenons les notation du corollaire 1.7. On a donc une probabilité p sur
G = GL(d,R) telle que
HI ;i est symétrique, le support de p est compact et inclus dans ST, et 'action

du groupe I', dans R? est irréductible.

Le lemme suivant permettra de construire la fonction f que nous cherchons.

Lemme 1.13 Soit i une probabilité sur GL(d,R) qui vérifie [HI]. Alors il existe
ag <1 et by > 0 tels que, pour tout 0 < i < d, on a

1
Au(af) < aoaf + bo %135(&?—jaf+j)2'

ot le max est pris sur les entiers j avec 0 < j < min(i,d — 7).

Démonstration On veut majorer, pour A € X, lintégrale A, (ad)(A).

Choisissons ag < 1 et 6 > 0 comme dans le corollaire 1.7 et posons cette fois,
r = sup{max(||g||% |lg7*||*) | g € supp(u)} de sorte que, pour tout sous-espace
A-rationnel L C R? on ait, pour p-presque tout g,

rrda(L) < dya(gL) < rda(L).
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Choisissons un sous-espace A-rationnel L; C R? de dimension i tel que
da(L;) = a;(A)~?
et introduisons ’ensemble (fini)
W, :={L C R?| A-rationnel, dim L = i, da(L) < r’da(L;)}.

On va distinguer deux cas.
1°" cas : V; contient un seul élément L;. Alors, pour tout sous-espace A-
rationnel L de dimension 7, et p-presque tout g, on a

dga(gL) = dga(gLs)
d’ou, par le corollaire 1.7,

A0(A) = [ s dul) < s = anel(A)

2°me cas : W, contient un autre élément L.. Notons j := dim(L; + L)) —i. On
a alors, grace au lemme 1.11, pour p-presque tout g,

a;i(gA) < ra;(A) :7“dA(LZ-)_1
< r*(da(Li)da(L}))
< 12(da(Li N LY)da(L; + L)) 2
< (o (A)air(A))z

et donc, avec by = %,

A, (ad)(A) < bymax(al
7>0

% ]

(A)al, ;(A))2.

i+j
On obtient la majoration annoncée en combinant ces deux cas. 0

Voici enfin la construction de la fonction f cherchée.

Corollaire 1.14 Soit u une probabilité sur SL(d,R) qui vérifie [HI]. Alors il
existe 6 > 0 et € > 0 tels que la fonction f: X — [0, 00]

f= 20<i<d 5(d_i)ia?

vérifie [HC] : elle est propre et il existe a < 1, b >0, tels que A,(f) < af +b.
Démonstration La propreté de f résulte du corollaire 1.9.

Notons 3; = £(@a? de sorte que f = > o<icaBi- Appliquons le lemme 1.13,
I’égalité

2(d—d)i=(d—1i—j)(i+j)+(d—i+35)i—7)+252%

et la majoration 2(315)% < s+t, pour tout s,t > 0.

On obtient alors avec ag < 1 et by > 0,

Auf < a0 gcicq B+ bomax;o el (BisjBiry)? < (ao + boed) Ygicq Bi + bocd

et donc A,f < af +0bavec a = ag+ byed et b = bped. On a bien a < 1 si ¢ est
choisi suffisamment petit. O
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1.6 Application au groupe orthogonal

Terminons cette partie en montrant comment les idées ci-dessus
s’organisent pour montrer que le groupe Gz = O(Q,Z) est un réseau
du groupe Gg = O(Q, R).

Nous reprendrons ces idées plus en détail dans un cadre général
dans le chapitre 5

Démonstration de la proposition 1.3 Ce groupe Gg est unimodulaire (parce
qu’il est engendré par des éléments d’ordre 2 : les réflexions hyperplanes). La
mesure v sur le quotient Gr/Gz induite par la mesure de Haar est donc Gg-
invariante. On veut montrer que cette mesure v est finie.

Notons Hg = SL*(d,R) et Hz = SL*(d,Z). On remarque tout d’abord que

Uingection i : Gg /Gy — Hg/Hy est propre.

Pour vérifier cela, on doit montrer que si une suite g, Hy avec g, € Gr converge
dans Hg/Hz, alors la suite g,Gz converge dans Gr/Gz. Notons h, une suite de
Hy telle que g,h, converge dans Hg. Comme l'injection Gz\Hyz — Gg\Hg est
d’image discrete (elle s’identifie & un ensemble de formes quadratiques a coeffi-
cients entiers), on peut écrire, pour n grand h,, = ,h avec v, € Gz et h € Hy.
La suite g,7, est donc convergente et l'injection ¢ est propre.

La mesure v peut donc étre vue comme une mesure de Radon sur l'espace
Hyg/Hy des réseaux de covolume 1. On veut bien str appliquer une combinaison
des corollaires 1.5 et 1.14. Pour cela, il suffit de construire une probabilité u
portée par Gy vérifiant la condition [HI]. Remarquons que cette condition ne
fait plus intervenir le groupe Gz. Notons (p, ¢) la signature de (). On peut choisir
un produit scalaire euclidien de R? et une base orthonormée de R? tels que,
Qr1, ... Tpyg) =2+ ap — a2, — - — x5, On décompose I'algebre de Lie
g de G en une somme directe g = €@ q, ou

A

b= {Meg|M=—n} = {(

g)|A:_tA7D:_tD}7

a={Meg|M="y1} = {( ¢ §)IC="B}.
On prend pour p la mesure sur Gy image par l'application exponentielle d'une
probabilité symétrique po sur q dont le support est une boule centrée en 0. On
vérifie facilement 1'égalité £ = [q, q]. Le groupe I, est donc la composante connexe
du groupe Gg.
Comme d > 3, I'action de la composante connexe de G sur R? est irréductible.
Cette probabilité p vérifie bien la condition [HI]. O

La méme démonstration permet de retrouver le

Corollaire 1.15 Pour d > 2, le groupe SL(d,Z) est un réseau de SL(d,R).
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2  Algebres de Lie semisimples

Ce chapitre est constitué de quelques rappels sur les algebres de
Lie semisimples

2.1 Algebres de Lie nilpotentes et résolubles

Commencons par étudier les algebres de Lie résolubles c’est-a-dire
celles obtenues par extensions successives d’algebres abéliennes.

Toutes nos algebres de Lie sont de dimension finie sur un corps k de caracté-
ristique nulle.

Définition 2.1 Une algébre de Lie est un k-espace vectoriel g muni d’une appli-
cation bilinéaire antisymétrique a valeurs dans g notée [.,.| vérifiant l'identité de
Jacobi : pour tout X,Y,Z € g,

(XY, 2] = [1X, Y], 2] + [V, [X, 2]

Exemples fondamentaux - L’algebre de Lie d’un groupe de Lie G, c’est-a-dire
I’espace des champs de vecteurs invariants par translation a gauche, est une R-
algebre de Lie. Rappelons que toute R-algebre de Lie g est ’algebre de Lie d'un
groupe de Lie connexe et simplement connexe. Celui-ci est uniquement déterminé
par g.

- L’algebre de Lie End(k?) avec le crochet [A, B] = AB — BA. Remarquons
que, meéme si nous n’utiliserons pas ce fait, toute algebre de Lie s’identifie a une
sous-algebre de Lie de End(V), par le théoreme d’Ado.

- Un endomorphisme D € End(g) d’'une algebre de Lie g est une dérivation si

D([Y,Z]) = DY, Z] + [Y,DZ], pour tout Y, Z € g.

L’ensemble Der(g) des dérivations de g est une sous-algebre de Lie de End(g).
Pour tout X dans g, on note adX la dérivation intérieure donnée par adX (Y) =
[X,Y], pour tout Y € g. L’application ad : g — Derg est un morphisme d’algebres
de Lie, i.e. ad[X, Y] = [ad X, adY], pour tout X, Y € g. Ce morphisme est appelé
le morphisme adjoint, son noyau est le centre 3 de g, 3 :={X € g | [X,g] = 0}.
Historiquement, le mot dérivation est un raccourci pour I’expression “dérivation
d’un groupe a un parametre d’automorphismes”.

Définition 2.2 Un idéal de g est un sous-espace b tel que [g,h] C b.

Une algébre de Lie g est abélienne si [g,g] = 0. Elle est nilpotente (resp. réso-
luble) si il eviste un drapeau d’idéaur 0 =g, C --- C g, C--- C g, = ¢ tels que
9,9;] C g,y (resp. 9;/8,_, est abélienne), pour touti=1,...,p.

14



Exemples fondamentaux - L’algebre de Lie a; C End(k?) des matrices dia-
gonales est abélienne.

- L’algebre de Lie = u} C End(k?) des matrices strictement triangulaires su-
périeures est nilpotente.

- L’algebre de Lie p7 = a4 @ u; des matrices triangulaires supérieures est
résoluble.

Les deux théoremes suivants expliquent en quoi ces exemples sont fondamen-
taux.

Théoréme 2.3 (Engel) Soit V' un k-espace vectoriel de dimension d et g C
End(V) une sous-algébre de Lie dont tout élément est nilpotent. Alors il existe
une base de V telle que g C u).

(1) ) est nilpotente, car abélienne, mais

O =

Remarque L’algebre de Lie g = (C(

ses éléments ne sont pas nilpotents.

Démonstration On procede par récurrence sur dimg. Il suffit de trouver un
vecteur v dans V' annulé par g.

On remarque tout d’abord que, pour X € g, adX est nilpotent. En effet, pour
tout Y € EndV/,

(adX)™(Y) = X gcpen (1) CLX Y X"

est nul pour n > 2dim V.

Soit h & g une sous-algebre de Lie maximale. L’hypothese de récurrence
appliquée a laction adjointe de h dans g/h prouve qu’il existe un sous-espace
h' = kX @b de g tel que [h,h'] C h. Comme [X, X| = 0, b’ est une sous-algebre
de Lie de g. Par maximalité de b, on a b’ = g et h est un idéal de codimension 1
dans g.

Posons alors W = {w € V' | hw = 0}. C’est un sous-espace g-invariant de V. Il
suffit de prendre v dans le noyau de la restriction de X a W. O

Théoréme 2.4 (Lie) Soient K un corps algébriquement clos, V un K-espace
vectoriel de dimension d et g C End(V') une sous-algebre de Lie résoluble. Alors
il existe une base de V telle que g C pyf.

Remarque L’algebre de Lie g = R ? é ) est résoluble, car abélienne, mais
elle ne stabilise pas de droite dans R2.

Démonstration En procédant par récurrence sur dim V', il suffit de trouver dans
V une droite g-invariante. Soient f un idéal de codimension 1 de g et X € g~ b.
En raisonnant par récurrence sur dim g, on peut supposer qu’il existe un vecteur
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vg € V et une forme linéaire A € bh* tels que, pour tout H € b, on a Hyy =
A(H)vg. Posons v; = X'vg et notons W 'espace vectoriel engendré par tous les
v;. On vérifie par récurrence sur i que Hv; — A\(H)v; est combinaison linéaire
de vy, ...,v;—;. En particulier, W est h-invariant. On en déduit que A([H, X]) =
s trw ([H, X]) = 0. On peut alors préciser le calcul précédent par récurrence
sur ¢ et obtenir Hv; = A(H)v;, pour tout H € h. Il suffit alors de prendre pour v
un vecteur propre de X dans W. Un tel vecteur existe car K est algébriquement

clos. O

2.2 Algebres de Lie semisimples

Comme pour les algebres associatives de dimension finie, ce sont
les algebres de Lie semisimples qui sont a la fois les plus utiles, les
plus subtiles et les mieux comprises.

Définition 2.5 La forme de Killing B = By d’une algebre de Lie g est la forme
bilinéaire symétrique sur g donnée par B(X,Y) = trg(adXadY’).
Le radical v de g est le plus grand idéal résoluble de g.

Remarques - Le radical t existe. En effet, la somme de deux idéaux résolubles
de g est encore un idéal résoluble.

- Le radical ¢ est invariant par toute dérivation D de g. En effet, on peut pour
le vérifier, supposer k = C. Mais t est invariant par tous les automorphismes de
g et en particulier par les automorphismes e‘?, pour tout t € k.

Définition 2.6 Une algébre de Lie g est semisimple si tout idéal abélien de g est
nul.

Une algebre de Lie g est simple si 0 et g sont les seuls idéaux de g et si
dimg > 1.

Voici d’autres définitions équivalentes pour les algebres de Lie semisimples

Théoreme 2.7 Les quatre affirmations suivantes sont équivalentes
i) Tout idéal abélien de g est nul.

i1) Le radical v est nul.

iii) g est une somme directe d’idéauzr simples g = @®;g,;.

iv) La forme de Killing By est non dégénérée.

Remarques - Comme corollaire, la semisimplicité est invariante par changement
de corps de base : pour toute extension de corps k C K, une k-algebre de Lie g
est semisimple ssi son extension g ®; K est une K-algebre de Lie semisimple.

- Comme autre corollaire, une algebre de Lie semi-simple g n’a qu’un nombre
fint d’idéaux simples : ce sont les g,. En effet, si a est un idéal simple différent de
tous les g;, on a [a, g;] C aNg, = 0 et donc a est dans le centre de g. Contradiction.
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Lemme 2.8 Soit a un idéal d’une algébre de Lie g.
a) L’orthogonal a* := {X € g | B(X,a) =0} est un idéal de g.
b) La forme de Killing de a est la restriction de celle de g.

Démonstration du lemme 2.8
a) Cela résulte de 1'égalité B([X,Y],Z) + B(Y,[X, Z]) =0, pour X,Y,Z € g.
b) Cela résulte de l'inclusion adXadY (g) C a, pour X,Y € a. O

Démonstration du théoréme 2.7

i) = 1) Sit # 0, on pose D% = v, D't = [D’t, D’t]. Le dernier idéal dérivé
non nul D7t est un idéal abélien de g.

iii) = iv) Comme [g;, g,] = 0 et, par suite, B(g;,g;) = 0 pour i # j, on peut
supposer g simple. Remarquons qu’on a g = [g, g| car, comme dimg > 1, g ne
peut pas étre abélienne. Le noyau de la forme de Killing B est un idéal de g. Il
est soit nul, soit égal a g.

Il suffit de montrer que B est non nul. C’est le point le plus délicat de la
démonstration. Supposons par l'absurde que B est nul. On note A = adg et
M :={p € Endg | [¢p, A] C A}.

Montrons que, pour a € A et ¢ € M, on a tr(ea) = 0. On peut pour cela
supposer que a = [b, ] avec b,c € A, car on a g = [g, g] et donc A = [A, A]. On a
alors tr(pa) = tr([p,blc) = 0 car la forme de Killing est nulle.

Comme A est inclus dans M, le lemme ci-dessous prouve que tout élément de
A est nilpotent, donc par le théoreme de Engel, I’algebre de Lie A est nilpotente.
Contradiction.

iv) = i) Soit a un idéal abélien de g. On a B(a,g) =0, donc a = 0.

1) = 4ii) Par récurrence sur dimg. Soit a un idéal non nul minimal de g.
D’apres les remarques suivant la définition 2.5, le radical résoluble de a est un
idéal de g. Il est donc nul. Par I'implication #ii) = iv), la forme de Killing de a
est non dégénérée. On en déduit que g = a @ at et que la forme de Killing de
I'idéal at est non dégénérée. Par récurrence, a’ est une somme directe d’idéaux
simples et g aussi. d

On a utilisé le

Lemme 2.9 Soit V = k?, A un k-sous-espace vectoriel de EndV et M = {p €
EndV | [p, A] C A}. Soit v € M tel que, pour tout ¢ € M, on a tr(py) = 0.
Alors 1) est nilpotent.

Démonstration On peut supposer que k& = C. Ecrivons ¢ = 9, + 1, la dé-
composition de Jordan de . On peut supposer s diagonale et 1, strictement
triangulaire supérieure. L’égalité ad(¢) = ad(vs) + ad(e),,) est aussi la décompo-
sition de Jordan de ad(v). La partie semisimple 1) est donc aussi dans M. Son
conjugué ¢ = 1), est aussi dans M. On a alors, en notant \; les valeurs propres

de ¢, >, |Ni|> = tr(¢w) = 0. Donc ¢, = 0. O

17



Proposition 2.10 Toute dérivation d’'une algébre de Lie semisimple g est inté-
rieure.

Démonstration L’algebre de Lie a := adg est un idéal de l'algebre de Lie
0 := Derg car on a 'égalité [D,adX] = ad(DX), pour tout D € d et X € g.
Notons at 'orthogonal dans 0 de a pour la forme de Killing de 9. Comme la
forme de Killing de a est non dégénérée, on a I’égalité 0 = a @ at.

11 suffit pour conclure de montrer que tout élément D € a't est nul. Cela résulte
de I'égalité, ad(DX) = [D,adX] € ana* = 0, pour tout X € g et de 'injectivité
de I'application adjointe. 0

Comme l'application adjointe ad : g — Derg est injective, cette proposition
permet d’identifier g avec 'algebre de Lie Derg des dérivations de g. C’est tres
utile car cela permet de voir toute algebre de Lie semisimple comme ['algebre de
Lie d’un groupe algébrique : le groupe de ses automorphismes. Voici une applica-
tion utile de ce fait.

Définition 2.11 Un élément X d’une algebre de Lie semisimple est dit nilpotent
si l’endomorphisme ad X est nilpotent. Un élément X est dit semusimple si ad X
est semisimple.

Proposition 2.12 (décomposition de Jordan) Soit g une algebre de Lie
semisimple. Tout élément X de g admet une décomposition unique X = X, + X,
avec X, semisimple, X,, nilpotent et [ X, X,,] = 0.

Démonstration

Unicité La décomposition de Jordan de adX est ad(X) + ad(X,,).

Existence Il suffit de voir que la partie semisimple (adX ), de adX est une
dérivation car la proposition 2.10 prouvera qu’il existe X dans g tel que ad(Xy) =
(adX)s.

On peut supposer k = C. Soit g, = [J,», Ker((adX — A)P) de sorte que g =
@recdy. L'élément (adX)s agit sur g, par multiplication par A. Il suffit donc
de vérifier que [gy,9,] C g,,,- Ce qui résulte de la formule suivante que I'on
démontre par récurrence sur p :

(adX — A= p)PlY, Z] = 3 2 pc, Cpl(adX — A)'Y, (ad X — p)P~" 7]
pour tout X, Y, Z € g. O

Remarque Lorsque £ = R, Un élément X de g est dit elliptique (resp. hyperbo-
lique) si adX est semisimple & valeurs propres imaginaires pures (resp. réelles).
On a encore une écriture unique X = X, + X, + X,, avec X, elliptique, X
hyperbolique et X,, nilpotent qui commutent deux a deux.

18



2.3 Représentations de siy

L’algebre de Lie s = sl(2,k) est une algebre de Lie simple de
dimension minimale. Son étude est fondamentale car, sur un corps al-
gébriquement clos, toute algebre de Lie semisimple contient de nom-
breuses copies de s.

Définition 2.13 Une représentation d’une k-algebre de Lie g dans un k-espace
vectoriel V' est un morphisme de g dans EndV. On dit aussi que V est un g-
module.

Elle est dite simple ou irréductible si les seuls sous-espaces g-invariants sont ()

ouV.

Exemples fondamentaux - La représentation adjointe ad.
- L’algebre de Lie s = sl(2, k) admet, pour tout d > 0, une représentation dans
le k-espace vectoriel V; de dimension d + 1 des polynomes homogenes de degré d

sur k2. Décrivons plus précisément ces représentations. Une base de 1'algebre de
Lie s = sl(2,k) est X, H,Y avec

= (g )= %) = (1)

qui vérifient les relations
[H, X]|=2X, [HY]=-2Y et [X,Y]|=H.
L’action de cette base dans V; est donnée par X — xa%, H — Ia% — ya% et
Y — y%. Cette représentation de s dans V, est appelée la représentation de plus
haut poids d car d y est la plus grande valeur propre de H.

Proposition 2.14 Soit V' un sl(2, k)-module de dimension finie.

a) V est somme directe de représentations simples.

b) Si V est simple alors V est isomorphe a une des représentations Vg de plus
haut poids d.

On représente parfois V; par un diagramme “ficelles” formé de d + 1 noeuds
labellés par les valeurs propres —d, —d+2, ...,d—2,d de H, les ficelles symbolisant
I’action de X et Y sur les vecteurs propres de H correspondant.

Démonstration a) Nous allons utiliser un argument transcendant appelé l’astuce
unitaire de Weyl. Il suffit de montrer que tout sous-espace s-invariant V' C V
admet un supplémentaire V" s-invariant. Notons p : V' — V/V’ la projection
naturelle. On peut supposer que le corps de base est C car I’ensemble

{oc € Homg(V/V',V) | poo = Id}

est un espace affine défini sur k : s’il a un point a coefficients dans une extension
de k il en a aussi un a coefficients dans k. En effet, tout systeme d’équations
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affines a coefficients dans k qui a des solutions dans une extension de k£ en a aussi
dans k.

Notons alors K = SU(2) le groupe spécial unitaire
K::{(Z —ab> la,beC, |af?+ b2 =1}

Son algebre de Lie £ = {matrices antihermitiennes de trace nulle} est une forme
réelle de s i.e. s ~ E®rC. Comme K est simplement connexe, toute représentation
de s s’integre donc en une représentation de K. Munissons V', grace a la mesure
de Haar de K, d’un produit scalaire hermitien K-invariant. Il suffit de prendre
pour V" T'orthogonal de V’. Ce sous-espace est K-invariant. Il est donc aussi
s-invariant.

b) Décomposons V' en somme directe V' = @,ecV), de sous-espaces caractéris-
tiques de H pour la valeur propre p. On a

X(VM) C V/H_Q et Y(Vu) C VM_Q
car on a les formules dans EndV', pour tout j > 1,

(H—p—2YX=XH-p) et (H—p+2)°Y =Y(H—pu).

Soit vy un vecteur propre de H pour une valeur propre A de partie réelle
maximum. On a Hvy = A\vg et Xvg = 0.

Soit n > 0 tel que Y™y # 0 et Yy = 0. et posons v; = Y'vy, pour ¢ > 0.

Par récurrence, on a la formule dans EndV/,

(X, Y7 = (j + )YI(H - j).

Donc, on a 0 = XY™ yy = (n 4+ 1)(A — n)v,. On a donc A = n. Cette méme
formule permet de calculer, pour 0 < i < n,

YUi = Vi1 , H’Ui = (n — 22)1}1 , X'Ui = (n — i+ 1)2"111',1.

Comme Vest simple, vg, ..., v, est une base de V. On reconnait le s-module V,,
a l'aide de l'identification v; — n(n —1) -+ (n — i+ 1)z" 'y’
Réciproquement, il est facile de vérifier que V,, est un s-module simple. U

2.4 Eléments nilpotents et slp-triplets

Une des raisons qui rend tres utile la classification des représenta-
tions de sly est la théorie des slo-triplets.

Un triplet (x, h,y) dans une algebre de Lie qui vérifie les relations de commu-
tation [h,z] = 2x , [h,y] = —2y et [z,y] = h est appelé un sly-triplet.

Théoréme 2.15 (Jacobson, Morozov) Tout élément nilpotent x d’une al-
gébre de Lie semisimple g fait partie d’un sly-triplet (z, h,y).
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Commencons par un lemme.

Lemme 2.16 Soient X et Z deux éléments de End(k?) tels que X est nilpotent
et [X,[X,Z]] =0. Alors le produit XZ est nilpotent.

Démonstration du lemme 2.16 On peut supposer le corps k algébriquement
clos. Soit W := [X,Z]. Comme X et W commutent, on a, pour tout p > 1,
WP = [X, ZWP™!] et donc tr(W?) = 0. Par suite, W est nilpotent.

Remarquons que [X?, Z] = pW XP~1. Soit v un vecteur propre de X Z pour la
valeur propre A et p le plus petit entier tel que XPv = 0. Cet entier existe car
X est nilpotent. On a AX?"lv = XPZv = pIW X?P 1o, Donc A/p est une valeur
propre de W qui est nilpotent. Donc A = 0 et X Z est nilpotent. O

Démonstration du théoréme 2.15
Construction de h L’endomorphisme (adz)? est autoadjoint pour la forme
de Killing de g, c’est-a-dire que, pour y,z € g, on a

B((adx)?y, 2) = B(y, (adz)?2).

D’autre part, d’apres le lemme 2.16, pour tout z dans le noyau Ny de (adx)?, le
produit adz adz est nilpotent et donc B(z,z) = 0. C’est-a-dire que x est dans
'orthogonal Ni- de N, pour la forme de Killing. Comme B est non dégénérée,
N3+ est aussi 'image de (adz)?. 1l existe donc 3/ € g tel que, en notant h = [z, /],
on a |h,z| = 2z.

Construction de y Notons u := [h,y'] + 2y. On aimerait que u soit nul.
Par Jacobi, on a [z, u] = 0. On cherche donc un élément z := 3’ — y de g tel que
[z,2] = 0 et [h, z] + 22 = u. Remarquons que le noyau N; de adx est invariant
par adh car [h,z] = 2z. 1l suffit donc de voir que —2 n’est pas valeur propre de
adh dans N;. Cela résulte du lemme suivant. OJ

Lemme 2.17 Soient X, H,Y’ € End(k?) trois matrices telles que [X,Y'] = H
et [H,X] = 2X. Alors les valeurs propres de H dans le noyau KerX sont des
entiers positifs.

Démonstration On peut supposer k algébriquement clos. On reprend la partie
de la démonstration de la classification des s((2, k)-modules simples qui est encore
valable pour (X, H,Y’) :

On montre par récurrence sur p > 0 que [Y', XP™] = (p + 1)XP(H — p). Soit
v un vecteur non nul du noyau de X qui est vecteur propre de H pour la valeur
propre A. Comme v est dans le noyau de X, il existe un plus grand entier p > 0
tel que v soit dans I'image de XP. Notons u un vecteur tel que XPu = v. On a
I'égalité (p + 1)(A — p)v = XPT(Y'u). Donc on a A = p. O
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2.5 Systemes de racines

Dans cette section g est une algebre de Lie semisimple complexe.
Nous rappelons maintenant la structure de g. Les deux outils clefs
sont la construction de sly-triplets a 1'aide de la forme de Killing et la
classification des représentations de s((2).

Définition 2.18 Une sous-algébre de Cartan b de g est une sous-algébre com-
mutative formée d’éléments semisimples et qui est mazximale pour ces propriétés.

L’intérét de cette notion, est qu'on peut diagonaliser simultanément g sous
laction adjointe des éléments de § : pour o € h*, on pose

g, ={X €g]|[H X]=a(H)X pour tout H € h}.

L’ensemble
A={aeh"|g,#0eta#0}

est appelé le systéme de racines de g. L’espace g, associé a une racine a € A est
appelé 'espace radiciel. On a la décomposition

9= 00D (Paca 9,) -

Définition 2.19 Soit E un espace vectoriel réel muni d’un produit scalaire eu-
clidien (.,.). Pour o € E, a # 0 on note s, la symétrie orthogonale s, : E —
B8 (3 — 2%@. On appelle “systeme de racines abstrait” une partie A telle

que, pour tout o, 5 € A, on a 222 € 7 et s,(3) € A.

(a,)

Le systeme de racines abstrait A est dit “réduit” si o € A = 2a & A.

Le théoreme suivant affirme en particulier que le systéeme de racines de g est
un systeme de racines abstrait.

Théoreme 2.20 Soit g une algébre de Lie semisimple compleze.

a) On a gy = b. En particulier, b est commutative mazximale.

b) A =—A et la forme de Killing B restreinte a b est non dégénérée.

c) Pour A\ € b, on note Hy € b U’élément tel que B(Hy, H) = N(H) pour tout
H € b. Alors, pour tout Xio € 9o, on a [X_o, Xo| = B(X_o, Xo)Ha,.

d) Pour tout o« € A, on a a(H,) # 0. Notons H!, := Cigz) et choisissons X!, € g,
tels que B(X!, X" ) = ﬁ Alors (X!, Hy, X" ) est un sly-triplet.

e) i) dimg, = 1 pour tout o € A.

i1) (80, 85] = Bayp POUr tout o, 3 € A.

iii) o et —a sont les seules racines proportionnelles a «.

f) La forme B est définie positive sur by := > . RH, et on a b = by @ ibp.
g) A est un systéme de racines abstrait réduit de l’espace euclidien dual E = bg.
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Remarques - On a E = ) . Ra et le produit scalaire sur £ est donné par
(a, B) = B(H,, Hg), pour tout o, 3 € E.

- Nous verrons que toutes les sous-algebres de Cartan sont conjuguées. Donc,
a chaque algebre de Lie semisimple complexe est associé un unique systeme de
racines abstrait réduit.

- On appelle rang de g ou rang de A, la dimension r de F.

- Réciproquement, on peut montrer que tout systeme de racines abstrait réduit
provient d’'une unique algebre de Lie semisimple complexe. En outre, on peut
classifier les systemes de racines abstraits.

Démonstration Nous utiliserons fréquemment I'inclusion [g,,, g5] C g 5-

a) Soit X € gy. Notons X = X, + X,, sa décomposition de Jordan (voir
proposition 2.12). Comme X, commute a b, X, est dans h. On peut donc supposer
que X = X,, est nilpotent. Par le théoreme 2.15 de Jacobson Morozov, il existe
H € g tel que [H,X] = 2X. Quitte a remplacer H par sa projection sur g,
parallelement & (b, g], on peut supposer que H est dans g,. Notons H = H, + H,
la décomposition de Jordan de H. L’élément H, commute encore a b, il est donc
dans . Ce qui contredit 'égalité [H,, X| = 2X. Sauf si X = 0. Donc g, = b.

b) On a B(g,,g95) = 0si a+ 3 # 0. Comme B est non dégénérée, B induit une
dualité non dégénérée entre g, et g_,,.

c¢) En effet, B([X4, X 4], H) = B(X,, [X_4, H]) = B(Xa, X_o)a(H).

d) Si a(H) = 0. On choisit X4, € g., tels que B(X,, X_,) = 1. Alors on
a [Ha, Xo] = [Hay X_o] = 0 et [X,, X o] = H,. Le théoreme de Lie appliqué a
I’algebre de Lie résoluble RX_, & RH, ®&RX, prouve que H, est nilpotent. Donc
H, = 0. Contradiction.

Comme «(H!) = 2, on a bien [H!,X!| = 2X!, [H., X', ] = —2X'_ et
(X!, X", = H.. On note g, la sous-algebre de Lie de g engendrée par ce sl,-
triplet.

e) i) Si dimg, > 2, il existe X € g, un élément tel que B(X' _, X”) = 0.
Mais alors [X” , X/] = 0 et X/ engendre un s,-module de plus bas poids 2. Cela
n’existe pas d’apres la proposition 2.14.

ii) Si [g,,85] = 0. La somme V' := @pen g5, €St un s,-sous-module de la
somme V' := @nez §g4nq- Ce sous-module V' a pour plus haut poids G(H,) et
V/V" a pour plus bas poids S(H/) + 2. Donc, d’apres la proposition 2.14, on a
B(H!) >0 et B(H])+ 2 < 0. Contradiction.

i71) Quitte a remplacer o par a/2, on peut supposer que «/2 n’est pas une
racine. On peut décomposer le s,-module V' := ®.cc g,, en modules ficelles.
Comme 1 n’est pas valeur propre de H/ et que 2 est une valeur propre de multi-
plicité 1, on a d’apres la proposition 2.14, V =g__, @S g, ® g,

f) Montrons que la restriction de B a hy est positive. Pour tout H € by, on a

B(H,H) =3 ,en @(H)* = 3 cn B(Ha, H)? (1)
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Il suffit donc de voir que, pour «, f € A, B(H,, Hg) est réel. Or

B(Ha, Hp) = B(Hy) = 30(Ha)B(HY).
Comme H!, fait partie d'un sly-triplet, ses valeurs propres G(H/ ) sont dans Z. Il
reste a voir que a(H,) est réel. Cela résulte des égalités

()‘(Ha) = B(Haa Ha) = ia(Ha)QB(H&, Hé) = zl;a(Ha)Q ZBGA ﬁ(H@Q

Remarquons maintenant que A engendre bh*. En effet, si un élément H € b est
dans le noyau de toutes les racines, il est dans le centre de g et donc H = 0.

Montrons que B est non dégénérée sur hi. En effet, d’apres (1), un élément
H € by tel que B(H, H) = 0 serait dans le noyau de toutes les racines et serait
donc nul.

On en déduit que B est défini négatif sur ihg. Donc on a hi Nihy = 0, puis,
comme A engendre h, on en déduit h = by O ihg.

c¢) L’espace E = by est euclidien et on a l’équivalence A € E < H) € bhy. En
particulier A est inclus dans E et engendre E. Montrons que A est un systeme
de racines abstrait. Soient o, € A, ¢ = 2% On doit vérifier que ¢ € Z et que
0 —qa € A. On peut supposer ¢ > 0. Il résulte de la proposition 2.14 appliqué au
sqe-module V' 1= @pez g5, que la valeur propre ¢ = 3(H|,) est un entier et que
(adX”,)?(X}3) # 0. En effet, les valeurs propres de H;, dans les modules ficelles
sont enticres et symétriques par rapport a l'origine. Donc gg_,, est non nul et
[ — ga est une racine. 0

Donnons pour finir la liste de toutes les algebres de Lie simples complexes, liste
qui se déduit de celle des systemes de racines abstraits. Les quatre familles dites

classiques et les cinq algebres simples dites exceptionnelles
ATZE[(T—i_lJC) (TZ 1)7

B, =s0(2r+1,C) (r>2),
Cp = sp(r,C) (r=3),
D, = so0(2r,C) (r>4)

Eﬁa E77 E87 F47 GQ-
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3 Groupes de Lie semisimples

Nous démontrons entierement dans ce chapitre un certains nom-
bres de résultats classiques dus a E. Cartan sur la structure des
groupes et des algebres de Lie semisimples. En particulier, 'existence
d’une involution de Cartan, la décomposition de Cartan G = KATK
et la décomposition d’Iwasawa G = K AU™". Résultats que nous utili-
sons a plusieurs reprises dans ce cours. Comme dans le cas complexe,
le language des systemes de racines permet de gérer tous les groupes
de Lie semisimples réels. Néanmoins, nous rappellerons la signification
de ces concepts pour G = SL(d, R).

3.1 Groupes de Lie compacts

Commencons par la descriptions des groupes de Lie compacts.

Pour tout groupe de Lie U, on note u = Lie(U) son algebre de Lie et uc :=
u®g C son algebre de Lie comlexifiée. On note Ad ’action adjointe : pour u € U,
Adu est la dérivée de la conjugaison g — ugu~'. Ad est un morphisme de groupes
de Lie de U dans le groupe des automorphismes Aut(u).

Théoreme 3.1 L’application U — uc met en bijection
{gmupes de Lie compacts } { algebres de Lie }

connexes a centre trivial semisimples complexes

Remarques - Il s’agit bien sir d'une bijection “modulo isomorphisme” ou, plus
précisément d'une “équivalence de catégories”.

- On en déduit, avec la section 2.5, que tout groupe simple compact est, modulo
le centre, un des groupes classiques A, = SU(r+1), B, = SO(2r+1), C, = Sp(r),
D, = SO(2r) ou un des cinq groupes exceptionnels Eg, F7, Eg,Fy, Gs.

Démonstration du théoreme 3.1 Comme AdU est compact, il existe une
forme bilinéaire définie positive By sur u qui est AdU-invariante. Pour tout X € u
non nul, adX est antisymétrique pour By, donc tr((adX)?) < 0. La forme de
Killing B de u est définie négative. Donc u est semisimple et uc aussi.
L’injectivité de 'application U — uc sera montrée dans la section 3.2.
On va montrer dans cette partie la surjectivité. O

Soit g une algebre de Lie semisimple complexe.

Définition 3.2 On appelle forme réelle de g une sous-algebre de Lie réelle gy
telle que g = gr®@rC. Une forme réelle gy est dite compacte si la forme de Killing
de gr est définie négative.
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I1 suffit de montrer que g a une forme réelle compacte u. Car alors la composante
connexe U := Aut(u), du groupe des automorphismes de u convient. C’est un
groupe compact car il est fermé et préserve la forme de Killing. Son algebre de
Lie est isomorphe a u car toute dérivation de u est intérieure.

Pour montrer que g a une forme réelle compacte, reprenons les notations de
la section 2.5. Pour a € A, choisissons X, dans g, tels que [X_,, X,] = H, et
définissons, pour a, 3 € A avec a + 3 # 0, le nombre N, 3 par

[Xa, Xg] = NapXatp st a+ 0 est dans A et par N, g = 0 sinon.

Proposition 3.3 On peut choisir les X, de sorte que Nog = —N_o _g.
Les nombres No g sont alors réels.

Grace a cette proposition, on peut prendre pour forme réelle compacte de g
U= ihR D (@aEARi(Xa"_X—a)) ® (@aeAR<Xa_X—a)) :

En effet, par construction, les facteurs de cette somme directe sont orthogonaux
et B est donc définie négative sur u. Les égalités N, 3 = —N_,_3 € R assurent
que u est une algebre de Lie.

Remarque Pour g = sl(2,C), on obtient la base de su(2)
(P00 . (0 i (0 1
ZH_<O Z.),Z(XJFY)_(Z. 0),X Y_(l 0).

Lemme 3.4 a) Pour a,5 € A, on a Nyg= —Np,.
b) Pour o, 3,7 € A avec a+ [ +~v=0, on a
Naﬁ = NBKY = N%a et Na,ﬁN—a,—B < 0.
c) Pour a, 3,7v,0 € A non deux a deux colinéaires, on a
Na,ﬁN%(; + NﬁﬁNaﬁ + N%aNg,g =0.

Démonstration du lemme 3.4 a) Clair.

b) Comme oo+ 3+ =0, on a H, + Hg + H, = 0. Or, l'identité de Jacobi
appliquée a X,, X3, X, donne Ng H, + N, Hg + NogH, = 0. Donc N, g =
Ng = Nyq.

D’autre part, la proposition 2.14 qui classifie les s[(2)-modules prouve que
(X" . [ XL, X5]] = 003X 01l anp est un entier strictement positif. On en déduit
que Na,ﬂN—a,a—i-,B > 0.

c¢) Appliquer I'identité de Jacobi a X, Xg, X,,.

Démonstration de la proposition 3.3 Choisissons un ordre total sur hp tel
que la somme de deux éléments positifs est positif; par exemple I'ordre lexicogra-
phique pour les coordonnées dans une base de hz. On note AT = {a € A | a > 0}
I’ensemble des racines positives.

Pour p € A, posons A, = {a € A | —p < o < p} et montrons par récurrence
sur #A, qu’on peut choisir les X, pour a € A, tels que

Nop=—N_q_p5 pour tout o, B, a4+ € A, (2)
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Le nombre N, g est alors automatiquement réel par b).
Par hypothese de récurrence, il ne reste a choisir que X, car X_, s’en déduit.
Si on ne peut pas écrire p = y+0 avec 7,6 € A™, on choisit X, arbitrairement.
Si on peut écrire p = v+ 0 avec 7,0 € A", on prend X, = A\X,, X;] et
X_, = AX_,,X_5] ot A € C* est choisi de sorte que B(X,, X_,) = 1. Il reste a
vérifier (2). Grace a b), il suffit de vérifier (2) lorsque o + 3 = p. Ce qui résulte
de Iégalité du c¢) appliquée a «, 3, —v, —d et & —a, —(3,7,d et de 'hypothese de
récurrence. 0

Remarque On peut montrer que tout groupe topologique compact simple con-
nexe est de Lie. Le théoreme 3.1 donne donc la classification des groupes compacts
connexes simples. C’est un des grands achevement du début du vingtieme siecle.
Il ouvre la voie a la classification des groupes finis simples. Signalons que c’est
seulement a la fin du vingtieme siecle que cette derniere sera complétée.

3.2 Involutions de Cartan

Ce sont les involutions de Cartan qui nous permettront de com-
prendre la structure des groupes de Lie semisimples et leurs liens avec
les espaces symétriques.

Définition 3.5 Une involution de Cartan d’une algébre de Lie semisimple réelle
g est un automorphisme 0 tel que 0% = 1 et tel que la forme bilinéaire symétrique
By donnée par By(X,Y) = B(0X,Y) est définie positive.

On a alors la décomposition de Cartang=t@®qout={X e€g|0(X) = X}
et q={X €g]0(X)=—X}. Ces sous-espaces t et q sont orthogonaux pour la
forme de Killing B qui est définie négative sur € et définie positive sur g.

Exemples - Pour g = sl(d,R) ou g = s0(p, ¢), on peut prendre 0(X) = —X.

- L’algebre de Lie g¢ considérée comme une algebre de Lie réelle admet comme
involution de Cartan la conjugaison ¢ par rapport a une forme réelle compacte
u. On a alors £ =u et q = 7u.

Proposition 3.6 a) Toute algebre de Lie semisimple réelle g admet une involu-
tion de Cartan 6.
b) Deuz involutions de Cartan 0 et 6, de g sont toujours conjuguées.

Remarques - Conjugué signifie “conjugué par un élément de Aut(g).”.
- Le point b) prouve l'injectivité de 'application U — uc du théoreme 3.1.

Démonstration de la proposition 3.6 a) Soient 7 la conjugaison complexe
par rapport a g et N 'automorphisme de g produit N = o7 ol o est comme
dans 'exemple. Pour tout X,Y € g, on a

B,(NX,Y)=B(rX,Y) = B(X,7Y) = B,(X, NY).
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Donc N est semisimple a valeurs propres réelles. Soit P 1’élément P := N2. On
peut donc écrire P = P! pour un groupe a un parameétre t — P! de bjections
linéaires de ’espace vectoriel réel g qui sont semisimples a valeurs propres posi-
tives. Pour tout ¢, P! est dans Aut(g¢), P commute & N et on a o Plo™! = P~
En effet, cela résulte de la remarque du lemme 4.9 car ces affirmations sont po-
lynomiales et vraies pour t entiers. On pose alors () = Pieto = QoQ~ . On
calcule

o't =QoQ 't = Q%o = P :N =N"'p: = 70Q 2 =7QoQ ! =10’

On en déduit que o'(g) C g et que 6 := o'|g est une involution de Cartan de g.
b) Comme en a), on peut poser Q := ((A61)%)"7 € Aut(g), 0 := QO,Q " et
prouver que et ' commutent.
On diagonalise alors simultanément 6 et 6’ : on a

g=(nt)engd)e@nt)e(@ng)

olg=Etdqet g="¥@q sont les décompositions de Cartan de g pour @ et ¢'.
La forme de Killing est définie négative sur £ et € et est définie positive sur q et
q. Donc,ona tNg =qN¥& =0, puis £ =¥ et q = ¢', c’est-a-dire § = 0'. O

Remarques - Les éléments de £ sont elliptiques. Ceux de q sont hyperboliques.

- Notons G = Aut(g). le groupe de Lie connexe a centre trivial d’algebre de
Lie g. Le sous groupe K = {g € G | g = 0g} est donc un sous-groupe compact
maximal de G. L’espace G/K, muni de la métrique riemannienne G-invariante
donnée par la forme de Killing sur g est un “espace symétriques riemanniens
simplement connexe a courbure négative ou nulle sans facteur euclidien”. L’appli-
cation g «— G/K est une bijection entre les algebres de Lie semisimples réelles
et ces espace symétriques. Cette bijection est due a E. Cartan.

3.3 Sous-algebres de Cartan

Soit g une algebre de Lie semisimple réelle.

Définition 3.7 Une sous-algébre de Cartan by de g est une sous-algebre commu-
tative formée d’éléments semisimples et mazximale pour cette propriété.

Proposition 3.8 Soit h une sous-algebre de Cartan de g et 6 une involution de
Cartan de g. Alors

a) La complezifiée h est une sous-algébre de Cartan de g.

b) Il existe un conjugué de by qui est 0-stable.

Démonstration a) La démonstration du théoreme 2.20.a est valable pour k = R.
Donc b est commutative maximale et f aussi.
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b) D’apres la proposition 3.6, il suffit de construire une involution de Cartan
0" de g telle que 0'(h) = h. Soit u une forme réelle compacte de g construite a
partir de h¢e par la méthode de la section 3.1. Notons ¢ (resp. 7) la conjugaison
complexe par rapport a u (resp. g). Comme dans la proposition 3.6.a, on peut
poser () = ((07')2)_i, o' :=QoooQ", ¢ = 0d'|g et montrer que ¢ est une
involution de Cartan de g. Comme Q(h¢) = b, on a 6'(h) = b. O

3.4 Sous-espaces de Cartan

Soit g une algebre de Lie semisimple réelle.

Définition 3.9 Un sous-espace de Cartan a de g est une sous-algebre commuta-
tive formée d’éléments hyperboliques et maximale pour cette propriété.

Par définition tout élément hyperbolique fait partie d’un sous-espace de Cartan.

On peut diagonaliser g sous ’action adjointe de a. On désigne par X ’ensemble
des racines restreintes, i.e. ’ensemble des poids non triviaux pour cette action.
Comme en 2.5, la théorie des slo-triplets permet de montrer que X est un systeme
de racines abstrait (pas toujours réduit). On a une décomposition

g=1® (Prex g,), ou
g, ={Y eg/VX ca, adX(Y) =XV}

est I'espace radiciel associé a A et [ est le centralisateur de a.

Soient g = € @ q une décomposition de Cartan associée a une involution de
Cartan 0 et K := {g € Aut(g) | g = gf}. Ce groupe K est compact et son
algebre de Lie est &.

Proposition 3.10 a) Tout sous-espace de Cartan a de g est conjugué a un sous-
espace de Cartan inclus dans q.

b) Deux sous-espaces de Cartan inclus dans q sont toujours conjugués par un
élement de K..

Démonstration a) Mettons a dans une sous-algebre de Cartan b de g. On peut
supposer grace a la proposition 3.8 que b est f-stable. Mais alors h = (h N €) @
(hNgq). Comme hNq est 'ensemble des éléments hyperboliques de b, on a a C q.

b) Soient a;, as deux sous-espaces de Cartan dans gq. Choisissons X; € a; en
dehors des noyaux des racines restreintes de sorte qu'un élément X de g qui
commute a X; commute aussi a a;.

On peut supposer que la fonction définie sur K g — B(Xj, gXs) atteint son
minimum pour g = e. On a alors, pour tout Z € ¢, B(X;,[Z, X5]) = 0 et donc
B(Z,[X1, X5]) = 0. Comme [X;, X5] est dans ¢, on en déduit [X;, Xo] = 0, puis
[Cll, 02} =0 et enfin a; = as. U
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Corollaire 3.11 Soit gc (resp. g, u) une algébre de Lie semisimple complexe
(resp. réelle, réelle compacte).

a) Toutes les sous-algebres de Cartan de u sont conjuguées.

b) Toutes les sous-algébres de Cartan de ge sont conjuguées.

c) g n'a qu’un nombre fini de classes de conjugaison de sous-algebres de Cartan.

La dimension commune des sous-algebres (resp. sous-espaces) de Cartan de g
est appelé le rang (resp. rang réel) de g.

Démonstration a) L’égalité uc = u @ iu est une décomposition de Cartan. Si t
est un sous-algebre de Cartan de u, it est un sous-espace de Cartan de uc inclus
dans 7u. On peut donc appliquer la proposition 3.10.b.

b) Soient b, et h, deux sous-algebres de Cartan de g.. D’apres la construction
du théoreme 3.1, il existe des formes réelles compactes u; telles que t; := u; N b,
est une sous-algebre de Cartan de u;. D’apres la proposition 3.6, on peut supposer
u; = uy. On applique alors le a).

¢) Fixons un sous-espace de Cartan a dans p. Chaque classe de conjugaison
contient une sous-algebre de Cartan #-stable h,. D’apres la proposition 3.10.b, on
peut supposer que a; := h; Nq est inclus dans a. Soient X1 := {\ € ¥ | A(a;) =0}
et a) ;== {X € a; | A(X) = 0 pour tout A € £;}. Comme af contient a; et que
tout élément de a) commute au commutant de a;, par maximalité de bh,, on a
a; = a}. Donc a; est entierement déterminé par ¥; qui ne peut prendre qu'un
nombre fini de valeurs.

Il reste a comprendre que, si h, est une autre sous-algebre de Cartan #-stable
telle que h, N g = ay, alors h; et b, sont conjuguées. Soient m; le centralisateur de
a; dans €, 3, le centre de my et m{ = m; /3;. L’algebre de Lie m/ est semisimple
compacte et les t, := (h, N €)/3, sont des sous-algebres de Cartan de m}. Le a)
permet alors de conclure. 0

Notons X" un systeme de racines positives de X, c’est a dire une partie de X
telle que LT N Xt =), Tt U-Xt =Y et (ZT+XF)N-X1=10.

L’ensemble II des racines simples de X7, c’est a dire des éléments minimaux de
*, est une base de a*. Les sous algebres u® := @ycx+ g, sont nilpotentes et la
sous-algebre p = [@ u™ est appelée la sous-algébre parabolique minimale associée

axt.

Lemme 3.12 On a la décomposition d’Iwasawa g =¢® adut.

Démonstration Cela résulte de 'égalité 0(g,) = g_,.

3.5 Décomposition de Cartan et Iwasawa

Soit G un groupe de Lie semisimple connexe de centre fini d’algebre de Lie g.
On garde les notations ci-dessus. On a, en particulier, choisi une involution de
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Cartan 6 de GG, un sous-espace de Cartan a C q et un systeme de racines positives
¥*. Notons at :={X € a /Va € ¥* | a(X) > 0} la chambre de Weyl dans a
associée a LT,

Notons K '’ensemble des points fixes de 6 dans G et A := exp(a). Par définition,
le rang réel de GG est la dimension de A. L’ensemble des caracteres réels du groupe
de Lie A peut étre identifié au dual a*. Notons aussi

At ={a€e A/VaeX ala)>1}
la, chambre de Weyl dans A associée & X7
On a la décomposition de Cartan.

Théoreme 3.13
a) L’application K x q — G; (k, X) — keX est un difféomorphisme.
b) On a l'égalité G = KATK.

Démonstration On peut supposer G a centre trivial i.e. G = Aut(g)..

a) C’est la méme que pour SL(d,R). On veut écrire g = kq avec k € K
et ¢ € exp(q). Comme 6(g)~'g est symétrique définie positive pour la forme
By, on peut écrire 0(g)'g = e*¥ avec e groupe a un parameétre de matrices
symétriques définies positives. On utilise encore la remarque du lemme 4.9 pour
conclure que le groupe & un parameétre e'* est dans G. On prend g = X et
k=gqt

b) Utiliser le a) et la proposition 3.10 qui assure que tout élément de q est
conjugué sous K a un élément de a. Utiliser enfin la théorie des petits sly qui
permet, pour A € X, de relever les symétries sy en des éléments du normalisateur
de a dans K et donc de conjuguer tout élément de a en un élément de la chambre
de Weyl at. O

Le normalisateur P := Ng(p) est appelé le sous-groupe parabolique minimal
associé & Xt. Notons L le centralisateur de a dans G et U les sous-groupes
connexes d’algebre de Lie u®.

On a la décomposition d’lwasawa.

Théoreme 3.14

a) La multiplication donne un difféomorphisme K x AXxUT ~ G.

b) Le quotient P/AU™ est compact.

¢) La multiplication m : U~ X P — G est un difféomorphisme sur un ouvert de
mesure pleine.

Un élément g de G est dit hyperbolique si on peut écrire g = X avec X € g
hyperbolique i.e. si il est conjugué a un élément de A.
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Un élément g de G est dit unipotent si on peut écrire g = e*

nilpotent i.e. si il est conjugué a un élément de U™,
Un élément g de G est dit elliptique si il est conjugué a un élément de K.

avec X € g

Démonstration du théoreme 3.14 On peut supposer G a centre trivial.

a) Notons W le groupe résoluble W = AU et to son algebre de Lie. Comme
ANUT ={e}, la multiplication A x U™ — W est un difffomorphisme.

Comme to ne contient pas d’élément elliptique, tv ne rencontre aucun conjugué
de € et donc, les doubles classes K gWW sont ouvertes. Elles sont donc aussi fermées.
Donc G = KW. Comme W ne contient pas de sous-groupe compact, on a K N
W = {e}.

b) Comme AU est inclus dans P, ce la résulte du a).

¢) On montre tout d’abord une version complexifiée de cette assertion. Notons
Ge = Aut(ge), Us les sous-groupes connexes d’algebre de Lie uf =: u* ®@p C
et Pc le normalisateur de pe := p ®r C. L'intersection Pr N Uy est triviale car
I'action adjointe d'un élément g de Pc N U doit préserver les pe-sous-modules
et les ug-sous-modules de g, il doit donc préserver tous les espaces radiciels
complexifiés (g,)c et agir trivialement dessus. Comme en outre uz @ pe = g,
La multiplication m¢ : Uz x Pc — G est injective d'image ouverte. Comme
ces groupes sont algébriques, d’apres la proposition 4.4, I'image est un ouvert de
Zariski. Par injectivité de mc, on a U™ P = Us Pc N G. Donc le complémentaire
de U™ P est un fermé de Zariski de G. Il est donc de mesure nulle. 0J

3.6 Sous-groupes paraboliques

Pour toute partie # C II, on note < 6> 'espace vectoriel engendré par 6,

Yo:=YN <>, Xf:=%,NY*

[9 = [@ @CXGEQ Ja s uei = @aezi\zei [¢ P

U les groupes connexes associés, Ag := {a € A / Va € 0, ala) = 1}, A} =
AT N Ay, Ly le centralisateur de Ay dans G. Soit py := lp@uy and Py := LeU, les
sous-algébres et sous-groupes paraboliques associés a 6. On a alors les assertions.

Proposition 3.15 a) Tout sous-groupe contenant P est égal a l'un des Py.
b) Py est engendré par les sous-groupes Py pour oo € 6.

¢) Si 0y C 0y, alors Xy, C Xy, Py, C Py, et Uy, D U..

Démonstration

3.7 Exemples

Décrivons explicitement ces notations pour G = SL(d, R). On peut prendre
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K =S0(d,R),

A ={a=diag(as,...,aq) /a; >0, a;---a; =1},

At ={acA/ar> - >aq},

Z:{&‘i—ﬁj,i#j, 1§Z,]§d},

Ytr={g—¢;, 1 <i<j<d},

II={e;1—ei, 1<i<d}, oueg; €a*est donné par : g;(a) = a;,

gf:‘i—f:‘j = ]REi’j avec Ei,j = 6; & e,
0 0

o I e
TRURRS R (¢
Al ) (T )

Ay = AgNAT. On a pris 6 avec seulement deux racines simples. Une autre partie
0 aurait donné un nombre et des tailles différentes de matrices blocs.

o O *
S ¥ ¥

*
0
0
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4 Groupes algébriques

Rappelons quelques définitions de la théorie des groupes algé-
briques. Nous avons choisi un point de vu naif, probablement pas
suffisamment précis, intrinseque et général pour le puriste, mais qui
suffit bien pour une premiere approche de ce sujet... et pour les ap-
plications que nous avons en vue.

4.1 Variétés algébriques
Tout d’abord quelques mots sur les variétés algébriques.

Soient K un corps algébriquement clos de caractéristique nulle, £ un sous-corps
de K, Vi, ~ k% un k-espace vectoriel, V. = K ®; V;, ~ K% et k[V] 'anneau des
polynomes sur V a valeurs dans k.

Une variété (algébrique) affine Z C 'V ou fermé de Zariski est un sous-ensemble
qui est ’ensemble des zéros d'une famille de polynoémes sur V. On note I(Z) C
K[V] l'idéal des polynomes nuls sur Z.

On dit que Z est une k-variété si I(Z) est engendré par U'intersection I (Z) :=
I(Z) N k[V]. L’anneau quotient k[Z] := k[V]/Ix(Z) est I'anneau des fonctions
k-réguli¢res sur Z. L'ensemble Zj, := k% N Z est 'ensemble des k-points de Z.

Un k-morphisme ou application k-réguliére de k-variétés ¢ : Z; — Zs est une
application telle que, pour tout f dans k[Z,], la composée f o ¢ est dans k[Z;].

La topologie de Zariski sur Z est la topologie dont les fermés sont les sous-
variétés de Z. La toplogie induite sur Z; s’appelle aussi topologie de Zariski. On
parlera ainsi de parties Zariski connexes ou de parties Zariski denses.

Une variété Z est dite k-irréductible si on ne peut pas 1’écrire comme réunion de
deux k-sous-variétés propre ou, ce qui est équivalent, si 'anneau k[Z] est integre.
On note alors k(Z) le corps des fractions de k[Z]. Les éléments de k(Z) sont les
fonctions k-rationnelles. Par noethérianité de k[Z], toute k-variété est réunion
finie de k-sous-variétés k-irréductibles.

La dimension dim Z d’une variété k-irréductible Z est le degré de transcendance
sur k de k(Z). L’espace tangent T,Z & Z en un point z € Z est lintersection
des différentielles dP(z) des polynomes P de l'idéal I(Z). Un point z € Z est
lisse si m = dim(7,Z) est minimum. L’ensemble des points lisses d’'une k-variété
est donc un ouvert de Zariski non vide défini sur k. En un point lisse z, on a
dim(7,Z) = m = dim Z. Autrement dit, localement au voisinage de z, Z s’identifie
aux zéros de d—m polynomes P; tels que T,Z = N;dP;(z). On dit que Z est lisse
si tous ses points sont lisses.

Lorsque Z est lisse et que le corps de base k est R, C ou une extension finie de
Qp, i.e. k est un corps local de caractéristique nulle, I’ensemble Zj, des k-points de
Z est une sous-variété k-analytique lisse de k% de dimension dim Z dont I’espace
tangent en un k-point z s’identifie aux k-points de l'espace tangent en z a la
k-variété Z.
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Disons, de fagon heuristique, que l'intérét de ce point de vue qui consiste a
“travailler avec les points dans une cloture algébrique K mais avec des formules a
coefficients dans k”, est qu’il permet de développer le sujet sans savoir s’il existe
des k-points.

Il est souvent utile d’étendre les définitions ci-dessus a un cadre projectif.

Ainsi une k-variété (algébrique) projective Z C P(V) ou fermé de Zariski est un
sous-ensemble qui est I’ensemble des zéros d'une famille de polyndémes homogenes
sur V i coefficients dans k. L’ensemble Zj, := P(k%)NZ est 'ensemble des k-points
de Z. On a encore une notion d’applications k-régulieres, de topologie de Zariski
sur Z et sur Zy...

Une k-variété (algébrique) quasiprojective est un ouvert de Zariski défini sur k
d’une k-variété projective.

Le théoreme suivant est au coeur de la théorie de [’élimination des quantifica-
teurs ou théorie des ensembles constructibles.

Théoréme 4.1 (Chevalley) Soit v : Zy — Zy une application réguliére entre
deuz variétés algébriques. Alors l'image p(Zy) contient un ouvert de son adhé-
rence (pour la topologie de Zariski).

Remarque ¢((Z)x) ne contient pas toujours un ouvert de Zariski de I'ensemble
des k-points de ¢(Z;). Par exemple ¢ : R — R; ¢ — t2.

Démonstration On peut supposer que les variétés Z, et Zs sont affines et irré-
ductibles sur K et que p(Z;) est Zariski dense dans Z,. L’application ¢ induit
alors une injection entre les anneaux de fonctions régulieres A := K|[Zs] — B :=
K|[Z;]. Remarquons que la donnée d’un point x de Z; équivaut a la donnée d’un
morphisme d’anneaux ¥ : B — K : le morphisme donné par ¢ (P) = P(z) pour
tout P € B. Le théoreme est donc une conséquence du lemme suivant. 0

Lemme 4.2 Soit A — B des K-algébres telles que B est une A-algébre de type
fini integre. Alors pour tout b € B non nul, il existe a € A tel que, tout morphisme
Y A — K tel que (a) # 0 se prolonge en un morphisme ¢ : B — K tel que

w(b) # 0.

Démonstration Par récurrence sur le nombre de générateurs de B comme A-
algebre, on peut supposer que B est engendré par un élément x. Notons alors
P(T) = > gcicypiT" € A[T] un polynéme non nul de degré minimal ¢ tel que
P(x) = 0. Remarquons tout d’abord que si le polynome P n’existe pas alors
B ~ A[T] et la conclusion du lemme 4.2 est claire. Notons L le corps des fractions
de A.L’idéal I := {P, € L[T] | P,(z) = 0} annulateur de x dans L[T] est engendré
par P.

Notons aussi Q = > ¢T" € A[T] un polynoéme non nul de degré au plus £ — 1
tel que b divise Q(z). On prend alors a = pyg; ou ¢; est un des coefficients non
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nuls de Q. Notons A € K une racine du polynome ., ¢ (p;)T* € K[T] qui est
de degré ¢. La formule ¢(3" a;z*) = > t(a;)A" définit bien un morphisme de B
dans K qui prolonge v et tel que 1 (b) divise >, ¥(g:)\* # 0. O

Soit ¢ : Z1 — Zs une application k-réguliere entre deux variétés algébriques
irréductibles. On dit que ¢ est dominante si ¢ induit une injection k[Zq] — k[Z]
i.e. si I'image de ¢ est Zariski dense. On dit que ¢ est un plongement si ¢ induit
une surjection k[Zs] — k[Z;] i.e. si ¢ est injective d’image Zariski fermée.

Remarque Le théoreme de Chevalley dit que I'image de tout morphisme domi-
nant contient un ouvert de Zariski dense. Si on examine la preuve du théoreme
de Chevalley, on obtient la précision suivante :

Corollaire 4.3 Soit ¢ : Zy — Zs une application réguliere dominante entre
deux variétés algébriques irréductibles. Alors, il existe un ouvert de Zariski dense
Z| C Z, lisse défini sur k sur lequel ¢ est une submersion i.e. sur lequel la
différentielle dp est surjective.

Démonstration Remplacer dans la preuve du lemme 4.2, la constante a = py g;
par a = dpy q; ou 0 est le discriminant de P. O

4.2 Groupes algébriques

Nous ne parlerons ici que de groupes algébriques linéaires. Voici
donc quelques définitions.

Un groupe algébrique (linéaire) défini sur k ou, plus brievement un k-groupe
est une k-variété G C GL(V) C End(V) qui est un groupe pour la composition
des endomorphismes.

Par exemple, le k-groupe additif G, := {( (1) :f > |z e K},
g)\y,zEK, xy =1}

ou le k-groupe linéaire GL(V) ~{(g,9) € End(V) x K | d detg = 1} .
On a k[G,] = k[z] et k[G,,] = k[y,y™'].

On note Gy := GNGL(d, k) le groupe des k-points de G, et plus généralement,
pour tout sous-anneau A de K, G4 = GNGL(d, A) est un sous-groupe de G.

Un k-morphisme de k-groupes ¢ : G; — G est un k-morphisme de k-variétés
qui est aussi un morphisme de groupes.

Une k-isogénie est un k-morphisme surjectif de noyau fini (on notera que le
morphisme entre les k-points n’est pas toujours surjectif ; exemple : y — y? dans
Gn).

Un k-caractere de G est un k-morphisme y : G — G,,.

Un k-cocaractére de G est un k-morphisme yx : G,, — G.

le k-groupe multiplicatif G, := {( g
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Une k-représentation de G dans un k-espace vectoriel Wy, est un k-morphisme
p: G — GL(W).

Une k-action de G sur une k-variété Z est une action G x Z — Z qui est
donnée par une application k-réguliere.

L’algebre de Lie g d'un k-groupe G est 'ensemble des dérivations invariantes
a gauche de 'algebre K[G]. L’algebre de Lie g s’identifie a 'espace tangent en e
a G, c’est a dire a 'intersection des noyau Ker(dP(e)), pour P € I(G). On note
g, les k-points de g. Lorsque £ = R, C ou une extension finie de Q,,, g, est aussi
I’algebre de Lie du groupe de Lie k-analytique Gg.

Avant de poursuivre cette importante liste de définitions, faisons une pause
pour décrire quelques propriétés des k-groupes et leurs actions.

4.3 Actions algébriques

L’un des intéréts majeurs des “groupes et actions algébriques” est
la propriété suivante de leurs orbites qui contraste fortement avec les
orbites des actions ergodiques.

Proposition 4.4 Les orbites d’une k-action algébrique sont ouvertes dans leur
adhérence (pour la topologie de Zariski).

Démonstration Le théoreme 4.1 prouve qu’au moins un point de 'orbite est
dans l'intérieur de I'adhérence cette 1'orbite. Ils y sont donc tous. 0

Corollaire 4.5 L’image ¢o(G) d’un k-morphisme de k-groupes ¢ : G — H est
un k-sous-groupe.

Démonstration L’adhérence de Zariski ¢(G) est un k-sous-groupe. D’apres la
proposition 4.4, I'image ¢(G) est ouverte dans cette adhérence. Or un sous-groupe
ouvert est aussi fermé. 0

Nous aurons souvent besoin de la proposition suivante qui joue un role central
dans la théorie des groupes algébriques et qui affirme que tout espace homogene
G/H de k-groupes peut se réaliser comme une orbite dans ’espace projectif d’une
k-représentation de G.

Proposition 4.6 (Chevalley) Soit G un k-groupe et H C G un k-sous-groupe.
Alors, il existe une k-représentation de G dans un espace vectoriel V, et un
point x dans espace projectif P(V}.) dont le stabilisateur dans G est H, i.e.
H={geG/gzx =z}

En particulier, 'espace homogene G/H a une structure naturelle de k-variété
quasiprojective.
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Démonstration de la proposition 4.6 Nous aurons besoin des notations :
I(H) :={P € K|G] | Plgu =0}, K"[G] :={P € K[G] | d°P < m} et I"(H) :=
I(H)NK™|[G]. Puisque K[G] est noethérien, on peut trouver m tel que I (H) en-
gendre l'idéal I(H) de K[G]. L’action de G sur K™[G]| donnée par (7(g)P)(¢’) :=
P(g'g) est une k-représentation. La k-représentation que nous cherchons est la

représentation dans la p'®™¢ puissance exterieure V := AP(K™[G]), ot p =
dim I™(H) et z est la droite de V définie par = := AP(I"™(H)). Par construc-
tion, on a 'égalité requise H={g € G / gz = z}. O

Corollaire 4.7 Soit G un k-groupe et H C G un k-sous-groupe. Supposons que
H n’a pas de k-caractére non trivial. Alors, il existe une k-représentation de G
dans un espace vectoriel Vy, et un point v € V. dont le stabilisateur dans G est
H ie H={g€ G /gv=v}.

Démonstration L’action de H sur la droite x est triviale puisque tous les k-
caracteres de H sont triviaux. On prend v sur cette droite. 0

Lorsque le corps k n’est pas algébriquement clos, on ne peut pas espérer des
énoncés aussi nets que la proposition 4.4 au niveau des k-points. Néanmoins
lorsque le corps de base k est R, C ou une extension finie de Q,, on obtient de tels
énoncés au niveau des k-points mais pour la topologie analytique, i.e. celle issue
de la topologie du corps localement compact k.

Proposition 4.8 Soient k = R, C ou une extension finie de Q, et G un k-
groupe.

a) Si G est Zariski-conneze, le groupe Gy est Zariski dense dans G.

b) Soit p: G X Z — Z une k-action de G sur une k-variété Z. Alors, pour tout
v € Zy, les orbites de Gy dans (Gv)y, := Gv N Zy, sont ouvertes et fermées (pour
la topologie analytique).

Remarque l'assertion a) est encore vraie sans aucune hypothese sur le corps
infini k. Voir [7] cor. 18.3.

Démonstration a) Le groupe Gy est un groupe de Lie sur k& dont 1'algebre de
Lie g, s’identifie aux k-points de l'algebre de Lie de G. L’adhérence de Zariski
H de Gy, est un k-sous-groupe de G dont l'algebre de Lie contient g. On a donc
H=G.

b) On peut supposer que Z = Gu. En particulier, G et Z sont des k-variétés
lisses. Leurs k-points Gy et Zj sont donc des k-variétés analytiques lisses dont
les espaces tangents analytiques s’identifient aux k-points des espaces tangents
algébriques a G et Z. Notons p, : G — Z; g — gv I'application orbitale. C’est une
application surjective. Par le corollaire 4.3, sa différentielle est donc surjective sur
un ouvert de Zariski non vide. Par G-invariance, la différentielle dp,, : T.G — T, Z
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est surjective. Par le théoreme des fonctions implicites, ’application p, : Gp — Z;
est donc ouverte au voisinage de e. Donc les Gg-orbites dans (Gv)y, sont ouvertes
dans (Guv). Par suite ces orbites sont aussi fermées. U

Remarques - On peut aussi montrer que G; n’a qu'un nombre fini d’orbites
dans Gv N Zy.

- Lorsque k = R, ces Gy-orbites dans (Gv); sont des unions de composantes
connexes analytiques de (Gv)y.

4.4 Eléments semisimples et unipotents

Rappelons dans ce cadre les définitions d’éléments semisimple et
unipotent et leurs principales propriétés.

Un élément g € End(V) est semisimple si il est diagonalisable sur K et uni-
potent si g — 1 est nilpotent. Le lemme suivant est la classique décomposition de
Jordan.

Lemme 4.9 Soient g € GL(V) et G C GL(V) un k-groupe.

i) g peut s’écrire de fagon unique g = su = us avec s semisimple et u unipotent.
ii) Tout sous-espace W C 'V invariant par g est aussi invariant par s et u.

iii) g € G = s,u € G.

i) g € G, = s,u € Gy.

Démonstration i) Classique.

i1) Les composantes s et u peuvent étre exprimées comme des polynémes en g.

i71) Considérer 'action de G sur K™[EndV] := {P € K[EndV] / d°P < m}
donnée par (m(g)P)(x) := P(xzg). On remarque tout d’abord que l'action sur
K™[EndV] d’'un élément semisimple ou unipotent de GL(V) est encore semi-
simple ou unipotente.

Le sous-espace ["[G] := I[G] N K™[EndV] est invariant par g. Donc il est
aussi invariant par sa composante semisimple et unipotente qui n’est autre que
7(s) et m(u). Donc pour tout P € I"™[G], on a P(s) = (w(s)P)(1) =0 et P(u) =
(m(u)P)(1) = 0. Donc s et u sont dans G.

iv) Par unicité, s et u sont invariants par le groupe de Galois Gal(K/k). O

Remarques - Soit ¢ € G;. Comme chark = 0, on peut écrire u = e’V avec N

nilpotent. La méme preuve assure que, pour tout ¢ € k, 'élément u’ := eV est
dans Gy.

- Lorsque k£ = R, on peut écrire de facon unique s = hk = kh avec h = e
ol H est diagonalisable sur R et k£ semisimple a valeurs propres de module 1. La
méme preuve assure que, pour tout ¢ € R, I'élément h! := ¥ est dans Gg.

H

Lemme 4.10 Soient p: G — H un k-morphisme de k-groupes et g € G.
a) g est semisimple = p(g) est semisimple.
b) g est unipotent = p(g) est unipotent.
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Proof. On peut supposer que k = K et que G est le plus petit K-groupe contenant
g. Le point principal est alors de prouver que tous les k-morphismes ¢ : G, — G,,
et ¥ : G,, — G, sont triviaux. On a k[G,] = k[z] et k[G,,] = k[y,y~']. Alors
y o p est un élément inversible de k[z], donc est une constante, et x o ) est un
élément F(y) € kly,y~'] tel que F(y) = F(y")/n pour tout n > 1, et est donc
une constante. 0]

4.5 Groupes algébriques (suite)

Reprenons maintenant la liste des définitions relatives aux groupes
algébriques.

Voici tout d’abord des notions stables par changement de corps de base.

Un k-groupe G est connexe si il est connexe pour la topologie de Zariski (lorsque
k = C, cela équivaut a la connexité pour la topologie analytique).

Un k-groupe G est simplement connexe si toute k-isogénie H — G avec H
connexe est injective (lorsque k = C, cela équivaut a la simple connexité pour la
topologie analytique).

Un k-groupe est unipotent si tous ses éléments sont unipotents.

Le radical unipotent d'un k-groupe est le plus grand sous-groupe distingué
unipotent.

Un k-groupe est un k-tore si il est abélien et si tous ses éléments sont semi-
simples i.e. s’il est isomorphe sur K a une puissance (G,,)" du groupe multipli-
catif.

Un k-groupe est réductif si son radical unipotent est trivial.

Un k-groupe est semisimple si il ne contient pas de k-sous-groupe distingué
connexe abélien. Autrement dit il est semisimple ssi il est réductif a centre fini.

Un k-groupe semisimple est dit adjoint si son centre est trivial.

Une k-représentation d'un k-groupe est semisimple si tout k-sous-espace inva-
riant admet un supplémentaire invariant.

Voici maintenant des notions qui dépendent fortement du corps de base.

Un k-tore est k-déployé si il est isomorphe sur k& a une puissance (G,,)".

Un k-groupe est k-déployé si il contient un k-sous-tore maximal qui est k-
déployé.

Un k-groupe G est dit k-isotrope si il contient un k-sous-tore k-déployé non
trivial et k-anisotrope sinon.

Un k-groupe G est dit k-quasisimple si il est connexe et si tout k-sous-groupe
distingué propre est fini.

Une k-représentation d’un k-groupe G est k-irréductible si 0 et W sont les
seuls k-sous-espaces G-invariants.

Proposition 4.11 Lorsque G est semisimple, on a [’équivalence : G est k-
1sotrope ssi Gy contient des éléments unipotents non triviau.
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Démonstration Pour I'implication directe on diagonalise 1’algebre de Lie g pour
'action adjointe d’un tore k-isotrope T. Chaque espace propre g, associé a un
caractere non trivial y de T est défini sur k et est formé d’éléments nilpotents.
On retrouvera cet argument en montrant le lemme 5.5.b.

La réciproque résulte de la proposition 2.14 et du théoreme 2.15 de Jacobson
Morozov. Chaque élément nilpotent X de g, fait partie d'un sly-triplet (X, H,Y')
dont 1’élément H engendre 1’algebre de Lie d'un k-tore déployé de dimension 1.[]

Proposition 4.12 Une k-représentation d’un k-groupe semisimple G est semi-
simple.

Démonstration Pour montrer cela on peut, comme pour la proposition 2.14
supposer k = C, et appliquer I'astuce unitaire avec le sous-groupe compact K C
G dont l'algebre de Lie £ est une forme réelle compacte de I'algebre de Lie g de
G¢. On a vu que ce groupe K existe dans le théoreme 3.1. 0

Remarque La catégorie des R-groupes semisimples simplement connexes G est
équivalente la catégorie des groupes de Lie semisimples réels simplement connexes
G ou a celle des algebres de Lie semisimples réelles g. Une équivalence entre ces
catégories est donnée par les foncteurs G — G +— g ou G est le revétement
universel de Gg et g := Lie(G). C’est un yoga utile de passer d'un language a
I’autre.

Par exemple, un sous-espace de Cartan a de g n’est rien d’autre que “l’algebre
de Lie des points réels d'un tore R-déployé maximal A de G”. Ou encore, la
catégorie des représentations de dimension finie de g est équivalente a la catégorie
des R-représentations de G.

Les géometres différentiels et les analystes préferent souvent le deuxieme lan-
guage car il est plus adapté aux questions géométriques et topologiques. Les
géometres algébristes et les arithméticiens préferent souvent le premier language
car il ouvre la voie a des extensions a d’autres corps que R. Ces languages parlent
presque du méme objet, tout comme le coffee américain et le caffé italien dési-
gnent presque la méme boisson...

On a vu a plusieurs reprises ces deux points de vue s’éclairer I'un 'autre.
Rappelons en deux exemples particulierement importants : L’ astuce unitaire pour
montrer la semisimplicité des k-représentations. La décomposition de Jordan dans
G pour montrer la décomposition de Cartan de G.
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5 Groupes arithmétiques

Nous avons montré dans le chapitre 1, que, pour une forme qua-
dratique entiere non dégénérée, le sous-groupe Gy des matrices or-
thogonales entieres est un réseau dans le groupe Gg des matrices
orthogonales réelles.

Le but de ce chapitre est de montrer comment la preuve s’adapte
a tous les Q-groupes et d’obtenir ainsi le théoreme de Borel et Harish-

Chandra.

5.1 Groupes arithmétiques

Donnons tout d’abord la définition d’un sous-groupe arithmétique
d'un Q-groupe et vérifions qu’elle ne dépend pas, a commensurabilité
pres, du plongement du Q-groupe dans un groupe de matrices.

Rappelons que I'expression Q-groupe est un raccourci pour groupe algébrique
linéaire défini sur Q. On renvoie au chapitre 4 pour les définitions précises des
notions relatives aux groupes algébriques que nous utiliserons.

Définition 5.1 Soit G un Q-groupe. Le sous-groupe Gz de G est appelé sous-
groupe arithmétique.

Cette définition 5.1 est provisoire : nous I'étendrons dans le chapitre 11.

Deux sous-groupes I'y et I'ys d'un groupe I sont dits commensurables si 'inter-
section I'1 NI’y est d’indice fini a la fois dans I'y et I's.

Le corollaire ci-dessous affirme que le sous-groupe arithmétique d’un Q-groupe
G est bien défini & commensurabilité pres, indépendamment de “la réalisation de
G comme groupe de matrices”.

Lemme 5.2 Soit p une Q-représentation d’un Q-groupe G dans un Q-espace
vectoriel Vg. Alors,

a) Le groupe Gz préserve un réseau A C V.

b) Tout réseau Ay C Vg est préservé par un sous-groupe d’indice fini de Gy.

Démonstration a) Choisissons une base de V. Les coefficients des matrices
p(g)—1 s’expriment comme des polynomes a coefficients dans Q en les coefficients
des matrices g — 1. Le coefficient constant de ces polynomes est nul. Donc il existe
un entier m > 1 tel que, si g est dans le sous-groupe de congruence

I:={9€Gz/g=1modm},

alors p(g)a des coefficients entiers. Puisque I',,, est d’indice fini dans Gy, ce groupe
Gz préserve aussi un réseau de V.
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b) C’est une conséquence du a) puisqu’on peut trouver des entiers N, Ny > 1
tels que NA C NoAy C A. O

On en déduit facilement le corollaire suivant.

Corollaire 5.3 Soit ¢ : G — G un Q-isomorphisme de Q-groupes. Alors les
groupes p(Gyz) et Gagz sont commensurables.

Le but principal de ce chapitre est de démontrer le théoreme suivant dont le
point a) est du a Borel, Harish-Chandra et le point b) & Godement.

Théoreme 5.4 Soit G un Q-groupe.
a) Si G n’a pas de Q-caractére non trivial, alors Gz est un réseau de Gg.
b) Si G n'a pas de Q-cocaractére non trivial, alors Gy est cocompact dans Gg.

Remarque Les réciproques des points a) et b) sont vraies et beaucoup plus
facile :

Lemme 5.5 Soit G un Q-groupe.
a) Si G a un Q-caractére non trivial, alors Gz n'est pas un réseau de Gg.
b) Si G a un Q-cocaractére non trivial, alors Gz n’est pas cocompact dans Gg.

Remarque Un k-groupe G a un k-caractere non trivial ssi il a un k-cocaractere
central non trivial. En effet, pour le vérifier, on peut supposer, en quotientant G
par son radical unipotent, que G est réductif. Comme G est presque produit de
son centre connexe et de son groupe dérivé, on peut supposer que G est un tore.
On remarque alors que G est presque produit d'un tore k-isotrope par un tore
k-anisotrope. On renvoie a [7] pour plus de détails.

Démonstration du lemme 5.5 a) Par la proposition 4.8, I'image x(Gg)
contient R, alors que, par le lemme 5.2, I'image x(Gz) est incluse dans (G,,)z =
{£1}.

b) D’apres le lemme 4.10, 'algebre de Lie de I'image d'un Q-cocaractere est
de dimension 1 et est engendrée par un élément H diagonalisable. Comme les
seuls carateres du groupe multiplicatif G,, sont les puissances z +— 2", on peut
supposer que les valeurs propres de H sont entieres. Par le a) et la remarque
ci-dessus, cet élément H n’est pas dans le centre de g. Il existe donc un entier
p # 0 et un élément non nul X € g a coefficients entiers tel que [H, X] = pX.
Par le théoreme 2.4 de Lie, cet élément X est nilpotent. En particulier, 1'orbite
adjointe AdGg(X) contient 0 dans son adhérence. Si Gz était cocompact dans
Gg, comme AdGz(X) est un ensemble discret formée de matrices a coefficients
entiers, 'orbite adjointe AdGg(X) serait fermée. Contradiction. O

Corollaire 5.6 Soit G un Q-groupe semisimple.
a) Alors Gy est un réseau de Gg.
b) Gy est cocompact dans Ggr ssi Gz n’a pas d’élément unipotent non trivial.
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Remarque On a les équivalences : Gz n’a pas d’élément unipotent non trivial
& Ggq n'a pas d’élément unipotent non trivial < go n'a pas d’élément nilpotent
non nul.

En effet, 'application X — eX —1 et son inverse X — log(1+ X) sont données
par des polynomes a coefficients rationnels quand on les applique a des matrices
nilpotentes.

Démonstration de : théoreme 5.4 = corollaire 5.6

a) Un groupe semisimple n’a pas de caractere.

b) On a déja vu dans la démonstration du point b) du lemme 5.5 que si G
a des Q-cocaracteres non triviaux alors gg contient des éléments nilpotents non
nuls.

Réciproquement, lorsque G est semisimple, un réseau cocompact I' de Gr ne
peut pas contenir d’élément unipotent non trivial. Voici pourquoi.

D’une part, la classe de conjugaison d’un élément unipotent contient e dans son
adhérence : c’est facile pour SL(2,R), le cas général s’en déduit par le théoreme
2.15 de Jacobson Morozov.

D’autre part, la classe de conjugaison d'un élément vy € I' est fermée car
'ensemble des conjugués {vyoy ™! | v € '} est discret et Gg/I" est compact. [J

Remarque Soit G un Q-groupe sans QQ-caractere. Alors Gg est unimodulaire.
En effet, comme D'application adjointe Ad est définie sur Q, le caractere g —
det(Ad(g)) est un Q-caractere. Il est donc trivial. Or, la fonction module est la
valeur absolue de la restriction & Gy de ce caractere.

5.2 Stratégie de démonstration du théoreme 5.4.a

Soit G un Q-groupe sans Q-caractere. On veut montrer que la
mesure Gg-invariante A sur Gg /Gy est finie.

La premiere étape est un joli argument de plongement (proposition 5.7) qui
permettra, des qu'on se donne une Q-représentation fidele de G dans Vg, de
voir cette mesure A comme une mesure de Radon sur 'espace X des réseaux de
volume 1 de Vg.

On veut alors appliquer encore une combinaison des corollaires 1.5 et 1.14. Pour
cela, il suffit de construire une probabilité y portée par Gy vérifiant la condition
[HI]. Remarquons de nouveau que cette condition ne fait plus intervenir le groupe
Gz. Cette stratégie aboutira uniquement lorsque G est Q-simple, adjoint et Q-
isotrope. Ce sera la deuxieme étape du raisonnement. Notons que cette étape est
la plus délicate, le groupe Gy y apparaissant comme un réseau non cocompact.

La troisieme étape, le cas ou G est Q-simple, adjoint et Q-anisotrope, est une
application du critere de Mahler. Elle prouvera que dans ce cas le quotient Gg /Gy
est compact. Cette étape contient le critere de compacité de Godement.
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Dans la quatrieme étape, on passera du cas QQ-simple adjoint au cas réduc-
tif sans Q-caractere. Ce sera de nouveau une application du critere de Mahler
(proposition 5.11). Cette étape importante contient le cas ou G est un tore Q-
anisotrope. Elle contient donc en particulier le théoreme des unités de Dirichlet.

Enfin, dans la cinquieme et derniere étape, la décomposition de Levi pour les
Q-groupes G = RU comme produit semidirect d'un Q-groupe reductif R et
d’un Q-groupe unipotent U (décomposition que nous admettrons) permettra de
montrer le théoreme pour tous les Q-groupes sans Q-caractere. O

5.3 Le plongement dans ’espace des réseaux

Le plongement suivant permet de relier I’étude du quotient Gr /Gy
a celle de lespace des réseaux de R%.

Proposition 5.7 Soit G C H = GL(d,C) un Q-groupe sans Q-caractére non
trivial. Alors Uinjection Gr/Gz — X = Hg/Hy est propre.

Autrement dit, cette injection est un homéomorphisme sur une partie fermée

de X

Démonstration Nous devons montrer que pour toute suite g, € Gg, telle que
gnHyz converge dans dans Hg/Hy, la suite ¢,Gz converge dans Gg/Gy.

D’apres la proposition 4.6 (avec H pour G et G pour H), il existe une Q-
représentation de H dans un Q-espace vectoriel Vg et un pointr x € P(Vg) dont
le stabilisateur dans H est G. Puisque tous les Q-caracteres de G sont triviaux,
le stabilisateur de tout point non nul v sur la droite x est aussi égal a G. Par le
lemme 5.2, le groupe Hy, stabilise un réseau A C V. On peut choisir A contenant
v. Donc la Hz-orbite de v est discrete dans Vg.

Soit h, € Hy tel que nh_)nc}o gnhyn = h. La suite h, v converge vers h™'v et est

donc constante pour n grand. On peut donc écrire, pour n grand, h, = v,h avec
v € Gz, h € Hyz. La suite g,7, est alors convergente. 0

5.4 Le cas Q-simple et Q-isotrope

Voici un cas particulier du théoreme de Borel et Harish-Chandra
qui se trouve étre le cas le plus délicat.

Lemme 5.8 Soit G un Q-groupe Q-simple, adjoint et Q-isotrope Alors Gy est
un réseau de Gg

Démonstration Le premier point est de voir que, comme G est adjoint, G admet
une Q-représentation fidele p qui est R-irréductible. La représentation adjointe est
somme directe p; & - - - B py de représentations irréductibles de G = Gy x - - - X Gy
qui correspondent aux idéaux g, de l’algebre de Lie de G. Chaque représentation
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p; est irréductible sous I'action de G; et ces représentations sont permutées par le
groupe de Galois Gal(C, Q). On prend pour p le produit tensoriel p = p1 ®- - ® py
de ces représentations. C’est une représentation fidele de G définie sur QQ qui est
C-irréductible. Elle est donc R-irréductible.

Le deuxieme point est de voir que, comme G est Q-simple et Q-isotrope, le
groupe Ggr n’a pas de facteur compact. En effet, comme G est Q-simple, un
tel facteur est le groupe (G;)r des R-points d’'un facteur R-simple G; de G vu
comme R-groupe. Mais, comme G est Q-simple et Q-isotrope, un tel facteur est
R-isotrope et donc non compact.

Le troisieme point est d’utiliser le lemme 5.9 suivant qui permet de construire
une probabilité p portée par Gg vérifiant la condition [HI]. Ce qui permet de
conclure grace a la stratégie décrite ci-dessus. 0

Lemme 5.9 Soit G C GL(d,C) un R-groupe semisimple.Alors

a) il existe un produit scalaire euclidien sur RY tel que, pour tout g dans G,
Iadjoint tg est aussi dans G.

b) Dans ce cas, si Gg n'a pas de facteur compact, Gg est engendré par Gg N S+

Rappelons que ST est 'ensemble des matrices symétriques définies positives.

Démonstration L’algebre de Lie gz de Gr admet une involution de Cartan
0 qui correspond a une décomposition de Cartan g = € @ q (voir chapitre 3).
La sous-algebre u = £ & iq a une forme de Killing définie négative. Elle est donc
'algebre de Lie d’'un sous-groupe compact Ug de GL(d, C). Ce groupe Ug préserve
une forme hermitienne sur C?. On prend pour produit scalaire la partie réelle de
la restriction & R? de cette forme hermitienne.

b) Dans la décomposition gy = €@ q, les éléments M de q sont symétriques et
leurs exponentielles exp(M) sont symétriques définies positives. Comme [q, q] © q
est un idéal de gy et que Gg n’a pas de facteur compact, on a 'égalité gp =
[q,9] @ q et Gg est engendré par exp(q). O

5.5 Le cas (Q-simple et Q-anisotrope

Cette étape est plus simple que la précédente : Elle n’utilise que
le plongement et le critere de Mahler.

Corollaire 5.10 Soit G un Q-groupe Q-simple et Q-anisotrope.
Alors Gy est un réseau cocompact de Gg

Démonstration Comme G est adjoint, on peut supposer que G est inclus dans
le groupe Aut(g) des automorphismes de ’algebre de Lie g.

Par la proposition 5.7, le quotient Gg/Gz est homéomorphe au sous-ensemble
fermé {Adg(g;) | ¢ € Gr} de I'ensemble des réseaux de gi. En outre tous ces
réseaux sont de méme covolume. Si le quotient n’était pas compact, le critere de
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compacité de Mahler, i.e. la proposition 1.8, assurerait qu’il existerait g, € Gg
et X,, € gz — {0} tel que Ad(g,)(X,) converge vers 0. Pour tout i > 1, la suite
d’entiers n — tr(X!) converge vers 0. Elle donc nulle pour n grand. Donc pour
n grand, X,, est nilpotent. Et G n’est pas Q-anisotrope. Contradiction.

5.6 Le cas réductif

Le lemme clef pour passer du cas Q-simple adjoint au cas réductif
est la proposition suivante.

Proposition 5.11 Soit G un Q-groupe réductif, C le centre de G et H le Q-
groupe quotient H = G/C. On suppose que G n’a pas de Q-caractére. Alors,
Uapplication induite w : Gr/Gz — Hr/Hy est une application propre.

Remarques Ce quotient H est un Q-groupe semisimple adjoint. Il est donc
produit de groupes Q-simples adjoints.

Démonstration Soit G C End(V) notre Q-groupe et A := Endc(V) le com-
mutant de C dans End(V). Comme le centre C est réductif et défini sur Q,
I’algebre associative A est semisimple et définie sur Q, en particulier, 'anneau
Az = ANEnd(Vyz) est un réseau de Ag := ANEnd(Vg) que l'on peut supposer
de covolume 1.

Le groupe G agit de deux facons sur ’algebre A : I'action p par translation a
gauche et 'action ¢ par conjugaison qui factorise en une action de H. Rappelons
que G n’a pas de Q-caractere. En appliquant deux fois la proposition 5.7 on
obtient, d’une part, que le quotient Ggr/Gyz est homéomorphe & I’ensemble des
translatés {gAz | g € Ggr} et, d’autre part, le quotient Hg /Hy est homéomorphe
a I'ensemble des conjugués {h(Az) | h € Hr}. En outre tous ces réseaux sont de
covolume 1. Supposons par I’absurde que I'application 7 n’est pas propre, il existe
donc une suite g, € Gy telle que g,Az n’est pas bornée tandis que g,Azg, " est
bornée.

Le critere de compacité de Mahler, i.e. la proposition 1.8, assure qu’il existe
une suite a,, € Az —{0} telle que g,a, converge vers 0 et que toute suite a,, € Az,
telle que g,al, g, ! converge vers 0 est nulle pour n grand.

Puisque l'algebre associative semisimple A est somme directe de ses idéaux
bilateres définis sur Q minimaux B, on peut supposer que a, est dans I'un des
By — {0}. Soit b; une base de By. Puisque detgg, = 1, par le lemme 1.10 de
Minkowski, on peut trouver Cy > 0 et des éléments non nuls ¢, € By tels que
leng | < Co. Les éléments g,a,b;c,g,' convergent aussi vers 0. Donc, pour
n > 0, on a successivement, a,b;c, = 0, a,Bc,B = 0, a,B = 0, et a, = 0.
Contradiction. O

Corollaire 5.12 Soit ¢ : G — H une Q-isogénie entre deux Q-groupes réductifs.
Alors les groupes o(Gz) et Hyz sont commensurables.
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Démonstration Quitte a remplacer G et H par l'intersection des noyaux de
leurs Q-caracteres, on peut supposer G et H sans Q-caractere. Notons Zg le
centre de G et Zg le centre de H. On remarque que I'application ¢ induit un
isomorphisme G/Zg ~ H/Zy. On applique alors deux fois la proposition 5.11 a
G puis a H pour en déduire que I'application Gg/Gz — Hg/Hyz est propre. [

Remarque L’analogue de ce corollaire pour les Q-points est inexact : les groupes
©(Gg) et Hg ne sont pas toujours commensurables. Prendre par exemple G =

SL(2) et H = PGL(2) et regarder les éléments de Hg donnés par ( g (1) >

5.7 Conclusion

En utilisant la structure des Q-groupes, nous pouvons maintenant
terminer par récurrence notre raisonnement.

Démonstration du théoréme 5.4 Remarquons tout d’abord que si G = HxN
est une décomposition d’'un Q-groupe G en un produit semidirect d'un Q-sous-
groupe H et d’un Q-sous-groupe distingué N, alors le groupe HzNy est inclus
dans Gz. En particulier si Hy est un réseau de Hgr et Ny est un réseau de Ng,
alors Gy est un réseau de Gp

D’apres la décomposition de Levy, valable sur tout corps k de caractéristique
0, tout k-groupe G est un produit semidirect L x U d’un k-groupe réductif L et
d’'un k-sous-groupe distingué unipotent U.

En outre, tout k-groupe unipotent de dimension n > 1 est un produit semidirect
du k groupe additif G, de dimension 1 et d'un k-sous-groupe distingué unipotent
U’ de dimension n — 1.

Puisque le sous-groupe arithmétique (G,)z ~ Z est un réseau cocompact du
groupe de Lie (G,)r ~ R, ces remarques ramenent la démonstration du théoreme
5.4 au cas réductif que nous avons obtenu dans la proposition 5.11. O
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6 Mélange et comptage

Ce chapitre est encore au coeur des themes de ce cours reliant théo-
rie des nombres et théorie ergodique a travers la théorie des groupes.

L’objectif arithmétique est de donner ’asymptotique en r du nom-
bre de matrices de SL(d, Z) de norme au plus r. Nous obtiendrons plus
généralement un tel asymptotique pour tous les réseaux I' des groupes
de Lie quasisimples G.

La propriété ergodique est ici le mélange de I'action des éléments
de G sur le quotient de volume fini G/T".

La théorie des représentations unitaires joue un role central dans
cette propriété de mélange.

Les démonstrations ci-dessous sont self-contained pour SL(d,Z),
sauf pour une formule explicite pour la mesure de Haar dans la dé-
composition de Cartan . Dans le cas général, nous utiliserons en plus
quelques propriétés sur la structure des groupes de Lie semisimples
réels, décompositions de Cartan et d’Iwasawa, que nous avons démon-
trées au chapitre 3.

6.1 Représentations unitaires et mélange

Commencons par la partie théorie des représentations unitaires et
énoncons une propriété générale, due a Howe et Moore, de décrois-
sance des coefficients des représentations unitaires.

Définition 6.1 Une représentation unitaire @ d’un groupe localement compact
G dans un espace de Hilbert (séparable) H. est un morphisme de G dans le
groupe U(H,) des transfomations unitaires de H, tel que, pour tout v dans H,
Uapplication G — Hy; g — w(g)v est continue.

Pour tout v,w dans Hy, le coefficient est la fonction continue c,,, : G — C
donnée par ¢, ,(g) = <m(g)v, w>.

Exemples - La représentation triviale est la représentation constante 7(g) = Id.
Ses coeflicients sont des fonctions constantes.
- Quand G est compact, toute représentation unitaire est une somme hilbertienne
orthogonale de représentations unitaires irréductibles. Par Peter-Weyl, elles sont
de dimension finie.
- Supposons que G agisse continiment sur un espace localement compact X en
préservant une mesure de Radon v. Alors la formule (7(g)¢)(x) := ¢(g'x) définit
une représentation unitaire 7 de G dans L?(X, v) Pour montrer la continuité des
applications g — m(g)e, on la montre tout d’abord pour les fonctions continues
A support compact puis on utilise la densité de ces fonctions dans L?( X, v).

Les coefficients

Cou g — /X (@) P(g2)dv(z)
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de cette représentation sont aussi appelés coefficients de corrélation.
Pour tout sous-groupe H de G, notons
HY = {veH, /VYheH, n(h)v=nuv}
le sous-espace des vecteurs H-invariants.

Rappelons qu’un groupe de Lie G est semisimple si son algebre de Lie g est
semisimple, et que G est quasisimple si g simple (voir chapitre 3). Par exemple
les groupes de Lie SL(d,R) et SO(p, q) sont quasisimples pour d > 2 et p+¢ > 3.

Théoréme 6.2 (Howe, Moore) Soit G un groupe de Lie réel connexe semi-
simple a centre fini et T une représentation unitaire de G. Supposons que HE = 0
pour tout sous-groupe connexe normal G; # 1.
Alors, pour tout v,w dans H,, on a gli_)IglO <m(g)v,w> = 0.
Remarques - La preuve de ce théoreme est reportée a la section 6.3.
- Le symbole g — oo signifie que g sort de tout compact de G.
- D’apres le théoreme 2.7, il n'y a qu'un nombre fini de G;.
- Quand g est simple, I'hypothese est HE = 0.

Corollaire 6.3 Soit G un groupe de Lie réel connexe semisimple a centre fini et
T une représentation unitaire de G sans vecteur G-invariant non nul. Soit H un
sous-groupe fermé de G dont les images dans tous les groupes quotients G/G; # 1
sont mon compactes. Alors HE = 0.

Remarque - Quand g est simple, I'hypothese sur H équivaut a H non compact.

Démonstration Par récurrence, en écrivant H, = HS @ (HS)1, on peut sup-
poser que HE = 0 pour tout 4. Soit v un vecteur H-invariant. Le coefficient c,,,
est constant sur H. Par le théoreme 6.2, il doit étre nul. Donc v = 0. 0

Corollaire 6.4 Soit G un groupe de Lie réel connexe quasisimple a centre fini,
I' C G un réseau. Alors laction de G est mélangeante sur X = G/I', i.e. on a la
propriété suivante de “décroissance des corrélations” : pour tout ¢, € L*(X,dx),

im [ playptonts = [ pla)ds [ vi)ds

g—o0 Jx

- Pour simplifier, on a noté dr = Ax la probabilité G-invariante sur X.
- Une extension aux réseaux irréductibles sera donnée dans le corollaire 7.7.

Remarque En particulier, pour tout élément g € G qui engendre un sous-groupe
non-borné de G, 'action de g sur X est ergodique, i.e. toute partie mesurable g-
invariante A de X vérifie Ax(A) = 0 ou 1 (voir chapitre 8).
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Démonstration du corollaire 6.4 Ecrivons L*(X,dz) = Cl1 & L(X,dx)
ot L(X,dz) désigne le sous-espace des fonctions d’intégrale nulle. D’apres le
théoreme 6.2, il suffit de remarquer que les fonctions G-invariantes ¢ de L2(X, dx)
sont nulles. Cela résulte de Fubini car si, pour tout g dans G, ¢(gz) = ¢(x) pour
presque tout x € X, alors on peut trouver x € X tel que, ¢(gz) = p(z) pour
presque tout g € G. Et donc ¢ est presque stirement constante. Donc ¢ = 0. [J

6.2 Vecteurs invariants pour SL(2)

Commencons par une preuve directe du corollaire 6.3 pour le
groupe SL(2,R).

Pour ¢t > 0 et s dans R, soit
a = t 0 U — 1 s U= = 1 0
o et )l o)t T s 1)

Proposition 6.5 Soit m une représentation unitaire de G = SL(2,R), t # 1,
s# 0 etv € Hy. Stv est soit a-invariant, us-invariant ou ug -invariant alors, il
est G-invariant.

Remarque La proposition 6.5 et sa démonstration sont encore valables pour
le groupe S revétement universel de SL(2,R), en remplagant les groupes a un
parametre a;, us et u; par leur relevement dans 5.

On utilisera le lemme suivant.

Lemme 6.6 (Mautner) Soit ™ une représentation unitaire d’un groupe loca-
lement compact G. Pour v dans H,, notons S, = {g € G / w(g)v = v} son
stabilisateur dans G. Alors

a) Sy ={9 € G/ cuulg) = v’}

b) Soit g dans G tel qu’il existe g, dans G, s,,s., dans S, avec

nhg)lO =29, nllj{)lo Sngns,, = €. Alors g est dans S,,.

Démonstration a) Utiliser 1'égalité ||7(g)v — v||*> = 2||v[|* — 2 Re(cy(g))-
b) Faire tendre n vers U'infini dans I'égalité ¢, ,(gn) = Cpo(Sngns,) pour obtenir
con(9) = 0% O

Démonstration de la proposition 6.5 Il suffit de montrer que l'invariance
de v par 'un des trois a;, us, u; implique 'invariance par les deux autres. Grace
aux symétries, il n’y a que deux cas a traiter :

ag-invariant — ug-invariant. On peut supposer ¢ > 1. On utilise le
lemme 6.6.b avec ¢, = g = us, S, = a; " et s, = a}. On vérifie facilement

. / .
que lim s,g,s, = lim u;-2n; = e.
n—oo n—oo
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ug-invariant — a;-invariant. On peut supposer que t est rationnel, ¢ = §.
D
. - - o ;L
On utilise le lemme 6.6.b avec g = a;, g, = ( 21 g ), s, = uy " and s;, = ul9.
snp  p

On vérifie facilement que lim s,g,s, = lim < é (1) ) =e. O

n—00 snp

6.3 Décroissance des coefficients

Dans cette section, nous donnons la preuve du théoreme 6.2.

Nous aurons besoin du lemme suivant qui est un cas spécial du corollaire 6.3
que nous n’avons pas encore démontré.

Lemme 6.7 Soit m une représentation unitaire d’un groupe de Lie réel connexe
quasisimple G a centre fini, a # 1 un élément hyperbolique de G, et u # 1 un
élément unipotent de G. Si un élément v de H, est soit a-invariant ou u-invariant
alors il est G-invariant.

Rappelons qu'un élément g € G est unipotent (resp. hyperbolique) si g = eX

avec X € g et adX nilpotent (resp. diagonalisable sur R).

Démonstration 1°F cas : v est a-invariant. Ecrivons a = eX et décomposons
geng=ud[du" ouu (resp. [, u”) sont la somme des espaces propres de ad X
associés aux valeurs propres strictement négatives (resp. nulles, strictement posi-
tives). Ce sont des sous-algebres de Lie. On note U (resp L, U™) les sous-groupes
de Lie connexes correspondants. Le méme argument que dans la proposition 6.5
montre que v est invariant par U et U~. On conclut que v est G-invariant grace
au fait suivant : les deux groupes U et U~ engendrent GG. Pour montrer ce fait,
on remarquera juste que la somme directe u~ @& ([u™,u] N [) G u est un idéal de g
et est donc égal a g.

28Me cas : p est u-invariant. Notons u = eV avec N € g nilpotent. D’apres le
théoreme 2.15 de Jacobson-Morozov, il existe une sous-algebre de Lie s ~ s[(2, R)
de g contenant X. Par la proposition 6.5, v est invariant par le sous-groupe S
d’algebre de Lie s. La proposition 2.14 qui classifie les représentations de s prouve
que S contient des éléments hyperboliques, nous sommes de nouveau dans le
premier cas. 0

N

Remarque Lorsque g = sl(d,R), la démonstration du théoreme de Jacobson
Morozov est tres facile. On veut montrer que toute matrice nilpotente N est dans
I'image d’une représentation de l’algébre de Lie s = sl(2,R). Rappelons que s a
pour base X, H,Y avec

x= () m=(3 h)v= (1)

qui vérifient les relations

[H,X]=2X, [HY]=-2Y et [X,Y]=H.
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Dans une base convenable, N est une matrice formée de blocs de Jordan. On se
ramene facilement au cas ou N est un seul bloc de Jordan. Or la représentation
pa de sl(2,R) dans l'espace vectoriel V4 des polynomes de degré d — 1 sur R?
envoie X, H,Y respectivement sur

P P) P P
To, 0 Tar — Yoy et yg.-
En particulier, dans la base 2471, 2972y, ... y471, pg(X) est un bloc de Jordan de

taille d et py(H) est diagonale. C’est ce que I'on voulait.

Démonstration du théoreme 6.2 L’idée est d’'utiliser la compacité faible de
la boule unité de H, et la décomposition de Cartan G = KATK de G pour
construire dans H, un vecteur vy invariant par un unipotent u € G.

La décomposition de Cartan de G (voir chapitre 3) affirme qu’il existe un sous-
groupe compact K de G et une partie AT, appelée chambre de Weyl, d’un sous
groupe commutatif A formé d’éléments hyperboliques tels que G = KATK.

Si le coefficient < 7(g)v, w > ne décroit pas vers 0, on peut trouver des suites
Gn = kpank!, € G = KAK telles que

lim <7(g,)v,w>=(#0 , limk, =%k , limk/, =k,

et pour certaines racines « de A dans g, lim a(a,) = oo. En particulier,il existe
n

un élément unipotent w € G non trivial tel que a;'ua, — e. On peut supposer
que k =k =e.

La compacité faible de la boule unité de H, affirme que, toute suite v, € H,
avec |lv,]] < 1 a une sous-suite v, qui converge faiblement vers un vecteur v,
i.e. pour tout v € H,, on a limy_,(Vn, , V') = (Veo, V).

On peut done, quitte a extraire, supposer que la suite 7(a,)v a une limite faible
vy € H,. Vérifions que ce vecteur vy est non nul.

Comme lim,, ||7(k.)v — v|| = lim,, |7 (k;)v — v|| = 0, on a bien

<vg,w> = lim <7 (an)v,w> = lim <m(an)m(kl)v, 7w(k; w>
= 1iTan <7 (gn)v, w>%#0
En outre, ce vecteur est u-invariant, parce que, comme a,, 'ua, — e, on a
Iz (u)vo — voll < Tim [|7(a)(7(ay, ‘uan)v —v) = 0.

Ceci contredit le lemme 6.7. [l

Remarque Pour G = SL(d, R), le groupe K est le groupe SO(d, R) et la chambre
de Weyl AT est I'ensemble des éléments diagonaux de G & coefficients positifs et
rangés en ordre décroissant. La décomposition de Cartan G = KATK est une
conséquence des deux faits élémentaires suivants. Primo : toute matrice réelle
inversible est (de fagcon unique) le produit d’une matrice orthogonale et d’une
matrice symétrique définie positive. Secundo : toute matrice symétrique définie
positive est diagonalisable dans une base orthonormée.
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6.4 Comptage des points d’un réseau

Rappelons que notre objectif dans ce chapitre est de compter les
points dans SL(d,Z). Ce comptage sera un corollaire immédiat du
théoreme général suivant di a Duke, Rudnick et Sarnak.

Soit G — SL(d,R) un sous-groupe de Lie quasisimple connexe, K un sous-
groupe compact maximal de G, ||| une norme euclidienne K-invariante sur R.
On note de la méme fagon la norme induite sur les matrices.

Notons B, :={g € G | ||g|| < r} la trace sur G de la boule de rayon r.

Soit I un réseau de G. On veut estimer #(I' N B,.). Notons Ag la mesure de
Haar sur G que 'on normalise de sorte que la mesure induite Ay sur le quotient
X := G/T soit de volume 1. Posons v, := \g(B,).

Lorsque f et g sont deux fonctions positives sur |0, oo[, on dira que f et g sont

f(r)

asymptotiquement équivalentes et on notera f ~ g lorsque lim ﬁ =1.
r—00 g T

Théoréme 6.8 (Duke, Rudnick, Sarnak) #(I'NB,) ~ v,

La fin de ce chapitre est consacrée a la démonstration du théoreme 6.8. Nous
suivrons la démonstration d’Eskin et Mc Mullen.

Corollaire 6.9 Soit ||| une norme euclidienne sur R¢ et, pour g € GL(d,R),
notons ||g|| = supj, =1 l|gvl|. Alors, il existe ¢ > 0, tel que,

#{g € SL(,Z) | ||g|| <7} ~er®

Remarques - Il est possible, a partir du raisonnement ci-dessous de calculer
explicitement la constante c.
- La croissance de v, est donc exponentielle... comme fonction de R := logr.

6.5 Equidistribution des grandes spheres

La premiere étape de la démonstration consiste a pousser une pro-
babilité K-invariante sur le quotient X = G/I" par de grands éléments
de G et a montrer que les mesures obtenues ainsi s’équirépartissent
i.e. ces mesures convergent vers la probabilité G-invariante sur X.

Notons zy = I le point base de X = G/I', Y = Kuzy sa K-orbite et Ay la
probabilité K-invariante sur Y.

Proposition 6.10 On a lim g, \y = Ax.
g—00
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Cette limite est la limite pour la convergence faible des mesures. Elle signifie
que pour toute fonction continue & support compact ¢ € C,(X),

i [ elon)irr(y) = [ pla)irla)
9= Jy X

Remarque Cette proposition a une signification géométrique importante : elle

implique que 'image dans le quotient T'\G/K des “grandes spheres de 1’espace

symétrique riemannien” G/ K s’équirépartissent dans ce quotient.

Démonstration On va non seulement utiliser la décomposition de Cartan G =
KATK de G comme dans la démonstration du théoréme 6.2 mais aussi la décom-
position d'Iwasawa G = U~ AK ou U~ est le groupe de Lie connexe dont ’algebre
de Lie u~ est la somme des espaces radiciels associés aux racines négatives (voir
chapitre 3).

1°" cas : Supposons que ¢ = a est dans A*. Fixons € > 0. Par uniforme
continuité de ¢, il existe un voisinage ouvert G, de e dans G tel que

lp(ux) — @(x)| < e pour tout u € G, et x € X.

Soit W' le groupe résoluble W = U~ A. La décomposition d’Iwasawa donne un
difffomorphisme W x K — G; (w, k) — wk. Dans cette carte, la mesure de Haar
Ag de G est le produit A\yy ® A\g de la mesure de Haar a gauche de W et de la
mesure de Haar de K.

Comme l'action adjointe de A1 sur l'algebre de Lie de W est simultanément
diagonalisable avec des valeurs propres toujours de modules au plus 1, on peut
trouver un ouvert W, C W N G, tel que

aW.a™t C W. pour tout a € A*.

Par compacité de K, on peut aussi supposer W, suffisamment petit pour que
lapplication W, x Y — X; (w,y) — wy soit un difféomorphisme sur son image
W.Y C X. Notons alors (3. la fonction L? sur X, . = mlwsy. On veut
montrer que, lorsque a € A" tend vers 'infini, I'intégrale

I, = /Y o(ay)dy (y)

converge vers I := [, p(x)dAx(x). Pour cela on compare 'intégrale I, & I'intégrale

Ja ::/Xgo(ax)ﬁg(x)d)\x(m).

D’une part, la propriété de mélange pour l'action de G sur X (corollaire 6.4)

prouve que
lim J, =1.

a—0o0
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D’autre part, pour tout a € A", on a

1
e = St /W e ()i (y)

et, par le choix de W,, on a, en écrivant awy = (awa™!)ay,
lp(awy) — p(ay)| < e pour tout w € W, et a € A™.
On en déduit la majoration,
|I, — Ju.| <& pour tout a € A™.

Donc pour a suffisamment grand, on a |I, — | < 2¢ et donc lim [, = I.

a—00

28me cas : Cas général. On peut supposer que ¢ tend vers I'infini selon une suite
gn. Ecrivons grace a la décomposition de Cartan g, = kya,k!, avec k,, kl, € K
et a, € A". La K-invariance de Ay permet de supposer k/, = 1. Comme K est
compact, on peut aussi supposer que la suite k,, converge vers un élément k., € K.
La suite de fonctions ¢ o k,, converge alors uniformément vers ¢ o k. On a donc,

en utilisant le premier cas,

lim [ o(gy)dAy(y) = lim | o(keoany)dAy(y)

Y _ ZO;(ZOOx)dAX(as)Z /X@O(x)dAX(gj)'

C’est ce que 'on voulait. O

Remarque Pour G = SL(d,R), La décomposition d’Iwasawa G = U~ AK est
une conséquence du procédé d’orthonormalisation de Gramm-Schmidt qui affirme
que toute matrice réelle inversible est (de fagon unique) le produit d’une matrice

orthogonale et d’une matrice triangulaire inférieure a coefficients diagonauzx po-
sitifs.

6.6 Comptage faible

Dans la deuxieme étape de la démonstration du théoreme 6.8,
plutot que d’estimer directement le nombre NN, de points de I dans une
boule B,, on va tout d’abord estimer une moyenne sur g du nombre
de points des translatés gI" dans ces boules B,.

On introduit donc la fonction

F.: X — N
v=gl' — F.(z):=#(B.nNgl) = Z]'B'r g7).

vyel
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Lemme 6.11 On a la convergence faible lim — = 1.
r—00 Uy

Autrement dit, pour toute fonction continue a support compact ¢ € C.(X),

lim = /X Fo@)p(x)dhc(z) = /X o(2)dx (2).

T—00 /UT

Démonstration On commence par un simple calcul du membre de gauche, en
remarquant que la boule B, est K-invariante.

_/ z)dix(z) = Uir/G/I‘ZlBT 97)#(g20)dAx (gT')

~yel’

= —/ 1B7" gZEO dAg( )

_ vT A ( /K (gkxo)d)\K(k)> dAc(9)

La proposition 6.10 assure que la fonction g — [, p(gkzo)dAk (k) converge pour
g — oo vers la constante [, ¢(2)dAx(x). La moyenne de cette fonction sur la
boule B, a la méme limite pour » — oo car le volume v, tend vers l'infini. 0

6.7 Estimation de volumes

La derniere étape de la démonstration du théoreme 6.8 consiste
a déduire le comptage a partir du comptage faible. Pour cela on a
besoin d'un équivalent asymptotique pour le volume v,. Nous ne dé-
montrerons cet équivalent que pour G = SL(d, R).

Lemme 6.12 1] eziste a > 0, b > 0, ¢ > 0 tels que v, ~ cr®(logr)®.
Montrons tout d’abord comment on en déduit le comptage.

Démonstration du théoreme 6.8 Fixons € > 0. Introduisons 'ouvert de G,
G. :={g € G| max(||g||, l¢g""|]) < e°}. Cest, pour € petit, un petit voisinage de
'identité dans G que l'on peut identifier via la projection p: G — X = G/I" a un
voisinage de xg. Choisissons une fonction continue positive ¢ € C.(G) d’intégrale
égale & 1 et dont le support est inclus dans G.. Notons ¢ € C.(X) la fonction a
support dans p(G.), donnée par ¢(p(g)) = ¢(g), pour tout g € G.. On a donc les
inégalités
(915, .(97) < 0(9)1p,(7) < ¢(9)18,.-(97),

En sommant ces inégalités pour v € I et en les intégrant pour g € G., on obtient,

—/ Fre—(z)dAx(x) < iNrS i/XSO(:E) Free(x)dAx (2).

Uy Uy
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En faisant tendre r vers l'infini, on obtient, grace au lemme 6.11 de comptage
faible et au lemme 6.12 qui donne 'asymptotique du volume

. Vype—e . . N . N . Vyee
e % = lim —— < liminf — <limsup — < lim —= = e®.
T—00 /UT' T—00 UT’ r—00 U?" T—00 U?"
Comme e > 0 est arbitrairement petit, le quotient % tend bien vers 1. 0

Pour montrer le lemme 6.12, nous aurons besoin de la formule suivante pour la
mesure de Haar dans la décomposition de Cartan G = KATK. On note, comme
dans la section 3.5, X" ensemble des racines positives de A' dans g et m, la
dimension de ’espace radiciel g, associé a une racine a.

Lemme 6.13 1] existe ¢o > 0, tel que, pour tout f € C.(G), on a

/Gf(g)dg = ¢ /Kxcﬁxx f(ke* K" ( H sinh(a(X))m“> dkdX dK'.

aeXt

Nous avons simplifié dans cette formule les notations dA\g(g) et dA\k (k) en dg
et dk, et nous avons considéré les racines restreintes o comme des formes linéaires
sur a et noté a™ =log(AT) = {X € a| a(X) >0, pour tout « € X7}

Nous admettrons cette formule 6.13 dont la démonstration se ramene a un
calcul de Jacobien et peut étre trouvée dans le livre de Helgason p.186.

Démonstration du corollaire 6.9 et du lemme 6.12 pour SL(d,R)

C’est un calcul dont nous donnons simplement les grandes lignes. Appliquons
la formule pour la mesure de Haar pour G = SL(d,R), en notant les éléments
X € a' sous la forme

X =diag(u,u —ty,...,u—t; — -+ —tq_1),
avec u = % ((d — 1)t1 4+ (d — 2)ty + - - + t4_1). On obtient,

Vyr = Co/ l{eugr} H SiIlh(ti + -+ tj>dt1 PN dtd_l.
[0,0o[d_l

1<i<j<d—1

On cherche un équivalent pour v,. Pour tout € > 0, on obtiendra le méme équi-
valent en restreignant l'intégrale au cone donné par max(ty,...,tq 2) < etq_1.
On peut donc remplacer les d — 1 facteurs sinh(¢; + - -+ + t4_1) par %e“’*“'*td*l
sans changer I'équivalent. On integre alors en la variable t;_; sur l'intervalle
[0,dlogr — (d — 1)t; — -+ — 2t4_s]. Tous calculs faits, on obtient, avec une inté-
grale qui est finie,

B — e i —d(d—i—1)t;
UTN(d—m‘H/[o a2 [ sinh(ti+---+¢) [ ety ... dtas.

1<i<j<d—2 1<i<d—2
On obtient bien I'équivalent v, = ¢4 annoncé ou ¢/cy est un nombre ration-

nel. O
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7 Réseaux

Nous étudions dans cette partie les réseaux I' des groupes de Lie
semisimples réels. En particulier comment une action de I' induit une
action I'-équivariante entre les bords. L’étude des propriétés de cette
application aux bords sera la clef de la superrigidité. Les applica-
tions les plus intéressantes de ces méthodes, par exemple le théoreme
d’arithméticité, nous obligent a travailler non seulement sur R ou C
mais aussi sur des extensions finies de Q.

7.1 Zariski densité des réseaux

Le théoreme suivant, di a Borel, est souvent bien utile. La dé-
monstration ci-dessous, due a Furstenberg, est bien dans 'esprit de
ce cours : Elle utilise, d'une part, un théoreme de Chevalley sur les es-
paces homogenes de groupes algébriques et, d’autre part, I’étude des
groupes de transformations linéaires qui préservent une probabilité
sur I'espace projectif.

Théoreme 7.1 Soient k = R et G = Gy, le groupe des k-points d’un k-groupe
Zariski connexe. On suppose qu’il n’existe pas de sous-groupe distingué Zariski
fermé G' & G tel que le quotient G/G" est compact. Alors tout réseau I' de G est
Zariskr dense.

Remarque L’hypothese du théoreme 7.1 est tres facile a vérifier en pratique.
Elle est satisfaite par exemple lorsque G est quasisimple et isotrope.

Plus généralement, soit G le produit d'un nombre fini de groupes G), avec p
premier ou 0o, ou G, est le groupe des Q,-points d'un Q,-groupe Zariski connexe
et ou Qn = R. On appelle topologie de Zariski sur G la topologie produit des
topologies de Zariski sur les G,. Alors, la méme preuve donnera aussi.

Théoréme 7.1 (bis) Soit G le produit d’un nombre fini de groupes G, avec p
premier ou 0o, ot G, est le groupe des Qp-points d’un Q,-groupe Zariski conneze.

On suppose qu’il n’eziste pas de sous-groupe distingué Zariski fermé G' & G tel
que le quotient G /G’ est compact. Alors tout réseau de G est Zariski dense dans

G.

Démonstration du théoreme 7.1 Soit H I'adhérence de Zariski de I". D’apres
le lemme 7.2 ci-dessous, le groupe H est défini sur k. D’apres le théoreme 4.6 de
Chevalley, il existe une k-représentation p de G dans un espace vectoriel V.= K¢
de dimension d et une droite xy € P(k?) dont H est le stabilisateur : H = {g € G |
p(9)ro = wo}. On peut supposer que l'orbite Gz engendre K¢. Par la proposition
4.8, le groupe G est Zariski dense dans G et donc Gz engendre 'espace vectoriel
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k?. Cette méme proposition et le corollaire 4.5 prouvent aussi que le groupe image
p(G) est fermé dans les k-points du groupe algébrique image p(G) C PGL,.
Comme x est T-invariant, on a une application G-équivariante i : G/I' —
P(k?) donnée par i(gI') = p(g)xzo. La probabilité i,(u) image de la probabilité G
invariante y sur G//T" est une probabilité p(G)-invariante sur P(k?). Le lemme 7.3
ci-dessous prouve alors que p(G) est compact pour la topologie analytique. Ceci
contredit notre hypothese & moins que p(G) = 1. On a donc H = G. O

Lemme 7.2 Soit k C K deux corps, V= K% et Z C K% une K -variété telle que
I’ensemble des k-points Zy, est Zariski dense dans Z. Alors Zi est définie sur k.

Démonstration du lemme 7.2 Soit I C K[V] l'idéal annulateur de Z et
I'™ = 1N K™[V]. Comme Zj, est Zariski dense dans Z, les sous-espaces "™ sont
définis par un systeme d’équations linéaires a coefficients dans k. Ils ont donc une
base a coefficients dans k. L’idéal I aussi. 0

Lemme 7.3 (Furstenberg) Soitk =R, C ou une extension finie de Q,,. Soient
E = k% P(E) lespace projectif de E, PGL(E) le groupe des transformations
projectives de E et v une probabilité sur P(E). Supposons que le support de v ne
peut étre inclus dans une réunion P(E,) UP(Ey) pour deux sous-espaces propres
Ey, Ey G E tels que dim Ey 4+ dim Ey = dim E. Alors

a) le stabilisateur S := {g € PGL(E) | g.v = v} de v est compact.

b) Plus généralement, il n'existe pas de probabilité j1 sur P(E) et de suite g, € G
non bornée telle que plirgo(gp)*u =v.

Démonstration Il est clair que S est fermé. Il suffit donc de montrer le point b).
Supposons par l'absurde que p et g, existent. Quitte a extraire, on peut supposer
que la suite g, a une limite g € P(EndE) qui n’est pas inversible. Notons Kerg
et Img le noyau et I'image de g. Plus précisément il s’agit du noyau et de I'image
communs a tous les éléments non nuls de la droite g. On peut supposer que la
limite F; = }H}Q‘o gp(Kerg) existe et on pose Ey = Imyg.

Remarquons que si ¢ € P(Kerg), alors lim g,z = gx € P(E») et que si x €
p—00

P(Kerg), alors toutes les valeurs d’adhérence de la suite g,z sont dans P(E).
Donc, pour toute fonction ¢ continue a support dans P(E)—(P(E;) U P(E»)),
le théoreme de convergence dominée prouve que

/ pogydp — 0.
B(E)

Mais cette limite est f[@( B) @ dv. Donc cette intégrale est nulle. Le support de v
est inclus dans P(FE;) U P(E;,). Contradiction. O
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7.2 Réseaux irréductibles

Nous montrons dans cette section que 1'étude des réseaux des
groupes de Lie semisimples se ramene a celle des réseaux irréductibles.

On dit qu'un groupe localement compact G est presque produit de sous-groupes
distingués fermés H; si la multiplication [[, H; — G a un noyau fini et une image
d’indice finie dans G. On dit qu’un groupe G est sans facteur compact si il n’admet
pas de décomposition en presque produit H; H, avec H; compact infini.

Par exemple, soit £ = R, C ou une extension finie de @Q,. Le groupe G des
k-points d'un k-groupe G semisimple est presque produit des groupes G; des
k-points de ses facteurs k-quasisimples G;. Le groupe G est sans facteur compact
ssi le k-groupe G n’a pas de facteur G, qui soit k-anisotrope.

Définition 7.4 Un réseau I d’un groupe localement compact G est dit réductible
si G admet une décomposition en presque produit HyHs ou Hy et Hy sont des
sous-groupes distingués fermés infinis tels que (I' N Hy)(I' N Hy) est d’indice fini
dans T'.

Le réseau T" est dit irréductible sinon.

Exemples - Tout réseau du groupe G = Gy des k-points d’un k-groupe G
connexe k-quasisimple est irréductible.

- Le groupe I' = {(g,9°) | g € SL(2,Z[v2])}, ot ¢ est I'automorphisme non
trivial du corps Q[v/2], est un réseau irréductible de SL(2,R) x SL(2,R).

- Le groupe I' = {(g9,9) | g € SL(2,Z[%])} est un réseau irréductible de
SL(2,R) x SL(2,Q,).

Proposition 7.5 Soit k = R et G = Gy le groupe des k-points d’un k-groupe
G semisimple connexe. On suppose G sans facteur compact. Donnons-nous une
décomposition G = HyHy de G en presque produit de deuz sous-groupes distingués
H; et notons T'; :=T N H; et m; : G — G/H; la projection. Alors les assertions
sutvantes sont équivalentes :

i) m(T") est discret.

ii) T'y est un réseau de H;.

iii) mo(I") est discret.

iv) T'y est un réseau de Hs.

v) 1Ty est d’indice fini dans T.

Remarque Plus généralement, la conclusion et la démonstration de la proposi-
tion 7.5 est valable pour un groupe G sans facteur compact qui est produit d’un
nombre fini de groupes G, avec p premier ou 0o, out GG, est le groupe des Q,-points
d’un @Q,-groupe semisimple connexe.

Démonstration de la proposition 7.5
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i) — i) Cela résulte de la fibration H;/I'y — G/T" — Hy/m(T).

i1) — 1ii) Le groupe I'} := mo(I";) est donc un réseau de H{ := G/ Hy normalisé
par le groupe A; := my(T"). Or, le normalisateur N de I} dans Hj est discret. En
effet, les petits éléments de N commutent avec les éléments de I'}, donc I'algebre
de Lie n de N est centralisé par les éléments de I'}. Comme G est sans facteur
compact, le théoreme de densité de Borel prouve que Hj centralise n. Donc n = 0,
N est discret et Ay aussi.

i11) — 1v) et iv) — i) se montrent comme ci-dessus.

i1) +1iv) — v) Le groupe I';I'y est un réseau de G inclus dans le réseau I'. Il est
donc d’indice fini égal au rapport des covolumes.

v) — 1) +1v) Sil'un des I'; n’est pas un réseau dans H; le groupe discret I'1Ty
ne peut pas étre un réseau dans le presque produit H; H,. 0

Lemme 7.6 Soit k =R et G = Gy, le groupe des k-points d’un k-groupe G se-
misimple connexe. On suppose G sans facteur compact. Pour tout réseau I de G,
il existe une décomposition G = Hy -- - H,,, en presque produit de k-sous-groupes
distingués connexes H; tels que, pour tout i, I' N H; est un réseau irréductible du
groupe H; des k-points de H;.

Cette décomposition est unique

Démonstration On prend pour H; les k-sous-groupes distingués connexes mi-
nimaux de G pour lesquels I' N H; est un réseau du groupe H;.

Par minimalité, I'N H; est un réseau irréductible de H;. En effet un sous-groupe
distingué fermé de H; est ouvert dans son adhérence de Zariski.

D’apres la proposition 7.5, le produit des H; est égal a G. Il reste a vérifier
que, pour tout ¢ # j, H; N H; est fini. Grace a la proposition 7.5, il suffit pour
cela de remarquer que, comme les images de I" dans G/ H; et G/H; sont discretes,
I'image de I' dans G/(H; N H;) est aussi discrete. O

Le théoreme d’ergodicité de Howe Moore s’étend facilement aux réseaux irré-
ductibles.

Corollaire 7.7 Soient k = R et G = Gy, le groupe des k-points d’un k-groupe
semisimple, I' C G un réseau irréductible. Notons G le plus petit sous-groupe
ouvert de G et supposons que 'G, = G. Alors, l’action de G est mélangeante sur
X = G/T'. En particulier, pour tout élément g € G qui engendre un sous-groupe
non-borné de G, Uaction de g sur X est ergodique

Remarque Comme k£ = R, le groupe G, est la composanre connexe de G. Mais
bien sir, le corollaire est encore valable pour une extension finie & de Q.

Démonstration du corollaire 7.7 D’apres le théoreme 6.2, il suffit de remar-
quer que pour tout sous-groupe distingué fermé non compact G’ de G les seules
fonctions G'-invariantes de L?(X, dx) sont les fonctions constantes.
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Soit ¢ une telle fonction. On peut supposer que G’ est le plus grand sous-groupe
distingué laissant ¢ invariante. On peut aussi supposer ¢ bornée. Supposons par
I’absurde que dim G’ < dim GG. Comme G’ est distingué, on peut voir ¢ comme une
fonction mesurable sur G invariante par translation a droite par le groupe G'T.
Comme la translation de G sur L*°(G) pour la topologie faible est continue, ¢ est
aussi invariante par le groupe H adhérence de G'I". Comme I' est irréductible, la
proposition 7.5 prouve que I'on a dim H > dim GG’. Par Zariski densité, I’algebre
de Lie b de H est un idéal de g. Ceci contredit la maximalité de G’. Donc G’ est
ouvert dans G. L’hypothese G = I'G, assure alors que G’ = G. U

7.3 Groupes moyennables

Un espace vectoriel topologique localement convexe est dit espace de Fréchet
s’il est métrisable et complet.

Définition 7.8 Un groupe topologique G est moyennable si, pour tout espace de
Fréchet E, tout compact convexe non vide C' C E et toute action linéaire continue
de G sur E laissant stable C, il existe un point fire ¢ de G dans C'.

Voici quelques exemples.

Lemme 7.9 a) Un groupe compact est moyennable.

b) Un groupe abélien est moyennable.

c) Une extension de groupes moyennables est moyennable.

d) Un groupe de Lie semisimple connexe non compact n’est pas moyennable.

Démonstration a) Notons G ce groupe compact et dg sa probabilité de Haar.
Alors, pour tout point v € C, le barycentre ¢ := fG g.vdg convient.

b) Notons G ce groupe abélien. Pour tout sous-groupe H de G, on note E* le
Fréchet B := {v € E | Hv = v} et C¥ le compact convexe C := C' N E¥. On
veut montrer que C'¢ est non vide. Montrons tout d’abord que si H est engendré
par un élément g, alors C7 est non vide. On emploie 'argument classique de
Kakutani. On part d'un point v € C' et on considere la suite v,, = %(v+- g )
dans C'. Elle admet une valeur d’adhérence ¢ € C. Comme ¢"v reste dans C, la
suite gv, — v, = %(g”v — v) converge vers 0. Donc le point ¢ est g invariant.

Par récurrence sur le nombre de générateurs, on en déduit que, pour tout sous-
groupe H de type fini de G, on a C* # (). Cette famille de compacts non vide
CH est stable par intersection finie, donc l'intersection C'“ de tous ces compacts
est non vide. Le groupe GG a bien un point fixe dans C.

¢) Notons 1 - H — G — K — 1 cette extension ou H et K sont moyennable.
Comme H est moyennable 'ensemble C* := {v € C' | Hv = v} est un compact
convexe non vide du Fréchet F := {v € E | Hv = v} sur lequel le groupe
moyennable K = G/H agit continument. Le groupe K a donc un point fixe dans
CH | c’est le point cherché.
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d) Notons G ce groupe de Lie semisimple, P un sous-groupe parabolique mi-
nimal de G, X = G/P, E = M(X) 'espace des mesures finies sur X. Comme
X est compact, E est le dual de I'espace C'(X) des fonctions continues sur X.
On munit C(X) de la norme ||¢||cc = sup,cx |¢(z)]. On munit £ de la topologie
faible : elle est définie par la famille de semi-normes p,, : p — py,(p) = | | x gpd,u!
avec ¢ € C(X). C’est un Fréchet.

Soit C'= P(X) C E le convexe des probabilités sur X. Ce convexe C' est un
fermé dans la boule unité de E' pour la norme forte ||u|l = supj,. =1 [Pp(1)]-
Comme la boule unité est faiblement compact, C' aussi.

Mais G n’a pas de points fixes dans C'. En effet, le compact maximal K de G
agit transitivement sur X. Il y a donc une seule probabilité K-invariante v sur
X. Malheureusement cette probabilité n’est pas invariante par un élément a de
I'intérieur de la chambre de Weyl car, en notant x, le point base de G/P, pour
tout x dans 'ouvert U™z, on a lim,,_,., a"x = x. [

Corollaire 7.10 a) Un groupe de Lie connexe est moyennable ssi le quotient par
son radical résoluble est compact.

b) Soit G un groupe de Lie réel semisimple connexe et P un sous-groupe parabo-
ligue minimal de G. Alors P est moyennable.

Démonstration a) Cela résulte directement du lemme 7.9.
b) Cela résulte du théoréeme 3.14.b et du lemme 7.9. U

Remarques - On a donc trouvé dans GG un sous-groupe moyennable P tel que
le quotient G/ P est compact.

- Plus généralement, soit & = R, C ou une extension finie de Q,. Soit G un
k-groupe semisimple et P un k-sous-groupe parabolique minimal. Alors le groupe
P}, est moyennable et le quotient Gy /Py est compact.

7.4 L’application aux bords

Partant de I’action d’un réseau I' sur un espace compact X, on va
construire une application aux bords.

Proposition 7.11 (Furstenberg) Soient G un groupe de Lie semisimple, T' C
G un réseau et P C G un sous-groupe parabolique minimal. Pour toute action

continue de I' sur un espace métrique compact X, il existe une application mesu-
rable T'-équivariante ® : G/P — P(X).

- Rappelons qu’on a noté C(X) := {fonctions continues sur X}, M(X) :=
{mesures bornées sur X'} et P(X) := {probabilités sur X}.

- Nous avons muni implicitement G /P d’une mesure G-quasiinvariante, par
exemple une mesure K-invariante 1.
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- Mesurable signifie que pour toute partie borelienne E’ de I'espace métrique
compact P(X), 'image inverse ® ' (E’) est mesurable dans G/P i.e. égale & une
partie borélienne GG/ P modulo une partie négigable.

- I'-équivariante signifie que pour tout v € I' et presque tout £ € G/P, on a
D(7E) = 1D(9).

- L’application ® est appelée application auzx bords, puisque G /P peut étre vue
comme un bord de I'espace symétrique G /K.

Démonstration Soit F := L{ (G, C(X)) l'espace des applications mesurables

[-équivariantes f : G — C(X) telles que ||f]| := / I1f(9)]|odg < o0. Soit
G

E = Ly (G, M(X)) l'espace des applications mesurables bornées I'-équivariantes

m: G — M(X). La dualité

<mf>=£w<m@%ﬂm>@

identifie £ avec le dual continu F', parce que si Y est un domaine fondamental
de T' dans G, on a F ~ LY (Y,C(X)) et E ~ L*(Y,C(X)*) ~ F*. La partie
A =LY (G, P(X)) C E est convexe, fermée et bornée, elle est donc faiblement
compacte. La translation a droite sur GG induit des actions continues de G sur F,
E et A.

Par le corollaire 7.10.b, le groupe P est moyennable, il a donc un point fixe
® dans A. Ce point ® est I'application mesurable cherchée. En effet, un élément
P-invariant de E est presque strement égal a une fonction mesurable qui est
constante sur les orbites de P. U

- Cette application au bord jouera pour le théoreme de superrigidité le role de
I’application au bord construite par Mostow par des méthodes géométriques pour
montrer son théoreme de rigidité. Nous aurons besoin d’outils issus de la théorie
ergodique pour 'exploiter
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8 Théorie ergodique

Ce court chapitre est constitué de rappels de théorie ergodique, en
vue de leur utilisation dans la démonstration du théoreme de super-
rigidité et du théoreme de Ratner.

8.1 Probabilités ergodiques

Soit (X, B, i, f) un systéme dynamique probabilisé, autrement dit B est une
o-algebre de parties de X, p est une mesure de probabilité sur Bet f: X — X
une application B-mesurable qui préserve fi.

Plus généralement, soit f une transformation B-mesurable qui préserve la classe
de p.

Définition 8.1 On dit que [ est ergodique (pour j1) si toute partie mesurable f-
invariante est négligeable ou de complémentaire négligeable, i.e. pour tout A € B,

Y A) =A== pu(A)=0o0ul.

Remarque Lorsque la transformation f est sous-entendue, c¢’est la mesure p que
I'on qualifie d’ergodique.

La proposition suivante donne une interprétation L? de I'ergodicité d’une trans-
formation f qui préserve une probabilité u. Cette interprétation relie donc les
propriétés dynamiques de f aux propriétés spectrales de l'opérateur unitaire
Ur: oo fde L*(X,p).

Proposition 8.2 La transformation f est ergodique ssi les fonctions constantes
sont les seuls éléments f-invariants de L*(X, ).

Démonstration < La fonction caractéristique ¢ = 1,4 d’une partie f-invariante
est un élément f-invariant de L?(X, u). On a donc ¢ = 0 ou ¢ = 1.

= Soit ¢ € L*(X,u) un élément f-invariant. Cela signifie que p o f = ¢
p-presque stirement. Une telle fonction ¢ est p-presque stirement égale a une
fonction g telle que o(r) = @o(f(z)) pour tout x € X. Les parties A; =
05 ([t,00)) sont f-invariantes et donc de mesure 0 ou 1. La fonction ¢y est donc
presque strement constant. [l

8.2 Dynamique des transformations ergodiques

Voici une proposition qui permet de comprendre la force de la no-
tion d’ergodicité. Cette proposition étaye I'intuition “je passe partout”
sous-jacente au mot ergodique dans un contexte topologique.
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Proposition 8.3 Soit X un espace métrique localement compact séparable, 1
une probabilité borélienne sur X et f : X — X un homéomorphisme qui préserve
la classe p. Si f est ergodique alors p-presque toute orbite O, := {f™(x) | n € Z}
est dense dans supp(u).

Démonstration On peut supposer que X = supp(u) Soient D une partie dé-
nombrable dense de X et D I’ensemble des boules ouvertes centrées en D de rayon
rationnel positif. Pour tout B € D, 'ensemble Ap := U,z f P (B) des points dont
'orbite passe dans B vérifie f~}(Ap) = Ap. Par ergodicité de f, on a u(Ag) = 1.
L’intersection A = NpepAp vérifie aussi u(A) = 1. Les orbites des points de A
sont denses dans X. 0

Remarque Toute transformation continue f d’un espace compact X préserve
au moins une probabilité borélienne. Cela résulte du lemme 7.9.b. En outre, cette
probabilité f-invariante peut-étre choisie ergodique. Cela résulte du théoreme de
Krein-Milman car une probabilité G-invariante est ergodique ssi c¢’est un point
extrémal du convexe fermé P(X)% des probabilités G invariantes sur X.

Plus généralement, soit G un groupe localement compact séparable qui agit de
fagon mesurables sur un espace probabilisé (X, B, ) en préservant la classe de
1. Cette action est dite ergodique si les seules parties mesurables G-invariantes
vérifient p(A) =0 ou 1.

On a l'extension suivante de la proposition 8.3.

Proposition 8.4 Soit X un espace métrique localement compact séparable, 1
une probabilité borélienne sur X et G un groupe localement compact séparable qui
agit continument sur X en préservant la classe de . On suppose l'action de G
ergodique. Alors p-presque toute orbite Gx est dense dans supp(p).

Démonstration C’est la méme que celle de la proposition 8.3.

Corollaire 8.5 On garde les notations et hypothéses de la proposition 8.4. Soit
R une relation d’équivalence sur X dont les classes d’équivalence sont localement
fermées et G-invariantes. Alors il existe une classe d’équivalence €2 telle que

w(Q2) = 1.

Démonstration Soit {2 une classe d’équivalence rencontrant une des orbites Gx
dont I'adhérence est Gz = supp(u). On a donc supp (i) C Q. Si u(Q) = 0, comme
Q) est localement fermée, on aurait supp(u) C Q \ Q, ce qui contredirait le fait
que z est dans supp(u). Par ergodicité, on a donc pu(€2) = 1. O

Remarque Ce corollaire est utile lorsque G est un sous-groupe d’un groupe Hg
ou H est un R-groupe agissant de fagon algébrique sur une R-variété X : comme
les Hg-orbites dans Xk sont localement fermées, les mesures G-ergodiques sur
Xg sont alors portées par des Hg-orbites.
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8.3 Théoreme ergodique

Le théoreme ergodique de Birkhoff exprime de facon précise une
idée intuitive pour une transformation ergodique : pour toute partie
mesurable A, la proportion de temps passé dans A par presque toutes
les orbites est égale a la mesure de A.

Théoréme 8.6 (Birkhoff) Soit (X, B, u, f) un systéme dynamique probabilisé.
Pour tout @ € L'(X, 1), on note on(x) = > ;. o(f(x)).

a) La limite $(z) := lim Lo, (x) eziste p-presque partout.

b) Onapo f=¢ p-presque partout.

¢c) On a @l < [lel L

d) La convergence a liew dans L', i.e. lim |1, — @]/ = 0.

e) Pour toute partie f-invariante A de X, on a [, @dp= [, pdpu.

f) En particulier, si p est ergodique, on a @(x) = fx pdu  p-presque partout.

Remarques - La somme ¢, (z) s’appelle somme orbitale ou somme de Birkhoff de
¢. L’intégrale [ « ¥ du s’appelle la moyenne spatiale de ¢. Le théoreme de Birkhoff
affirme donc, dans le cas ergodique, que les moyennes orbitales convergent presque
partout vers la moyenne spatiale.

- L’assertion e) signifie que ¢ est l'espérance conditionnelle de ¢ relativement
a la g-algebre B/ des parties f-invariantes : ¢ = E(p|B/).

Lemme 8.7 (inégalité maximale) Soient ¢, € Li(X,u) une suite sous-
additive i.e. telle que, pour tout m,n > 1, on a Pmin < ©m o f* 4+ ©n. On

note ¢ = 1 et p* =sup p,. Alors, on a / wdp > 0.
nz1 {¢*>0}

Démonstration Soient ¢, = max{0,p, ps,...,on} et E, = {x € X | ¢, (z) >
0}. Sur E,, on a ¢, < ¢ + 1,1 o f tandis que sur le complémentaire ES, on a
¥, =0et Y, 10 f>0.0n adonc

/n@/n%— Enwn_lofz/Xwn—/X@bn_lofz/Xwn—wn_lzo.

Or {¢* > 0} = UE,. On a donc / @dp > 0. O

{p*>0}

Démonstration du théoréme 8.6 a) Pour démontrer 'existence de la limite,
il suffit de voir que, pour tous rationnels o < 3, 'ensemble

Eop:={z € X |liminf Lo, (z) < o < f <limsup ¢, (z)}

n—oo
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est de mesure nulle. Remarquons que

Tim Z(on41(z) = @n(f(2))) = lim Ze(x) =0
et donc que f~Y(E,5) = E,p. On peut donc appliquer 'inégalité maximale sur
la partie E, 3 aux fonctions ¢ — 3 et o — ¢. On obtient

/Ewuo—mzoa /Eaﬁm—w)zo.

On en déduit fEaﬁ(Oé — ) > 0 et donc p(E,5) = 0.

b) Cest clair car +(pn41(x) — @n(f(2))) converge vers 0.
¢) On peut supposer que ¢ est positive. Cela résulte alors du lemme de Fatou :

/ / lim +¢,(z) < lim %/ gpn(x):/ ©.

d) Lorsque ¢ est bornée, cela résulte du théoreme de convergence dominée. Le
cas général s’en déduit par densité. En effet, pour tout € > 0, on peut trouver ¢
bornée telle que [l —4| 11 < /3. On a donc, pour tout n > 1, |2, — 19, || < e/3

et, par ¢), | — ¥||1 < &/3. Pour n grand, on a alors |29, — Y|l < £/3 et donc
|29, — @|| < e. Clest ce que I'on voulait.

e) Cela résulte de d) car [, ¢ = [, Z¢,.

f) Par b), la fonction @ est constante presque partout. O

La proposition suivante due a Egorov permet de remplacer dans le théoreme
de Birkhoff la convergence presque sure par une convergence uniforme en dehors
d’un ensemble de mesure arbitrairement petite.

Proposition 8.8 Soit (X, B, 1) un espace probabilisé et f, une suite de fonctions
mesurables sur X qui converge p-presque surement vers une fonction f.

Alors pour tout € > 0, il existe une partie mesurable Z C X tel que u(Z°¢) < e
et la convergence f,(x) — f(x) est uniforme pour x € Z.
Démonstration Posons Z,,, = {z € X | |fi(z) — fj(z)| < =, pour i,j > n}.
Choisissons une suite n,, telle que u(Z,, ,,,) > 1—¢/2P et posons Z = U,y>1Zmn,, -
Par construction, la convergence f,(z) — f(x) est uniforme pour x € Z et on a
wZ)>1—e. O

8.4 Martingales

Le théoreme des martingales est avec le théoreme de Birkhoff I'un
des piliers de la théorie des probabilités.

Soit (X, B, u) un espace probabilisé et B, une suite croissante de sous-o-
algebres.

69



Définition 8.9 Soit f, une suite de fonctions intégrables et B, -mesurables.
La suite f, est une martingale si f,, = E(fni1|Bn)-

La suite f, est une sousmartingale si f, < E(fni1|Bn).

La suite f, est une surmartingale si f, > E(fni1|Bn).

Pour t € R, on note t* = max(t, 0).

Remarques - Une martingale peut étre vue comme un objet dont les f,, ne sont
que des approximations. Un peu comme la donnée d’un réel par son développe-
ment décimal.

- Seules les martingales nous seront utiles par la suite. Nous n’utiliserons les
sousmartingales et surmartingales. que pour démontrer le théoreme de conver-
gence des martingales. Elles sont utiles car si une suite f, est une sousmartingale,
les suites f,f et |f,| sont encore des sousmartingales.

Exemple Soient X = {0,1}" muni de la probabilité de Bernoulli y = o®N
avec a = 3(8p + 61), pn : X — {0,1}" 'application donnée par p,(z1,zs,...) =
(71,...,2,) et B, la g-algebre formée des parties p, !(E) pour E C {0,1}". Dans
ce cas la donnée d’'une martingale f, équivaut a la donnée d’'une mesure bornée
v sur X. Le lien entre les deux est donné par f,(z) = 27"v(F,(z)), pour x € X,
ou F,(x) est la fibre de p, contenant x. Le fait que ces deux données soient
équivalentes est dii au théoreme de Carathéodory.

Comme dans 'exemple ci-dessus, dans la plupart des applications, I'espace X
est muni d’'une famille de surjections mesurables p,, : (X, B) — (Y,,,C,) telles que
B, = p;'(C,). Ces surjections sont de plus en plus fines de sorte que la suite B,
est croissante. La martingale est donc un objet sur X dont les fonctions f, ne
sont que ses “moyennes sur les fibres de p,” .

Voici le théoreme de convergence ps des martingales

Théoréme 8.10 (Doob) Soit f, une sous-martingale sur (X, B, u) telle que
sup || fullor < 00. Alors la limite foo(x) = lim f,(z) eziste u-presque sirement..
n>0 n—o0

Nous dirons que f,, est L'-bornée si sup || f,||1 < oc.
n>0

Exemple Reprenons 'exemple ci-dessus et écrivons grace au théoreme de dé-
composition des mesures v = fu + v, avec v, étrangere a . On a alors I'égalité
foo = f. La limite presque sture ne donne donc aucun renseignement sur la partie
singuliere v;.

Remarque En général la limite presque sire f,, d’une martingale ne permet
pas de reconstituer la martingale. C’est le cas si et seulement si la convergence
de f,, vers f., est une convergence L'. On a alors f, = F(fs|By). Une condition
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suffisante qui Dassure est sup || fu||L10g . < 00 Ol cette norme est la norme L' de
n>0

la fonction |f,|log™ |f,|.

Démonstration du théoréeme de Doob Elle résulte des trois lemmes 8.11,
8.12 et 8.13 suivants. U

Le premier lemme est la décomposition de Kricheberg.

Lemme 8.11 Toute sousmartingale L*-bornée f, s’écrit f,, = my — Sn 0U My,
est une martingale positive L'-bornée et s, une surmartingale positive L*-bornée.

Démonstration La suite f” est une sousmartingale positive et on a, pour k > n

Notons m,, = klim E(f;71B,). Cest une martingale positive telle que E(m,,) <
—00

sup,,>o E(f,) < oo car I'espérance conditionnelle commute a la limite croissante.

Donc m,, est L-bornée et s,, = m,, — f,, est une surmartingale L'-bornée. O

Le deuxieme lemme affirme qu’une surmartingale est un jeu défavorable quelle
que soit la stratégie : plus on arréte tard la surmartingale plus I’espérance de gain
est faible.

On appelle temps d’arrét une application B-mesurable o : X — N U {oco} telle
que, pour tout n > 0, I'ensemble o~ (n) est B,-mesurable.

On note alors s, : w — s;(,)(w) avec la convention s = 0.

Lemme 8.12 Soit s, une surmartingale positive et o, T deux temps d’arrét avec
o <. Alors fX S dp > fX Sy dj.

Démonstration Pour m <n, on a

/ Sn Z / Sn—i-l
{o=m,7>n} {o=m,>n}

car 7 et o sont des temps d’arrét et s, est une surmartingale. On en déduit, en

notant 7 A n := inf(7,n),
/ StAn 2/ SrA(n+1)
{o=m} {o=m}

et donc en mettant bout a bout ces inégalités pour n > m, en se souvenant que
T > 0, et en utilisant Fatou

/ szz/ ST/\nZ"'z/ Sr
{o=m} {o=m} {o=m}

d’olt, en sommant sur m, [y s, > [y s-. O
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Lemme 8.13 Toute surmartingale positive s, converge ji-presque siurement.

Démonstration Pour démontrer I'existence de la limite de s, il suffit de voir
que, pour tous rationnels a < (3, I’ensemble

E.p:={r € X |liminfs,(w) < a < <limsup s,(w)}

n—oo

est de mesure nulle pour u-presque tout w. Pour cela, on introduit par récurrence
des temps d’arrét 7; par 79 = 0 et, pour 7 > 1,

Toi+1 — mf{n > To; | Sy > ﬁ}
To; = 1nf{n > Toi—q | Sp < Oé}.

On a alors, en notant p; := pu({7; < cc}), et en utilisant le lemme 8.12

ﬁp2l+1 S / S’TQZ'+1 S / STQi S asz S ain—l'
X X

Donc pu(Ea,p) < pair1 < (§)'p1 pour tout i > 1 et p(Eas) = 0. O
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9 Mesures stationnaires

Les mesures stationnaires sont des mesures qui décrivent le com-
portement asymptotique des marches aléatoires.

Nous montrons dans ce chapitre comment les utiliser pour montrer
des théoremes d’existence et d’unicité pour des “applications mesu-
rables équivariantes entre les bords”.

9.1 Existence d’une mesure limite

Soit G un groupe localement compact séparable, i une probabilité borélienne
sur GG et X un espace localement compact métrisable muni d’une action continue
de G. On note P(X) l'espace des probabilités boréliennes sur X.

Pour toute probabilité (borélienne) v sur X, on note p * v la convolée

pxvi= [ gvdu(g).

On note p*™ la probabilité px*...* u convolée de n probabilités toutes égales a .

Définition 9.1 Une probabilité borélienne v sur X est dite p-harmonique ou
p-stationnaire st on a |4 *x vV = V.

Remarque Le terme harmonique vient de ce que v coincide avec la moyenne de
ses translatées. Le terme stationnaire exprime le fait que v est une loi asympto-
tique possible pour une “marche aléatoire sur X dont les lois de transitions sont
indépendantes et données par p”.

Lemme 9.2 Lorsque X est compact, il existe toujours des mesures stationnaires.

Démonstration Comme X est compact, 'espace P(X) est un convexe compact
dans le Fréchet M(X) des mesures bornées muni de la topologie faible. L’argu-
ment de Kakutani prouve I’existence d’un point fixe par 'opérateur de convolution
par p : on part de n’importe quelle probabilité vy € P(X) et on prend pour v
une valeur d’adhérence de la suite vy, 1= (v + p* v+ -+ 4+ " * 1) € P(X).
Comme v,, — p * v, tend vers 0, la probabilité v est u-stationnaire. U

On note Q I'espace produit = GV, B sa tribu borélienne et 7 la probabilité
produit sur (X, B). C’est I'unique probabilité dont I'image dans chaque G™ est
la probabilité produit p®". Par le théoreme de Carathéodory, cette probabilité 1
existe et est unique. On note g; : Q@ — G;w — g;(w) les fonctions coordonnées.

Lemme 9.3 a) La limite

Vy = lim go(w)s - gn(w)sv € P(X)

n—oo
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existe pour f-presque tout w.
b) Pour tout k > 1, on a [’égalité, pour u**-presque tout g et fi-presque tout w,

1}220 QO(W)* T gn(w)*g*y = V-

¢) On a Uégalité v = [, v, dfi(w).

Démonstration Nous ne donnerons la preuve que pour X compact.
a) Notons B,, = (go, - - -, gn) la o-algebre engendrée par les fonctions gy, . . ., G-
Pour ¢ € C(X), on note ® € C(G) la fonction

9= 2l9) = (0.0)(9) = [ plom)avta).
Le fait que v soit u-stationaire se traduit par I’égalité, pour tout g € G,
b(9) = [ @on)in(h.
La suite de fonction f,, € L*>(Q)
fow = ®(go(w) -+ gn(w))

est une martingale pour B,,. En effet, on a ’égalité, pour tout n > 1,

E(fun|Ba)(w) = / B(g0(w) - - gu(w)g)du(9)
= D) - gulw)) = fulw).

Comme cette martingale est bornée par ||¢||, le théoreme 8.10 de Doob prouve
qu’elle converge fi-ps. En utilisant une famille dénombrable dense de fonctions
v € C(X), la limite v, = lim go(w)s - - - gn(w).V existe pour f-presque tout w.

b) En plus des fonctions ® et f, ci-dessus, introduisons les fonctions f9 €
L>(Q) pour g € G données par

fi s w = @(go(w) -+~ gn(w)g)

et calculons les intégrales
o= [ 1) = 2 dit ) dite)
= [ [ 1000~ 0thg) P autg) )
GJG
= [ 1) = Fun(o)di)

= N fasullze = IfallZ-
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Dans ce calcul, on a utilisé le fait que f, est une martingale a travers 1’égalité

/Q Fofosn dii = /Q | fol? dfi.

On déduit de ce calcul que
> I < kgl
0

On en déduit que la fonction suivante est intégrable
Yo alw) = )P € LNQ x G e ).
0

En particulier, pour p**-presque tout g et fi-presque tout w, la suite f,, (w) — f9(w)
converge vers (.
c¢) Par le théoreme de convergence dominée et le point a), on a

/ lim go(w). - gn(w)wv dpp(w) = Tim [ go(w)s - - gn(w).v dfi(w)
QTL—>OO n—oo Q

= lim pg"*xv = v
D’ou [, v, dii(w) = v. O

9.2 Contraction et proximalité

Dans cette section, on montre qu'une marche aléatoire linéaire
contracte presque stirement autant que son support peut le permettre.

Soit £ = R, C ou une extension finie de Q,. Dans cette partie p est une
probabilité sur le groupe G = GL(d, k). Ce groupe G agit sur V = k¢ ainsi que
sur l'espace projectif X = P(V).

On note I';, le plus petit sousgroupe fermé de G' qui contient le support de .

Définition 9.4 On dit qu’'un sous-groupe I' C G est fortement irréductible (sur
V') si T’ ne laisse invariant aucune union finie de sous-espaces propres de V.

1l est équivalent de dire que la composante connexe de l'adhérence de Zariski
de ' agit de fagon irréductible sur 'V .

On note p = pr le plus petit entier non nul pour lequel il existe une matrice
7w € M(d, k) de rang p telle que 7 = lim,, oo Ay avec A, € k et 7, € T

Définition 9.5 On dit que I" est proximal si pr = 1.

La proposition suivante donne les premieres propriétés des marches aléatoires
linéaires.
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Proposition 9.6 Soit p une probabilité borélienne sur G = GL(d, k) telle que
'), est fortement irréductible. On note p = Pr,,-

a) Il existe une application mesurable J : Q@ — Gr,(V);w — J, de Q = GY dans
la Grassmannienne des p-plans de V' telle que, pour fi-presque tout w € §2, toute
valeur d’adhérence non nulle M d’une suite A, go(w) - - gn(w), avec A\, € k, a
pour image Im(M) = J,,.

b) Pour tout hyperplan W C V', on a i({w € Q| J, C W}) =0.

La démonstration repose sur I’étude des probabilités u-stationnaires sur P(V).
On sait par le lemme 9.2 qu’il en existe toujours.

Lemme 9.7 Soit ;1 une probabilité borélienne sur G = GL(d, k) telle que I, est
fortement irréductible. Soit v une probabilité p-stationnaire sur P(V).
Pour tout hyperplan W C V, on a v(P(W)) = 0.

Démonstration du lemme 9.7 Soit r la plus petite dimension d’un espace
W C V tel que v(P(W)) # 0. On a, pour tous sous-espaces Wy # W, de dimension
T?

v(P(Wy) UP(Ws)) = v(P(W1)) + v(P(Ws)).

De sorte que, pour tout o > 0, il n’existe qu’un nombre fini de sous-espaces W
de dimension r tels que v(P(W)) > «. Notons

ap = max{v(P(W)) | dim W = r},

F={W|dmW =retv(P(W))=a}.

Cet ensemble F' est fini. Comme v est p-stationnaire, on a 1’égalité

V(B(W)) = /G V(P(gWV)) dpu(g).

On en déduit que F' est I',-invariant. Ceci contredit la forte irréductibilité de T',.

Démonstration de la proposition 9.6 Par définition, la valeur d’adhérence
M est de rang > p.

Soit ¥ une probabilité p-stationnaire sur P(V'). Notons J,, le plus petit sous-
espace vectoriel de V' tel que P(J,,) contient le support de v,. Par le lemme 9.7,
on a v(P(KerM)) = 0. La probabilité M,v a donc un sens et on a, par le lemme
9.3.a, I'égalité

My =uv,.

En conséquence, par le méme lemme 9.7, I'image Im M est le plus petit sous-espace
W tel que P(W) contient le support de v,. On a donc ImM = J,,.
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Ceci prouve simultanément que 'image ImM ne dépend pas du choix de la va-
leur d’adhérence M, que J, ne dépend pas du choix de la probabilité stationnaire
v et que dim J,, > p.

Il reste a montrer que dim J,, = p. Le méme raisonnement avec le lemme 9.3.b
prouve que, pour p**-presque tout g, on a

M.g.v = v,.

Par continuité, cette égalité est encore vraie, pour tout g € I',. Choisissons une
limite non nulle 7 de rang p d’une suite A, g, avec A, € k et g, € I',. On peut
supposer, par irréductibilité de I',, que Imm ¢ KerM. On a encore

M.m.v=v,.

Donc Im(M o 1) = J, et dim J,, < p. On a bien dim J, = p.

9.3 Proximalité

Dans cette section, on montre que dans une situation proximale,
la probabilité stationnaire v est unique.

On en déduit des résultats d’existence et d'unicité d’applications
mesurables équivariantes entre les bords qui joueront un réle central
dans la démonstration du théoreme de superrigidité.

Proposition 9.8 Soit p une probabilité borélienne sur G = GL(d, k) telle que
I, est proximal et fortement irréductible.

a) 1l existe une unique probabilité p-stationnaire v € P(P(V)).

b) Il existe une unique probabilité u-stationnaire o € P(P(P(V))). Son support
est inclus dans l’ensemble 0p(y des masses de Dirac sur P(V).

Démonstration L’existence de v et de o résulte du lemme 9.2.

a) On note j : Q — P(k%);w — j, I'application donnée par la proposition 9.6
de sorte que v, = ;. D’apres le lemme 9.3, la probabilité v est donc donnée par
v=[,0;, dii(w).

b) Notons v, le centre de gravité de o,

vy — / Ndo(\) € P(B(V)).
P(P(V))

Cette probabilité v, est aussi u-stationnaire. Par le lemme 9.3, pour pu-presque
tout w, on a

lim go(w)s -+ gn(W)ste = 05,

n—oo
On en déduit que, pour zi-presque tout w, pour tout € > 0, pour toute fonction
¢ € C(P(V)),

Tim o({A ] (90()s++ ga(@)eN) () — 9(j) = }) =0
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et donc, en notant d une distance compatible sur 1’espace métrisable compact
PE(V).
T}g{}o o({A | d(go(w)s - gn(w)iA, p(r)) > €}) = 0.

Par le théoreme de convergence dominée, on a donc

lim o ® T{(Aw) | d(go(@)- -~ ga(w).A, Ger)) > €}) = 0.

n—oo

Comme o est p-stationnaire, cette suite est constante égale a
o({A 1 d(A; deqv)) = €}) = 0.

Donc o est portée par le fermé dp(yy C P(P(V)) des masses de Dirac sur P(V).
Elle peut donc étre vue comme une probabilité sur P(V'). Cette probabilité est
pu-stationnaire, elle est donc égale a v. 0

Proposition 9.9 Soient I' un groupe localement compact métrisable séparable,

p € P(I') une probabilité telle que I'), = T'. Soient X, un espace compact métri-

sable sur lequel I' agit continument et vy € P(Xy) une probabilité u-stationnaire.
On se donne aussi une représentation proximale et fortement irréductible de T’

dans un espace vectoriel V.

a) Toute application mesurable T-équivariante ¢ : Xo — P(P(V)) prend vy-

presque sirement ses valeurs dans l’ensemble dpyy des masses de Dirac.

b) Il existe au plus une application vo-mesurable T'-équivariante ® : Xo — P(V).

Le point a) permettra, dans la section 10.3, de construire des applications -
mesurable [-équivariante ¢ : Xy — P(V).

Démonstration a) La probabilité o = . (1) € P(P(P(V))) est p-stationnaire.
D’apres la proposition 9.8, elle est portée par des masses de Dirac.

b) Soient &y, P, : Xy — P(V) deux applications vg-mesurables I'-équivariantes.
D’apres le point a), application ¢ : Xo — P(P(P(V)));€ — 1(0a,) + dase))
prend ses valeurs dans 1’espace des masses de Dirac. Donc, pour vy-presque tout
§ € X, on a ®;(§) = Do(§). [

9.4 Mesures stationnaires K-invariantes

Pour tout réseau I' d’un groupe de Lie semisimple réel G, on
construit une probabilité p de support I' dont 'unique mesure station-
naire vy sur G/ P est K-invariante. On pourra alors appliquer dans la
section 10.3 la proposition 9.9 a cette probabilité K-invariante.

Soient £ = R, G un k-groupe semisimple et G = Gy. Soient P un sous-groupe
parabolique de G' et K un sous-groupe compact de G tel que G = KP (voir
théoreme 3.14) et vy la probabilité K-invariante sur la variété drapeau X, = G/P.
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Proposition 9.10 Pour tout résecau I' C G, il existe une probabilité p € P(I")
de support I' et telle que p* vy = vyg.

Remarques - Comme 'action de K sur G/ P est transitive, il y a une unique pro-
babilité K-invariante vy sur G/P. En particulier, pour toute mesure K-invariante
o € P(G), on a I'égalité g * vy = vy.

- Autrement dit, en dépit du caractere discret de I'; les trajectoires sur G/P
de la marche aléatoire indépendante sur I' de loi y s’équirépartissent sur le bord
G/ P selon la probabilité K-invariante vj.

Démonstration de la proposition 9.10 Soit p une probabilité K-invariante
sur G a support compact et ayant une densité non nulle par rapport a la mesure
de Haar sur un ouvert U de G dont les puisances U™ recouvrent G.

Posons

7(g9) = inf{t € [0,1] | govo = (1—t)' xvo+tp" xvy , ', 1" € P(G) , suppy’ =T'}.

On espere bien stur que cette fonction est constante égale a 0.
a) Montrons tout d’abord que, pour tout g € G, on a 7(g) < 1. Remarquons
que pour tout v € I, on peut trouver n, > 1 et e, > 0 tels que

*n
Gkt > ExVxlho-
Donc
9«0y = €4YxVo + M;’ * 1

avec f1i = g, to"" — €%spto- On choisit alors une famille a., > 0 telle que Z%F ay =
1. Une somme de ces égalités pondérées par a, donne

7(g) <1-— z:cwz7 < 1.
vyel

b) Montrons maintenant que 7(g) est une fonction constante. Cela va résulter
de lergodicité de 'opérateur de convolution par pg dans L*(X, A\x) ot X = T\G
et Ax est la probabilité G-invariante sur X. Plus précisément, remarquons que
d’une part, pour tout v € T', on a 7(vyg) = 7(g), et, d’autre part, comme v; est
tto-harmonique 7(g) < [, 7(gh) duo(h). On note encore 7 : X — [0, 1] la fonction
induite sur X. Elle vérifie donc

7(x) S/GT(xh) dpo(h).

C’est une fonction pp-sous-harmonique bornée. Elle est donc constante. En effet,
dans le calcul suivant basé sur I'inégalité de Cauchy-Schwartz et sur Fubini

/X 7(2)?dAx(z) < /X /G 7(wh)* dAx (z) dpo(h) < /X 7(2)* dAx(2),
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on doit avoir égalité dans ces inégalités et donc la fonction h — 7(xh) est puo-
presque surement constante. Donc 7 est constante.

c¢) Il résulte de ces arguments qu’il existe ¢ < 1 tel que 7(g) < ¢, pour tout
g € G. En particulier, on peut écrire, pour tout u; € P(G),

prxvy = (1 —0)pf * vy + Lus * 1y
= (1= O * v+ (1 — 0)lply x vo + Pz + v
= (1—=0py*vo+ (1=l xvy+ (1 — 0Py +vy+ -

avec p; € P(G) et p; € P(I'). Si on part de py = ., on obtient donc I'égalité
v = pxvg avee = (1 —=0) 3. 0 i € P(T). O
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10 Superrigidité

Le but de ce chapitre est de montrer le théoreme de superrigidité
de Margulis.

10.1 Superrigidité

Le théoreme de superrigidité permet de décrire toutes les repré-
sentations des réseaux d’un groupe de Lie semisimple réel G.

Pour pouvoir utiliser ce théoreme de superrigidité pour montrer
le théoreme d’arithméticité, on doit considérer non seulement des re-
présentations dans des espaces vectoriels réels mais aussi dans des
espaces vectoriels p-adiques.

Nous verrons en outre que ces théoremes s’étendent a des groupes
G produit de groupes semisimples réels et p-adiques.

Théoréme 10.1 (Margulis) Soient ¢ = R, G = Gy le groupe des (-points
d’un £-groupe semisimple G connexe. On suppose G sans facteur compact et
rang,(G) > 2. Soit T' un réseau irréductible de G.

Soit k = R, C ou une extension finie de Q,, H = Hy, le groupe des k-points
d’un k-groupe simple H. Soit 7 : ' — H un morphisme dont 'image w([") est
Zariski dense et non bornée.

Alors w s’étend en un morphisme continu de G dans H.

Remarque Lorsque k est un corps p-adique, il n’existe pas de morphisme continu
non constant de GG dans H. La conclusion du théoreme dans ce cas est donc qu'un
tel morphisme 7 : I' — H ne peut pas exister.

La démonstration occupe I’ensemble de ce chapitre.
Commengons par quelques commentaires sur les hypotheses de ce théoreme.

L’hypothese G sans facteur compact n’est pas tres contraignante, on s’y ra-
mene en remplacant I' par un sous-groupe fini sans torsion puis en considérant le
réseau image de I' dans le quotient de GG par son sous-groupe distingué compact
maximal. De méme, 'hypothese 7(T") Zariski dense n’est pas tres restrictive. On
peut souvent s’y ramener.

Exemple A Vérifions que 'hypothese 7(I") non bornée est indispensable.

Notons ¢ la forme quadratique sur R?, ¢(z) = 22 + 23 + 23 — V222 — v/222. Le
groupe I' = SL(5, Z[v/2]) N SO(g, R) est un réseau de SO(g, R).

En effet, notons o I'automorphisme non trivial du corps @[\/5] et ¢° 'image
de ¢ par o. Le groupe {(g,9°) | ¢ € SL(5,Z[v2]) N SO(q,R)}, est un sous-
groupe arithmétique du Q-groupe dont les points réels sont le produit SO(g, R) x
SO(¢?,R). Comme le groupe SO(q?,R) est compact, I est bien un réseau.
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Remarquons que le morphisme 7 : I' — SO(¢?,R) donné par m(g) = ¢° ne se
prolonge pas a G. Dans ce cas, le groupe image est borné.

Exemple B Voici un deuxieme exemple avec image p-adique qui met en valeur
I'hypothese 7(I") non bornée.

Le réseau I' = SL(d,Z) du groupe G = SL(d,R) s’injecte dans le groupe p-
adique H = SL(d, Q,). Cette injection ne se prolonge pas en un morphisme de G
dans H. Dans ce cas aussi, le groupe image est borné.

Exemple C L’hypothese de rang sur GG est aussi importante : il n’existe pas de
tels phénomenes de superrigidité pour les groupes G = SO(n, 1) qui sont de rang
réel 1. Par exemple, pour n = 2, G contient des réseaux I' qui sont des groupes
libres non abéliens ou des m; de surface compacte. Il existe alors de nombreux
morphismes 7 : I' — G qui sont d’image dense, ceux-ci ne se prolongent pas en
des morphismes de GG dans G.

Exemple D L’hypothese d’irréductibilité est aussi importante : le produit de
deux réseaux I'y x I'y C G x G avec G = SO(2,1) fournit aisément des contre-
exemples.

Exemple E L’hypothese de simplicité sur H est aussi utile méme si on s’y ramene
facilement en composant 7 par la projection sur les facteurs simples de H.

Par exemple, si ' est le réseau du groupe G = SL(d,R) donné par I' = {g €
SL(d,Z) | ¢ = Id mod 2}. Comme le groupe dérivé [I',T'] est formé de matrices
congrues a l'identité modulo 4, il existe des morphismes non triviaux € : I' —
{#1}. Mais alors le morphisme 7 : I' — H = SL(d,R), donné par () = ()7,
ne se prolonge pas en un morphisme de G dans H.

De méme, si I" est 'image dans G = PGL(d, R) du groupe I'y = {g € SL(d,Z) |
g = Id mod 3}. Le relevement 7 : I' — 'y C H = SL(d, R) ne se prolonge pas en
un morphisme de G dans H.

Exemple F Lorsque G est simplement connexe et k = R, le morphisme 7 s’étend
alors en une R-représentation de G dans H.

L’hypothese de simple connexité sur G est utile pour cela. Par exemple, les
R-groupes G = PGL(3) et H = SL(3) ont des points réels isomorphes Gg ~ Hg
sans étre R-isomorphe.

- Le théoreme de superrigidité et sa démonstration sont valables dans un cadre
beaucoup plus large : non seulement, on peut remplacer le corps £ = R par un
corps p-adique, mais, plus généralement, on peut prendre pour G un groupe sans
facteur compact qui est un produit fini G = [[ G,, avec p premier ou oo et avec
G, le groupe des Q,-points d'un Q,-groupe semisimple simplement connexe sous
Phypothese ) rangg G, > 2.
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Stratégie de la démonstration du théoreme 10.1
Soit P un sous-groupe parabolique minimal de G, K un sous-groupe compact
maximal de GG, V une k-représentation de H. Le groupe H := Hj, agit donc dans
V := V. On note v, la probabilité K-invariante sur la variété des drapeaux G/ P.
Dans la section 7.4, on a montré qu’il existe une application vy-mesurable I'-
équivariante

p:G/P—PP(V))

de la variété des drapeaux G/P muni d’une probabilité K-invariante 1y dans
I'espace des probabilités sur I'espace projectif P(V'). On vérifie tout d’abord en
10.2 que l'on peut choisir la représentation de H dans V de sorte que m(I") soit
proximal.

La deuxieme étape en 10.3 consiste a remplacer I'espace d’arrivée par l'espace
projectif P(V) lui-méme en montrant que l'image de ¢ est formée de masses
de Dirac. Pour cela, on utilise la probabilité sur I" dont la mesure stationnaire
correspondante sur G/P est vy, probabilité que nous avons construit dans la
section 9.4. On obtient ainsi une application mesurable I'-équivariante

:G/P—P(V).

En utilisant aussi la représentation duale, on pourra remplacer cet espace projectif
par un espace vectoriel W. Le prix a payer sera de perdre une partie de la P-
invariance : on obtiendra une application mesurable I'-équivariante

O:G—-W

qui est seulement invariante a droite par un sous-espace de Cartan A de G.

La troisieme étape en 10.4 consiste a montrer que ’espace vectoriel E engendré
par les translatés a droite de © par les éléments de G est de dimension finie. C’est
dans cette étape que l'on utilise I’hypothese de rang au moins 2 via ’ergodicité
des sous-groupes A’ de codimension 1 dans A.

La derniere étape en 10.5 consiste a remarquer que la représentation de G dans
E est mesurable et donc continue, par suite que 'application © est aussi continue.
C’est grace a 'application ¢ : E — W d’évaluation en e que I'on construira alors
le morphisme de G dans H qui prolonge 7.

10.2 Valeurs propres de méme module

Dans cette section, on montre que, comme 7(I") n’est pas borné,
on peut remplacer la k-représentation irréductible de H dans V par
une dans laquelle 7(T") est proximal (c.f. définition 9.5).

Pour cela, on appliquera le lemme suivant au groupe A := 7 (T").

Lemme 10.2 Soit k = R, C ou une extension finie de Q,. Soient V = k% et
A C End(V) un sous-groupe tel que V' est irréductible et tel que tout élément de
A a toutes ses valeurs propres de module 1. Alors A est borné.
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Remarque L’hypothese "V irréductible” est utile, comme le prouve le groupe
des matrices unipotentes triangulaires supérieures.

Démonstration du lemme 10.2 Le sous-espace vectoriel A de End(V') engen-
dré par A est une algebre.

Vérifions tout d’abord que la forme bilinéaire symétrique sur A donnée par
(a,b) — tr(ab) est non dégénérée. Soit I le noyau de cette forme bilinéaire, c¢’est
un idéal de A. Pour tout a € I, on a tr(a) = tr(a?) = - - - = tr(a?) = 0. Donc a est
nilpotent. Le théoreme 2.3 d’Engel assure que le sous-espace V' := Ny Ker(a)
est non nul. Ce sous-espace est A-invariant. Il est donc égal a V. Mais alors I = 0.
C’est ce que 1'on voulait

Montrons maintenant que A est borné. Choisissons une famille (J;) d’éléments
de A qui forment une base de 'espace vectoriel A et notons (e;) la base de A
duale. On a I'égalité, pour tout g dans A : g = > . Tr(gd;)e;. Les éléments gd;
sont dans A. L’hypothese sur les valeurs propres des éléments de A assure que,
pour tout 4, |[Tr(gd;)| < d. Donc A est borné. O

Proposition 10.3 Sous les hypothéses du théoréeme 10.1, il existe une k-repré-
sentation irréductible de H dans un espace vectoriel V telle que w(I") est prozimal.

Démonstration D’apres le lemme 10.2, il existe au moins un élément dy € 7(I")
qui admet une valeur propre de module différent de 1. Notons V| le sous-espace
de V somme des sous-espaces caractéristiques de 9y associés aux valeurs propres
de module maximum. Comme H est simple, il agit sur V par des matrices de
déterminant 1 et 'entier dy := dim V| est inférieur a d. Comme H est simple,
on peut décomposer la représentation de H dans A%V en représentations irré-
ductibles (proposition 4.12). Notons V' la sous-représentation irréductible A%V
dans laquelle apparait I'unique valeur propre de module maximum de A%d,. L’ac-
tion de (") sur P(V’) est proximale, car, par construction, la suite n — A%§}
convenablement renormalisée converge vers un opérateur de rang 1. 0

10.3 Construction de ©

Dans cette section, on utilise tous les préparatifs du chapitre 9
pour construire application aux bord ® : G/P — P(V) ainsi que
I’application ©.

Rappelons que v est la probabilité K-invariante sur G/P.

Proposition 10.4 Sous les hypothéses du théoréeme 10.1. Soit V une k-repré-
sentation irréductible de H dans laquelle w(I") est prozimal.

a) Toute application vo-mesurable T'-équivariante ¢ : G/P — P(P(V)) prend ses
valeurs dans l'ensemble op(vy des masses de Dirac.

b) Il existe une et une seule application vo-mesurable T'-équivariante ® : G/P —

P(V).
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Remarque Nous n’utiliserons pas 1'unicité de ¢ dans la suite du raisonnement.
Il est néanmoins rassurant de savoir que cette application au bord ® est unique.

Démonstration a) D’apres la proposition 9.10, il existe une probabilité u €
P(T) de support T telle que v est u-stationnaire. Le point a) résulte alors de la
proposition 9.9.a.

b) L’existence d'une application ¢ résulte de la proposition 7.11 de Furstenberg.
L’existence de l'application ® s’en déduit par a). L’unicité de I'application ®
résulte de la proposition 9.9.b. 0]

Notre tache consiste maintenant a “remplacer” I'espace projectif P(V') par un
k-espace vectoriel W. C’est ce que fait la proposition suivante. Notons A un
sous-espace de Cartan de G.

Proposition 10.5 Sous les hypothéses du théoreme 10.1. Il existe une k-repré-
sentation p de H dans un espace vectoriel W et une application mesurable I'-
équivariante non constante © : G — Wy, qui est A-invariante.

De fagon plus précise, notons W = Wy, Fp(G, W), le k-espace vectoriel des
(classes de) fonctions mesurables I'-équivariantes de G' dans W, c’est-a-dire des
fonctions f : G — W telles que f(vg) = p(7)f(g), pour tout v € I, g € G.
Le groupe G agit sur Fr(G, W) par, pour tous g,z € G, (T(9)f)(z) = f(gz) .
La proposition 10.5 affirme que 'espace F1-(G, W) contient une fonction © non
constante telle que T'(A)© = ©.

Démonstration de la proposition 10.5 On applique la proposition 10.4 a la
représentation de H dans V donnée par la proposition 10.3 ainsi qu’a sa représen-
tation duale. On obtient ainsi deux applications vy-mesurables et ['-équivariantes
¢ : G/P - P(V)ety: G/P — P(V*). On a donc une application vy ® vy-
mesurable et ['-équivariante

o x1:G/P xG/P—P(V)xP(V*).

Vérifions tout d’abord que le produit G/P x G/P s’identifie 4 un quotient
de G/A, a une partie 1y ® vp-négligeable pres. Conformément aux notations de
la section 3.5, fixons un sous-espace de Cartan A de GG, une chambre de Weyl
AT C A, une involution de Cartan 6 de G telle que §(A) = A. On peut supposer
que le parabolique minimal P est celui associé & AT. On note P~ le parabolique
opposé et on note K le sous-groupe compact maximal K = G’. Par le méme
argument que dans la démonstration du théoreme 3.13.b, on construit un élément
wo € K tel que wy normalise A et tel que wo(A™) est la chambre de Weyl opposée
de sorte que P~ = woPwy'. Autrement dit, le stabilisateur dans G du point
woP € G/P est le groupe P~.

Par le théoréme 3.14.c, la P-orbite de cet élément wyP € G/ P est ouverte de
mesure pleine dans G/P ~ G/P~. Donc la G-orbite dans G/P x G/P du point
(P, woP) est ouverte, de mesure pleine et de groupe d’isotropie P N P~.
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Vérifions maintenant que l'image de ¢ X v ne rencontre pas la quadrique
Q(V) = {(z,y) € P(V) x P(V*) | y(x) = 0}. Cela résulte de ce que la me-
sure image (¢ X ¥),(vp ® 1) est une mesure produit et que, par le lemme 9.7, la
probabilité p-stationnaire ¢, (1) ne masse pas les hyperplans.

On note W l'espace vectoriel End(V'). Pour tout (z,y) € P(V)xP(V*)\Q(V),
on note p,, € W le projecteur sur x parallelement a y. La formule

O(g) = Py(gP) 4p(gwo P)

donne alors 'application © cherchée. [l

10.4 L’espace E des translatés de ©

Nous disposons enfin d’une application I'-équivariante, A-inva-
riante, non constante © de G dans un espace vectoriel WW. On étudie
dans cette section la représentation de GG dans 'espace E des trans-
latés de ©.

Rappelons que p est la représentation de H dans W et que Fr(G, W) est le
k-espace vectoriel des fonctions mesurables ['-équivariantes de G dans W. Géo-
métriquement, ce sont les sections mesurables dun fibré vectoriel sur I'\G appelé
le fibré induit par W. Rappelons aussi que nous avons noté T' ’action mesurable
du groupe G sur Fr(G, W) Cette action est donnée par, pour tous g,z € G,

(T(g9)f)(x) = f(zg) .

Par construction la fonction © est un élément A-invariant de Fr(G,W). Cette
action T' est mesurable si on munit Fr(G, W) de la convergence en mesure.

Proposition 10.6 Si rangg(G) > 2, l'espace vectoriel E = (T'(9)© | g € G) est
de dimension finie.
En outre, la fonction © est continue.

Remarque En particulier, comme © n’est pas constante, le corps k ne peut pas
étre totalement discontinu. On a donc que k = R ou C.

Cette proposition 10.6 sera une conséquence des trois lemmes 10.7 et 10.8 ci-
dessous.

Lemme 10.7 Soit A" C A un sous-groupe non trivial, Z(A’)le centralisateur de
A" dans G et I C Fr(G, W) un sous-espace vectoriel A-invariant de dimension
finie. Alors le sous-espace vectoriel I' = (T'(g)f | g € Z(A") , f € I) est encore
A-invariant et de dimension finie.
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Démonstration du lemme 10.7 Comme A normalise A’, ce sous-espace vec-
toriel I’ est bien A-invariant. Montrons que I’ est de dimension finie. Regardons
pour cela I comme un A’-module. Il suffit de montrer que le k-espace vectoriel
S = Homy/ (I, Fr(G,W)) est de dimension finie, car chaque élément g de Z(A’)
agit sur I via un élément de cet espace vectoriel S. Or on a une identification
naturelle

S ~ Fp(G,Hom(I, W))*

de S avec l'ensemble des sections mesurables A’-invariantes du fibré sur I'\G
induit par Hom(Z, W).

Comme A’ # 1, le corollaire 7.7 affirme que 'action de A’ sur I'\G est ergodique.
Nous allons en déduire que S est de dimension finie.

Plus précisément, pour toute famille fi,..., f; € S et g € G, on note,

m(g) := dim((f;(g) | 1 < j <1)).
La fonction mesurable m : G — N vérifie, pour tout v € I';a’ € A’
m(vyga') = m(g), pour presque tout g.

Par ergodicité, la fonction m est donc constante égale a un entier mg. Cet entier
myo est majoré par dim(Hom(7, W)). On peut choisir la famille f1,..., f; de sorte
que mg soit maximal. On peut aussi choisir cette famille de sorte que ¢+ = my.
Soit f € S. Par maximalité de mg, on peut trouver des fonctions mesurables
¢; : G — k telles que, pour presque tout g € G, on ait

flg) = Z1§j§m0 ci(9)fi(g)-

L’indépendance des f;(g) et les propriétés de I'-équivariance et de A’-équivariance
des fonctions f et f; prouvent que, pour tout y € I',a’ € A’

¢j(vga') = ¢j(g), pour presque tout g.

De nouveau, par ergodicité, les fonctions c; sont constantes. L’espace vectoriel S
est donc de dimension finie. 0

Lemme 10.8 Soient G un R-groupe semisimple connexe, G = Gg et A un sous-
espace de Cartan de G. Si rangg(G) > 2, il existe une suite Ay, ..., As de sous-
groupes non triviaux de A telle que, en notant Z(A;) le centralisateur de A; dans
G, la multiplication

Z(A)) x - x Z(As) — G

(21, 2s) = 2 2

est surjective.
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Démonstration Notons X1 = {\;,... \;} un systéme de racines positives de A
dans G et A; C A le noyau de \;. Comme rangy(G) > 2, ces groupe A; sont
non triviaux. L’ensemble X = Z(A;)--- Z(A;) contient le parabolique minimal
P associé a X1 ainsi que le parabolique opposé P~. Donc 'ensemble Y = X X
contient 'ouvert U = P~ P. D’apres la démonstration du théoreme 3.14.c, cet
ouvert est dense dans GG. Donc G =Y Y. C’est ce que 'on voulait. 0J

C’est le lemme 10.9.b ci-dessous qui nous fera passer du monde mesurable au
monde continu.

Lemme 10.9 Soient Gy et Gy deux groupes localement compacts séparables.

a) Pour toute partie Wy C Gy de mesure positive pour la mesure de Haar de Gy,
’ensemble W W' contient un voisinage de e.

b) Tout morphisme de groupes mesurable ¢ : G; — Gy est continu.

Démonstration a) On note p; la mesure de Haar de G;. Quitte a réduire W7,
on peut supposer que p;(Wi) < oo. Or si a, 8 € L*(Gy, 1), la convolée g +—
(axB3)(g) = [, algz)B(z")dp(z) est une fonction continue : on le vérifie d’abord
pour «, 3 continues a support compact et on conclut par densité.

Donc la fonction 1y, * 1y,-1 est une fonction continue qui vaut p(W:) en
I'identité. Elle est donc strictement positive dans un voisinage de l'identité. Or
elle est nulle en dehors de W, W, *. Donc W, W, ! contient un voisinage de e.

b) Soit Vo C Go un voisinage de l'identité dans Gy. On veut montrer que V; :=
0 1(V3) est un voisinage de I'identité dans G;. Choisissons un ouvert Wy C Go
tel que WoWy ! C V,. Comme Gy est séparable, il existe une famille dénombrable
d’éléments g, € G, tels que les translatés Wsg, recouvrent Gy. Mais alors les
images inverses ¢~ !(Wag,) recouvrent G;. L'une d’elles W, = ¢ 1(WWayg,,) est
donc de mesure non nulle. Comme W;W; ' C V4, on conclut & I'aide du a). O

Démonstration de la proposition 10.6 Posons Iy := (O) et, pouri =1,...,s,
posons I; = (T'(Z(A;))1;—1). Par une application répétée du lemme 10.7, I'espace
I, est de dimension finie. Par le lemme 10.8, il est égal a E.

Montrons maintenant la continuité de ©. Plus généralement, on va montrer que
toute fonction f € F est continue. Comme E est de dimension finie, le lemme
10.9 prouve que le morphisme mesurable 7' : G — GL(E) est continu. Notons
fi,..., fi une base de E. On a donc des fonctions continues c¢; : G — k telles que,
pour tout g dans GG, on a

T(g)f = >_;¢i(9)f;-

Par Fubini, pour presque tout xy € G, on a I’égalité

flgzo) = 325 ¢i(9) fi(xo)

pour presque tout g € G. Donc f est continue et © aussi. O
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Remarque Comme O n’est pas constant, cela ne peut se produire que si k =R

ou C.

10.5 Prolongement de m a ¢

Nous pouvons maintenant construire le prolongement de 7 que
nous cherchons grace a la représentation de G dans E et grace a
I’évaluation en e qui relie E et W.

Notons § : E — W; f +— f(e) I'évaluation en l'identité et rappelons que p est
la représentation de H dans W.

Lemme 10.10 a) L’application § est I'-équivariante, i.e. pour tout v € T, on a
60 T(y) = p(m(y))ed.

b) L’application § est injective.

c¢) Son image 0(E) est un sous-espace H-invariant de W .

Démonstration Comme G = Gg est semisimple et connexe, la représentation

T de G s’étend en une R-représentation de G encore notée T'. C’est vrai du moins

si G est le quotient du R-groupe algébrique simplement connexe G dont 'algebre

de Lie est Lie(G)c par le noyau Z du morphisme (G)r — G, ce que l'on peut

supposer. Rappelons aussi que p est la restriction d’'une R-représentation p de H.
a) On a les égalités, pour f € E,

doT(y) (f) = f(v) = p(m(7)(f(e)) = p(m(v)) o0 (f).

b) Le noyau Ker(9) est un sous-espace I'-invariant de E. Par le théoréme 7.1
de densité de Borel, le réseau I' est Zariski dense dans G, et donc le noyau
Ker(0) est aussi G-invariant. Donc, si f est dans Ker(d), pour tout g € G, on a,
flg)=46(T(g9)f)=0et f=0.

c) L” image 0(E) est 7(I')-invariante. Par hypothese 7(I") est Zariski dense dans
H. Donc §(E) est H-invariant. O

Fin de la démonstration du théoreme 10.1 On sait déja que £ = R ou
C. Grace au lemme 10.10, on peut identifier £ avec son image d(F). On dispose
donc dans E d'une représentation 7' de G et d’une représentation p de H telles
que, pour tout v € I'; on a

T(y) = p(r(7)).

Par le corollaire 4.5, I'image p(H) est Zariski fermée. Par le théoreme 7.1 de
densité de Borel, le réseau I" est Zariski dense dans G. Donc T'(G est inclus dans
p(H) . Comme H est simple, p est injectif et est donc un R-isomorphisme sur son
image. Le R-morphisme p~! o T : G — H prolonge 7. 0
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11 Arithméticité

Nous avons montré dans le chapitre 5 le théoreme de Borel Harish-
Chandra qui affirme que “tout groupe arithmétique est un réseau”. Le
but de ce chapitre est de démontrer le théoreme d’arithméticité de
Margulis qui en est une réciproque en rang réel au moins 2.

11.1 Groupes arithmétiques

Nous devons tout d’abord étendre légerement la définition 5.1 de
groupes arithmétiques

Définition 11.1 Soit G = Gy le groupe des R-points d’un R-groupe semisimple
conneze a centre trivial. Un réseau I' C G est dit arithmétique si il existe un
Q-groupe semisimple H et un morphisme continu surjectif p: Hg — G de noyau
compact tel que les réseaux p(Hyz) et I' sont commensurables.

Théoréme 11.2 (Margulis) Soit G = Gg le groupe des R-points d’un R-
groupe semisimple. On suppose G sans facteur compact et rangg(G) > 2.
Alors tout réseau irréductible I' C G est arithmétique.

Exemple Reprenons I'exemple A de la section 10.1.
Pour la forme quadratique ¢ sur R, g(x) = 22 + 22 + 22 — V222 — V222, le
groupe I' = SL(5, Z[v/2]) NSO(g, R) est un sous-groupe arithmétique de SO(g, R).
En effet, le groupe Hz = {(g,9°) | g € SL(5,Z[v/2]) N SO(q,R)} est un sous-
groupe arithmétique d'un Q-groupe noté H = Ry 5,0(SO(q)) tel que Hr =
SO(gq,R)xSO(¢?,R). Comme le groupe SO(q?) est compact, I" est bien un groupe
arithmétique.

Stratégie de démonstration du théoreme 11.2

On vérifie tout d’abord que I' est un groupe de type fini de sorte que le corps
K engendré par les traces des éléments de I' est un corps de type fini.

On rappelle ensuite comment construire de nombreux plongements des corps
de type fini dans les corps locaux.

On utilise ces plongements pour construire des représentations de I' a coeffi-
cients dans les corps locaux, représentations auxquelles on applique le théoreme
de superrigidité pour montrer que le corps K est une extension finie de Q.

Cela permet alors, grace a la “restriction de Weil” de construire une repré-
sentation de I' a coefficients dans Q, représentation a laquelle on applique la
superrigidité p-adique pour montrer que les dénominateurs qui apparaissent dans
les coefficients matriciels sont uniformément bornés. On aura ainsi réalisé un
sous-groupe d’indice fini IV de I' comme un sous-groupe de GL(d, Z).

On verra que I est d’indice fini dans le groupe des points entiers de son adhé-
rence de Zariski. La superrigidité réelle sera utile pour cela.
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11.2 Les réseaux sont de type fini

Nous admettrons dans cette section un point certes crucial mais
pas tres surprenant.

Proposition 11.3 Un réseau I' du groupe des R-points G = Ggr d’un R-groupe
G est de type fini.

Cette proposition s’étend aux réseaux des produits finis G = [[ G,, de groupes
réels et p-adiques.

Nous admettrons cette proposition 11.3 dans sa généralité. Néanmoins, il y a
un cas ou la démonstration est assez rapide :

1°" cas : Sil est cocompact dans G.
Dans ce cas, I' est le groupe fondamental d’une variété compacte. Il est donc
de type fini, et méme de présentation finie.

2%™me cas : Si G ne contient pas de facteurs quasisimples G; de rang réel 1.

Dans ce cas, la proposition est due a Kazhdan et la démonstration repose sur
la propriété T de Kazhdan. Elle est détaillée dans le chapitre 3 de [4] dans un
esprit tres proche de ce cours. Je ne la recopie pas ici. Les grandes lignes sont :
comme rangg(G;) > 2, le groupe G a la propriété T de Kazhdan, donc le réseau
I" aussi et donc I" est de type fini.

3%me cas : Si G contient un facteur quasisimple de rang réel 1.

Le fait que I" soit de type fini est du a Raghunathan, voir [21] corollaire 13.10.

11.3 Algébricité des valeurs propres

Dans cette section on utilise la superrigidité pour montrer 1'algé-
bricité des valeurs propres des éléments de AdI'.

Proposition 11.4 Sous les hypotheses du théoréeme 11.2.
Pour tout v € T', les valeurs propres de Ady sont des nombres algébriques.

Pour montrer cette proposition, nous aurons besoin de construire des plonge-
ments des extensions de type fini de Q.

Lemme 11.5 Soit K une extension de type fini de Q, X\ un élément de K trans-
cendant sur Q. Alors il existe un corps local p-adique k et un morphisme de corps
o: K —k tel que |[o(\)| > 1.

Démonstration du lemme 11.5 Mettons A dans une famille maximale \; =
A, Ag, ..., A\ d’éléments de K algébriquement indépendants sur Q et notons
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K'=Q(M\,...,\) C K. Il est facile de trouver un plongement o’ : K/ — Q, tel
que |o’(A)] > 1. On étend alors ce plongement en un morphisme de I’extension
finie K" de K’ vers une extension finie k£ de Q,. [l

Démonstration de la proposition 11.4 Décomposons 'algebre de Lie g de
G en somme d’idéaux simples et fixons une base de ces idéaux. Soit K le corps
engendré par les coefficients matriciels d’'une famille finie génératrice du groupe
AdI'. Ce corps est de type fini. Le groupe adjoint G’ de G est donc un groupe
semisimple défini sur Ky tel que AdI' C G, .

Supposons que I'adjoint Ady d’un élément v € I' a une valeur propre \ trans-
cendante sur Q. Le lemme 11.4 permet de construire un morphisme de corps
K[\ — k dans un corps local p-adique tel que |o(A)]| > 1.

Comme le groupe G’ est un produit de groupes k-simples et que 'image de I’
est Zariski dense dans G’, le théoreme 10.1 de superrigidité affirme que I'image
de I' dans GJ, est bornée. Mais par construction, le groupe engendré par Advy
n’est pas borné. Contradiction. U

Remarque On a basé la démonstration de la proposition 11.4 sur la superrigidité
p-adique. On aurait pu aussi bien utiliser ici la superrigidité réelle.

11.4 Corps de définition de G

Nous déterminons dans cette section le plus petit corps de défini-
tion de I'

Notons K le corps engendré par les traces Tr(Ad~y) pour v € T.

Proposition 11.6 Sous les hypotheses du théoréeme 11.2.

a) Le corps K est un corps de nombre i.e. une extension finie de Q.

b) Il existe un R-morphisme injectif i : G — GL(m) tel que i(I") C SL(m, K)
c) Le groupe i(G) est défini sur K.

Démonstration de la proposition 11.6

a) D’apres la proposition 11.4, le corps K est une extension algébrique de Q.
Or ce corps K est une extension de type fini de Q. C’est donc une extension finie
de Q.

b) Notons R[G] 'anneau des fonctions régulieres et réelles sur G. Le groupe G
agit sur R[G] par translation a droite. Pour tout ¢ € R[G] et g,z € G

(T(g9)p)(x) = p(zg)

Soit ¢o 'élément de R[G] donné par ¢o(g) = Tr(Adyg) et E := (T(G)go) le R-
sous-espace vectoriel de dimension finie m engendré par les translatés de ¢q. Le
morphisme ¢ = T'|g provient d'un R-morphisme i : G — GL(m).
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Montrons que @ est injectif. Soit g € G un élément du noyau de i. Pour tout
x € G on a donc
Tr(AdzAdg) = Tr(Adx).

On a donc pour tout n > 0
Tr(Adg") = Tr(Adg" ') = --- = dim g.

L’élément g est donc unipotent. Le noyau de ¢ est donc un sous-groupe semisimple
de G dont tous les éléments sont unipotents. Il est donc trivial. Le morphisme ¢
est bien injectif.

Montrons qu’il existe une base @1, ..., p, de E dans laquelle les éléments de
i(I") sont a coefficients dans K. Par le théoreme 7.1 de densité de Borel, I" est
Zariski dense dans G et il existe v1,...,7n € I tels que les m translatés ¢; =

T'(7i)po forment une base de E. Ecrivons, pour v € T,
T()g; =Y al i

De nouveau, comme I' est Zariski dense dans G, les restrictions des fonctions ¢;
sont encore linéairement indépendantes. On peut donc trouver 74, ..., v, € I tels
que la matrice (¢;(7;)) est une matrice m x m inversible. Les égalités

> a0 = (Te) () = wolir) € K

(2

prouvent que les coefficients azj sont dans K.
¢) D’apres le corollaire 4.5, le groupe i(G) est algébrique. Le fait qu’il soit défini
sur K résulte du théoreme 7.1 de densité de Borel et du lemme 7.2. 0

11.5 Restriction de K a Q

La derniere étape consiste a remplacer le corps de nombre K par
Q grace au procédé de restriction a la Weil.

On utilise dans cette étape, a la fois la superrigidité réelle et la
superrigidité p-adique.

Le théoreme 11.2 d’arithméticité est une conséquence de la proposition sui-
vante.

Proposition 11.7 Sous les hypotheses du théoréeme 11.2.

Il existe un Q-groupe semisimple H a centre trivial, un morphisme ¢ : I' — Hg
et un morphisme continu p : Hg — G tels que

a) T =poy.

b) Le sous-groupe I := {y € T' | (') € Hy, est d’indice fini dans T".

c) Le noyau Kerp est compact.

d) Les groupes ' et p(Hgz) sont commensurables.
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Démonstration de la proposition 11.7

D’apres la proposition 11.6, on peut supposer que G C GL(m) est défini sur
un corps de nombre K et que I' C Gg.

a) Commengons par rappeler la construction et les propriétés de la “restriction
de Weil” H = Rg|g(G). Identifions K & un sous-corps de R et notons oy, ..., 0,
les morphismes de K dans R, avec o1 = Id, et 0,41, Orydrg, Oryt1s -« - s Orqtra
les morphismes de K dans C de sorte que le morphisme o

R@QK L> R™ x C™
ko — (Ul(k>7"'707‘1+1"2(k))

soit un isomorphisme d’algebres. Regardons K comme un QQ-espace vectoriel de
dimension ¢. Notons
¢ : GL(m, K) — GL(m/, Q)

le morphisme de groupes qui s’en déduit. Ce morphisme a son image dans
GL(m,R ®g K) ~ GL(m,R)™ x GL(m,C)" C GL(m/,R).

Notons
p: GL(m,R®qg K) — GL(m,R)

la projection sur le premier facteur.

Le groupe GL(m, K) s’identific ainsi au groupe Rg des Q-points d'un Q-
sous-groupe R de GL(m/{), dont le groupe des R-points s’identifie & Rp =~
GL(m,R)™ x GL(m,C)". Ce Q-groupe est noté Rgg(GL(m)) et est appelé
la restriction de K a Q de GL(m).

Notons H = R(g(G) I'adhérence de Zariski de ¢(Gg). Comme ¢(Gg) est
inclus dans GL(m/, Q), le lemme 7.2 affirme que H est un Q-groupe. En outre,
par construction, on a, pour tout algebre A contenant Q, I'égalité Hp ~ Gggya-
En particulier, H est encore un Q-groupe dont les Q-points s’identifient aux K-
points de G. Le morphisme ¢ s’étend en un Q-morphisme encore noté ¢ de G
dans H. Le groupe des points complexes He s’identifie & (G¢)™ 272, On en déduit
que le Q-groupe H est donc semisimple. Par construction, on a p(Hg) = G et

p(o(7)) =, pour tout v € T
b) Comme I est de type fini, il existe des nombres premiers py, ..., p, tels que

@(F) C HZ[pfl,...,p;l] .

Soit ¢; la composée I' — Hg C Hg,,. D’apres le théoreme de superrigidité,
I'image ¢;(I) est relativement compacte dans Hg, . Notons Z, 'anneau des en-
tiers de @Q,. Comme le sous-groupe Hy, —est ouvert dans Hg, , le sous groupe
I':= ﬂicpi_l(HZpi) est d’indice fini dans I' et vérifie p(I') C Hy.

¢) Montrons que le noyau Ker(p) est compact. Sinon, on pourrait décomposer
H en produit de R-groupes H = G x F x F/ oul p est la projection sur le premier
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facteur et ou F est simple et Fg non compact. Notons ¢ la projection sur ce
deuxieme facteur. L’'image qo¢(I") est Zariski dense dans F. En particulier, cette
image n’est pas bornée. Le théoreme 10.1 de superrigidité prouve que q o ¢ se
prolonge en un morphisme continu ¢ : G — F. L’image ¢(I") serait alors inclus
dans le sous-groupe fermé Graphe(v)) x F’. Ce groupe n’est pas Zariski dense
dans H. Ceci contredit la Zariski densité de ¢(I') dans H. Donc le noyau Ker(p)
est compact.

d) D’apres le ¢) ¢(I"”) est un réseau de Hg. Donc p(IV) est d’indice fini dans
Hy et I" et p(Hz) sont commensurables. O

Remarques (voir [16].IX) - Comme pour le théoreme de superrigidité, le théo-
reme d’arithméticité et sa démonstration sont valables dans un cadre beaucoup
plus large : on peut prendre pour G un produit fini G = [[ G,, avec p premier
ou 0o et G, le groupe des Q,-points d'un Q,-groupe semisimple sous 1’hypothese
>_prangg G, > 2.

- On peut en outre remplacer cette hypothese de rang par

[ est d’indice infini dans son commensurateur Com(I")

ot Com(T") :={g € G | gTg ! et T sont commensurables }.

-Sik =RouC, le groupe Gy, des k-points d'un k-groupe semisimple G contient
toujours des réseaux cocompacts et des réseaux non cocompacts.

- Si k est un corps p-adique, le groupe Gy, des k-points d’un k-groupe semisimple
G contient toujours des réseaux et ceux-ci sont toujours cocompacts.

- Si k est un corps local de caractéristique non nulle, le groupe Gy, des k-points
d'un k-groupe semisimple G contient toujours des réseaux non cocompacts mais
pas toujours des réseaux cocompacts.
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12 Mesures invariantes

12.1 Mesures U-invariantes sur SL(2,R)/T"

Dans cette partie, nous montrons le théoreme mesuré de Ratner
pour G = SL(2,R). Il est du a Dani dans ce cas.

Proposition 12.1 Soit G = SL(2,R), U = {u, := ( Lo ) | s € R}. Soient
I' € G un sous-groupe discret et pu une probabilité U-invariante U-ergodique sur
le quotient X = G/T".

Alors ou bien cette probabilité p est portée par une U-orbite périodique ou bien
cette probabilité p est G-invariante.

Remarques - Lorsque I' est cocompact, le premier cas est impossible car I' ne
contient pas d’élément unipotent non trivial. (voir la démonstration du corollaire
5.6.b)

- Lorsque I" n’est pas un réseau, le deuxieme cas est impossible car pu(X) = 1.

Dans cette section on notera aussi A = {a; := < é t91 > | t > 0}, B=AU,

U_:{us_::<j; ?)\SER}etB_:AU_.

Démonstration de la proposition 12.1 Elle résulte des lemmes suivants. []

Lemme 12.2 S0 pu n’est pas portée par une U-orbite périodique, alors p est A-
mvartante.

Lemme 12.3 §i p est B-invariante, alors j est G-invariante.

Démonstration du lemme 12.2 Expliquons tout d’abord la démarche que
nous allons suivre. Soit

1 t
Z={reX| tlirglo;/ o(usr)ds = /Xgodu pour tout ¢ € C.(X)}.
0

Le théoreme 8.6 de Birkhoff appliqué a une famille dénombrable dense de fonc-
tions de C.(X) prouve que pu(Z) = 1. L’idée est de prendre deux points proches
x et gr dans Z et de comparer les moyennes orbitales de ¢ issues de x et de gx.
On écrit

Usgr = D(8)ugs)

avec D(s) dans B~. La quantité d(s) est la dérive du paramétrage et D(s) la
dérive transverse. On verra que, lorsque g n’est pas dans B, on peut trouver un

96



“long” intervalle de temps I pendant lequel D(s) est presque égal a un élément
non trivial a de A. On aura alors, en posant ¢*(y) = ¢(ay),

1 1
d :—/ usgxdsz—/ “usxds:/ “du.
/Xso i) 190( ) 0 Is@(dm) Sl

Ce qui implique que p est A-invariant, a moins que g ne soit toujours dans B.
Il reste a justifier ces ~. C’est 'objet de la démonstration que nous détaillons
maintenant.

Pour tout 9 > 0, on peut trouver une partie compacte Z, C Z de mesure
w(Zy) > 1 — gq telle que, pour tout ¢ € C.(X), la limite

¢

lim ! o(usz)ds = / pdu (3)
t—oo b Jo X

soit uniforme pour x dans Zj.

En effet, la proposition 8.8 d’Egorov appliquée a une fonction f d’une partie
dénombrable dense F' de C.(X) permet de construire des parties compactes Z,,
de mesure p(Z,) > 1 — ¢, telles que la limite (3) soit uniforme pour z € Z,. Il
suffit de prendre Z, = NycrZ, ol les €, sont choisis de sorte que Z(pe r€p < Ep.
En effet, 'ensemble des fonctions ¢ € C.(X) pour lesquelles la limite (3) soit
uniforme pour = € Z; est un fermé de C.(X).

Distinguons deux cas.

1°* cas : Il existe une suite g, € G, g, € B, g, — e telle que g,Zy N Zy # 0.
Notons g, = ( 3" ?” ) et choisissons z,, € Zy tel que g,z, € Z;. On peut
supposer v, > 0. Un calcul matriciel avec A\, = v, — oo donne

UN,sGn = Dn(s)u)\ndn(s)

ol
Dus)= (7 1 ) —pe= ("5 1)
Tn an+s 1+s
et
« (S) _ ﬁn'Vn + 5718 Oé(s) — S
" ay, + s 145
. 1419 0
Soient p € C.(X) et a = ( 0 1 ) € A. On va montrer que [y pdu =
1+to

f « ©dp, ce qui prouvera que p est A-invariante. On peut supposer que lolloo < 1.
Par définition de Zy, on a, pour tout t; < t5, la convergence uniforme pour

.TGZO, .
1 2

lim / uszvds:/ dp.

sy ) p(urs) pdn
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En effet, par simple soustraction pondérée de moyennes sur [0,%5] et [0,¢;], on
peut se ramener a de telles moyennes sur des portions d’orbites. En particulier,
pour tout t; < o,

1 2
X

n—oo ty — 11 Jy,

De la méme fagon, pour s; < sy, qu’on prend égal & s; = d(t1) et so = d(t2), on a

1 52
lim / gp“(u)\naxn)daz/ o dp. (5)
b

n—oo 82 — Sl 51

Expliquons tout d’abord dans quel ordre on choisit les parametres. Soit € > 0,
on peut choisir ¢; < ty suffisamment proche de ty pour que, pour s € [tq, 5], on
ait

1P — ¢l < € (6)
et .
S2 — 81
— 1 <e. 7
d/(S) tz—tl ‘_6 ( )

On choisit alors ng tel que, pour tout n > ng et s € [ty, ts], on ait

[P ) — PO <, (8)
It — d ' (s3)] < e(ta — 1) (9)
pourt=1,2 et
S9 — S 1 1

<e. 10
P— <e (10)

d,(s)  d(s)

n

On a alors, pour n > nyg

1 2 1 2
/ P(Un,sGnTn)ds — / " (Un,d, (s)Tn)ds| < 2¢

to —t1 Jy to —1t1 Jy

d’apres (6) et (8)

1 to 1 52 1
“(u NTn)ds — “(un,o®n) ——do| < 2¢
tQ—u/tl 0 (Urn ) t2_t1/81 0 s
d’apres (9), out 0 = d,,(s)
[ e = s [ o] <2
UN, oTn g — UM, cTn)A0 | =~ 4E
to — 11 31 14 An |d/n(8)| S2 =81 Js v g

d’apres (7) et (10).
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Ces trois majorations avec (4) et (5) donnent

/wdu—/wadu‘é&.
X X

Comme ¢ est arbitraire, on a [, pdu = [, ¢*dp.

28Me cas : [l n'y a pas de suite g, € G, gn & B, g, — € avec gnZy N Zy # 0.

Montrons tout d’abord que p est portée par une B-orbite. Pour cela, notons D
un voisinage de e dans G tel que les éléments g € D, g € B vérifient gZyN Zy = ().
Il existe un point z = gI' € Zj tel que u(DxNZy) > 0. Cette intersection DzNZ,
est incluse dans l'orbite Bx. Donc p(Bz) > 0 et par ergodicité, u(Bx) = 1.

Le groupe A := BN gl'g~! est un sous-groupe discret de B et p est une
probabilité U-invariante sur B/A. 1l est facile de décrire tous les sous-groupes
discrets de B. A conjugaison pres, on a soit A C A ou A C U. Dans les deux cas,
toutes les orbites de U dans B/A sont fermées. Comme p est ergodique, p est
portée par une U-orbite (cf. proposition 8.3). Ce qui termine la démonstration
du lemme 12.2. ([l

Démonstration du lemme 12.3 Remarquons que p est B-invariante et U-
ergodique. On en déduit que p est A-ergodique. En effet, un élément ¢ € L*(X, u)
qui est A-invariant est forcément U-invariant a cause du lemme 6.6 de Mautner
et de 1’égalité 115)% atusa;l =e.

Pour z € X et ¢ € C.(X), on note

t—o0

1 t
o(zr) = lim inf;/ Olaesz)ds et Y ={z e X |p(zr) = / pdu}.
0 X

D’apres le théoreme 8.6 de Birkhoff, on a p(Y°) = 0. Soit A une mesure G-
invariante sur G/I'. Montrons que A\(Y¢) = 0.

Remarquons que, par uniforme continuité de ¢, pour tout u; € U~

lim (p(acu; 2) — plaa)) = lim (p(u;_a,007) — plasa)) = 0.

Ce calcul traduit le fait que les deux géodésiques issues de x et de u;x se rap-
prochent exponentiellement vite vers +o00. On dit qu’elles sont sur la méme feuille
stable du flot géodésique. On en déduit que p(u, z) = @(x) puis que U"Y =Y.

Comme la probabilité p est B-invariante, et que pu(Y) = 1, le théoreme de
Fubini prouve que, pour p-presque tout = € X, 'ensemble B, = {b€ B | bx € Y'}
est de complémentaire négligeable pour la mesure de Lebesgue de B.

La multiplication induit un difféomorphisme entre

UxBet{g:(j §)€G|a7£0}.
On déduit des trois paragraphes précédents que A(Y¢) = 0. C’est-a-dire que
@(x) = [, @ du pour A-presque tout .
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Montrons que A(X) < oo. Pour cela choisissons ¢ > 0 tel que fX pdu=1. Le
lemme de Fatou donne alors

N I
AMX) = / od\ < liminf/ <—/ o(aesx) ds> d\ = / @ d\ < o00.
X t—o0 X t 0 X

On peut donc supposer que A(X) = 1. Pour conclure, on peut soit reprendre le
calcul précédent en remplacant le lemme de Fatou par le théoreme de convergence
dominée et les limites inférieures par des limites. On peut aussi remarquer que A
est A-invariante et A-ergodique par le corollaire 6.4 de Howe-Moore. Donc, par
le théoreme 8.6 de Birkhoff, on a ¢(z) = fX @ dA pour A-presque tout z. On en
déduit que [ d\ = [, pdu. Clest-a-dire = A. U

12.2 Petites valeurs des formes quadratiques

Dans cette section, on donne une démonstration directe et rapide
de la conjecture d’Oppenheim qui fut la premiere des motivations des
travaux de Ratner.

Proposition 12.4 (Margulis) Soit Q une forme quadratique sur R® de signature
(1,2) qui n’est pas multiple d’une forme quadratique entiere. Alors Q) prend des
valeurs arbitrairement petites sur 73 \. 0.

Cette proposition sera une conséquence de la version faible suivante du théo-
reme topologique de Ratner.

Proposition 12.5 Soient G = SL(3,R), I' = SL(3,Z), X = G/I' et H =
SO(2,1). Alors toute H-orbite bornée Hx C X est compacte.

Remarques - Bornée signifie relativement compacte.

- La démonstration directe que nous suivons ne se généralise pas pour décrire
les adhérences de toutes les H-orbites. Son défaut principal est de ne faire appel a
aucun argument de théorie ergodique. En contre-partie, elle est assez élémentaire.

La stratégie de la preuve de la proposition 12.5 consiste a partir d’un fermé U-
invariant minimal K de I’adhérence de I'orbite F' = Hx. Par un argument proche
de I’'argument de dérive de la section 12.1, on montre que K est A-invariant puis
que I'image de K par un sous-semigroupe de G reste dans F', semigroupe trop
gros pour avoir des orbites bornées dans X.

Démonstration de ’implication Proposition 12.5 — Proposition 12.4
L’argument qui suit, dit a Raghunathan, n’est pas propre a la dimension 3.
Supposons par I'absurde qu'’il existe € > 0 tel que Q(Z? \ 0) ne rencontre pas

] — €,¢[. Notons g le réseau Z*, H = SO(Q,R) et Hxy la H-orbite de zy dans

X. La proposition 12.5 est bien str aussi valable pour ce groupe H. Le critere 1.8

100



de Mahler prouve que cette orbite est relativement compacte. En effet, 'ouvert
Q= Q7!(] — &,¢[) est un voisinage de 0 qui ne rencontre qu'en 0 les réseaux
A € Hzxq. La proposition 12.5 prouve alors que cette orbite Hx est compacte.

Montrons que cela implique que @) est multiple d’une forme quadratique entiere.
Ecrivons Q(z) = Z Q; ;jTiT; AVEC A j = Aj;.

On peut supposer que I'un des coefficients a; ; est égal a 1. Montrons que @ est
alors a coefficients dans Q. Soit 0 € Gal(C|Q) et Q7 (z) = Z aj jrvsry. 1l suffit de
montrer que () = QQ°. Remarquons que le groupe I' N H est un réseau cocompact
de H. Par le théoreme 7.1 de densité de Borel, il est donc Zariski dense dans H.
Comme on a l'inclusion I' N H C SO(Q7,C), on en déduit que H C SO(Q7,C).
Soit p € C tel que Q7 — pu@) est dégénérée. Le groupe H préserve donc le noyau de
Q7 — Q. LVirréductibilité de I'action de H sur C? prouve que Q° = . Forcément

p=1let Q7 =Q. O

Le lemme suivant est basé sur I'aspect polynomial des flots unipotents. Cet
argument nous est maintenant bien familier. Il jouera le role de I'argument de
dérive de la section 12.1.

Lemme 12.6 Soient E un R-espace vectoriel de dimension d < oo, U = {us |
s € R} un groupe a un parameétre de transformations unipotentes et F' ’ensemble
des points fizes de U dans E. Soient D une partie de E . F et vy un point de
DN F. Alors UD N F contient un chemin polynomial non constant passant par
V.

Démonstration du lemme 12.6 Soient v,, une suite de points de D tels que
lim v, = v,. On choisit A\, > 0 tels que

n—oo

sup ||ux,svn — vnl = 1.
s€[—1,1]

C’est possible car 'application s +— ugv, est polynomiale non constante de degré
borné par d.
En outre, on a lim \,, = oo car vy est un point fixe de U. La suite des polynomes

n—oo

©n 1 S > Uy, sV, est bornée sur [—1, 1]. Quitte a extraire, on peut supposer qu’elle
converge uniformément sur [—1,1] vers un polynome . Ce polyndéme est non
constant car ¢(0) =0 et

sup |[o(s) = voll = 1.
s€[—1,1]

Par construction, on a ¢(R) C UD. En outre, ¢ prend ses valeurs dans F' car,
pour u; € U, on a

urp(s) = Hm uppn(s) = T gn(s +1/An) = ¢(s)

n—oo

101



par uniforme convergence. 0J

Certains sous-groupes a un parametre de G' vont jouer un role important dans la
démonstration. Fixons les notations : on peut supposer que la forme quadratique
s’écrit, pour v = (z1, T, v3) € R?, Q(v) = 22 — 2z173. Le groupe H contient alors

les deux groupes
522
s | s € R}.
1

A={a; = (
Notons V' = {vy := | s € R}. Le groupe V n’est pas inclus dans

9]
-+

o O
O —=W®

e t

0 0 1
1 0 ||[teR}, U={us:=| 0
0 0

OO =
S = O
—_ O ®»

H. On vérifie facilement que U et V' commutent, que A normalise U et V', que
les produits B := AU et W := UV sont des groupes et que le normalisateur de
U est le groupe Ng(U) = AUV. On notera V* := {v, € V | s > 0}.

Les gros sous-semi groupes dont nous parlions ci-dessus sont AUV,

Lemme 12.7 Pour tout y € X, les orbites AUV Ty et AUV "y ne sont pas
bornées dans X.

Démonstration Le point y € X est un réseau de R?. On peut choisir un point
p = (71,72, 73) dans ce réseau tel que z3 # 0 et (22 — 2z,23) > 0. On pose

gy = Q¢ ufxz/zg U(LE%—2$14E3)/2$§ € AUV:E

et on calcule g;p = (0,0, "23) — 0 quand ¢t — oo. Le critére 1.8 de Mahler
prouve donc que AUV *y n’est pas relativement compact. 0

Démonstration de la proposition 12.5 Rappelons que, par un argument a la
Zorn, tout compact U-invariant non vide de X contient un compact U-invariant
minimal. Soit F = Hz. On suppose par 'absurde que F # Hz.

On va appliquer deux fois le lemme 12.6. La premiere fois via le lemme 12.8.
La deuxieme fois via le lemme 12.9.

Soit K un compact U-invariant minimal de F'. D’apres le lemme 12.8, ce com-
pact K est aussi AU-invariant. D’apres le lemme 12.8; on a soit AUV (K) C F
ou AUV~=(K) C F. Mais, d’apres le lemme 12.7, les ensembles AUV *(K) ne sont
pas bornés dans X. Contradiction. O

Dans cette démonstration, on a utilisé les deux lemmes suivants.

Lemme 12.8 Soit K un compact U-invariant minimal du compact F = Hax.
Alors K est AU -invariant.

Démonstration du lemme 12.8 Remarquons tout d’abord que K n’est pas
une U-orbite compacte. Sinon, on pourrait trouver y dans K et s # 0 tels que
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usy = y. On aurait alors u.-t«,a;y = a;y. Or les points de X ont un stabilisateur
discret dans G et lim u.,-+; = e. Donc a;y tend vers l'infini, ce qui contredit la

t—o0

compacité de F'.

L’ensemble M :={g € G | gK N K # (0} vérifie les trois propriétés suivantes.

M est U-invariant a droite et a gauche.

M est fermé.

1l existe une suite g, dans M ~ U convergeant vers e.

Pour vérifier cette derniere affirmation, on choisit un point y € K. Par minimalité
de K, il existe une suite us, € U avec s,, — oo telle que u,, y — y. On écrit alors
Y = Gnls,y avec g, — e.

Pour pouvoir appliquer le lemme 12.6 a I'image D de la suite g, dans G/U,
remarquons qu’il existe une représentation linéaire de G dans un espace vectoriel
E de dimension finie et un point vy € E tel que Gvy ~ G/U. Cela résulte du
résultat général 4.7 de Chevalley. On peut étre aussi tres explicite en prenant

E = { formes quadratiques sur R3} x R3 et vy = (@, (1,0,0)).

L’ensemble des points fixes de U dans G/U est égal & Ng(U)/U ~ AV

Le lemme 12.6 et les trois propriétés ci-dessus prouvent que 1’on est dans 'un
des deux cas suivants :
1°" cas La suite g, est dans AVU pour n > 0.
28me cas ]l existe une application continue non constante ¢ : R — AV N M.

Notons L la composante connexe du groupe engendré par M N AV. Dans les
deux cas, c’est un sous-groupe de Lie connexe non trivial de AV. Montrons que K
est L-invariant. Pour tout g dans dans M N AV, le fermé g K N Kest U-invariant
et non vide et, par minimalité de K, on a gK = K. Donc K est bien L-invariant.

Pour conclure, il reste a montrer que L contient A.

Supposons par ’absurde que ce ne soit pas vrai. On est alors dans 'un des
deux cas suivants : L = V ou vs, Av_s, avec s # 0. Dans ce deuxiéme cas, on a
V*t C AL, car ayvsya="v_g; = a(e2t_1)s,. Dans les deux cas, pour tout y € K, on
a donc AUV*Ty C HLy C F. Ce qui contredit le lemme 12.7. U

Lemme 12.9 On suppose que l'orbite Hx n’est pas compacte. Soit K un compact
AU -invariant minimal du compact F' = Hzx.
Alors on a soit AUVT(K) C F ou AUV~ (K) CF.

Démonstration du lemme 12.9 Le raisonnement est tres proche de celui du
lemme 12.8.

Comme H/AU est compact et que 'orbite Hz n’est pas compacte, K ne peut
pas étre inclus dans Hx.

L’ensemble M = {g € G | gF N K # 0} vérifie alors les trois propriétés
suivantes.
M est H-invariant a droite et AU-invariant a gauche.
M est fermé.
1l existe une suite g, dans M ~ H convergeant vers e.
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Pour vérifier cette derniere affirmation, on prend un point y € K hors de l'orbite
Hzx. On a alors une suite h,, € H telle que h,x — y. On écrit alors y = g, h,x
avec g, — €.

Pour appliquer le lemme 12.6 a I'image D de la suite g,, dans G/H, on remarque
de nouveau a l’aide du corollaire 4.7 qu’il existe une représentation linéaire de
G dans un espace vectoriel E de dimension finie et un point vy € E tel que
Guvy ~ G/H. On peut étre aussi explicite que dans le lemme 12.8 en prenant

E = { formes quadratiques sur R} et vy = Q.

Comme tous les sous-groupes unipotents de H sont conjugués, 1’ensemble des
points fixes de U dans G /U est égal a Ng(U)H/H =VH/H ~V.

Le lemme 12.6 et les trois propriétés ci-dessus prouvent que I'on est dans I'un
des deux cas suivants :
1°" cas La suite g, est dans V H pour n > 0.
28me cas ] existe une application continue non constante ¢ : R — V N M.

Dans les deux cas, on a M NV # e. Comme M est invariant par conjugaison
par A, on en déduit que Vt € M ou V- C M.

Supposons par exemple V'~ C M. Pour tout v € V—, I'intersection vF N K est
non vide et U-invariante. Le lemme 12.8 assure que K est un fermé U-invariant
minimal. On a donc K C vF, puis VK C F et enfin AUVT K C AUF = F.[J
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13 Reécurrence des groupes unipotents

Le but de ce chapitre est de montrer des propriétés de récurrence
pour les flots unipotents sur les espaces homogenes X de volume fini.

A cause du théoreme d’arithméticité de Margulis le cas crucial est celui ou
X = SL(d,R)/SL(d,Z) est I'espace des réseaux de volume 1 dans R?. Ce que
nous supposerons dans ce chapitre.

Notons alors ¢t — u; = eV un groupe & un parametre d’éléments unipotents. Le
but de cette section est le théoreme suivant. On note || la mesure de Lebesgue
d’une partie I de R.

Théoréme 13.1 (Dani, Margulis) Soit X = SL(d,R)/SL(d,Z). Pour tout
>0,z € X, il existe un compact K = K, C X tel que, pour tout T'> 0

{t € [0,T] | wpx € K}| > (1 —e)T.

On notera ’analogie entre ce théoreme 13.1 et le lemme 1.4 de récurrence pour
les marches aléatoires qui s’applique a X.

En outre, le compact K, peut étre choisi uniforme pour tout x dans un compact
K’ de X. Ce théoreme affirme donc que les orbites du flot u; sur X passent la
plus grande partie de leur temps a distance finie.

13.1 Lecasd=2

Dans le cas d = 2, la démonstration du théoreme 13.1 est tres
courte :

On note b, la boule de rayon ¢ dans R2. Le critere de Mahler assure que
I’ensemble des réseaux A € X qui ne rencontrent b, qu’en 0 est un compact.
Choisissons une boule b, avec a < 1 qui ne rencontre le réseau de départ A =z
qu’en 0.

Pour chaque paire v € A de vecteurs primitifs, le vecteurs w,v se déplace
a vitesse constante. Donc dans l'intervalle de temps I, qu’il a passé dans b, la
proportion de temps qu’il a passé dans une boule beaucoup plus petite b,. 2 est
au plus €.

Ces intervalles I, sont disjoints car, comme u;A est de volume 1, la boule b,
contient a chaque instant ¢ au plus une paire de points +u;v avec v € A primitif.
Donc la proportion du temps entre 0 et 17" pendant lequel u;A avait un point dans
cette boule b,/ est au plus €. C’est ce que I'on voulait. O

13.2 Préliminaires sur les réseaux

Nous aurons besoin d'une version plus maniable du critere 1.8 de
compacité de Mahler
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Munissons R? d'une norme euclidienne ||.||. Rappelons que, pour A réseau de
R?, un sous-espace A-rationnel L C R? est un sous-espace tel que AN L est un
réseau de L. On note alors

da(L) := covol, (AN L).

Par exemple da = da(R?) est le covolume de A. Notons S(A) I'ensemble des
sous-espaces A-rationnels. On appelle drapeau A-rationnel de longueur ¢, un en-
semble F' de ¢ sous-espaces A-rationnels non triviaux qui est totalement ordonné.
On pourrait noter un tel drapeau F' sous la forme

F:0¢L, G - GL, R

Nous ne le ferons pas car, au cours de la démonstration, les sous-espaces L; n’ap-
paraitrons pas forcément dans 'ordre croissant. On note alors Sp = Sp(A) 'en-
semble des sous-espaces A-rationnels propres L tels que F'U{L} est un drapeau
A-rationnel de longueur k + 1. Autrement dit,

Sp:={Le€S,0¢LERY pourtout M e F,onaMGLouLqGM}.
On dit que le drapeau F' est complet si ¢ = d — 1. Dans ce cas Sp(A) est vide.

Proposition 13.2 (Mabhler) Soient X = SL(d,R)/SL(d,Z) et Y C X. Les
assertions suivantes sont équivalentes.

(1) Y est relativement compact.

(1) 1l existe a > 0 tel que, pour tout A €Y, Ueigfo lv]| > a.

(13i) 1l existe b > 0 tel que, pour tout A € Y, inf da(L) > b.
LeS(A)

(1v) Il existe > a > 0 tels que, pour tout A € Y, il existe un drapeau A-rationnel
complet F' tels que o < da(L) < 3, pour tout L € F.

Rappelons tout d’abord quelques affirmations que nous avons deJa utilisées

dans la section 1.4. On note ¢, la constante ¢; = 2(1 /vd)d ol vy = est le

dF(§)
volume de la boule euclidienne dans R?. La valeur précise de cette constante ne
jouera pas de role dans la démonstration. On remarque juste que ¢4 > 1 et que

cq croit avec d.

Lemme 13.3 a) Tout réseau A C R? contient un vecteur v avec 0< ||v|| < cqdi.
b) Pour tout C > 0, l’ensemble {L € S(A) | da(L) < C} est fini.

¢) L’application X —>]0 oo} A msl(% da(L) est continue.
Le

Démonstration Cest le lemme 1.10 de Minkowski et le lemme 1.12. [l

Le lemme suivant permet de compléter les drapeaux A-rationnels incomplets
en des drapeaux dont on controle les covolumes.
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Lemme 13.4 Soient 6 > 1, A € X et F' un drapeau A-rationnel incomplet tel
que, pour tout L € F, da(L) < 3.
Alors il existe M € Sp(A) tel que da(M) < cqf3.

Démonstration Comme le drapeau F' est incomplet, on peut trouver deux sous-
espaces A-rationnels successifs L1 C Ly de dimension d; < dy avec § := dy—dy > 2
avec L; € FU{0,R%}. En appliquant le lemme 13.3.a de Minkowski & 'image de
Ly N A dans Ly/Lq, on peut trouver un vecteur v € Ly \ L; dont I'image T dans
Lo/ Ly est de norme au plus

1)) < ca(da(La)/da(Ly))7.

Le sous-espace M = L; & Ro est alors dans Sp(A) et vérifie

=

da(M) < |[0]lda(Ly) < cada(L)"3da(La)5 < caf3.

C’est la majoration cherchée. O

Démonstration de la proposition 13.2 (i) <= (i7) C’est la proposition 1.8.

(11) = (@ii) Cela résulte du lemme 13.3.c. En effet, une fonction continue
strictement positive sur un compact est minorée par une constante strictement
positive.

(i49) = (iv) La minoration est claire. Pour la majoration, on peut prendre
pour constante 3 = (cq)¢. Pour cela, on construit le drapeau F par récurrence a
I’aide du lemme 13.4. On perd au plus un facteur ¢, a chaque étape.

(iv) = (i7) On peut supposer 0 < o < 1 < . Soit v un vecteur non nul dans
un des réseaux A € Y. Notons Ly & --- & Ly le drapeau A-rationnel complet
F donné par la condition (iv) et posons Ly = 0 et Ly = R%. Soit i I'entier tel que
v e L;— L;_;. On a alors

[0l = d(Li)/d(Li-1) = /5.

C’est la minoration cherchée. O

13.3 Autres lemmes préliminaires

Voici deux lemmes élémentaires dont nous aurons besoin, I'un sur
les polynomes en une variable, I’autre sur les recouvrements dun in-
tervalle.

Notons P™ I'espace des polynomes sur R de degré au plus m. Le lemme suivant
exprime qu’'un polynome ne peut pas étre petit trop longtemps et ce avec un
controle uniforme qui ne dépend que du degré du polynome.
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Lemme 13.5 Pour tout € > 0, il existe M, > 0 tel que pour tout intervalle I et
fte ] Ip(t)] < 5 supy ol }| < el1.

tout polynome p € P™, on a

Démonstration Sinon il existerait m > 0, € > 0 et une suite de polynomes p,, €
P™ telle que supy y) [pn| = 1 et [{t €[0,1] | |pa(t)] <2 3}| < e. Cet ensemble
est une réunion d’au plus 2m intervalles. Par compacité de la sphere unité de P,
cette suite p, une valeur d’adhérence p,, € P™. Ce polynome p,, est non nul,
mais ’ensemble de ses racines est de mesure au moins €. Contradiction. 0

Lemme 13.6 Soit I = Uycal, un recouvrement d’un intervalle compact I C R
par des intervalles I, ouverts dans I. Alors, il existe un sous-recouvrement I =
Uaearl, de chevauchement au plus 2.

Le chevauchement est le nombre maximum d’intervalles I, dont l'intersection est
d’intérieur non vide.

Démonstration On extrait tout d’abord un recouvrement fini. On prend alors
un intervalle I, = [xo, yo| contenant extrémité gauche de I avec y, maximum.
Puis un intervalle I,,, =]z1,y1[ contenant y, avec y; maximum. Et on continue.

O

Pour montrer le théoreme 13.1 de récurrence, on partira d’un point x = A dans
un compact K’ C X, ce qui nous donne une constante b par le critere (iii) de
Mahler. On veut controler, pour L € S(A), le covolume dans L de u;(ANL). On
introduit donc le polynoéme sur R

pr it — dy,a(uL)?.

C’est un polynéme de degré au plus 2d? car on a 1'égalité py(t) = ||uger A« - - Auges |
ou ey, ...,e; est une base de AN L.

13.4 La récurrence qui prouve la récurrence

Pour décrire le compact K dans lequel u;A passe plus de 1 — ¢
de son temps, on va utiliser le critere (iv) de Mahler. Il s’agira donc
de construire a chaque instant ¢ convenable un drapeau complet £’ de
sous-espaces A-rationnels L; dont on controlera les covolumes carrés

Pr; (t)

On procedera par récurrence, en ajoutant a chaque étape, pour tout temps ¢ un
nouveau sous-espace a un drapeau A-rationnel de longueur /. Le nombre d’étape
dans cette récurrence est donc d — 1. La proposition technique qui met en place
cette récurrence est la suivante.
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Proposition 13.7 Soit 6 > 1 > a > 0 et posons ' = ¢y et o/ = «. Soient [
un intervalle compact et F' un drapeau A-rationnel incomplet tel que

() jnf (suppr(t) = o

(0) sup(inf pu(t)) < f

(c) suppr(t) < B VLeF.
tel

1l existe un recouvrement fini de chevauchement au plus 2 de I par des intervalles
compacts I tels que sur chaque I', il existe un drapeau F' = FU{ Ly} avec Ly € Sp
tel que

a inf (su t o

( ) LESF’(tEII?pL( )) =

) sup( inf t < 4

W) supl inf pult) <

(<) SqupL(t) < 3 VYLeF
tel’

@) swppn() > o
tel

Remarque On ne peut pas en général réduire la taille des intervalles I’ de sorte
qu'ils soient d’intérieur disjoint sans perdre les conditions (a’) et (d').

Démonstration de la proposition 13.7 Pour tout ¢y, € I, on doit fournir un
intervalle I’ contenant ty dans son intérieur et un sous-espace Ly € S vérifiant
(a"), ('), () et (d'). On extraira alors le sous-recouvrement de chevauchement
au plus 2 a 'aide du lemme 13.6. On distingue deux cas.

1°" cas : Il existe L € S tel que py(tg) < a.
D’apres le lemme 13.3, il n’y a qu'un nombre fini de tels sous-espace A ra-
tionnels L. On choisit donc un intervalle compact I’ de longueur maximal dont

I'intérieur contient t,, pour lequel il existe Ly € Sg tel que sup pr,(t) < a.
tel
Par la condition (a) et la maximalité de I’, cette inégalité est une égalité

sup pr,(t) = a et on a, sup pr(t) > «, pour tout L € Sp.
tel’ tel’
La condition (a’) est donc vérifiée des que o < a.

Par la condition (c) et le lemme 13.4, la condition (V) est vraie dés que 8/ > ¢24.
Par (c) et 'égalité sup pr,(t) = «, la condition (¢’) est vraie dés que 3 > (.
tel’

La méme égalité prouve que la condition (d’) est valide deés que o < a.

2°me cas : Pour tout L € Sp, on a pr(to) > a.
On choisit, grace a la condition (b) un sous-espace Ly € Sg tel que pr,(ty) < (.
On choisit alors un intervalle compact I’ dont 'intérieur contient ¢, sur lequel on

a encore sup pr,(t) <
tel’
Dans ce cas, la condition (a’) est automatique des que o < a.
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Par la condition (c) et le lemme 13.4, la condition (V) est vraie dés que 8/ > ¢24.
Par (c) et le choix ci-dessus, la condition (¢’) est aussi vérifiée des que 3’ > .
La minoration py,(tp) > « garantit la condition (d') des que o/ < a. O

Démonstration du théoréeme 13.1 On applique d—1 fois la proposition 13.7.

On commence la premiere étape avec I = [0,T] et F = (). Pour valider la
condition (a), il suffit de la comprendre en ¢ = 0. D’apres la condition (iii) du
critére 13.2 de Mahler, la condition (a) est vraie avec une constante o = ag = b
uniforme pour A dans un compact K’ de X. Pour valider la condition (b), on
applique le lemme 13.3 de Minkowski : chaque réseau u;A contient un vecteur
non nul de norme au plus ¢4. La condition (b) est donc satisfaite avec 3 = 3y = 2.
Noter qu’a ce stade, la condition (c) est vide.

On construit ensuite successivement d—1 couples de réels ap = ag_1 et G =
(cq)?Br_1 ainsi que d—1 recouvrement de [0, 7] par des intervalles compacts. Le
premier ayant un chevauchement au plus 2, le deuxieme un chevauchement au
plus 4,... , le dernier un chevauchement au plus 2?7 !. Le chevauchement total est
donc au plus 2¢. On a donc ay_; = b% et B4_1 = (cq)*¢. Posons gy = 27 %. Par
le lemme 13.5 et les conditions (d’), dans chacun des intervalles I, on a pour le
sous-espace Lg correspondant

Qg—
{t e I'| pry(t) < ]\j o< el
€0

On retire de chacun de ces intervalles I” les points ¢ tels que pr,(f) < 3‘&—;01

L’ensemble J de tous ces points t est de mesure au plus
2de T = eT.

Les réseaux u; A correspondant aux temps t hors de J contiennent un drapeau
complet de sous-espaces A-rationnel dont les covolumes carrés sont dans I'inter-

valle [O;\ZOI , Ba—1]. On applique la condition (iv) du critere 13.2 de Mahler avec les

1
constantes o = b/M2 et 3 = (cg)?. Ces réseaux u;A pour ¢t € J sont donc dans
un compact K qui ne dépend que de € et de b. O
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