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VALUES OF QUADRATIC FORMS AT INTEGRAL POINTS:
AN ELEMENTARY APPROACH

by S. G. Dani and G. A. Margulis

In response to a longstanding conjecture due to Oppenheim, G. A. Mar
gulisproved (cf. [17] and [20]) that if Q is a nondegenerate indefinite quadratic
form on R n ,n 3, which is not a multiple of a rational for m then for any

£ > 0 there exists peZ«-{o} such that 0 < | Q(p) | < s; this also implies, by

a well-known number-theoretic method (cf. [14], §5) that for any aeR and

s>o there exists peZ n such that

(i)

Subsequently it was proved in [7] (see also [6]) that the élément p as in (i)

can also be chosen to be primitive (namely such that the g.c.d. of the coor
dinatesis 1). Further, we also proved that if Q is a quadratic form as

above and B is the corresponding bilinear form (defined by

B(x,y) = {Q(x+y) - Q(x-y)}/4 for ail ijeß") and a,b,ceß are such

that there exist x,yeR n for which Q(x) =a, Q(y) =b and B(x 9 y) =c then
for any s > 0 there exist primitive intégral points p and q such that

(ii)

The method of proof in both [20] and [7] is based on studying the orbits
on SL(3,R)/SL(3,Z) of the action, on the left, of certain subgroups of
SL(3,R). In [7] it was proved that if /fis the subgroup of 5L(3,R) consisting
of ail éléments leaving invariant a given nondegenerate indefinite quadratic
form on R3R 3 then every orbit of His either closed or dense; this enables one
to deduce the assertion about the existence of primitive intégral solutions to

(i) as also (ii) under the conditions as above. The earlier proof of the
Oppenheim conjecture in [20] is based on showing the relatively compact
//-orbits to be closed and certain other supplementary observations (cf. [20]).

The argument in [7], in its entirety, involves various deep theorems on Lie

groups, algebraic groups, ergodic theory and unitary représentations.
Interestingly it turns out that if one is to look only for the existence of primitive
intégral solutions to (i) then, with some modifications, the argument in [7] can



be arrangea to yield a proof which not only does not involve any deep theorems
but does not involve even any familiarity with the topics mentioned above. The

proof is accessible to anyone having gone through basic courses in linear
algebra and topological groups! Needless to say that in view of the gênerai
nature of the resuit and the fact that it already implies the Oppenheim
conjecture, it is worthwhile to record such a proof. That is the purpose of the

présent article. We hâve tried to arrange it so that while a novice should hâve
as little difficulty as possible in understanding the proof, an expert should be

able to run through the key ideas, getting a quick understanding of the proof.
Many détails are included to make the présentation complète.

One major aspect of the présent simplification is an observation that to

prove the existence of primitive intégral solutions to (i) (cf. Main Theorem
below) it is enough to prove that ail the //-orbits (// as above) which are not
closed contain orbits of certain one-parameter semigroups not contained in H
(cf. Proposition 8); that is, one does not need the full strength of the assertion
in [7] that ail such orbits are dense in 5L(3,R)/SL(3,Z). Thus, the Main
theorem hère can be deduced from Proposition 4.1 of [7] rather than
Theorem 2of [7] . The observation is supplemented by some further simplifica
tionsto make the proof accessible by elementary methods.

We conclude this introduction with the following acknowledgement and
then go on to a formai statement of the Main Theorem.

Acknowledgement. A preliminary version of this was prepared for
présentation at the Swiss Seminar in Bern, by the first named author. The
author would like to thank the ' 'Troisième cycle romand de mathématiques",
Switzerland, for support. He would also like to thank Professor A. Haefliger
for encouragement, in the context of the paper.

Let R n ,n be the fl-dimensional vector space over R, viewed as the

space of ail n-rowed column matrices with entries in R, equipped with the usual
topology. Let e\ , ••* ,e n be the standard basis of R"; e t is the column matrix
with 1 in /th row and 0 in ail other rows. A p eR* is said to be an intégral
point if ail its entries are integers; namely if it is of the form

p= p x e x +••• 4- p n e n where p x , ••• ,p n eZ. We dénote by Z" the set of ail

intégral points in R*. An intégral point p= p x e x +•••+ p n e n
is said to be

primitive if the g.c.d. of p x ,
•• -,p n is lor equivalently if k~ l p is not an

intégral point for any integer k 2. We dénote by p (Z") the set of ail

primitive intégral points in Z n
.

We recall that a quadratic form on R" is a function of the form



QijPiPj for ail p x , ••• ,p n eR,

where (# /7 ) is a symmetric nx n matrix with real entries; (tf /y ) is called the

matrix of g. A quadratic form is nondegenerate if and only if the matrix is

nonsingular. A quadratic form Q is said to be indefinite if there exists

p= /?!#!+ •••+ /?„£„ eRn with /?, 0 for some /=l,— m ,n, such that

Q(p) = 0. Also, a quadratic form is said to be rational if its matrix is rational
(that is, has rational entries).

Main Theorem. Let Q be a nondegenerate indefinite quadratic form
on R n

, n 3. Suppose that cQ is not a rational quadratic form for any
c> 0. Then Q( p (Z /7 )) is a dense subset of R; in other words, for any
aeR and s>o there exists a primitive intégral point p such that

\Q{p)-a\<z.
We begin the proof with some gênerai results. The folio wing simple obser

vationwas first noted in [17] and played a crucial rôle in the original proof
of the Oppenheim conjecture.

1. Lemma. Let G be a Hausdorff topological group and let S be a

Hausdorff topological space with a given continuous G-action on it. Let A
and B be two closed subgroups of G and let X and Y be closed subsets
of S, invariant under the actions of A and B respectively. Suppose
further that Y is compact. Let M be a subset of G such that mYnX
is nonempty for ail me M. Then gYnX is nonempty for ail ge AMB.
Further, if C is a subgroup of A nB such that Cy is dense in Y for
ail yeY then gYCX for ail geAMB n N(Q, where N(Q dénotes
the normaliser of C in G.

Proof If g= amb, where aeA, meM and beß then gY nX
= a(mbYna~ { X) = a(mYnX) and hence it is nonempty. Thus the set
T: = {geG\gY nX^o} contains AMB. On the other hand since Y is

compact and X is closed, a direct argument shows that T is closed. Hence T
contains AMB, which is precisely the first assertion in the Lemma. Now
let C be a closed subgroup as in the hypothesis and let geAMB n N(C).
Since g e AMB, by the first part there exists yeY such that gy eX. Since X
is a closed A -invariant subset and C C A this yields that Cgy C X. On the
other hand since geN(Q, Cgy = gCy and by the condition on C the latter is

dense in gY. Therefore gY C X. This proves the Lemma.



To be able to apply the Lemma fruit fully one needs to know, in the

appropriate context, "enough" new éléments in the set AMB as above. In

our context this is ensured by a simple property of 'unipotent one-parameter
groups of linear transformations' which we now recall.

Let E be a finite-dimensional vector space over R and let Jzf(E) dénote the

space of ail linear transformations of E into itself . We consider both E and

equipped with their usual topologies. For any x e the séquence
J

{ L, t'//!} (t° is the identity transformation by convention) converges as

y -» 00, to an élément of i/(£), denoted by exp t. The map x i->exp t, of S/{E)
into itself, is continuous. A linear transformation t is said to be nilpotent if
there exists a natural number k such that x k -0, the zéro transformation in

jzf(E). A family {u(t)} te R in is called a unipotent one — parameter
group of linear transformations if there exists a nilpotent linear transformation
t of E such that u(t) = exp tx for ail /eR. A map f:R^E is said to be a

polynomial map if there exists a basis e\ 9 •••, e d (where d= dimension of E)
and real polynomials /l9/ l9 •••, f d such that f(t) = f\(t)e\ +•••+ fd(t)e d

for ail if such a basis exists then the components of f(t) with respect
to any basis are polynomials in t. We note that if {exp tx} is a unipotent one
parametergroup of linear transformations of E andp e E then /i— >(exp fr) (p)
is a polynomial map. For the proof of the main theorem we need the folio wing
lemma; it is a slightly weaker version of Lemma 2.2 of [7] and is related to

Lemma 1 of [1] and Lemma 13 of [20].

2. Lemma. Let {u(t)} be a unipotent one-parameter group of linear
transformations of a finite-dimensional R-vector space E. Let E dénote
the vector subspace of E defined by

Let M o be a subset of E-F and let p o eM o nF. Then there exist a

nonconstant polynomial map cp.'R^T 7 and séquences {m/} in M o and
{tj} in R such that cp(O) = /7 0 and for any seß,u(sti)(mi)-+(p(s) as

i-> 00.

Proof. Let t be a nilpotent linear transformation of E such that
u(t) = exp tx for ail teß.By the Jordan canonical form (cf. [1 1], [21] or [25],
for instance) there exists a basis {ef ]

} where the indices vary over a set of the

form {(y, k)\l <y <rk and 1 k /}, / and r lf —-, n being fixed natural
number s, such that for ail k = 1, •••, /



A straightforward computation then shows that

for ail y, k as above. In particular this means that Fis the subspace spanned
by {e\ k) \l £ /}. For meM 0 let m(j, k) dénote the ef } -component of m

with respect to the basis {ef} and let

Then \m(j, k)Q J - l (m)\ 1 whenever j 2. Now let {/??/} be a séquence in

M o converging to pO.p 0 . By passing to a subsequence and modifying notation,
we can arrange so that there exists a pair (jo>k o ) such that j Q 2 and
\mi(Jo>k o )Q J o- l (mi)\= 1 for ail /. Passing to a subsequence one again, we

may further assume that for each pair (j, k),l k ,\ k /, the

séquence {mj{j, k)d JJ ~ l (mi)} converges as i-+ oo; let X(j, k) dénote the limit of
the séquence. Observe that \X(jo, k o )\ =1. Now choose

Then (p defines a polynomial map of R into F. Since |My'o»£o)|= 1 and
y'o 2, ep is a nonconstant map. It is straightforward to verify that if {/??/} is

the séquence as above (after successive réductions) and tj = §{mï) then for
any seR, u(sti) (mi) -+ q(s) as z-> 00. Also clearly

since m/->p 0 and p o eF.
We now introduce some notation to be folio wed throughout. Let

G = SL(3, R) be the group of 3 x 3 matrices with real entries and détermi
nant1, equipped with the usual topology of componentwise convergence of
the entries. For any /eR let

and u 2 (t) =

and let



Also for any /eR* (namely a nonzero real number) let d{t) dénote the

diagonal matrix diag {t, 1
,

t ~ l ) and let

As stated before we view R3R 3 as the space of 3-rowed column-matrices and
dénote by ci,e 2 ,e 3 the standard basis éléments. For any (not necessarily
square) matrix £, we dénote by % the transpose of Ç. The 3x3 identity
matrix will be denoted by 7.

Let Q o and Q x be the quadratic forms on R3R 3 defined by

We note that for ail peR 3 and /eR,

(iii)

Let

Then H is a closed subgroup of G containing V\ and D.
As for a linear transformation, for any square matrix £, we dénote by exp £,

j
the limit of the séquence { £ £'//!}. If £, is the matrix representing a linear

/=o

transformation x with respect to a basis then exp £, is the matrix representing
exp x with respect to the same basis. Let

Then we see that v] = v\ = 0 and that

(v)

for ail t e R.

We next apply Lemma 2 and deduce the following resuit which is one of
the main ingrédients of the proof of the main theorem. We give two proofs
of the assertion. The first proof uses elementary calculus of several variables



(strictly speaking, the arguments are motivated by some Lie group theory

which however is not involved directly). The second proof is based on certain

standard arguments in topological groups.

3. Proposition. Let M be a subset of G- HV 2 such that le M.

Then either FF
2

+ or V; is contained in HMV X .

First proof. Let E= M(3, R) be the space of ail 3x3 matrices with real

entries, equipped with the usual topology. Let P be the subspace of E defined

by

Though we shall not need this fact, it is worth noting that P is the ortho
complementof the Lie subalgebra corresponding to H in the Lie algebra
of G, with respect to the Killing form.

We show that given a séquence {g,-} in G such that g,--*/, there exist

séquences {/?/} in H and {ri/} in P such that h^l, ri/ -^ 0 and g t = /z/(exprj/)
for ail i. Observe that for r\eP, the sum of the diagonal entries being zéro

implies that the sum of the eigenvalues of tj is zéro and hence the déter
minantof expr] is 1. Any can be expressed uniquely as

E, =a/+ad+ bv l + c l v { +t| where Vi and 5 are as in (iv), a, a, b, ceR and

rie P. Consider the map \\t:E-+E defined by \|/(a/+tfô + Z?Vi + cvi + T|)

= e a d(e a )Ui (b) t v l (c) (exp n) for ail a, a, b, ceR and ri eP.We note that \\i is

a C 1 map, when Eis viewed as R9R 9 with £,/,- as the coordinate variables and
that the Jacobian déterminant of y at the point 0 (namely the zéro matrix)
is nonzero; in fact the derivative at 0 is the identity map. Hence by the inverse
function theorem (cf. [12] for instance) there exists a neighbourhood W of 0

in E such that the restriction of V|/ to W is a homeomorphism of W onto a

neighbourhood of / in E. Let {g/} be a séquence in G converging to /. Then
by the preceding observation there exist séquences {a,}, {a,}, {£>,}, and {c t } in
R and {ri,-} in P such that each of the séquences converges to zéro (in R or
P respectively) and g, = e a '-rf(e fl '>i(W'Ui(Ci) (exp ri,) for ail /. Com
paringthe déterminants we see that a7a

7
- = 0 for ail i. Also in view of (iii),

d(e a ov\(bi) t Vi(c i ) e H for ail /. Thus we get the séquences {/?,} in H and {rj/}
in P as desired.

Now let M be the subset as in the hypothesis. Then M contains a séquence
{gi} such that gj-*L Let {/?,} and {ri/} be séquences in H and P respectively
such that hj -> /, ri,- -> 0 and g { = /z/(exp n,) for ail /. Let Vi be the matrix as in
(iv). It is easy to see that for any r\eP, v^ - tjVi eP. Let t: P^P be the



map defined by x(n) = Viri — T]Vi for ail ri g P. Then x is a linear transforma
tionofP. Further a straightforward computation using the fact that v\ = 0

shows that t5t
5 = 0, the zéro transformation of P. Thus xisa nilpotent linear

transformation. We also note that the corresponding unipotent one-parameter
group of linear transformations of P is given by

(vi)

We now apply Lemma 2to the unipotent one-parameter group { exp tx } as

above. A direct computation shows that the subspace F of P consisting of ail

r| in P such that (exp tx) (n) = ri for ail teR is spanned by the élément v2v 2 as

in (iv). For ail / we hâve g, = /^-(expri/) eG — HV 2 and hence (exp ri/) $ F 2;F
2 ;

this implies that for ail /, since F is spanned by v2v 2 and

exp tv 2 = v2(Ov 2 (0 eV2 for ail teR. Applying Lemma 2 with the set

{ ti z |/= 1,2, •••} and the point oin the place of M o and p 0 there, we conclude
that there exists a nonconstant polynomial map (p: R->R and séquences {i k }

and {4} in N and R respectively such that cp(O) = 0 and for any
s eR, (exp st k x) {x\ ik ) -> (p(s) v2v 2 as k-> 00. Then for any seßwe hâve

(vii)

Since (ui(st k )h ik

l )g ik Ui(-st k ) - Ui(s4)(expri l
-

it )Ui(-.rt*) and since the

séquences {v\{st k )h^
1

} and {g/yjg
/y j are contained in H and M respectively,

(vii) shows that for ail seR, v 2 ((p(sj) eHMV { . Since (p is a nonconstant real

polynomial and cp(O) = 0, the image of (p contains either ail positive numbers
or ail négative numbers. Thus we get that HMV X contains either XK

2+2

+ or V2V
2 .

This proves the proposition.

Second proof. Let Sbe the vector space of ail symmetric 3x3 matrices
with real entries. Let Vi be the matrix as in (iv). We observe that for any
o e S, 'ViO + ovi is also an élément of S and that the map x : S -> S defined by

x(g) = -('viG + GVi) is a nilpotent linear transformation; specifically x5x
5 = 0

(the zéro transformation). We also note that the corresponding unipotent one
parametergroup of linear transformations is given by

(viii)

Let F={o eS\ (exp (o) =o for ail /e R} . A straightforward computation
shows that Fis spanned by the éléments o0o 0 and G\ defined by



(ix)

We note that a matrix in F has déterminant 1 if and only if it is of the form
o0o 0 + toi for some teR. Now let Mbe the subset as in the hypothesis and let

M o = {'gOog\geM}. Then M o C S. We show that M o n F = 0. If possible
let geMbe such that r go ogeF.0 geF. Since 'gG O g has déterminant 1, by the above

observation, there exists teR such that ( go 0 g = o0o 0 + 2roi . The latter can be

written as t u 2 (t)GoV 2 (t). Thus we get that { go 0 g = 'v2(t)oov

2 (t)ooU 2 (t). Hence

'hooh = 00, where h = gu 2 (-t). Thus 'p'hcohp = r pa o p for ail pcR 3 and

this means that QQ 0 (^p) = Qo(p) for ail pcR 3
. Therefore heH. But then

g= hv 2 (t)eHV 2i which is a contradiction since MCG- HV 2 . Hence
M o n F = 0.

We now apply lemma 2 to the unipotent one-parameter group {exp ti) and

the set M o as above and o0o 0 in the place of p 0 and conclude that there exist a

nonconstant polynomial map \|/: R -> F and séquences {#,} in M and {//} in R

such that \j/(0) = o0o 0 and for any seR, (exp^/i) ('g/C O g/) \|/(^) as /->oo;
substituting from (viii) we get that 'Uii-stj) ('giOogdVii-stj) -> \\f(s) as

/-^ 00 . For each s, each matrix in this séquence has déterminant 1 and therefore
\\f(s) has déterminant 1. Since \\f is a polynomial map into F, in view of the

remark about éléments of F with déterminant 1
, this implies that there exists

a (unique) polynomial (p onR such that \\f(s) = o0o 0 — 2cp(s')o 1 for ail seR;
since \\f is nonconstant, so is cp and since \j/(0) = 00,o 0 , (p(0) =0. Now, for ail

seR we hâve

(x)

Now consider the G-action on S given by (g, a)\-> t g- l og~ l for ail g e G

and oeS. Let rC S be the orbit of o0o 0 under the action. Any oeTis
indefinite (namely there exists peR 3

, /? =£ 0 such that r pop =0) and has
déterminant 1

. We show, conversely, that if o eSis indefinite and has détermi
nant1then o eT. Consider such a o. If ô is a diagonal matrix with diagonal
entries ± 1 which is équivalent (cogradient) to a, the conditions on o imply
that exactly one of the diagonal entries is 1

. Since this holds for o0o 0 as well
we get that o= pp o p for some nonsingular matrix p (cf. [11] Ch. V,
Theorem 6). Then clearly p has déterminant ± 1 and hence we can choose
geG, g = ± 'p- 1 such that o = ( g- l o o g- 1

; this shows that oeT. Thus Tis
precisely the set of ail indefinite matrices of déterminant 1

. This implies in par



ticularthatT is a closed subset of S, with respect to the usual topology on
S. In particular T is locally compact with respect to the induced topology.

If geG is such that ( g~ l o o g- 1 = o0o 0 then tp'gaogp = f po 0 p for allpeR 3

,

which implies that geH. This yields that H is the isotropy subgroup of o0o 0

under the G-action as above. Hence we hâve a canonical bijection 9: G/H-+ T

defined by 6 (gH) = t g~ l o 0 g~ l
. Since G is second countable and T is locally

compact the canonical bijection 9 is a homeomorphism (cf. [9], Ch. V, §1,
Theorem 8 or [10], (1.6.1) for instance), when G/H is equipped with the

quotient topology.
Observe that in view of (x), for any seR, 9(u I (sf / )g /

l H) -> Q (v 2 (q> (s)) H) .

Since 9 is a homeomorphism, this implies that for ail seR, v x (sti)g[ l H
-> u 2 ((p(s))H in the quotient space G/H. Since {&•} is contained in M this
implies, in turn, that VXV

X M ~ X H contains u2((p(s))u

2 ((p(s)) for ail seR. Hence HMVi,
which is the same as (V x M~ l H)~ l

, contains v2((p(s))v

2 ((p(s)) for ail seR. Since (p is

a nonconstant real polynomial such that cp(O) = 0, the image of cp contains
either ail négative numbers or ail positive numbers. Hence the preceding
conclusion implies that HMV X contains either VV

2+2

+ or V2V
2 , thus proving the

proposition.

4. Proposition. Let heH and veV 2 -{l} be such that uheHV 2 .

Then h is an upper triangular matrix.

Proof. Let heH and u= u 2 (t), t±obe such that uheHV 2 ; let h' eH
and v' = u2(s),seßu

2 (s),seR be such that vh = h'v' . By (iii), for any peR 3 we hâve

Since vh = h'v', this yields that Qi(hp) = (s/t)Q x (p) for allpeR 3
. Let Lbe

the plane spanned by e { and e 2 . Then Lis precisely the set on which Q x

vanishes and hence the preceding conclusion implies that he x and he 2 belong
to L. Further if he x = p x e x + p2p 2 e 2 , where p x ,p 2 eR, then we hâve

-p\ = Qo(Pie\ + p2p 2 e 2 ) = Qo(he x
) = Q0(Q 0 (e x ) =0, which shows that

he x =px e x . This together with the fact that he 2 eL implies that hisan upper
triangular matrix.

Now let V = V { V 2 . Then Vis a closed abelian subgroup of G. Each deD
normalises the subgroups V x and V2 . Therefore DV X and DV are subgroups
of G. It is straightforward to verify that they are closed subgroups of G. In

the sequel we need the following simple property of DV.



5. Lemma. Let A be a discrète subgroup of DV; then either A is

contained in V or it is a cyclic subgroup generated by an élément of theform
udu~ l

, where veV and deD - {/}.

Proof. We first note that for any deD- {/} and weV there exists ueV
such that dw = udu~ l

; such au may be readily determined, keeping in mind
that ue x , ue 2 , oe 3 must be eigenvectors of dw. Now let A be a discrète

subgroup of DV which is not contained in V. Thus there exist deD - {/}
and weV such that dw eA. Let veVbe such that dw = udw 1

. Let
A' = u- l Au. Then A' is a discrète subgroup of DV containing d. Let au,

where aeD and ueV, be any élément of A. Then d j (au)d~ j e A' for ail y.

We see that dJud~i -+ I either as y -> oo or as j -> - 00. Hence d j {au)d- ]

= a(d j ud~'] ) -> (7 either as j - oo or as j -* - 00. Since A' is discrète this

implies that a(d j ud~'] ) = a for some j. Hence u = I. This shows that A' is

contained in D. It is easy to see that any discrète subgroup of D is cyclic. Thus
A' is a cyclic subgroup of D and, therefore A, which is the same as uA'u~ l

,

is the cyclic subgroup generated by udu~ l
,

where deD is a generator of A 7

;

since Ais not contained in V, d /. This proves the Lemma.
We next note the following simple fact. While an expert may recognise this

as an immédiate conséquence of the fact that H contains a subgroup of index 2

which is Lie-isomorphic to PSL(2,R), it can also be deduced directly as

indicated below.

6. Proposition. H/DV x
is compact (in the quotient topology).

Proof. Let C= {peR 3 - {o}\Q 0 (p) = o} , viewed as a subspace of R 3

,

and let C be the quotient space of C under the équivalence relation identifying
p, q e C if there exists XeR such that q = Xp. Then C is a compact space (it
is a closed subset of the projective space). For any p e C let p e C dénote the
équivalence class of p. Consider the action of H on C defined by h(p) = hp
for ail heH and peC; it is easy to see that the action is well defined and
continuous. It can be verified directly that for any peC there exists heH
such that h(ë[) = p\ if p =é e~

3 then we can find h of the form r Ui(t), where
reR, satisfying this and if p = e~

3 we can choose h = o0o 0 as in (ix), which is

indeed an élément of H. Thus C is the orbit of e~
x . Let R be the isotropy

subgroup of ~ë[. Since H is second countable and C is compact we get that
H/R is homeomorphic to C, and therefore compact, in the quotient topology
(cf. [9] Ch. V, § 1, or [10], (1.6.1) for instance). It is easy to see that if heH
then heßif and only if either heDV x or hed{-\)DV x . Therefore DV X is



a subgroup of index 2inß. Since H/R is compact, this implies that H/DV X

is compact.
Now let F = SL(3, Z) be the subgroup of G consisting of ail matrices with

integer entries. We equip G/T with the quotient topology and consider the
G-action defined by left translation; geG acts by taking hT, h e G, to ghT.

7. Proposition. Let X be a nonempty closed subset of G/T. Thenthe
following conditions are satisfied:
a) If X is V r invariant then it contains a minimal (nonempty) closed

V r invariant subset and any such subset is compact.
b) If X is DV x -invariant then it contains a minimal (nonempty) closed

DV x -invariant subset and no such subset is a DV x -orbit.
Given a nonempty compact subset X of G/T which is invariant under V x

or DV X , a simple application of Zorn's lemma shows that X contains a

minimal (nonempty) closed subset invariant under V x or DV X respectively; we

only need to observe that in view of the compactness of X, any family of

nonempty closed invariant (under V x or DV X respectively) subsets, which is

totally ordered with respect to the inclusion relation, has a nonempty
intersection. Now suppose that Y is a compact subset which is a DF r orbit,
say 7= DV x y where ye G/T. Let A= {geDV x \gy = y}. Then DV X /A is

homeomorphic to Y (cf. [9], Ch. V, or [10], (1.6.1)). In particular DV X /A is

compact. But A is a discrète subgroup of DV X (and in turn of DV) and hence
by Lemma 5, A is either contained in V x (=VnDV x ) or it is a cyclic
subgroup generated by an élément of the form udu~ x where deD and
ueV x (= {u e V\vdv~ l eDV x }). In either case we see that DV X /A is non
compact.This is a contradiction showing that there are no compact
£>K r orbits. Thèse observations show that the Proposition holds for compact
subsets X.

For a noncompact closed subset the Proposition follows from certain
results on the asymptotic behaviour of orbits on G/T of unipotent one
parametergroupsof matrices. Specifically, we need a 'uniform version' of
what is referred to as Margulis' Lemma in [3]. Theorem 1.1 of [7] is a quan
titativeversionof what is needed; in [7] we used it to dérive the resuit as in

the présent Proposition. The proof of Theorem 1.1 of [7] dépends on an

elementary (though rather complicated) argument using some properties of

polynomials. A weaker (qualitative) version adéquate in proving the présent
Proposition, is somewhat simpler to prove. We are including a proof of a

weaker version in this text. However, since it involves considérable digression,



we defer it until the Appendix (cf. Theorem A. B). A déduction of the Proposi
tioninthe gênerai case is given after the proof of Theorem A. B.

8. Proposition. Let xeG/T and let X= Hx. Then either X=Hx
or there exists ye G/Y such that V 2 y or V~y is contained in X.

Proof. Since DV X CH,Xis D V x -invariant and therefore by Proposi
tion7 b) it contains a minimal nonempty closed DVx -invariant subset, say

X x . By Proposition 7a)Xx contains a minimal nonempty closed V x -invariant
subset and any such subset is compact. Let Y be such a subset. We shall show
that unless X= Hx, V2V

2 Yor VV
2

~ Yis contained in X. Let yeY. We divide
the proof into three cases as follows.

a) there exists a subset M of G - HV 2 such that leM and myeX for ail

me M.

b) there exists a neighbourhood Wof /in G such that {g e W\gyeX) C H.

c) there exist a neighbourhood Q of lin G and a séquence {ui} in V2V
2 — {/}

such that {g eQ |gy e X} C i/K 2 ,Vi^ I and tyj; c X for ail /.

We first observe that at least one of the three cases must hold. Suppose
a) and b) do not hold. Then there exists a neighbourhood Q of I in G such
that {geQ\gyeX} C HV 2 and there exists a séquence {g,} in G - H such
that gi -+ I and g,y eX for ail /. Without loss of generality we may also
assume {g/} to be contained in Q. By the property of Q this implies that each

gi can be expressed as hiU,- where h
t eH and y,e V 2 . Since {gj} is contained in

G- H,Vi^ I for ail /. Also for any peR 3 we hâve Qo(giP)Q
0 (giP) = Qo(hji)ip)

= Qo(ViP) = Qo(jp) + 2tiQi(p) where {*,-} is the séquence in R such that
Vi = u 2 (tj) for ail /. Since g, -> /, this implies that tiQ x (p) -> 0 for ail pcR 3

.

Hence /,- -> 0, which means that u ( = u 2 (ti) -> /. Also since g,-y = hiVjyeXfor
ail / and X is //-invariant, we get that vjeX for ail /. This shows that c)

holds.

Case a) In this case we see that X and Y are two closed subsets of G/Y
invariant under H and V x respectively, Y is compact and mY nX is

nonempty (as it contains my) for ail me M. Further since r is a minimal
V

x -invariant closed subset, V
x y is dense in Y for ail yeY. Under thèse

conditions Lemma 1 implies that gYCX for ail ge HMV X n N(V X ), N(V X )

being the normaliser of V x in G. By Proposition 3, HMV X contains either
XK

2

+ or V~ . Since V2V
2 C N(V X

) we now get that FF
2

+ Yor V~ Yis contained
in X.



Case b) In this case we hâve Wy nXC Hy. Since Hx is dense in X this
implies Hx n //y is nonempty and hence Hx = Hy. We next observe that
y^i -Hyisa closed /} Fj -invariant subset of X x , not containing j>. Since X x

is a minimal nonempty closed DV X -invariant set, this implies X x - Hy is

empty. Hence X x C //y. Since by Proposition 6 H/DV X
is compact, there

exists a compact subset KofH such that H= K(DV { ) (cf. [9], Ch. V for
instance). Since X x

is DV X -invariant J^ = DV X X X and hence
TCYi = K{DV X )X X = HX X which shows that the set KX X

is //-invariant. But
since K C H and X x

C //y, JCA^ C Hy and hence llj being //-invariant
implies that KX X = Hy. On the other hand since K is compact and X x is

closed, KX X
is closed. Thus we get that Hy is closed. As X= Hx and

Hx = Hy this implies that X = Hx, thus settling the case.

Case c) By replacing Qbya smaller neighbourhood if necessary, we may
assume that the following conditions also hold for Q: i) Q is open, ii) any g eQ
has only positive entries on the diagonal and iii) any élément of Qy can be

expressed uniquely as gy, where g eQ; the last condition can be ensured since
F is discrète. We now first deduce that Qy n DV x y is contained in

(QnDV)y. Let geDV x be such that gyeQy; say gy = wy where weQ.
Then for ail / we hâve gv t y = (gVig~ l )gy = (gVig~ l )wy. Since Q is a

neighbourhood of w and gVjg ~l~ l w-»w there exists aj such that gUjg ~ l weQ.
Since gvjg ~ l wy = gUjy eX the last assertion and the property of Q imply
that gVjg "'we HV 2 . Also similarly, since wy =gyeX,we HV 2 . Let heH
and ue V2V

2 be such that w= hv. Then gujg' l hu eHV 2 . Since ge/^Kj CH
and [ieF 2 ,

this implies that Ujg ~ l he HV 2 . Since Uj e V2V
2 — {/} and g~ l heH,

by Proposition 4, this implies that g~ l h is an upper triangular matrix. Since

geDV x this yields that h is an upper triangular matrix. By the restriction on
Q the diagonal entries of w = hv are positive and hence the same holds for
h. It is easy to see that an upper triangular matrix with positive entries on the

diagonal belongs to H only if it belongs to DV X . Thus heDV x . Therefore
w = hveDV and hence gy = wye(QnDV)y, as claimed.

Now suppose that there exists an open neighbourhood Qi of / such that
Q x C Q,Q X

is compact and Q
x y n DV x y C (Q x nDV x )y. Since X x

is a

minimal nonempty closed D V x -invariant subset, DV x y =Xx and in view of
this, the last condition readily implies that Q

x y nXx C (Q x nDV x )y. But
then (X x - DV x y) is a closed DV X -invariant subset disjoint from Q^ and
hence by minimality of X x as a nonempty closed D V x -invariant set, we get

that X\ — DV x y is empty. As X x
is DV X -invariant, this implies that it is a

£)Fi-orbit. But by Proposition 7 b) there are no closed D^-orbits and hence



this is a contradiction. Thus there does not exist any neighbourhood Qi as

above.
Next let Qi be any open neighbourhood of / such that Qi C Q and Q {

is compact. Then by the above observation there exists geDV { such that

gyeQ { y - (Qi nDV { )y. Since Qj'nDKj C (QnDF)j and since any

élément of Qy can be expressed uniquely as wy where weQ, the preceding
conclusion implies that there exists we (Q { n DV) - DV { such that gy = wy.

Since this holds for every Qj as above we get that there exist séquences {w,}
in DV - DV X and {g,-} in £>Xi such that w7w

7
-> / and w,j = g { y for ail /. For

each i, w { can be expressed uniquely as PiV 2 {ti) where PieDV x and //eR; we

see that U 0 for every / and t t -> 0.

Let A = {geZ>K|gy = j}. Then A is a discrète subgroup of DV and

therefore by Lemma 5 it is either contained in V or it is a cyclic subgroup
generated by an élément of the f orm vdu ~l~ l where veV and d e D. It is easy

to see that for ueV and deD,O is an isolated point in the subset

{teR\DViU 2 (t) contains vd j v~ l for some jeZ} of R. For ail iwe hâve

g7
l PiVi(ti) = gf l

w t eA with gf l Pi€DV u ti =é 0 and -> 0 and hence the

preceding assertion implies that A is not generated by an élément of the form
vdv~ x with ve Kand deD. Hence A is contained in V. Thus gi l

PiU 2 (tj) e V

and therefore gj~
l

pte Vn {DV X
) = V { for ail /. Since g^PiV 2 {ti)y =y, this

yields that v 2 (ti)yeY for ail /. Hence u 2 (ti)Y = v 2 (t i )V l y = u 2 (t { )V { y

= V
x v 2 {ti)y = V x Y, = Y namely Yis v 2 (ti) invariant, for ail /. Since {tj} is

contained in R- {0} and £
;
- - 0 the subgroup generated by {tj\i =1,2, ...}

is dense in R. Hence the preceding assertion implies that u 2 (t) Y = Y for ail

/eR, namely V2V
2 Y = Y. In particular V2V

2 Yis contained in X. This complètes
the proof of the Proposition.

Like Proposition 7, our next proposition also uses, in the gênerai case,
Theorem A. B on the asymptotic behaviour of trajectories of unipotent one
parametersubgroups of G on G/Y. Also as in the case of that Proposition
the proof hère goes through without the need for Theorem A. B if a certain
set, namely HgT/T as in the statement, is assumed to be compact rather
than only closed. This observation has some relevance to what one can prove
about values of Q, without involving Theorem A. B; we shall amplify this later
(see Remark 1).

9. Proposition. Let geG and Q be the quadratic form on R3R 3

defined by Q(p) = Qo(gp)Q 0 (gp) for ail peß\ Suppose that HgT/T is

closed. Then there exists c ± 0 such that cQ is a rational quadratic form.



Proof. As before let Sbe the space of 3x3 symmetric matrices with real
entries. Let A = (g~ l Hg) n Y and let F be the subspace defined by

We see that o0o 0 is the matrix of the quadratic form Q o and hence '/zoo/z = o0o 0

for ail heH. Since gAg~ l C H, this implies { go o geF. In particular Fis of
positive dimension. Let {^, ••-, l, k } be a basis of F, where k lis the

dimension of F. Let W= S k = S®S® •*• ©S (k copies) and let %eW
be the élément (Ç l 9 •••,!;*). We define a map /: G/A -> )^ by /(xA)
= ('x~2 <;i x~*, •••, 'x ~ ] ~ * ); it is easy to see that the map is well-defined
and continuous.

Let {u(t)} be a unipotent one-parameter group of matrices
contained in H. We assert that there exists a compact subset K of

HgT/T such that {teß\u(t)gT eK} is an imbounded subset of R.

The assertion is obvious if HgT/T is compact. In the gênerai case
it follows from Theorem A. 13 in the Appendix (known as Margulis'
lemma) and the assumption that HgT/T is a closed subset of G/T.
Since there is a canonical homeomorphism of HgT/T onto (g ~ l Hg)/A given
by hgT)— > (g~ l hg)A for ail heH, the preceding assertion implies that there
exists a compact subset K x of (g ' l Hg)/A such that { t eß|g~l u (t)gA e K x

} is

unbounded; hence the set R:= {t eß\f(g~ l u(t)gA) e f{K x )} is also
unbounded. Since /is continuous and K x

is compact f{K x ) is compact. On
the other hand

is a polynomial map of R into W. Since R is unbounded and

f(K x ) is compact, the map must be a constant map. Thus f(g~ l u(t)gA)
= /(A) for ail teR. Comparing the components we get that

'g'ui-tyg-^jg^ui-Og = for ail y= 1,-',k and teR.

For each j = 1, - •-, k put r| 7 = 'g" l^/,?" 1

. Then by the above observa
tion,for any unipotent one-parameter group of matrices {«(/)} contained in

H, we hâve ( u(t)r[jU(t) = i\j for ail j = 1, •••,/: and teR. In particular this
holds for {(J\(t)} and {^îCO} m tne place of {w(o}. But it is easy to see that
for o eS the conditions '^(Oo^iW = ° an d / /; 1 (0 = o imply that o is

a scalar multiple of 00.o 0 . Since r^, •••,r| yt satisfy thèse conditions and are

linearly independent, this implies that k = 1 and r^ = co 0 for some c=£ 0.

Hence Fis the one-dimensional subspace spanned by £,i = l go o g.



Since A C Y = SL(3, Z) we see that Fis the subspace defined by a System
of linear équations with integer coefficients; the entries of o are the variables.
As F ± {o}, the System of équations has a nonzero solution and hence, the

coefficients being integers implies that there exists a nonzero solution in

integers. Thus F contains a nonzero intégral matrix. Since 'gG O g spans Fwe
get that there exists c 0 such that c { go 0 g is an intégral matrix. Since

Q(p) = Qo(gp) for ail pe R 3
,

{ gOog is the matrix of the quadratic form Q and

therefore the preceding assertion implies that cQ is a rational quadratic form.
This proves the proposition.

The above argument to deduce from the one dimensionality of F the

rationality of a multiple of 'gGog, was pointed out by A. Borel. Our earlier
argument involved Galois automorphisms. While the two arguments are essen
tiallyéquivalent, the présent form is evidently more suitable.

Before embarking on the proof of the theorem we also note the following
simple observation; it would be appropriate to formulate it for ail R n

, n 2.

10. Lemma. Let Q be a nonempty open subset of R", where n 2,

such that for ail weQ and t> 1,/weO. Then Q contains a primitive
intégral élément.

Proof. Since Qisa nonempty open subset of R77R 77 and n 2 there exist
p, qeQ such that p and q are rational (that is, ail their entries are rational),
linear ly independent and tp +(1- t)q eQ for ail te [0, I]. By replacing them
by the multiples kp and kq where A: is a suitable positive integer we may assume
that p, qeZ n

. The condition on Qasin the hypothesis then implies further
that sp + tqeQ for ail s, t 0 such that s+t 1

.

There exists y eSL(n, Z), namely a n x n intégral matrix with détermi
nant1, and a natural number m (namely the g.c.d. of the coordinates of p)
such that yp = me x , e x , •••, e n being the standard basis of R". (This folio ws
from [13] Ch. I, §3, Theorem 5, for instance). Let yq be expressed as
m x e x + m2m 2 e 2 +•••+ m n e n , where m u - -,m n eZ. Since p and q are
linearly independent so are yp and yq and hence there exists / 2 such that
mi 0. Let p 0 be a positive prime number such that p 0 m { and p 0 does not
divide m,. Let r- p o e } + m2m 2 e 2 + ••• + m n e n = {po-m x )e x + yq. Then
as Pourrit, risa primitive intégral élément and hence so is y ~ l r. But y~ l r

= y~ l (p 0 -m l )e l +q= m - l (p o -m x )p +q. Since p 0 -mx 0, by our
remark above this shows that Y" l^^^. This proves the Lemma.

Proof of the Main Theorem. We begin by noting that it is enough to prove
the theorem for n = 3; an elementary argument for this simple observation,



well known to experts, may be found in the beginning of the proof of
Theorem 1 in [7] - we shall not repeat it hère. We now consider the case of
n=3. Let Qbea nondegenerate indefinite quadratic form on R 3

. The
matrices of both Q and Q o hâve to be équivalent (cogradient) to one of

d{- 1) or - d{-\) (cf. [11], Ch. V, Theorem 6 or [21], §12.5). Hence there
exists a nonsingular matrix p, say p = Kg where Xeß* and g e G, such that
either Q(j>) = Qo(ç>p)Q

o (ç>p) =X 2X 2 Q 0 (gp) for ail peR 3 or Q(p) =- QQ
o(ç>p)0 (ç>p)

= — X 2 Qo(gp) for a\\p e R 3
. In view of this, in proving the theorem, without

loss of generality we may assume Q to be the quadratic form defined by
Q(P) = Qo(gp) for ail peß\ where geG.

Now let p be the set of primitive intégral vectors; viz. primitive éléments
in Z 3

. We see that TP=P,T being the subgroup SL(3, Z) as before. Now

Hence by continuity QQ 0 (HgTp) is contained in Q(p). Since Q is not a

multiple of a rational quadratic form, by Proposition 9, HgT/T is not
closed. Hence by Proposition 8 there exists ye HgT/T such that either
V^y or V^y is contained in HgT/T. Suppose that V^y is contained
in HgT/T. Let go^G be such that y= gOT.g 0 T. Then V£ go is contained in

HgT. Hence QO(VQ 0 (V^ gg o p) C QO(HgTp)Q

0 (HgTp) C Q(p). We shall show that QO(V^Q
0 (V^ g o p)

=R. Let seR be given and let s 0 = min {s, o} . Consider the set

Q= {pER 3 \Q o (g o p) <s0 and Qi(g o p) > o} . Then Q satisfies the condition
of Lemma 10 and therefore contains a primitive intégral élément. Thus
there exists pEp such that QoigoP) <$o s and Q\(goP) >0.
Let f= (.s-Qoteo^))/2QiteoP). Then t>o and, by (iii), ÔoMOSo/?)
= QoigoP) + 2/Qi (£o/?) =_s. Thus se Q o (V^ g o p). This shows that
ÔoC^goP) = R- Hence Q(p) = R or equivalently Q(p) is dense in R, as

desired. A similar argument works if V^y is contained in HgT/T. This

proves the theorem.

Remark 1. It was noted earlier that while in the gênerai case the proof s

of Propositions 7 and 9 (and hence also Proposition 8 as it dépends on

Proposition 7) involve Theorem A. B, one can do without the latter under
certain compactness conditions in each case. Specifically, Propositions 7 and 9

were proved without recourse to Theorem A. B when X and HgT/T as in their
respective statements are compact. Also proving Proposition 8 when the set

X as in its statement is compact involves Proposition 7 only for compact
subsets. We shall refer to the particular cases of Propositions 7, 8 and 9 with
the appropriate set as above assumed to be compact, as the restricted versions



of the respective propositions. It may be of some interest to note that one can

indeed deduce the following resuit on values of quadratic forms just from thèse

restricted versions. "Let g be a nondegenerate indefinite quadratic form on

R 3

, n>3, which is not a multiple of a rational quadratic form (just as in the

Main Theorem). Then for any s > 0 there exists apeZ"-{o} such that
| Q(p) | < s". We see this as follows. Firstly, as in the case of the main theorem,
this needs to be proved only for n = 3 and Q defined by Q(p) = Qo(gp) for
ail pe R 3

, where geGis fixed. Since Qis not a multiple of a rational form,
the restricted version of Proposition 9 implies that HgT/T is not compact.
Therefore either HgT/T is - compact and HgT/T is not closed or HgT/T is

noncompact. If the former condition holds then the restricted version of Pro
position8implies that there exists ye HgT/T such that either FF

2+2

+
y or V2V

2 y

is contained HgT/T and then the proof can be completed just like that of the

Main theorem. Now suppose that HgT/T is noncompact. Then by the Mahler
criterion (cf. [13] Ch. 3, Theorem 2 or [2] Ch. V - see also the following
Appendix for some détails) there exist séquences {h ( } in H and {/?,} in
Z3Z 3 - {0} such that h^m -> 0. Then Q( Pi ) = QQ

o(gPi)0 (gPi) = QoQtigpi) -> 0 and
hence, given s > 0 there exists p = p t for some / such that | Q(p) | < s; this

proves the claim.
The above assertion which is the same as Theorem 1 of [20] proves the

Oppenheim conjecture for the quadratic forms for which there does not exist

any/?eZ" - {0} such that Q{p) = 0. For the gênerai case some more work
is needed (cf. Theorem Yin [20]). Using Theorem A. B not only takes care of
this difficulty but enables one to get a primitive intégral solution.

Remark 2. The study of orbits of unipotent one-parameter subgroups in

[7] and [8] also leads to some more results on values of quadratic forms, than
the Main theorem hère. One of thèse, involving the quadratic form and also
the corresponding bilinear form has already been mentioned in the introduc
tion(see (ii)). In [8] we also prove the following. Let Q and Qb e two quadratic
forms on R3R 3 such that no nonzero linear combination of Q and Q' is a

rational quadratic form. Suppose that there exists a basis f u f 2 ,
/3/ 3 of R3R 3

such that

for. ail pi,p 2,P32 ,P3 eR. Then for any a, b eR, b>o, and B>o there exists a

primitive intégral point p such that



As yet it does not seem that thèse results would be accessible by elementary
arguments.

The study of flows on homogeneous spaces leads also to various other
number theoretic results, which we shall not go into hère. We refer the reader
to the survey articles [4] and [19] for some of the ideas involved.

Appendix

Trajectories of unipotent flows and minimal sets

We prove hère a 'qualitative version' of Theorem 1.1 of [7] and use it to
deduce the gênerai case of Proposition 7. We also deduce a resuit used in the

proof of Proposition 9. The proof of the 'qualitative version', namely
Theorem A.l below is in the same spirit at that of Theorem 2.1 of [7] and the
earlier related results in [16], [3] and [s]. But the exposition hère is simpler,
especially on account of the weaker formulation.

We begin by setting up some notation. As before we dénote by R", n 2,

the n-dimensional vector space of n-rowed column vectors with entries in R,

by e x , •••, e n the standard basis of R" and by Z n the subgroup generated by
{^î > '••>£«}• By a lattice in R" we mean a subgroup generated by n linearly
independent éléments in R n

; a discrète subgroup Àofß"isa lattice if and
only if RVA is compact. (Cf. [13], Ch. I, §3, Theorem 2.)

We equip R" with the usual inner product < , > with e\, • ••, e n as an

orthonormal basis, and the corresponding norm | • |
. This induces an inner

product on each (vector) subspace of R". For any subgroup À of R" we

dénote by ARA
R the subspace of R spanned by A. Let A be a discrète subgroup

of R". Then there exists a basis X\, ••*, x r , where r= dimension of A R ,
such

that Ais generated by {x { , •••, x r
} (cf. [13], Ch. I, §3, Theorem 2). Let tbe

a linear transformation of ARA
R such that t ~ l x { , •••,t ~ l x r is an orthonormal

basis of A R , with respect to the induced inner product. The number | det t|is
independent of the choice of the basis X\, • • •

, x r and the linear transforma
tiont, so long as the above conditions are satisfied; the number is called the

déterminant of A and is denoted by d(A).
As usual let SL(n, R) be the group of n x n matrices with entries in R and

déterminant 1
. By a unipotent one-parameter subgroup of SL(n, R) we mean

a unipotent one-parameter group of n x n matrices (-they are clearly contained
in SL(n, R).) We now state the theorem on orbits of lattices under unipotent
one-parameter subgroups, needed in the proofs of Propositions 7 and 9.



A.l. Theorem. Let n^2 be fixed. Then for o>o there exists a

ô>o such that for any lattice A in R n
, any unipotent one-parameter

subgroup {u t
} teR of SL{n, R) and any T 0 either there exists s T

such that I u s x | ô for ail xeA - {0} or there exists a nonzero
(discrète) subgroup A of A such that d(u t A) <a for ail te[o,T\.

We introduce some more notation and prove some preliminary results
before going to the proof of the theorem. For any lattice A in R" we dénote
by S/ (A) the set of ail nonzero subgroups of the form A n W, where W is

a (vector) subspace of R"; such a subgroup is called a complète subgroup of

A. For each lattice A we equip V(A) with the partial order given by the

inclusion relation on subgroups and for any totally ordered subset S of y (A)
define

the subgroups belonging to Se (S, A) are said to be compatible with S.

We next observe some properties of the function d on class of discrète
subgroups of R n

. It is easy to see that if Aisa discrète subgroup gêner ated
by r linearly independent éléments x u •••, x r then the déterminant of the
r x r matrix (< Xj , Xj >) (with < Xj , Xj > in the / th row and j th column) is

d 2 (A). Under the same conditions, d 2 (A) also coincides with the sum of

squares of the déterminants of ail r x r minors of the n x r matrix with
x i9 ---

9 x r as its columns. This may be verified either directly or using
exterior products (if the reader would wish to save trouble, it may be men
tionedhère that Propositions 7 and 9 involve the contents of the Appendix
and in particular thèse observations only for n = 3). Thèse characterisations
enable us to deduce various properties of d needed in the sequel.

A. 2. Lemma. a) For any lattice A in R" and any p>o the set
{ A e y (A) | d(A) <p} is finite.

b) Let A be a discrète subgroup of R n
. Let xeR n -AR and let A'

be the (discrète) subgroup generated by A and x. Then d(A')
< II * II d(A).

Proof a) Clearly, for any nonsingular matrix g there exist constants a

and b such that for any discrète subgroup A, ad (A) d(gA) bd(A). Since
any lattice is of the form gZ n for some nonsingular matrix g, this shows that
it is enough to prove a) for A = Z". If A is a subgroup of Z" generated by
r linearly independent éléments x { , •••, x r , then the déterminants of ail rxr
minors of the nxr matrix with columns x u -••, x r are integers. The condi



tiond(A)< p then implies, by one of the characterisations of d, that there
are only finitely many possibilities for the values of the déterminants of the
minors. The finiteness assertion in the Lemma therefore folio ws from the fact
that if the corresponding r x r minors of two n x r matrices Ç and n hâve same
déterminants then the columns of £, and r\ span the same subspace of R".

ii) This is obvious, for instance, from the characterisation of d(A) in terms
of the déterminants of r x r minors of the n x r matrix whose columns are

linearly independent and generate À.

A. 3. Lemma. Let A be a nonzero discrète subgroup of R n and let

{u t } be a unipotent one-parameter subgroup of SL{n, R). Then d 2 (u t A)
is a polynomial in t of degree at most 2n{n-\). Further, d{u t A) is

constant (that is, d{u t A) = d(A) for ail teR) if and only if ARA
R is

{u t
} -invariant (that is u t A R =AR for ail teR).
Proof. If visanxn nilpotent matrix then by the Jordan canonical form

v" =0. This implies that for any unipotent one-parameter subgroup {u t } of
SL(n, R) and any xeR n

, the coordinates (entries) of u t x are polynomials in
t of degree at most n - 1. Now let A be a discrète subgroup generated by r

linearly independent éléments x x , •••, x r . Then d 2 (u t A) is the déterminant of
the rxr matrix (< uu t Xi, u t xj>). By the preceding remark each entry
< uu t Xi,u t Xj> is a polynomial in t of degree at most 2(n-l). Hence the
déterminant is a polynomial of degree at most 2n(n—l).

Next let A be a discrète subgroup such that d{u t A) = d(A) for ail teR.
Let x u -•- ,x r be linearly independent éléments generating A. The détermi
nantof each rxr minor of the nxr matrix with columns uu t X\ , •••, u t x r

is

a polynomial in t. Since sum of squares of thèse is d 2 (u t A) = d 2 (A) for ail

teR, it follows that each of them is constant. Thus for each teR any rxr
minor of the nxr matrix with columns u t x x , •••, u t x r has the same déter
minantas the corresponding minor in the n X r matrix with columns
X\, - —,x r . This implies that for any t3t

3 u t x x , •••, u t x r span the same subspace
as X\ , ••' ,x r , or equivalently u t A R = A R . This proves the Lemma.

For any meN we dénote by S^ m the set of ail nonnegative polynomials
of degree at most m; 'nonnegative' refers to the values being nonnegative —

some of the coefficients could be négative. For the proof of Theorem 8 we

need the following simple properties of nonnegative polynomials.

A. 4. Lemma. a) For any meN and X>l there exists s>o such
that the following holds: if Pe m and there exists se[o, 1] such that
P(s) 1 and P(l) <8 then there exists te [1, X] such that P(t) =8.



b) For any meN and (i >1 there exist constants Si ,
s2s 2 >0 such

that the following holds: if PeJ^ m ,P(s) 1 for ail 5 6 [o,l] and

P(\) =1 then there exists i, 0 / m, such that Si P(t) <s 2 for ail

Proof It can be seen that given an interval / of positive length
and a c>o there exists a constant M such that any Pe J^ m such that

P(t) c for ail tel, has ail the coefficients of absolute value at most M; in

particular, any séquence of polynomials bounded by c on /has a subsequence
converging to a polynomial in J^ m . Now if a) does not hold there must exist
a séquence {P k } in J* m such that P A (O - 0 uniformly on [I,A.] but the

supremum of each P k on [0, 1] is at least 1; this is impossible by the above
observation. To prove b) we first observe that existence of the upper bound
e? follows from the bound on the coefficients as above, when we take

/= [0, 1] and c= 1. Thus if b) does not hold there exists a séquence {P k } in
J* m such that for each k, P k (s) 1 for ail se [0, I], Pk(l)P

k (l) =1 and
inf {P k (t)\te[\i 2i +l, \x 2i+2 ]} ->0 as k^oo, for each / = 0, ••-,/??; this is

impossible since the limit of any subsequence would be a nontrivial polynomial
in jP m with at least m+ 1 zéros.

For the rest of the argument we fix some constants as follows: Let n e N

and fi >1 be arbitrary. Let m= In 1 and X>l be such that
(X-l) (v.-l)/ +2. Let o<a<l be such that condition a) as in

Lemma A. 4 holds for s = a2a
2 with m and Xas above and let 0 < (3i < 1 < (3 2

be such that condition b) of Lemma A. 4 holds for Si = $] and s2s 2 = $\ with
m and \i as above.

A. 5. Proposition. Let {u r
} be a unipotent one-parameter subgroup of

SL(n, R), A be a lattice in R" and S be a total ly ordered subset of
y (A). Let t>o and T 0 be such that for each Oc _?-"(S, A) there
exists a te [0, 7] such that d(u t <&) x. Then either d(u T s) cxt for
ail Og j?-\S, A) or //?m? erâf a Ae A) and a T

x e [T, (2 - \i ~ l )7]
5-wc/z r/?^/ 1 r/ze following conditions are satisfied:

i) Tap! t/(«,A) xa(3 2 /or a// /e[^,T+ iiC^ - T)]

ii) for each Oe £ "(5, A) r/zere ex/^ re[r, T^ .swc/z r/z^
d(u t <f>) ai.

Proof Let ={Oe (s^A)|^(w r O) < ai}. If j^ is empty then we
are through. Now suppose that J^is nonempty. By Lemma A. 2 a) JMs finite;
say y ={<&!,• •-, OJ, where 1. For each j, l j q, we choose



tjE [T, XT] as follows: Observe that d(u T ®j) < ax and that there exists, by

hypothesis, a te[o,T] such that d(u t Oj) x. Hence applying Lemma
A. 4, a) to the polynomial t\— > d 2 (u tT Oj)/T 2 we conclude that there exists a

tjE [T, XT] such that d{u tj s>j) = ax; taking the smallest such number we may
also assume tj to hâve the further property that d(u t ®j) < ai for ail

te[T,tj].
Next let I<k q be such that tj <4 for ail I<j<#. We

choose À= <Ê>£. Then we hâve d(u t A) ai for ail te[T, t k ] and

d(u, k A) = ax. Hence by Lemma A. 4 b), applied to the polynomial
t\-^d 2 (u {tk _ r)t+T A)/a 2 x 2

,
it follows that there exists an / such that 0 / m

and

(*)

where T x = T + u. 2/+l fe-^) and T2T
2 = T + [i 2i+2 (t k -T). Then

since / m, t k e [T, XT] and (X-l) (|i- l)/i 2m +2. This shows that
T x e [T, (2- jlx

~ l )T]. Also (*) shows that condition i) as in the Proposition is

satisfied for A. Condition ii) is obvious from the construction; if O $ J^then
d(u T Q>) ai and if Oc/, say O=O7 where 1 j q, then we hâve
T tj <tk T x and d(u t .<&j) = ai, which vérifies the condition for ail

O e A). Hence the Proposition.

A. 6. Corollary. Let {u t }, A, S, t>o tfftd r 0 be as in Proposi
tionA. 5. L<?^ /? be the cardinality of S. Then there exist a totally ordered
subset M of S^ (A) containing S and a Re[T,\xT] such that the

following conditions are satisfied:
1) a^-^T < d(u R O) ap 2 x /or a// OeM-S
2) d(u R ®) a^-^T for ail ®e$f(M,A).

Proof We proceed by induction on (n -p). If p=n then Sisa maximal
totally ordered subset (so 5f(S, A) is empty) and the desired assertion holds
for M = S. We now assume the resuit for p + 1 in the place of p and consider
A, S, t and T as in the hypothesis. If d(u T <&) ai for O e A) then we

can choose M=S and R= T. If not, then by Proposition A. 5 there exist

Ae &(S, A) and T x e [71,7
1

, (2- \x
~ l )T] such that xap! d(u t A) xa(3 2 for ail

te[T u T+ \i(Ti-T)] and for each O e if (5, A) there exists a fe[7; 7^]



such that d(u t <s>) ai. Put A2A
2 = u T A, S { = {u T &\® =Aor Oes} and

Ti = ai. Then A! is a lattice in R", Si is a totally ordered subset of 5^ (Ai)
and the second part of the preceding conclusion implies that the hypothesis
of the corollary applies to A u S v x l and T { - Tin the place of A, S, x and

T respectively; we note that any *F e sf(S ï9 Ai) is of the form
i/ r O, Oc A). Hence by the induction hypothesis there exist a subset M x

of 5^ (Ai) containing 5i and a i?
2 e [7i -7, n(^i - such that

a^-^-^Piii d(u Rl A { ) aP 2 T! for ail A l eM l -S l and d(u Rl &)

a («-D Tl for ail Oeif(M l5 Ai). Put M= {w_ r Aj| Ai eMJ and

R= T+ R { . Then 7 £ 7+ 0.(7^ -T) \iT, since T { e [T, (2- |i ~ l )T].
Observe that M-S= {O|O =Aor u T^eM x - S { }

. The choice of A,

using Proposition A. 5 shows that Condition 1) in the conclusion of the

Corollary holds for O=A. If u T ®eM { -Sx then we hâve d(u R <s>)

=
11

ww r O)e[a (/7 -^- 1) PiT lj a(3 22
TT

1
] C [a(/|-^PiT,a (/| -^PiT, a(3 2 T], since ii = oit and

a < 1. Thus Condition 1) holds for ail O eM - S. For Oe^(M, A) we hâve

d(u R s>) = d(u Rx u T <&) a in ~ p - l h { = a("- p h, since w r O esf (M, AO and

ij = ai; this shows that Condition 2) is also satisfied. This proves the

Corollary.

Proof of Theorem A.l. Let n and o be as in the hypothesis of the

theorem. Let \i > 1 be chosen arbitrarily and let a, pi and p2p 2 be the constants
chosen ahead of Proposition A. 5, depending on n and |v; recall that o<a<l
and o<Pi<l< p 2 . Let t= min{o, o~ 1

} and let 8= a/7pia
/7 piP 22

~ I

x.

Now let {u t
} be any unipotent one-parameter subgroup of SL(n, R), Abe

any lattice in R" and let T obe such that there does not exist any nonzero
subgroup A of A such that d(u t A) < o for ail t e [0, T]. This implies that for
ail Oey (A) there exists xe [0, T] such that d(u t <&) o t. In other
words, the condition in the Corollary holds if we choose 5 to be the empty
subset. Hence by the Corollay there exists a totally ordered subset M of S^ (A)
andai?e [T, \xT\ such that a^x d{u R o>) ap 2x2 x p2p

2 for ail OeM and
d(u R <&) a^x for ail Oe^(M,A). Now let x be any primitive élément in A
and let A be the subgroup generated by x. Then A e S/ (A). If x is contained
in every élément of M then we see that AeMu Sf(M,A) and hence
I u R x I= d{u R A) a"PiX 8. Now suppose that xis not contained in
some éléments of M and let O be the largest élément of M not containing x.
Let ¥ be the smallest complète subgroup of A (élément of S/ (A)) containing
O and x. Then we see that ¥ eM u A), as every élément of M con
tainingOas a proper subgroup also contains x. Now, by Lemma A. 2 b)
d{u ß^) I u R x 1 d(u R O). But since OeM and ¥eMuif (M, A) we hâve



d(u R <3>) p2p
2 and diuß^V) a^x. Thus we get that || u R x |> a A7 (3

1 (3
2
" 1

i
=ô. Hence | u R x | ô for ail primitive xinA and hence the same holds for
ail xe A - {o}, thus proving the Theorem.

A. 7. Corollary. Given o>o there exists a neighbourhood Q of 0

in R n such that for any unipotent one-parameter subgroup {u t
} in

SL(n, R) and any lattice A in R n one of the following holds:
1) {/ 0\u t AnCi= (0)} is an unbounded subset of R.

2) /7zere ex/s/s a nonzero subgroup A of A such that the subspace spanned
by A is {u t

} -invariant and d{u t A) = d(A) <a for ail teR.

Proof Let ô>obe such that Theorem A.l holds for the given o and
let Q= {xeß^l |x| < ô}. Let {u t } and Abe as in the hypothesis and

suppose that Condition 1) does not hold. Then by Theorem A.l there exists
a nonzero subgroup AofA such that d(u t A) <o for ail t 0. Since d 2 (u t A)
is a polynomial in t, this implies that d(u t A) is constant; i.e.
d{u t A) = d(A) <o for ail teR. By Lemma A. 3, this implies that the

subspace ARA
R spanned by A is {wj -invariant. This proves the corollary.

We next relate Theorem A.l and Corollary A. 7 to behaviour of orbits of

unipotent one-parameter groups of SL(n, R)/SL(n, Z), where SL(n, Z) is the

subgroup consisting of intégral matrices. This involves the Mahler criterion
(sometimes also called Mahler's sélection theorem) recalled below. The reader

may refer [2], [13] or [24] depending on the background; one could also consult
Mahlers original paper [15].

Let Sfn
be the set of ail lattices in R". On S/n one defines a topology by

prescribing that for each basis x x , •••, x n of R n and s>o the set

Q(x 1? •—,x n ,E), of ail lattices A such that A is gêner ated by a basis

yu ' ",y n of R n satisfying [ x-t -yt | <s for ail /, be open. This indeed
defines a first countable Hausdorff topology on Jz^. The Mahler criterion
asserts that if {A/} is a séquence in 5/n and there exist c and ô such that for
ail /, d(Ai) <c and \\ x\\ ô for ail xc A, - {0} then {A/} has a convergent
subsequence. The criterion implies in particular that Jzf

n
is locally compact.

Now let °k
n be the subset of S/n consisting of ail lattices of déter

minant1.Then °2ï
n

is a closed subset, as dis continuous, and in particular
it is locally compact. For each geSL(n,R) and Ae^,gAe^ and the

map (g, A) !- gA defines a continuous action of SL(n, R) on °fc
n . It is easy to

see that the action is transitive and that SL(n, Z) is the isotropy subgroup of
the lattice Z", under the action. Hence SL(n, R)/SL(n, Z), equipped with the

quotient topology, is homeomorphic to ty
n via the correspondence



g SL(n,Z)^>gZ« for geSL(n,R) (cf. [9], Ch. V, §1, Theorem 8 or [10],

(1.6.1)). The Mahler criterion therefore implies that for any ô > 0 the set

is a compact subset of SL(n, R)/SL(n, Z). Theorem A.l and Corollary A.7

therefore imply the following

A. B. Theorem. Let n^2 be fixed. Then for any o>o there exists

a compact subset K of SL(n,R)/SL(n, Z) such that for any

x= gSL(n, Z) e SL{n, R)/SL(n, Z), where geG, and any unipotent one
parametersubgroup {u t } of SL(n,R) the following conditions are

satisfied:
a) for any 7^o either there exists a t^ T such that u t x eK or there

exists a nonzero discrète subgroup A of Z" such that d{u t gA) <o
for ail te[o, T],

b) if {t 0\u t xeK} is bounded then there exists a nonzero subgroup A

of Z n such that the subspace spanned by A is {gg ~ l u t g) -invariant
and d(u t gA) = d(gA) < o for ail teR.
We next deduce the gênerai case of Proposition 7, which we had deferred

until proving the above theorem. We follow the notation G
y F, KlsK l5 DV X etc.,

as in the main part. The diagonal matrix diag (X, 1, X ~ l ) where Xeß* will be

denoted by a(X), rather than d(X), to avoid confusion with d(A) for discrète
subgroups À. Also as before we dénote by e x , e 2 ,

e3e
3 the standard basis of R 3

.

The subspaces spanned by {e\} and {e u e 2 } are denoted by W x and W2W
2

respectively.
We first prove part b) of Proposition 7, namely the following:

A. 9. Proposition. There are no closed DV x -orbits. Any nonempty closed
DVi-invariant subset contains a minimal nonempty closed DV x -invariant
subset.

Proof. Let AT be a compact subset of G/T such that the contention of
Theorem A. B holds for (n =3 and) o=l. We first show that for any
x=gTe G/T, where geG, there exists o>o such that for ail
X Xo,{tX

0 ,{t 0\u x (t)a(X)xeK} is unbounded. Let geG be given and let
x = gT. Define



Let X X o be arbitrary. Let Àbea nonzero discrète subgroup Z3Z 3 such that
ÀRÀ

R is a proper subspace invariant under the action of g~l a(X) ~ 1 V
x a(X)g

= g~ l V\g- Then gA R is a nonzero proper J^ -invariant subspace. A simple
computation shows that W x and W2W

2 are the only such subspaces. Hence
gA R = W x or W 2 . Both W x and W2W

2 are ûr(X)-invariant and the déterminant of
the restriction of a(X) to either subspace is X. Hence the preceding observation
implies that d(a(X)gA) = Xd(gA). Since gA is contained in either gZ 3 n W x

or gZ 3 n W 2 , by the choice of X o we get that d(gA) Xq
1

. Hence
d(a(X)gA) > À,A 0 I=a.ln view of this vérification for ail Aas above,
Theorem A. B b) implies that {t 0\u x (t)a(X)xeK} is unbounded as claimed;
note that as o = 1, the subgroup A in Theorem A. B b) spans a proper
subspace.

We now deduce the assertions as in the proposition. If possible let x e G/Y
be such that DV x x is a closed orbit in G/Y. Let O= {geG\gx = x} . Then
Oisa discrète subgroup of DV { and the map 0: DV x

/<§> -> DV x x defined by
Q(g&) =gx for ail geDV x

is a homeomorphism (cf. [9], Ch. V, §1,
Theorem 8 or [10], (1.6.1)). By Lemma 6 O is either contained in V x or it is

a cyclic subgroup generated by an élément of the form vdv ~ l where deD and
ueV x . Suppose the latter possibility holds. Then we see that for each
X > 0, V x a(X)<& is closed and ri— u x (t)a(X)<& defines a homeomorphism of R

onto Vxa(X)Q/Q.V

x a(X)Q/Q. Since 0 is a homeomorphism, this implies that for each
X > 0, V x a(X)x is closed and ri— u x (t)a(X)x is a homeomorphism of R onto
Kjtf^x. But, by our observation above, there exists X

o such that for
X X Oi {t 0|y I (Otf(À*)*eÀ'} is unbounded. This is a contradiction since by
the preceding observation it implies that {v x (t)a(X)x\t > 0} n K is a closed
noncompact subset of K. Now suppose Ois contained in F 2.F

2 . Let {X/} be a

séquence of positive numbers such that X^ 00. Then we see that as O C V x ,

for any séquence {tj} in R, {a(X z )^i (/,•)<!>} has no convergent subsequence in

DKj/O. Since 0 is a homeomorphism this implies that for any séquence {?/}
in R, {a(Xi)v x (ti)x} has no convergent subsequence. But this is a contradiction
since Kis compact and for ail large X there exists t 0 such that v x (t)a(X)x
= a(X) (d x (X~ 1 t))x eK. Hence there are no closed DFj-orbits.

Now let X be any nonempty closed DV X -invariant subset of G/Y. We see

that if {Xj}j eI is a totally ordered family (with respect to inclusion) of

nonempty closed DV X -invariant subsets of X (indexed by a set 7), then nielXin iel Xi
is nonempty as it contains niel(XinK)n iel (XinK) and by the above observation each

Xi n K is a nonempty compact subset. Hence by Zorn's lemma the class of



ail nonempty closed DV X -invariant subsets of X has a minimal élément. This

proves the Proposition.
To prove the other part of Proposition 7 we need the folio wing Lemmas.

A. 10. Lemma. Let q=l or 2 and for any p>o let

Then A(q, p) is a closed subset of G/T

Proof It is straightforward to verify that any subset as in the statement
can be expressed as QqaT/TQ

q aT/T for some diagonal matrix a, Q\ and Q2Q 2 being the

subgroups defined by

Now consider the natural action of Gon R 3
. We see that Te {

is a discrète
subset of R 3

. Hence so is T^i for any seR. Let bbea diagonal matrix.
Then be

{ = se { for some seR and hence Tbei is a closed subset of R 3
. The

continuity of the action and the fact that Q x
is the subgroup consisting of ail

éléments fixing e x now implies that TbQi is a closed subset of G, for any
diagonal matrix b. Hence so is Q\aT = (Ta~ l Qi )~ l

, for any diagonal matrix
a. This proves the case of the Lemma with q = 1

. The case of q = 2 f ollows
from a similar argument with the contragradient action, defined by
(g> P) l ~ > 'g~~IP f° r ail pe R 3

,
in the place of the natural action, and e3e 3 in the

place of e\ .

A.ll. Lemma. Let Z be a locally compact space and let {(p t
} te R be a

one-parameter group of homeomorphisms of Z acting continuously on Z.

Suppose that there exists a compact subset K of Z such that for each
zeZ, the sets { t 0 1 <p t z eK} and { t 0 1 cp,z eK} are unbounded. Then
Z is compact.

Proof Let q> = (pi . Replacing K by the larger compact set
{cp s z| -1 <s< l,zeK] if necessary, we may assume that for each
zeZ,{keN\(p k zeK} and {k eN\(p' k zeK} are unbounded subsets of N.
Let K { be a_ compact neighbourhood of K and let Q=Z- K x . Let
B = n^JQ. Then cp ~JB C B C Q C Z - K for ail yeN and hence the
condition on K implies that B is empty. Hence cp£ is empty. Since K { is com
pactthisimplies that there exists m e N such that nJL iCp'"Q is contained in Q.
Then nJ l

=o (p-'Q = nJ^cp-'Q = £ say. Then we see that <pE C E and hence



g>
J E CE for ail yeN. Since ECQCZ-K, the condition on K implies that

E is empty. Hence Z = uu
y

m=lqy(Z-^),m

=I qy(Z-^), which is compact.
Part a) of Proposition 7 now follows from the following Proposition and

the earlier observation for compact invariant sets.

A. 12. Proposition. Any nonempty closed V x -invariant subset of G/T
contains a compact nonempty V x -invariant subset.

Proof. Let Xbea nonempty closed I^ -invariant subset of G/T. For
q = 1, 2 and any p > 0 let A(q, p) dénote the closed subset of G/T as in

LemmaA.lO. In proving the Proposition, by replacing X by a smaller
(nonempty) subset if necessary, we may assume that for each #=1,2 and
p > 0, either X n A(q, p) = 0 or X C A(q, p); note that the sets p) are
V\ -invariant and that for each q the sets {A(q, p)} p >o are mutually disjoint.
Now let o Ibe such that if Xis contained in A(q, p) for some q=lor2
and p>o then o p. Let AT be a compact subset of G/T such that the conten
tionof Theorem A. B holds for this o. We shall show that for each xe X the
sets {t 0\v x (t)xeK} and {t 0\u x (t)xeK} are unbounded; by
Lemma A. 11 this implies that X (rather the replaced set) is compact, thus
proving the proposition. Suppose for some xeX, say x = gT where geG, one
of the sets as above is bounded. Then by Theorem A. B, applied to either
{v\(t)} or {v\( — t)} in the place of {u t } and xas above, it follows that there
exists a nonzero subgroup À of Z" such that ÀRÀ

R is g~l V x g-invariant and
d(vi(t)gA) = d(gA) <o for ail teR. Since o 1 (as in the proof of

Proposition A. 7) we see that gA R =Wx or W2 . This implies that
x = gT eX n A(q, p), where q = 1 or 2 and p is the déterminant of the com
plètesubgroup of A containing gA and spanning the same subspace. By the

assumption on X we now get that X C A(q, p). By our choice of o we then
hâve o p. But this is a contradiction since p d(gA) <o. Hence the sets

as above are unbounded and thus the proof is complète.
As noted earlier Propositions A. 12 and A. 9 yield parts a) and b) of Proposi

tion7, which thus stands proved. We next note the following variation of
Theorem A. B, first proved by Margulis [16], which was used in the proof of

Proposition 9.

A. 13. Theorem. Let n 2 be fixed. Let {u t
} be a unipotent one

parametersubgroup of SL(n,R) and let xe SL(n,R)/SL(n, Z). Then there
exists a compact subset K of SL(n, R)/SL(n, Z) such that
{t 0\u t xeK} is an unbounded subset of R.



Proof. Let ge G such that x= gSL(n, Z) and let A= gZ n
. In view of

Lemma A. 2 a) there exists o >0 such that d(A) > a for ail subgroups A of

A. Hence by Theorem A.l there exists ô > 0 such that for any T > 0 there

exists a s T for which || «5Ç«
5

Ç | S for ail Let

#= {/zSL(w, Z)| 1 /z/? I ô for ail i?eZ" - {o}}. Then by the Mahler

criterion, recalled earlier, K is a compact subset of £L(w, R)/SL(n, Z). From
the choices it is clear that {s 0\u s xeK} is an unbounded subset. This

proves the theorem.
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