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Introduction

Let G be a Lie group and C be a closed subgroup of G. The quotient G/C
is also called a homogeneous space. To each a € G corresponds a translation
T, given by zC — azC. More generally any subgroup A of G yields an action
on G/C where each a € A acts as the translation T, as above. Similarly, given
an automorphism ¢ of G such that ¢(C) = C we can define a transformation
é:G/C — G/C by ¢(zC) = ¢(z)C for all z € G; these transformations are
called automorphisms of G/C. The composite transformations of the form
T, o ¢, where T, is a translation and ¢ is an automorphism, are called affine
automorphisms. :

In the sequel we will be interested mainly in the homogeneous spaces G/C
which admit a finite Borel measure invariant under the action of G. For a
“Lie group G we shall denote by F(G) the class of all closed subgroups C such
that G/C admits a finite G-invariant measure. Discrete subgroups from the
class F(G) are called lattices.

The transformations and actions as above form a rich class of ‘dynamical
systems’. The study of the asymptotic behaviour of their orbits is of great
significance not only because of their intrinsic appeal but also on account
of various applications to varied subjects such as Number theory, Geometry,
Lie groups and their subgroups etc. As may be expected the systems have
been studied from various angles; most concepts of dynamics have been con-
sidered in the context of these systems, with varying degrees of success in
understanding them. My aim in this article is to give an exposition of the
results concerning mainly the asymptoptic behaviour of the orbits such as
their closures, their distribution in the ambient space etc. and discuss their
applications, especially to problems of diophantine approximation.
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§ 1 Homogeneous spaces - an overview

Let me begin with some examples which are particular cases of the general
class of systems introduced above. I will also recall special features of various
classes of homogeneous spaces, which it would be convenient to bear in mind
in the sequel.

1.1. Rotations of the circle: Let G = R and C = Z. Then G/C =
R/Z = T, the circle group, and the translations in the above sense are
the usual rotations of the circle. Also, the usual angle measure is invariant
under all rotations. (Alternatively one can think of the same systems setting
G =T and C to be the trivial subgroup). The translation corresponding to
an irrational number ¢ is called an ‘irrational rotation’; it is a rotation by an
angle which is an irrational multiple of 7.

1.2. Affine transformations of tori: By a torus we mean the quotient
IR™/Z"™ or equivalently the cartesian power ™, n being any natural number. -
Any A € GL(n, Z), namely an integral n x n matrix with determinant +1
defines an automorphism A of R"/Z" by A(v + Z") = (Av) + Z", A being
viewed as a linear transformation via the standard basis of IR". Conversely
any automorphism of IR"/Z™ arises in this way. Composing translations and
automorphisms we get what are called affine automorphisms; see [CFS] and
[Wa) for details.

1.3. Nilflows and solvflows: Let G be a nilpotent Lie group and let
C € F(G). Then G/C is called a nilmanifold and the action of any subgroup
of G on G/C is called a nilflow. Similarly when G is solvable G/C is called
a solvmanifold and the action of any subgroup on G/C is called a solvfiow.

A solvmanifold G/C admits a finite G-invariant measure if and only if it
is compact (see [R], Theorem 3.1). If G is nilpotent then for any C € F(G),
the connected component C° of the identity in C is a normal subgroup of G
(see [R], Corollary 2 of Theorem 2.3); in this case G/C can be viewed as a
homogeneous space of the Lie group G/C?, by the subgroup C/C?; as the
latter is a discrete subgroup, while studying the flows as above for nilpotent
Lie groups there is no loss of generality in assuming C to be discrete, namely
a lattice.

Let me also recall here that if G is a nilpotent Lie group and C is a lattice
in G then [G, G]C is a closed subgroup; see [Mal] and [R] for detailed results
on the structure of lattices in nilpotent Lie groups. The factor homogeneous
space G/[G, G]C is called the maximal torus factor of G/C. Many properties
of flows on G/C turn out to be characterisable in terms of the corresponding
(factor) action on the torus factor.

In the year 1960-61 a conference on Analysis in the large was held at Yale
University and a number of interesting results on nilflows and solvflows came
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out as a result of the interaction of the participants; see [AGH]. The study was
pursued later extensively by L. Auslander and other authors, proving several
results on the structure of solvmanifolds and the dynamical behaviour of
orbits of solvflows (see [Aul], [Au2]). Through the following sections I shall
recall only those of the results which are closely related to the theme of the
exposition.

A particular class of solvflows which are not nilflows turns out to be
of special interest especially on account of certain results of J. Brezin and
C. C. Moore [BM]. A solvable Lie group is called Buclidean if it is a covering
group of a Lie group of the form K -V, semidirect product, where V is a vec-
tor group (topologically isomorphic to IR™ for some n) and K is a compact
abelian subgroup of GL(V') (acting as automorphisms of V). A compact solv-
manifold is.called Euclidean if it can be written as a homogeneous space of a
Euclidean solvable group. A compact solvmanifold is Euclidean if and only
if it is finitely covered by a torus. A general compact solvmanifold admits a
unique maximal Euclidean quotient; that is, given a solvable Lie group G and
a closed subgroup C of G such that G/C is compact there exists a unique
minimal closed subgroup L containing C, such that G/L is Euclidean; if M is
the largest closed normal subgroup of G contained in L (the intersection of all
conjugates of L) then G/M is a Euclidean solvable group; see [BM] for details
on these and other properties of Euclidean solvmanifolds. In many ways this
Euclidean factor plays the same role for solvmanifolds as the maximal torus
factor for nilmanifolds.

1.4. Geodesic and horocycle flows: Let G be the group PSL(2, R) =
SL(2,R)/{+I}, where I is the identity matrix, and I" be a discrete sub-
group of G. Suppose that [' contains no elements of finite order. Then
G/T can be realised canonically as the space of unit tangents of the sur-
face S = IH/T', where HH is the upper half plane and G acts as its group of
isometries with respect to the Poincaré metric (see [B]). Further, the geodesic
flow corresponding to S is given (after suitable identification) by the ac-
tion of the one-parameter subgroup of G which is the image of the subgroup
D = {diag(e*,e?)|t € R} in PSL(2,IR). Conversely any surface of con-
stant negative curvature can be realised as JH/T for a discrete subgroup I'" of
PSL(2, R) with no element of finite order (namely the fundamental group
of S) and the associated geodesic flow corresponds to the action on G/I" of
the one-parameter subgroup as above. Thus the geodesic flows belong to the
class of flows on homogeneous spaces. Also, I' is a lattice in G if and only if
the surface is of finite Riemannian area.

A particular flow plays a crucial role in the classical study of the geodesic
flow of a surface of constant negative curvature, by G.A. Hedlund, E. Hopf
and others. It is called the horocycle flow; to be precise there are two horo-
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cycle flows associated to each geodesic flow, the so called ‘contracting’ and
‘expanding’ horocycle flows, but viewed as flows themselves they are equiva-
lent. In our notation the flow can be given as the action of the (the image in

G of the) one-parameter subgroup {<(1) i) |t € R}, on G/T" as above; when

G/T is the unit tangent bundle of a surface of constant negative curvature
this action coincides with the classical horocycle flow defined geometrically
(see [He], [Mal, [Vel, [Gh]).

Geodesic flows on n-dimensional Riemannian manifolds of constant neg-
ative curvature and finite (Riemannian) volume were studied through flows
on homogeneous spaces by Gelfand and Fomin [GF]: Let G = SO(n, 1), the
special orthogonal group of a quadratic form of signature (n,1), I be a lat-
tice in G and {g:} be a one-parameter subgroup of G whose action on the
Lie algebra of G is diagonalisable over IR (there exists such a one-parameter
subgroup and it is unique upto conjugacy and scaling). Let M be a compact -
subgroup of G centralised by g; for all ¢ € JR. The flow induced by {g:} on
G/T factors to a flow on M\G/T'. Any geodesic flow of a manifold of constant
negative curvature and finite Riemannian volume can be realised as such a
flow, with M as the unique maximal compact subgroup of the centraliser of
{g:} and T" a suitable lattice; this may be compared with the one-dimensional
case above. In a similar vein the geodesic flows on all locally symmetric spaces
were considered by F. Mautner [Maul.

1.5. Modular homogeneous space: One particular homogeneous space
and the flows on it are of great significance in many applications to Number
theory. This consists simply of taking G = SL(n,R) and I = SL(n, Z), the
subgroup consisting of integral matrices in G. The homogeneous space has
a finite G-invariant measure; that is, I" is a lattice in G (see [R], Corollary
10.5). On the other hand (unlike the lattices in solvable groups) the quotient
space is noncompact. It turns out that as far as behaviour of orbits of flows
and the proofs of the results aré concerned, these examples involve most of
the intricacies of the general case.

The following model for the above homogeneous space is one of the main
reasons for the interest in it from a number-theoretic point of view. Consider
the set £, of lattices in JR™ with unit discriminant (volume of any fundamental
domain for the lattice). The action of SL(n, IR) on IR" induces an action on
L., which can be readily seen to be transitive. Further, SL(n, Z) is precisely
the isotropy subgroup for the lattice generated by the standard basis. Hence
via the action £, may be identified with SL(n, R)/SL(n,Z). On L, there
is an intrinsically defined topology, in which two lattices are near if and only
if they have bases which are near (see [Ca] for details); this topology can be
seen to correspond to the quotient topology on SL(n, IR)/SL(n, Z) under the
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identification as above. A well-known criterion due to K. Mahler asserts that
a sequence of lattices {A;} in £, is divergent (has no convergent subsequence)
if and only if there exists a sequence {z;} in R™ — (0) with z; € A; for all
iand z; — 0 as i — oo (see [R], Corollary 10.9). The invariant measure
on SL(n,IR)/SL(n,Z) is also related to the Lebesgue measure on IR" in an
interesting way (see [Si]), which plays an important role in certain applications
to diophantine approximation (e.g. Corollary 8.3, below).

1.6. Lattices in real algebraic groups: A subgroup H of GL(n, R),
n > 2, is said to be algebraic if there exists a set P of polynomials in the
n? (coordinate) variables such that H = {g = (g;;) € GL(n, R)| P(g;;) =
0 for all P € P}; further H is said to be defined over @ if P can be chosen
to consist of polynomials with rational coefficients. A theorem of Borel and
Harish-Chandra, gives a necessary and sufficient condition for H N GL(n, Z),
where H is an algebraic subgroup of GL(n, IR) defined over @), to be a lattice
in H. The condition involves there being no “nontrivial characters defined
over §)”. Without going into the technical definitions let me only mention
that, in particular, if H is an algebraic subgroup defined over @ such that the
unipotent matrices contained in A and a compact subgroup of H together
generate H then HNGL(n, Z) is a lattice in H. This gives an abundant class
of homogeneous spaces. Also, as we shall see later, they are of importance in
the study of orbit closures of unipotent one-parameter subgroups, in the case
of the modular homogeneous spaces as above.

1.7. Homogeneous spaces of semisimple Lie groups: We shall now look
at another class of homogeneous spaces, of which those in Sections 1.4 and 1.5
are particular cases. Let G be a semisimple Lie group and C' € F(G). Then G
has a unique maximal compact connected normal subgroup, say Gy. Clearly
GoC is a closed subgroup of G and G/G,C is a homogeneous space which
is a factor of G/C. In studying flows on G/C, in many ways it is adequate
to consider the factor actions on G/GyC. Thus it is enough to consider
homogeneous spaces of groups which have no nontrivial compact factor groups
(namely such that any surjective homomorphism on to a compact group is
trivial), a condition which holds for the quotient group G/Gj as above. (By
a theorem of H. Weyl the condition is equivalent to there being no nontrivial
compact connected normal subgroup in G; it is however customary to express
the condition in terms of factors rather than normal subgroups).

Now let G be a semisimple Lie group with no nontrivial compact factors
and let C' € F(G). By Borel’s density theorem (see [R]; see also [D6] and
[D8] for more general versions of Borel’s density theorem) C°, the connected
component of the identity in C is a normal subgroup of G. Hence (as seen in
the case of nilpotent Lie groups) there is no loss of genetality in assuming that
C is a lattice. Further, Borel’s density theorem also shows that any lattice
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contains a subgroup of finite index in the center of G (see [R], Corollary 5.17).
Hence passing to a quotient the center may be assumed to be finite.

Lattices in semisimple Lie groups with no nontrivial compact factors can be
‘decomposed’ into ‘irreducible’ lattices: A lattice I is said to be irreducible if
for any closed normal subgroup F of positive dimension FI" is dense in L. The
assertion about decomposition is the following: given a semisimple Lie group
G with no nontrivial compact factors and a lattice I' in G there exist closed
normal subgroups Gy, ..., G, for some k£ > 1, such that G is locally the direct
product of Gy, ..., Gy, (that is, G = G1G - - - Gy, and the pairwise intersections
of G;’s are discrete central subgroups) and G; N T is an irreducible lattice in
G; for each i = 1,..., k (see [R], Theorem 5.22); if I is the product of G; N T,
i=1,..., k, then it follows that I is a lattice in G and hence, in particular, of
finite index in I'. Thus, upto a combination of finite coverings and factoring
modulo finite central subgroups the homogeneous space G/I" is a product of
the spaces G;/G; NT, in each of which the lattice involved is irreducible. It -
may also be noted that for each ¢, G/(II;xG;)I" is an irreducible factor of
G/T.

It is an important fact about lattices in semisimple Lie groups G that if
G has trivial center and no compact factors and /R-rank at least 2 then any
irreducible lattice in G is ‘arithmetic’. 1 will not go into the details of this
(see [Z2] and [Mar5| for general theory in this respect); though it plays a role
in some proofs, it will not be directly involved in the discussion of the results.
Let me only mention that it means that the class of homogeneous spaces
corresponding to the lattices as above is closely related to the examples in
section 1.6 above.

1.8. General homogeneous spaces: Just as a general Lie group is studied
via, its special subgroups and factors which are simpler, homogeneous spaces
and flows on them are also studied by reducing to simpler cases which I have
discussed above. There are various results which make this possible. While it
is tempting to recall here some of the results are involved in the sequel, they
would probably seem rather technical and devoid of context at this point. I
will therefore recall them only as and when necessary. The reader is referred
especially to [R], [Aul], [Au2], [BM] and [Mar7] for the general theory.

§ 2 Ergodicity

Let (X, 1) be a measure space and H be a group which acts (measurably)
on X preserving the measure u. The action is said to be ergodic if for any
measurable set E such that u(hEFAE) = 0 for all h € H (namely almost
H-invariant) either u(E) =0 or y(X — F) = 0. When X and H are locally
compact second countable topological spaces and the action is continous, as
will be the case in the sequel, for any Borel measure p ergodicity is equivalent
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" to either u(E) or u(X — E) being 0 for every H-invariant Borel set E (namely
E such that hE = E for all h € H).

The ergodicity condition is of importance in the study of asymptotic be-
haviour of orbits in view of the following results.

2.1. Lemma (Hedlund): Let X be a second countable Hausdorff topological
space and let H be a group of homoemorphisms of X. Let p be a Borel
measure on X invariant under the action of H. Suppose that p(2) > 0 for
all nonempty open subsets of X. Then there exists a Borel subset Y such that
w(X —=Y) =0 and for ally €Y the orbit Hy is dense in X.

Proof: Tt is easy to see that if {€2;}52,, is a basis for the topology then the
assertion holds for the set Y =; HQ,;.

Remark: By a similar argument one can also see that if H as in the lemma
is cyclic, say generated by a homeomorphism ¢, then there exists a set Z of
full measure such that for z € Z, {¢*(z)|i = 1,2,...} is dense in X.

Thus when there is ergodicity with respect to a measure of full support
then the orbits of almost all points are dense. A considerably stronger implica-
tion of ergodicity to asymptotic behaviour of orbits comes from the following
so called individual ergodic theorem of Birkhoff.

2.2. Theorem: Let (X,u) be a measure space such that u(X) = 1. Then
for any measurable transformation ¢ preserving the measure p and any f €
LY(X, u) the sequence of functions

Su)(e) = 1245 1 (@)

converges almost everywhere and in L'.

Similarly, if {¢:} is a measurable flow on X (that is, {¢:}iecr s a one-
parameter group of measurable transformations of X and (t,x) — ¢(x) is
measurable) preserving u then for any f € LY(X, p) the functions Sg, T > 0,
defined by

Sr(f)(z) = -;— /0 ) f(q&t(x))dt_

converge almost everywhere and in L, as T — oo.

In either of the cases the limit f* is invariant under the action (that is,
F(é(x)) = f*(z) a.e. or f*(¢:(x)) = f(z) a.e. for allt € IR, respectively)
and [ f*du= [ fdu.

Observe that when the action is ergodic with respect to y then for any
f as in the theorem f* has to be the constant [ fdu a.e.. The convergence
of averages as above for a point z signifies how the orbit of z (under the
transformation ¢ or the flow {¢,;}) is ‘distributed’ in the ambient space. This
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will be formulated rigorously later. Here let me discuss only a special case
that is typical for orbits of an ergodic transformation (or flow). Let X be a
locally compact second countable space. A sequence {z;} in X is said to be
uniformly distributed with respect to a measure y on X if for any bounded
continuous function f on supp i (the support of p)

D f@) — [ fdu,

as k — oo. Similarly a curve {z;}:>0 in X is said to be uniformly distributed
with respect to a measure p on X if

= [ swds— [ fan,

as T — oo, for all bounded continuous functions f on supp p. It can be veri-
fied that if a sequence {z;} is uniformly distributed with respect to a measure
1 with full support then for any Borel subset E such that the boundary of £
in X is of 4 measure 0,

#{i|0<i<n-—1land z; € F}
n

— u(E),

as n — oo (# stands for the cardinality of the set following the symbol). A
similar assertion also holds for a uniformly distributed curve {z:}, with the
cardinality replaced by the Lebesgue measure of the set of ¢ such that z; € F.
The ergodic theorem readily implies the following:

2.3. Corollary: Let X be a locally compact second countable Hausdorff space
and let ¢ be a homeomorphism of X (respectively, let {¢:} be a continuous
one-parameter flow on X). Let p be a probability measure invariant and
ergodic with respect to ¢ (respectively {¢:}). Then there exists a Borel subset
Y of X such that u(X —Y) = 0 and for any y € Y, the sequence {¢*(y)}
(respectively the curve {¢:(y) }1>0) is uniformly distributed with respect to the
measure [i.

Let me now come to the question of proving ergodicity. To begin with let
us consider a general set up. Let (X, u) be a measure space with u(X) < co
and let T be an invertible measure-preserving transformation of X. Then one
defines a unitary operator Ur on L?(X, u) by setting (Ur f)(z) = f(Tz) for
all f € L*(X,u) and z € X. It is easy to see that T is ergodic if and only if
any f € L*(X,u) such that Urf = f a.e. is constant a.e. or, equivalently, 1
is an eigenvalue of Ur with multiplicity one. This observation has been one
of the major tools of proving ergodicity for many systems, ever since it was
introduced by ‘Koopman in 1931 (see [H| for some historical details). It is
easy to apply it to the class of rotations of the circle, using Fourier series,
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and conclude that a rotation is ergodic (with respect to the angle measure)
if and only if it is an irrational rotation. Similarly for affine transformations
of tori using Fourier expansions one proves the following ([CFS], [H], [Wal).

2.4. Theorem: Let ¢ = T, 0 A be an affine transformation of T™, n > 2,
where a € T™ and A € GL(n, Z). Then ¢ is ergodic with respect to the Haar
measure on T™ if and only if the following holds: no root of unity other than 1
is an eigenvalue of A and the subgroup generated by a and {z~'¢(z) | = € T}
18 dense in ™.

When ¢ is the identity element the condition for ergodicity reduces to no
root of unity being an eigenvalue of A.

Theorem 2.4 generalises to nilmanifolds in a simple form as follows (see
[Gr] and [P]): .

2.5. Theorem: Let G be a nilpotent Lie group and T' be a lattice in G.
An affine automorphism ¢ of G/T is ergodic if and only if its factor ¢ on
G/|G, G is ergodic.

Let us now consider a general homogeneous space X = G/C where G is a
Lie group and C € F(G). Through the rest of the section we shall consider
only actions of subgroups of G, by translations; results for groups of affine
automorphisms can be deduced with more technical work which we shall not
go into. Let m denote the G-invariant probability measure on G/C. Then we
can define a unitary representation of G over L*(X, m) by (U, f)(z) = f(¢7'z)
for all g € G, f € L*(X,m) and z € X. Observe that for a € G, U, is the
unitary operator associated to the translation 7T, in the sense as above. Thus
to prove T, to be ergodic it is enough to show that U, does not fix any nonzero
vector orthogonal to all constant functions in L?(X, m). In doing this one can
use the representation g — U, of G. A detailed study along these lines has
_ led to satisfactory criteria for ergodicity of subgroup actions. Before going
to the general results let me describe some simple observations which enable
proving ergodicity for a fairly wide class of actions.

2.6. Lemma (Mautner phenomenon): Let G be a topological group and
g +— U, be a (strongly continuous) unitary representation of G over a Hilbert
space H. Let a,b € G be such that a’ba™ converges to the identity element
as i — oo. Then any element of H which is fized by U, is also fized by Uy,
that is, for p € H, U,(p) = p implies that Uy(p) = p.

The above lemma was noted first in [AG]; see also [D1]. More generally
the following is also true [Mar7]:

2.7. Lemma: Let G, H and U be as in Lemma 2.6. Let F be any subgroup
of G. Let x € G be such that for any neighbourhood Q2 of the identity in G, z
is contained in the closure of FQUF. Then U,(p) = p for any p € H such that
Us(p) =p for all f € F.
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The lemma follows immediately from the fact that g — |U,(p) — p|2? =
2|p|* - 2Re <U,(p),p> is a continuous function on G which is constant
on the double cosets of the subgroup F; the latter assertion follows from the
last expression and the unitarity of the representation U.

Let G be a Lie group and let e be the identity element in G. For a € G
we denote by U*(a) and U~ (a) the subgroups defined by

U*(a) ={g € G|d'ga™ — e as i — oo}

and
U (a) ={g € Gla*ga’ — e as i — oo};

these are ‘horospherical subgroups’ associated to a (see §3 for more about
them). Let A, be the closed subgroup generated by U+(a) and U ~(a); we
shall call this the Mautner subgroup associated to a. It can be shown that
A, is a normal subgroup of G. If A, = G for an element a then Lemma 2.6
implies that the translation of G/C by a is ergodic for any C € F(G); any
f € L? which is fixed by U, is also fixed by U,-1 and hence by U *(a) and
U~ (a) by Lemma 2.6 and so by the closed subgroup generated by them. One
immediate consequence of this is the following.

2.8. Corollary: Let G = SL(n,R) and C € F(G). Let a € G be a matriz
which has an eigenvalue A (possibly complez) such that |A| # 1. Then the
translation T, of G/T' is ergodic. In particular, the geodesic flows of surfaces
with constant negative curvature and finite area are ergodic.

The analogous statement also follows for any irreducible lattice in any
semisimple Lie group with no nontrivial compact factors; in this case we
demand that the linear transformation Ad a of the Lie algebra have an eigen-
value of absolute value other than 1 (for SL(n, IR) this condition is equivalent
to the one in the above Corollary).

More generally the Mautner phenomenon yields the following.

2.9. Corollary: Let G be a Lie group and C € F(G). Let a € G and
A, be the Mautner subgroup associated to a. Let X = G/C and m be the
G-invariant probability measure on X. Then we have the following:

i) if f € L*(X,m) and U, f = f then Uyf =f forallg € A,.

i) if G' = G/A,, C' = CA,/A, and o/ = aCA, then the translation T,
of X = G/C is ergodic if and only if the translation Ty of G'/C by d is
ergodic.

This reduces the question of ergodicity of translations to the special case

when the Mautner subgroup is trivial. It can be seen that this condition is
equivalent to all the eigenvalues of Ad a being of absolute value 1. Lemma 2.7
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can be used to deal with some part of this case also. I will however illustrate
this only with the following simple example.

2.10. Proposition: Let G = SL(2, R), I" be a lattice in G and a = ((1) })

Then T, is ergodic. In particular, the horocycle flow is ergodic.

Proof: Let F be the cyclic subgroup generated by a. A simple computation
shows that for any rational number o and ¢ > 0 there exists a 8 € IR such

that 0 < || < € and ((g a91> €F (9 1) F. This shows that for any

neighbourhood €2 of the identity in G the closure of F)F contains all diagonal
matrices. Hence by Lemma 2.7 any F-invariant L? function on G/T is also
invariant under all diagonal matrices and hence constant by Corollary 2.8.
This completes the proof.

Using a similar argument and the Jacobson-Morosov Lemma (see [J]) one
can prove the following assertion for cyclic subgroups F'; the general assertion
can then be deduced using Lemma 7.1 of [Mol].

2.11. Theorem: Let G be a semisimple Lie group with finite center and no
compact factors and T be an irreducible lattice in G. Let F be a subgroup of
G. Then the action of F on G/T is ergodic if and only if F' is noncompact.

This result is essentially due to C. C. Moore [Mo1] though he did not put it
in this form; on the other hand the results in [Mo1] are stronger inasmuch as
they deal with mixing properties as well. The reader is also referred to [D1],
where similar results are proved, in a more general context, along the line of
argument indicated above. For a general semisimple group the conditions for
ergodicity can now be seen to be the following.

2.12. Theorem: Let G be a connected semisimple Lie group. Let K be
- the mazimal compact connected normal subgroup and let G' be the smallest
normal subgroup such that the quotient is compact. Let C € F and a € G.
Then the translation T, of G/C is ergodic if and only if G'C is dense in G
and the factor transformation of T, on any irreducible factor of G/KC is
ergodic.

Let me now proceed to describe the results in the general case. They
are obtained by a closer analysis of the spectrum of the associated unitary
operator (see [Au], [Mol], [D3], [BM], [Z2]).

A subgroup F of a Lie group L is said to be Ad-compact if the group of
linear transformations {Adz : £ — L[|z € F}, where £ is the Lie algebra
of L, is contained in a compact subgroup of GL(L). Now let G a be a Lie
group. Then for any subgroup F of G there exists a unique minimal normal -
closed subgroup M such that FMp/Mp is Ad-compact as a subgroup of
G/Mp (see [Mo2]); I shall call My the Mautner-Moore subgroup associated
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to F. The general ergodicity criterion is given by the following theorem due
to C. C. Moore:

2.13. Theorem (Moore, 1980): Let G be a Lie group, F be a subgroup of
G and let My be the Mautner-Moore subgroup associated to F. Then the
following Rolds:

i) If g — U, is a unitary representation of G over a Hilbert space H and V
is a finite-dimensional subspace of H invariant under Us for all f € F then
U,(v) = for allv €V and g € Mp.

i) If C € F(G) then the action of F on G/C is ergodic if and only if the
action of FMp on G/C is ergodic if and only if the action of FMp/Mp on
the factor G'/C" is ergodic, where G' = G[Mp and C' = CMp/Mp.

ii) If C € F(G) and MpC is dense in G then the action of F' on G/C is
ergodic.

Assertions (ii) and (iii) may be easily seen to follow from assertion (i).
A proof of (i) for one-parameter subgroups may be found in [Mo2]; the case
of (infinite) cyclic subgroups F' can be deduced from that of one-parameter
subgroups by embedding a suitable power of the generating element in a one-
parameter subgroup (see [D3], §6 for an idea of this) and the general case
may be concluded from the latter using Lemma 7.1 of [Mol].

One can see that if G is a nilpotent Lie group and C € F(G) then for
o € G, T, is not ergodic unless [G,G] C M,. Therefore for translations
Theorem 2.5 is a special case of the above general result. For a semisimple
‘Lie group the criterion yields Theorems 2.11 and 2.12.

We shall now see a characterisation of ergodicity of translations in terms
ergodicity of its factors on simpler homogeneous spaces. It may be recalled
that in a connected Lie group G there is a smallest closed normal subgroup
R, namely the solvable radical, such that G /R is a semisimple Lie group. On
the other hand there also exists a smallest closed normal subgroup S such
that G/S is solvable; if we set Go = G and inductively define G4, ¢ > 0,
to be the closure of [G;, G;], then by dimension considerations G; is the same
subgroup for all large ¢ and the common subgroup can be seen to have the
desired property.

2.14. Theorem: Let G be a connected Lie group and C € F(G). Let R be
the solvable radical of G and S be the smallest closed normal subgroup such
that G/S is solvable. Then fora € G, T,: G/C — G/C is ergodic if and only
if the translations T, : G/RC — G/RC and T, : G/SC — G/SC are ergodic;
(the quotient spaces G/RC and G/SC can be realised as homogeneous spaces
of G/R and G/S and when this is done the condition 1s equivalent to Top and
T.s being ergodic).
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A simple argument for deducing this from Theorem 2.13 is given by A. N.
Starkov in [St2]. The criterion was proved earlier in [D3] under an additional
condition of ‘admissability’ of C, that there exist a Lie group F, a lattice
I' in F and a continuous homomorphism v : F — G such that ;/T(T‘j = C,
the condition holds trivially for a lattice. In [BM], where a detailed analysis
of conditions for ergodicity and spectrum of flows was carried out for flows
on homogeneous of finite volume, the above assertion was proved under a
weaker ‘admissability condition’ that there exists a solvable Lie subgroup A
of G containing the radical such that AC is closed (or equivalently A/ANC
is compact). Subsequently it was proved independently by D. Witte [Wil]
and A. N. Starkov [St1] that the latter admissability condition in fact holds
for all C' € F(G); see also [Z3] for a more general result in this regard.

The characterisation in terms of factors would be complete with the follow-
ing theorem of Brezin and Moore [BM]; (actually in [BM] only flows induced
by one-parameter subgroups are considered, but the result for translations
follows from it via suitable embeddings).

2.15 Theorem: Let G be a connected solvable Lie group, C € F(G) and
a € G. Then the translation T, of G/C is ergodic if and only if the factor on
the mazimal euclidean quotient is ergodic.

In view of Theorems 2.11, 2.12, 2.14 and 2.15 to complete the story of
ergodicity of the translations it only remains to know criteria in the case of
euclidean solvmanifolds. These are indeed completely understood and are
described in [BM] (see Corollary 5.3 there). I will however not go into the
details, since it would involve introducing more notation which does not seem
worthwhile at this stage, but content myself by commenting that the criterion
involves ‘rational structures’ and is comparable to the case of tori except that
it is more elaborate.

2.16. Remark: In the following sections we will be largely concerned with
actions of subgroups generated by unipotent elements; an element u of a Lie
group G is said to be unipotent if Adw is a unipotent linear transformation,
that is, (Adu — I)™ = 0 for some n, where I is the identity transformation
(equivalently, 1 is the only eigenvalues of Adu). It may be worthwhile to
note some additional properties in this case with regard to ergodicity. Let
G be a connected Lie group and C € F(G). Let U be a closed subgroup
of G generated by unipotent elements (as elements of G). Then there exists
a closed normal subgroup L of G containing U such that LC is closed and
the action of U on LC/C is ergodic; note that the action on G/C' consists of
disjoint union of closed invariant sets on each of which the action corresponds
to the U action on LC/C. This can be easily deduced from Theorem 2.12.
In view of the observation in studying the actions we need to consider only
ergodic ones. Now let G, C and U be as above and suppose that the U-action
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on G/C ergodic. Then the connected component C? of the identity in C is a
normal subgroup of G (see [Wil] for the ideas involved; there U is taken to
be cyclic but the argument generalises). Since it involves no loss of generality
to go modulo a closed normal subgroup, this reduces the study to the case
when C is a lattice.

In ergodic theory one also studies various other notions, such as mixing,
entropy, Kolmogorov mixing, Bernoullicity etc. and these have also been
studied for the systems under consideration. Some of the papers referred to
above indeed deal with these properties as well; many papers have results
on mixing, which is a property related to the spectrum. I will however not
discuss the results here. The reader is referred to the survey articles [D13] and
[Mar7] for some details in this regard. Let me however recall for reference
in the sequel that a measure-preserving transformation T of a probability
space (X, p) is said to be weakly mizing if the constant functions are the only
eigenfunctions of Uy and that this condition is equivalent to the cartesian
square T x T of T (acting on X x X) is ergodic.

Let me conclude this section on ergodicity with some remarks about what
happens when ergodicity does not hold. While almost all orbits are dense
when ergodicity holds, no orbit is dense if ergodicity does not hold. This
can easily be read off from the criteria as above. In fact when a translation
or flow is not ergodic, there exist invariant nonconstant C* functions (see
[BM)). It is shown in [St3] that given a flow on a homogeneous space of finite
volume, induced by a one-parameter subgroup, the space can be partioned in
to smooth invariant submanifolds such that all of them have smooth measures
invariant and ergodic with respect to the flow; further each of the submani-
folds is finitely covered by a homogeneous space of a Lie group by a lattice
and the restriction of the flow to the submanifolds is the image of a flow
on the homogeneous space, induced by a one-parameter subgroup of the Lie
group. This enables one to reduce the study of flows on homogeneous spaces
as above to the ergodic case.

§3 Dense orbits; some early results

In the previous section we saw the conditions for ergodicity of group actions
by translations (and certain affine automorphisms) of homogeneous spaces
with finite invariant measure and it was also noted that when ergodicity
holds the orbits of almost all points are dense in the homogeneous space and,
when the subgroup is either cyclic or a one-parameter subgroup, almost all of
them (not necessarily the same set) are also uniformly disributed with respech
to the probability measure invariant under the ambient Lie group. We now
address the next set of questions arising naturally from this: are all orbits
dense? if not, can we describe the closures of the orbits which are not dense?
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what can we say about the distribution of an individual orbit if it is not
uniformly distributed?

Through the remaining sections the aim will be to discuss a class of systems
with a remarkably orderly behaviour in this respect.

I will begin by recalling that for an irrational rotation all orbits are dense
and uniformly distributed with respect to the angle measure. This may be de-
duced by observing that (because of commutativity) any two orbits are trans-
lates of each other so once some orbit is dense (respectively, uniformly dis-
tributed) the same has to hold for all the orbits; the result can also be found in
books on Number Theory, with different proofs. In the same way for a transla-
tion of the n-dimensional torus R"/Z" by (oa, ..., o), where ay, ..., a0, € R,
all orbits are dense and uniformly distributed in the torus (with respect to the
Haar measure) whenever the translation is ergodic, namely when ay, ...,y
and 1 are linearly independent over €. The density assertion is known as
Kronecker’s theorem and the uniform distribution assertion is a theorem of
H. Weyl (see [CFS], [Wa] for details).

An action of a group G on a locally compact space X is said to be minimal
if there is no proper closed nonempty G-invariant subset; clearly an action is
minimal if and only if orbits of all points are dense in X. A homeomorphism is
said to be minimal if the corresponding action of the cyclic group is minimal.
Our observation above means that every ergodic translation of a torus is
minimal.

If we move from translations to affine automorphisms of tori ergodicity
no longer implies all orbits being dense (leave alone uniformly distributed).
In fact for any automorphism A, A € GL(n,Z), the orbit of any point of
the form q + Z™ € IR"/Z", where q is a vector with rational coordinates, is
_ periodic (finite) and hence can not be dense even if 4 is ergodic. In general,
apart from the periodic orbits there are also a whole lot of other orbits which
are not dense (see [DGS]). Nevertheless for some affine automorphisms the
situations is different:

3.1. Theorem (Furstenberg, 1961): Let A € GL(n,Z) be a unipotent
matriz and let a € IR™ be such that the affine automorphism T = T, o A of
T = R"/Z"™ is ergodic. Then all orbits of T, o A are uniformly distributed
(and in particular dense) in T™.

The result is proved by showing that the Haar measure is the only prob-
ability measure on '™ invariant under an affine automorphism 7" as in the
theorem. A homeomorphism T of a locally compact topolological space X
is called uniquely ergodic if it admits only one invariant probability measure.
Thus an affine automorphism as in the above theorem is uniquely ergodic. A
straightforward argument shows that if a homeomorphism of a compact space
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is uniquely ergodic and p is the the unique invariant probability measure then
the orbits of all points of supp p are uniformly distributed with respect to u
(see [F1] or [CFS], for instance).

Theorem 3.1 yields an ergodic-theoretic proof of the following classical
result of H.Weyl on the distribution of the fractional parts of values of a
polynomial; see [CFS], Ch.7, Section 2, for a proof.

3.2. Theorem: Let P(t) = agt" + a1t""! + ... + a, be a polynomial of degree
n > 1, with real coefficients. Suppose that at least one of 4,0 < k < n -1,
is irrational. Then the sequence &, = <P(n)> of fractional parts of P(n) s
uniformly distributed in the interval [0, 1].

In [Gr] L. Green proved that any ergodic nilflow is minimal. An interesting
application of this to diophantine approximation was given in [AH], proving
the following analogue of one of Weyls results (cf. [We], Theorem 14) on
uniform distribution; we recall here that a set of integers is said to be relatively
dense if the difference between successive integers in the set is bounded above.

3.3 Theorem: Let Pi(t) = X}, a;t?, where ay; are integers such that
Yjilai;l > 0 for each i = 1,..n. Let ay,...,an be real numbers which to-
gether with 1 form a linearly independent set over ). Then for any € > 0
and b1, ...,0, € IR there exists a relatively dense set M of integers such that
foreachi=1,..,n and m € M, o;P;(m) — 6; differs from an integer by at
most €.

Furstenberg’s theorem was generalised by W. Parry to affine automor-
phisms of nilmanifolds, proving unique ergodicity of T' = T, o A when T is
ergodic and A is unipotent (see [P]).

In [AB] Auslander and Brezin obtained a generalisation of Weyl’s criterion
for uniform distribution of sequences on tori in the setting of solvmanifolds;
their approach is more general than the present one, in that they consider
also avarages along more general sequences of sets rather than the intervals
in Z or IR in our discussion. In the course of their study they prove in
particular that for a nilpotent Lie group G and any lattice I' in G the action
of any subgroup H of G on G/T" is uniquely ergodic whenever it is ergodic; for
cyclic subgroups and, with a little argument, for connected Lie subgroups this
follows also from the result of Parry. As for the case of a general solvable case,
while the analogue of Weyl’s criterion proved in [AB] would apply in particular
to actions of cyclic and one-parameter subgroups, the precise implications to
uniform distribution (or density) of orbits do not seem to have been analysed
in literature, in terms of the ‘position’ of the subgroup in the ambient group.

Let us now come to the case of semisimple groups, starting with the sim-
plest case of SL(2,IR). In this case results on orbit closures which can be
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compared to what I have recalled for affine transformations goes back to a
classical paper of G. A. Hedlund [He] on the horocycle flow; see also [Man]
and [Gh] for exposition and proof.

3.4. Theorem (Hedlund, 1936): Let G = SL(2,R) and T be a lattice in G.
Fort € R let hy = ((1) 115) and let H = {h, |t € R}. Then every H-orbit on

G/T is either periodic or dense in G/T'. If G/T is compact then all orbits are
dense while if GJT is noncompact then the set of points with periodic orbits
15 nonempty and consists of finitely many immersed cylinders, each of which
is dense in G/T.

Thus in the compact quotient case the action is minimal. When the quo-
tient G/T" is noncompact there are finitely many ‘cusps’; these correspond to
the cusps of the surface of constant negative curvature, they being finitely
many when the area is finite (see [B]). To each cusp there corresponds a one-
parameter family of periodic orbits, one periodic orbit with each value of the
period, which together form an immersed cylinder in G/T.

Hedlund’s ideas were followed up in a paper of L. Greenberg [Gre], where
the author also noted the following simple duality principle, which interrelates
results on orbits of flows on finite-volume homogeneous spaces with those for
lattice actions on certain ‘large’ homogeneous spaces and in turn for actions
on linear spaces, as we shall see below.

3.5. Proposition: Let G be a Lie group, C and H be a closed subgroups
of G. Then for g € G the H-orbit of gC is dense in G/C if and only if the
C-orbit of g~ H is dense in G/H.

The proof is immediate, both the statements being equivalent to the set
HgC being dense in G. Via this observation the study of subgroup actions
-on homogeneous spaces can be related to the study orbits of lattices (or
more generally finite covolume subgroups) on linear spaces as follows: Let
G be a Lie group and C € F(G) and consider a linear action of G on a
finite-dimensional IR-vector space V. Omne would then like to understand,
for v € V, the closure of the orbit Cv. Fix a point vy € V and let v €
Gvg. The Proposition implies in particular that for ¢ € G, Cgv, is dense
in Gv = Gy if the orbit Hg='C/C of g7'C is dense in G/C, H being the
isotropy subgroup {z € G|zvy = v} of vo. Greenberg also proved the
following theorem, which via the duality principle generalises the compact
quotient case of Theorem 3.4.; in the sequel I shall follow the terminology
that a lattice I' in a Lie group G is said to be uniform if the quotient G/T" is
compact and nonuniform otherwise.

3.6. Theorem (Greenberg, 1963): Let G = SL(n,IR) and let T be a uniform
lattice in G. Then for any v € IR™ — {0} the I'-orbit ['v is dense in IR".



80 ERGODIC THEORY OF Z4-ACTIONS

Similarly if G = Sp(2n, R), the symplectic group realised canonically as a
subgroup of SL(2n, IR), and T is a lattice in G then for the natural action of
G on IR™ the [-orbit of any nonzero vector is dense in R*™.

Theorem 3.6 implies in particular that if f(z1,...,2,) is a real quadratic
form in n variables then for any uniform lattice ' in SL(n,IR), the set
{f(71i, Y21y - Ya1) | ¥ = (%) € T} is dense in IR. The particular case of
this with n = 2 and f a positive definite form was proved by K. Mahler [Ma],
who conjectured it to be true for indefinite forms as well.

Many other number theoretic applications involve SL(n, Z), which is a
nonuniform lattice. Consider first its natural action on IR™. In this case one
does not expect all orbits to be dense, since the orbits of points with rational
coordinates are in fact discrete. It was proved in [D], following the ideas of the
paper of Greenberg that those and their scalar multiples are in fact the only
exceptions. It was also proved that, for even 7, the orbit of a point v under
the subgroup Sp(n, Z), consisting of integral n x n symplectic matrices, is '
dense if v is not a scalar multiple of a rational point; see Theorem 3.7 below
for a more general result.

The reader would notice that in terms of the actions on homogeneous
spaces Greenberg’s result involves considering orbits of a rather large sub-
group. ;From the point of view of dynamics this suggests asking what hap-
pens for smaller subgroups. One class of subgroups to which the study was
extended in the intermediate period, that needs to be mentioned, is the class
of horospherical subgroups.

A subgroup U of a Lie group G is said to be horospherical if there exists
a a € G such that

U={ge€Gld'ga™* —easi— oo},

e being the identity element in G; specifically U is called the horospherical
subgroup corresponding to a. It is not difficult to see that a horospherical
subgroup is always a connected (not necessarily closed) Lie subgroup. If G
is a semisimple Lie group then a subgroup is horospherical if and only if it is
the unipotent radical of a parabolic subgroup.

. i) It € R} of SL(2, R),

which defines the horocycle flow, is a horospherical subgroup in SL(2, R)
in the above sense. In the case of higher-dimensional manifolds of constant
negative curvature and finite volume, the classical horospherical foliations
associated to the geodesic flow are given by orbits of horospherical subgroups;
in the notation as in §1.4, if U is the horospherical subgroup corresponding
to g;, ¢t > 0, then the images of U-orbits on G/T" in M\SO(n,1)/I" give the
horospherical foliation.

It may be noticed that the subgroup {(



FLOWS ON HOMOGENEOUS SPACES 81

Generalising the minimality result of Hedlund for the horocycle flow on
compact quotients of SL(2, IR) by lattices, it was proved by Veech in [V1] that
if G is a connected semisimple Lie group with no nontrivial compact factors
and I' is a uniform lattice in G then the action of any maximal horospherical
subgroup of G on G/TI" is minimal. In [V2] he proved another minimality result
(see [V2], Theorem 1.3) which shows in particular that for G and T" as in the
preceding assertion the action of a horospherical subgroup of G is minimal
whenever it is ergodic. It is noted that the argument uses ideas from Anosov’s
proof of density of leaves of horospherical foliations (see [An], Theorem 15),
which itself is also a generalisation of Hedlund’s theorem as above. Using a
similar argument it was shown in [D2] that if G is any connected Lie group,
I' is a uniform lattice in G, U is the horospherical subgroup corresponding
to a weakly mixing (see §2) affine automorphism T' = T, o A, where ¢ € G
and A is an automorphism of G such that A(I') =T, then the U-action on
G/T is minimal; by the horospherical subgroup corresponding to 7, o A we
mean the subgroup {g € G|(c, 0 A)'(g) — e as i — oo}, where o, is the inner
automorphism corresponding to a and e is the identity element. While these
results pertain only to minimality, various results were also obtained around
the same time on unique ergodicity of horospherical flows, which in particular
imply minimality; it would however be convenient to postpone going over
them, to § 5 where I will be discussing invariant measures in greater detail.

For a general, not necessarily uniform, lattice I" the orbit closures of actions
of horospherical subgroups on G/I" were considered in [DR], [D15], [D16] and
[St5]; I will take up these results in the next section after introducing a certain
perspective. Let me conclude this section with some results on diophantine
approximation, in the spirit of Theorem 3.6 but involving nonuniform lattices,
obtained in my joint paper [DR] with S. Raghavan.

.3.7. Theorem: LetI' = SL(n,Z) and 1 < p < n. LetV be the cartesian
product of p copies of R", equipped with the componentwise action of I'. Then
for v = (vy, ...,vp) the '-orbit is dense in V' if and only if the subspace of IR®
spanned by the vectors vy, ..., v, does not contain any nonzero rational vector
(vector with rational coordinates with respect to the natural basis of IR™).

It was also shown that if 7 is even and Sp(n, Z) is the group of integral
symplectic matrices (with respect to a nondegenerate symplectic form) the
Sp(n, Z)-orbit of any symplectic p-tuple, where 1 < p < n/2, is dense in the
space of symplectic p-tuples; a p-tuple (vy,...,v,) is said to be symplectic if
w(v;,v;) = 0 for all 1 < 4,5 < p, w being the symplectic form defining the
symplectic group.

The theorem can be applied to study the values of systems of linear forms,

over integral points and also over primitive integral points. We recall that an
integral n-tuple is said to be primitive if the entries are not all divisible by a
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positive integer exceeding 1.

3.8. Corollary: Let &,...,& be real linear forms in n variables, where
1 < p < n. Suppose that no nontriviel linear combination of &,...,&, is a
rational form (that is, if A1,..., A\, € IR are such that £ \§&; is a form with
rational coefficients, then A; = 0 for alli). Then for any a4,...,a, € IR and
€ > 0 there ezists a primitive integral n-tuple (%1, ..., ) such that

iz, oy @Tn) — ai] < eforalli=1,...,p.

§4 Conjectures of Oppenheim and Raghunathan

One major aspect to be noticed in Hedlund’s theorem is that for the sys-
tems considered, even when there are both dense as well as non-dense orbits
(as in the noncompact quotient case) the closures of all orbits are ‘nice’ objects
geometrically. This is also the case Greenberg’s generalisation of Hedlund’s -
theorem and the other similar results which I mentioned above. From the
point of view of dynamics this is quite an unusual behaviour. One would nat-
urally wonder how general this phenomenon is. The question got an added
impetus from an observation of M. S. Raghunathan that a well-known conjec-
ture going back to a paper of A. Oppenheim from 1929, on values of indefinite
quadratic forms at integral points would be settled if an analogue of Hedlund'’s
theorem is proved for the case G = SL(3, R) and I' = SL(3, Z) for the action
of the special orthogonal group SO(2,1) corresponding to a quadratic form
of signature (2,1). Let me recall the conjecture and indicate the connection.

Let Q(z1, ..., Zn) = Xsj aijziz; be a quadratic form with real coefficients.
We are interested in the set of values of () on integral n-tuples and especially
in the question whether it is dense in IR. Assume for simplicity that @
is nondegenerate. It is clear that if @ is a definite form (either positive
definite or negative definite) then the set of values under consideration is
discrete. Similarly if the coefficients a;; are all rational multiples of a fixed
real number (equivalently if all the ratios are rational) then also the set as
above is discrete. The conjecture in question was that if ¢} is indefinite
and not a multiple of a rational quadratic form and n > 3 then the set
of values at integral points is indeed dense; the idea of the conjecture can
be traced back to a paper of A. Oppenheim in 1929, though the original
statement is somewhat weaker. The problem was attacked by several number
theorists, including H. Davenport, H. Heilbronn, B. J. Birch, H. Ridout,
A. Oppenheim, G. L. Watson and others, mainly using the circle method
and through many papers together by the sixties the conjecture was known
to hold for all quadratic forms when n > 21 and in special cases in lower
number of variables. There has also been some work on the problem in the
recent years by number theoretic methods by H. Iwaniec, R. C. Baker and
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H. P. Schlickewey. I will not go into the details of this and various nuances of
the conjecture but would refer the interested reader to [Le|, [Mar7], [Gh} and
[B2]. I may mention however that the condition » > 3 can not be omitted,;
it is easy to see that the quadratic form z;(Az; — z2) does not take nonzero
values arbitrarily close to 0 over integral z,, 9, if A is a badly approximable
pumber, namely an irrational number with bounded partial quotients.

If Q is a quadratic form satisfying the conditions of the conjecture then
Q(Z™) = Q(HTZ"™), where I' = SL(n,Z) and H is the special orthog-
onal group corresponding to @, namely H = {g € SL(n,R)|Q(gv) =
Q(v) for all v € IR"}; we view n-tuples as column vectors and consider the
action of matrices by left multiplication. Now if it is shown that the orbit
HT/T of the H action on SL(n, R)/T is either dense or closed in SL(n, IR)/T,
3 la Hedlund, then it would follow that Q(Z") is dense in IR unless HT is
closed. One can see that the latter holds only if @ is a multiple of a form with
rational coefficients, a condition which is disallowed in the hypothesis of the
conjecture. Thus the conjecture can be approached via the study of orbits of
the special orthogonal groups on SL(n, R)/SL(n, Z); while considering the
totality of quadratic forms we fix a special orthogonal group and study the
closures of all orbits.

As a strategy of attacking the problem via study of lows on homogeneous

spaces Raghunathan formulated a more general conjecture. This pertains to
orbit-closures of actions of unipotent elements and unipotent subgroups on
G/T, where G is a Lie group and T’ is a lattice; recall that an element v € G
is said to be unipotent if Adw is a unipotent linear transformation of the
Lie algebra of G; a subgroup U of G is unipotent if all elements of U are
unipotent.
4.1. Conjecture. Let G be a Lie group and T" be a lattice in G. Let U be a
-unipotent subgroup of G. Then the closure of any U-orbit is a homogeneous
set; that is, for any x € G/I" there exists o closed subgroup F of G such that
Uz = Fx.

(In [D7] where the conjecture first appeared in print the statement was
formulated only for one-parameter subgroups U; the weaker form only reflects
my choice for the write-up and does not fully convey what was meant. The
lack of concern for generality in the formulation there was partly on account of
knowing that the conjecture being true for one-parameter subgroups implies
it being true for all connected unipotent subgroups; see [D14], Theorem 3.8,
for an idea of the proof of this).

The minimality results mentioned above confirm the conjecture in their
respective cases. The result from [DR] involved in Theorem 3.7 implies valid-
ity of the conjecture for certain specific horospherical subgroups of SL(n, IR)
and Sp(n, IR) (unipotent radicals of parabolic subgroups of maximum dimen-
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sion, in the first case) acting on the quotients of the groups by SL(n, Z) and
Sp(n, Z) respectively. In [D15] the conjecture was verified for horospher-
ical flows on not necessarily compact homogeneous spaces of all reductive
Lie groups. The case of not necessarily reductive Lie groups was studied in
[D12] (Appendix), [D16] and [St5] and certain partial results were obtained
towards the conjecture. I will mention a couple of the results; though we
will be seeing later some results which are much stronger in spirit, it does
not seem easy to read off these results from them. In [D16] it was shown
that if G is a connected Lie group, I is a lattice in G, R is the radical of G
and U is a horospherical subgroup associated to an element of G and if U
acts ergodically on G/T" then an orbit Ugl'/T’, g € G, is dense if and only
if UgRT/RT is dense in G/RT. Starkov [St5] proved that (under the same
notation) if G/T" is compact then for z = g € G/T, where g € G, Uz = Fz
for the subgroup F' defined as follows: let U~ be the horospherical subgroup
opposite to U (corresponding to the inverse element), M be the subgroup -
generated by U and U~ and set F' = M(gI'g~') (it may be noted that M is
a normal subgroup and hence F' is indeed a subgroup).

Oppenheim’s conjecture was settled by G. A. Margulis in 1986-87 (see
[Mar3], [Mar4]). While it is based on the study of flows on homogeneous
spaces, his proof proceeds somewhat differently than the strategy indicated
above. He proved that for the action of SO(2,1) on SL(3,R)/SL(3, Z) any
relatively compact orbit is actually compact. By the Mahler criterion recalled
in §1.5 this implies that any quadratic form as in Oppenheim’s conjecture
takes arbitrarily small values. For a form which does not take the value 0 at
any integral point, this would mean that 0 is a limit point of the set of values
and then a result of Oppenheim implies that the set of values is actually
dense. For forms admitting integral zeros Margulis produced a somewhat
technical variation of the argument, showing that the conjecture holds in this
case also. In [DM1] we proved the following stronger result.

4.2. Theorem: For the action of SO(2,1) on SL(3,R)/SL(3, Z), any orbit
is either dense or closed.

(A similar result was also proved there for all lattices satisfying a certain
condition and we had mentioned that in fact the condition holds for all lat-
tices. A proof of the latter was given in [DM4] but while the basic idea there
is well founded, there are serious presentational errors which make the proof
unsatisfactory; a proof of the relevant part may be found in [EMS]; the author
also hopes to present it in detail at a suitable place).

The reader may notice that though SO(2,1) is not a unipotent subgroup
the conclusion in Theorem 4.2 is similar to that in Conjecture 4.1. The
theorem would actually follow if one knew the validity of the conjecture.
Nevertheless it is convenient to view both the statements as particular cases



FLOWS ON HOMOGENEOUS SPACES 85

of the following conjecture formulated by Margulis in [Mar2] (see also [Mar7)).

4.3. Conjecture : Let G be a Lie group and C € F(G). Let H be a subgroup
which is generated by the unipotent elements contained in it. Then the closure
of any H-orbit on G/C is a homogeneous set.

Though the conjecture is stated for all C € F(G), using Remark 2.16
and some technical arguments it can be reduced to the case of lattices; in
the sequel I shall discuss only the case of lattices. Theorem 4.2 verifies a
particular case of the Conjecture 4.3. Evidently the latter is also satisfied in
the cases where Conjecture 4.1 holds. We shall see more about the conjecture
later.

Observe that Theorem 4.2 yields a proof of Oppenheim’s conjecture by
the argument indicated earlier. It also yields the following stronger result, in
which we consider the values only on primitive integral n-tuples; this may be
compared with Corollary 3.8 in the case of systems of linear forms.

4.4. Theorem: Let @ be a nondegenerate indefinite quadratic form on
IR®, n > 3, which is not a multiple of a form with rational coefficients. Let
P denote the set of primitive integral n-tuples. Then Q(P) is dense in R.

Subsequently in [DM3] we also produced a rather elementary proof for
Theorem 4.4, involving only standard material on finite-dimensional vector
spaces and topological groups; I should add that Zorn’s lemma was used to
conclude existence of minimal elements in certain families of compact sub-
sets. In [D17] I constructed a variation of the argument not involving choice
of minimal subsets. However I learnt later from A. Katok that (by an ob-
servation which he attributed to S. Simpson) the existence of minimal sets
as required in the earlier proof could be obtained without the use of Zorn’s
lemma.

In [DM2] we verified Conjecture 4.1 for the case of G = SL(3,R), I any

lattice in G and U = {u;} a ‘generic’ unipotent one-parameter subgroup,
namely such that u; — I has rank 2 for ¢ # 0, I being the identity matrix.
This result has the following consequence.
4.5. Corollary: Let Q be a nondegenerate indefinite quadratic form on IR3.
Let L be a linear form on IR® such that the plane {v € IR®L(v) = 0} and
the double cone {w € R3|Q(w) = 0} intersect in a line and are tangential
along the line. Suppose that no linear combination of Q and L? is a rational
quadratic form. Then for any a,b € IR and any € > 0 there exists a primitive
integral triple x such that

|Q(z) — a| < € and |L(z) — b| < e.

Margulis has pointed out in [Mar6| that Theorem 4.2 can be strengthened
to the following.
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4.6. Theorem: IfT is a lattice in SL(3,IR) and Q is a nonempty open
subset SL(3,IR)/T" then there are only a finite number of SO(2,1)-orbits on
SL(3,R)/T disjoint from Q and each of them is closed.

This was applied to the problem of minima of rational quadratic forms.
For a nondegenerate quadratic form @ on R"™ let m(Q) denote the infimum of
{IQ(z)||z € Z™ — (0)} and let u(B) = |d(Q)|~*/*m(Q), where d(Q) denotes
the discriminant of Q. The set M, of all numbers of the form ©(Q) where
Q is a nondegenerate quadratic form on IR" is called the Markov spectrum.
For n = 2 this is realted to the classical Markov numbers. It follows from
Markov’s work that M N (3, 00) is a countable discrete subset of (3, co); the
intersection with the interval [0, 3] is an uncountable set with a complicated
topological structure. From Theorem 4.6 Margulis deduced the following.

4.7. Corollary: For n > 3, for any € > 0 the set M, N (¢,00) is finite;
further, there are only finitely many equivalence classes of quadratic forms Q
with p(Q) > €.

(It may be noted that the corollary is essentially about n = 3 or 4,
since for n > 5 by Meyer’s theorem M, = {0}). The result was proved
by J. W.5.Cassels and H. F. P. Swinnerton-Dyer earlier under the assump-
tion of the Oppenheim conjecture being true. The reader is referred to [Mar6]
and [Gh] for more details.

§ 5 Invariant measures of unipotent flows

In the last section we saw various results on closures of orbits but nothing
was said how they are distributed in space, except for certain assertions about
all orbits being uniformly distributed in the whole space. The general question
of distribution of orbits involves the study of invariant measures of the flows.
For any action the set of all invariant probability measures is a convex set and
the ergodic ones (namely those with respect to which the action is ergodic)
form its extreme points. Further, any invariant probability measure has an
‘ergodic decomposition’ as a direct integral of ergodic invariant probability
measures (see [Ro], for instance). Therefore to understand the set of all finite
invariant measures it is enough to classify the ergodic invariant measures. In
this section I will describe the results in this regard. They will be applied in
§7 to the problem of distribution of orbits. Let me begin with the following
theorem of Furstenberg which may be said to have been instrumental in
initiating a full-fledged study of invariant measures and its application to
proving Raghunathan’s conjecture.

5.1. Theorem (Furstenberg, 1972): Let G = SL(2, R), T a uniform lattice
inG and U = {((1) i) |t € R}. Then the G-invariant probability measure

is the only U-invariant probability measure on G /T.
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As in the earlier cases this implies that the orbits of U are uniformly
distributed with respect to the G-invariant probability measure on G/I'. The
result was generalised by Veech [V2] to actions of maximal horospherical
subgroups of semisimple Lie groups on quotients of the latter by uniform
lattices. R. Bowen [Bo] and R. Ellis and W. Perrizo [EP] showed that if G is
a connected Lie group, I' is a unifrom lattice in G and a € G is such that T, is a
weakly mixing (see § 2) translation of G/T" then the action of the horospherical
subgroup U corresponding to a on G /T is uniquely ergodic; namely the G-
invariant probability measure is the only probability measure invariant under
the U-action. Interestingly these proofs and that of Veech in the case of
semisimple Lie groups are all substantially different from each other; while
Bowen’s proof is geometric the other two are analytical. Recall that the
horospherical subgroups are nilpotent and hence in particular solvable groups.
Since for the action of a solvable group any compact invariant subset supports
an invariant measure, these results imply minimality the results recalled in
§ 3 for the flows under consideration.

Let us now return temporarily to the case of the horocycle flows on G/T"
where G = SL(2, R) and T is a lattice in G. If G/I" is noncompact, namely
when T’ is a nonuniform lattice, by Hedlund’s theorem we know that there
exist continuous families of periodic orbits and thus, in contrast to the above
situation, there is a large class of invariant probability measures; each periodic
orbit supports an invariant probability measure. It turns out however that
together with the G-invariant probability measure these measures account for
all ergodic invariant measures. In [D4] I obtained a classification of invariant
measures for a class of horospherical flows which in the case of the horocycle
flow on SL(2, IR)/T, implies the following.

5.2. Theorem : Let G = SL(2,R), T alattice in G and U = {<(1) i) |t e

R}. Let p be an ergodic U-invariant probability measure on G/T'. Then
either u is G-invariant or there exists o x € G/I' such that the U-orbit of x
18 periodic and the support of u is contained in Uzx.

Let us now consider the question in a more general set up. Let G be a
Lie group and I" be a lattice in G. A canonical class of probability measures
on G/I' arises as follows. Let H be any closed subgroup of G such that
Hn(gTg™") is a lattice in H for some g € G. Since H/(H N gI'g™") can be
identified in a natural way with HgI'/T, the H-orbit of gI', the latter admits a
H-invariant probability measure; we shall think of it as a probability measure
on G/T" assigning zero measure to the complement of the orbit. Measures on
G/T arising in this way are called algebraic measures; that is, p is algebraic
if there exists a closed subgroup H of G such that p is H-invariant and its
support is contained in a single orbit of H; such an orbit is always closed (see
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[R], Theorem 1.13).

It should be noted that the class of closed subgroups H yielding alge-
braic measures depends on the lattice I'. While for some lattices the only
algebraic measures other than the G-invariant measure may come from com-
pact subgroups of G (the latter are uninteresting from our point of view and
may be considered trivial) for most lattices, including all non-uniform lat-
tices as a matter of fact, there exist algebraic measures arising from proper

noncompact subgroups of G. For example, when G = SL(2,IR) and T is a
1 ¢

nonuniform lattice, the measures on periodic orbits of H = {( 0 1 ) |t € R}
discussed earlier are algebraic measures of this kind. For G = SL(n, IR) and
I' = SL(n,Z) there are noncompact closed subgroups of various interme-
diate dimensions intersecting I' in a lattice; e.g. the subgroup consisting
of all upper triangular unipotent matrices, the subgroup SL(m, IR), where
1 < m < n, embedded (say) in the upper left corner in SL(n, IR) in the usual
way, etc.; more generally if H is a real algebraic subgroup defined over @
and satisfying the condition as in the theorem of Borel and Harish-Chandra
(see §1.6) then we get an algebraic probability measure on the H-orbit of the
point I" (the coset of the identity element). We note that in particular if @
is a nondegenerate indefinite quadratic form on JR® with rational coefficients
(with respect to the standard basis) then SO(Q), the corresponding special
orthogonal group, intersects I' is a lattice and yields an algebraic measure
supported on SO(Q)L'/T.

Now let G be any Lie group, I' be a lattice in G and let U be a subgroup
of G. Collecting together algebraic measures arising from subgroups H con-
taining U gives us a class of U-invariant measures. The key conjecture for
the classification of invariant measures is the following.

5.3. Conjecture: Let G be a Lie group, T be a lattice in G and U be
a subgroup generated by the unipotent elements contained in it. Then any
U-invariant ergodic probability measure is algebraic.

For the case of G = SL(2,IR) and U the unipotent one-parameter sub-
group corresponding to the horocycle flow, this statement is equivalent to
Theorem 5.2. The conjecture was verified in [D7] for maximal horospherical
subgroups of reductive Lie groups, where the conjecture was formulated for
one-parameter subgroups (the case of one-parameter subgroups implies the
corresponding statement for all connected unipotent subgroups).

In what constitutes a landmark development in the area, through a series
of papers [R1], [R2], [R3] Marina Ratner proved Conjecture 5.3 for a large
class of subgroups U, including all unipotent subgroups. She proved the
following.
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5.4. Theorem (Ratner, 1991): Let G be a Lie group and T be a discrete
subgroup of G. IfU is a unipotent subgroup of G then for the U-action on G/T
any finite ergodic U-invariant measures is algebraic. The same conclusion
also holds for the action of any Lie subgroup U of G satisfying the following
conditions:

i) U° is generated by the unipotent one-parameter subgroups contained in
it and

i) UJU® is finitely generated and each coset of U® in U contains a UNEPo-
tent element.

It may be emphasized that I" is not assumed to be a lattice but just any
discrete subgroup. The general proof is quite intricate and involves several
steps. The reader may find it helpful to first go through [R5] and [Gh] where
the basic ideas are explained dealing only with the case of the horocycle flows.

Recently Margulis and Tomanov have given another proof of the above
theorem in the case of algebraic groups; their proof bears a strong influence
of Ratner’s original arguments but is substantially different in its approach
and methods; see [MT].

Given a Lie group G and two unimodular closed subgroups H and T of
G there is also a canonical duality between H-invariant measures on G/T’
and I'-invariant measures on G/H. We note that up to Borel isomorphism
G can be viewed as a cartesian product of G/H and H. Using this we can
associate with any measure on G/H a measure on G which is invariant under
the action of H by multiplication on the right. If the measure on G/H is
[’ invariant then the corresponding measure on G is also I'-invariant, under
the left action. This and a corresponding observation for measures on G/T'
yields the one-one correspondence between the two classes of measures as
- above; see [F2| and [D4]. This correspondence is used in the proofs of some
of the results on classification of invariant measures of actions of horopherical
subgroups (see [F2], [V2], [D4] and [D7]). On the other hand via the duality
Theorem 5.4 yields a description of I'-invariant measures on G/U (notation as
in Theorem 5.4). In turn this may be applied to describe, in the same fashion
as for orbit-closures, the measures on vector spaces invariant under actions
of certain discrete groups. The strategy in particular yields the following
Corollary; I will not go into the details of other more technical results that
can be obtained.

5.5. Corollary: Let ' = SL(n,Z), 1 < p < n and consider the I'-action
on the p-fold cartesian product V' of IR", as in Theorem 3.7. Let A be a (lo-
cally finite) ergodic T' invariant measure on V. Then the exists a D-invariant
subspace W and a € V such that T(W +a) is closed and ) is the measure sup-
ported on T(W + a) whose restriction to W + a is the translate of a Lebesque
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measure on W.

Various applications of the classification of invariant measures will be dis-
cussed in later sections. I will conclude the present section by describing a
way of ‘arranging’ the invariant measures of unipotent flows, which is useful
in these applications.

Let G and I’ be as before. Let H be the class of all proper closed subgroups
H of G such that HNT is a lattice in H and H contains a unipotent subgroup
U of G acting ergodically on H/H NI". Then H is countable (see [R4],
Theorem 1; see also Proposition 2.1 of [DM6] which is a variation of the
assertion and implies it in view of Corollary 2.13 of [Sh1]). For any subgroups
H and U of G let
X(H,U)={geG|Ug CyH}.

Now let U be a subgroup of G generated by the unipotent elements con-
tained in it and acting ergodically on G/T'. Let 1 be any ergodic U-invariant
probability measure other than the G-invariant probability measure. By The-
orem 5.4 y is algebraic; thus there exists a closed subgroup L containing U
such that p is the L-invariant measure on a L-orbit, say LgI'/T". Since p
is not G-invariant L is a proper closed subgroup. Put H = g~'Lg. Then
HNT is a lattice in H. Also ¢g~'Ug is generated by unipotent elements,
contained in H and acts ergodically on H/H NT'. Hence H € M. Also,
Ug C Lg = gH and hence g € X(H,U). Therefore the support of y, which is
the same as Lgl'/T' = gHI'/T', is contained in X (H,U)I'/T". Thus for every
ergodic invariant probability measure p other than the G-invariant measure
p(Ugen X(H,U)I'/T) = 1. Since by ergodic decomposition any invariant
probability measure 7 can be expressed as a direct integral of ergodic invariant
measures (see [Ro], for instance) this implies that 7(Ugex X (H,U)L'/T) > 0,
unless 7 is G-invariant. Since H is countable this yields the following char-
acterisation of the G-invariant measure on G/T.

5.6. Corollary : Let G, ' and U be as above. Let m be a U-invariant
probability measure on G/U such that (X (H,U)['/T') = 0 for oll H € H.
Then m is G-invariant.

§ 6 Homecoming of trajectories of unipotent flows

As a part of the strategy involved in one of his proofs of the arithmeticity
theorem, Margulis proved that if {u.} is a unipotent one-parameter subgroup
of SL(n,R) then for any z € SL(n,IR)/SL(n, Z) there exists a compact
subset K of SL(n,R)/SL(n, Z) such that the set {¢t > Oju,z € K} is un-
bounded; that is, the trajectory of {u;} starting from z keeps returning to
K (see [Marl]). After studying finite invariant measures of maximal horo-
spherical flows in [D4] I realised that Margulis’ proof could be strengthened
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to conclude that for actions of unipotent subgroups all ergodic invariant mea-
sures are finite (see [D5] and [D10]); for the case of a one-parameter subgroup
{u;} and z as above this involves proving that for a suitable compact subset
K the set {t > 0ju,z € K} has positive upper density. The line of argument
later yielded the following result (see [D14], Theorem 3.5; the semisimplic-
ity condition in the statement there is redundant in view of Lemma 9.1 of
[D4]; it came to be included in the hypothesis only in the flow of the general
development there):

6.1. Theorem: Let G be a connected Lie group and I' be a lattice in G.
Then for any € > 0 there exists a compact subset K of G/T such that for
any unipotent one-paramater subgroup {u.} and g € G at least one of the
following conditions holds:

i) I({t € [0,T)|ugl’ € K}) > (1 —€)T for all large T, or
i1) there exists a proper closed connected subgroup H of G such that HNT
is a lattice in H and {97 usg} is contained in H.

It may be noticed that if the second alternative holds then the whole
{u.}-orbit of gI' is contained in the lower-dimensional homogeneous space
gHT/T =~ L/LNglg~!, where L = gHg™'; in view of this in various contexts
one can use a suitable induction hypothesis and reduce the problem to con-
sidering only the situation as in condition (i). It is clear in particular that for
any {u:} and any g € G as in the hypothesis there exists a compact subset
K, depending on the {u;} and g, such that the conclusion as in (i) holds. The
compact subset can be chosen to be common for all unipotent one-parameter
subgroups and g from a given compact subset; that is, the following holds:

6.2. Theorem: Let G be a connected Lie group and I be a lattice in G. Let
a compact subset F' of G/T and € > 0 be given. Then there exists a compact
subset K of G/T" such that for any unipotent one-parameter subgroup {u:} of
G,z € F and T > 0 such that u;z € F for some s € [0,T] we have

I({t e [0,T]|uz € K}) > (1 —€)T.

This follows from Proposition 2.7 of [D14] together with the arithmeticity
theorem; (see [DM6], Theorem 6.1; it may also be noted that it is enough
to prove the assertion in the theorem for z € F, which can then be applied
to u,z and the one-parameter subgroups {w;} and {u_;} to get the desired
result).

I may also mention that the closed subgroup as in the second alternative
in Theorem 6.1 can be chosen from a special class of subgroups; for instance
if G is semisimple (the general case can be reduced to this via Lemma 9.1
of [D4]) then H can be chosen to be contained in a ‘I-parabolic’ subgroup;
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by a I'-parabolic subgroup we mean a parabolic subgroup whose unipotent
radical intersects I' in a lattice. This follows from Theorem 1 of [DM4]; (as
mentioned earlier, though the result is correct the proof in [DM4] involves
some errors). A more general result in the direction of Theorem 6.3 has been
proved in [EMS] where they consider multiparameter polynomial trajectories;
I will however not go into the details.

The above theorems are used in studying the distribution of orbits of
unipotent flows, as we shall see in the next section. I will devote the rest of
this section to a discussion of various other applications of the theme. Let
me begin with the following result derived in [D14] (see Theorem 3.9 there).

6.3. Corollary: Let G be a connected Lie group and T' be a lattice in G.
There there exists a compact subset C of G such that the following holds: if U
is a closed connected unipotent subgroup which is not contained in any proper
closed subgroup H such that HNT is a lattice in H then G = CTU = UT'C-1.

The motivation for such a theorem is the following: if I is a uniform lattice
in G then there exists a compact subset C of G such that G = CT = I'C1.
While this can not be true for a nonuniform lattice, the theorem means that
it is true modulo any unipotent subgroup not contained in a subgroup H as
in the hypothesis. This has the following interesting consequence.

6.4. Corollary: Let G be a connected Lie group and T’ be a lattice in G.
Consider a linear action of G on a finite-dimensional vector space V. Let
v € V be such that the following conditions are satisfied:

i) there exists a sequence {g;} in G such that g;v — 0, as i — oo, and

ii) the isotropy subgroup of v (that is, {g € Glgv = v}) contains a con-
nected unipotent subgroup U which is not contained in any proper closed sub-
group H such that HNT is a lattice in H.

Then there exists o sequence {~;} in ' such that ;v — 0.

This may be viewed as diophantine approximation with matrix argument,
with elements of lattices replacing integers. It can be applied for instance
to various representations of SL(n,R) and we get conditions for orbits of
SL(n, Z) to have points arbitrarily close to zero. It also implies (see [D14],
Corollary 4.3) that if G is a connected semisimple Lie group with trivial center
and I is a lattice in G then for any unipotent element u which is not contained
in any proper closed subgroup such that H N T is a lattice in H, the closure
of the I" conjugacy class {yuy~*|v € T'} contains the identity element.’

By one of the remarks above, Theorem 6.2 implies in particular that for
the action of a unipotent one-parameter subgroup on G/T’, where G is a Lie
group and I' is a lattice, every ergodic invariant (locally finite) measure is
finite. It was proved in [D5] and [D10] (in the arithmetic and the general case
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respectively) that in fact any invariant measure is a countable sum of finite
jnvariant measures. Using this and some more arguments Margulis obtained
another proof of the theorem of Borel and Harish-Chandra on the finiteness
of the invariant measures of certain homogeneous spaces. More generally he
proved the following (see [Mar2]).

6.5. Theorem: Let G be a connected Lie group and I' be a lattice in G. Let
H be connected Lie subgroup such that if R is the radical of H and N is the
subgroup consisting of all unipotent elements of G contained in R then R/N
is compact. If u is a locally finite H-invariant mesure on G/T' then there
exists a sequence {X;} of H-invariant Borel subsets of G/T' such that u(X;)
is finite for all i and UX; = G/T'; if u is ergodic then it is a finite measure.
In particular, the H-invariant measure on any closed orbit of H on G/T is a
finite measure. !

The results of this section are also used (see [DM1]), together with a lemma
of Y. Dowker (see Lemma 1.6 in [DM1]), to conclude that for unipotent flows
as above all minimal (closed nonempty) sets are compact (this is of course im-
plied by Ratner’s theorem verifying Raghunathan’s conjecture, (Theorem 7.4
below), but cumulatively that involves a much longer argument). The reader
is also referred to [Mar8] for a proof of the corresponding assertion for actions
of more general unipotent groups.

§ 7 Distribution and closures of orbits

In this and the following sections I will discuss the distribution of orbits,
using Theorem 5.4 on classification of invariant measures and Theorem 6.2.
The reader is also referred to [D18] for a similar discussion, presented some-
what differently. I will begin with a cautionary note that when there are
~more than one invariant probability measures, an orbit need not be uni-

formly distributed with respect to any of them. Roughly speaking, over time
the ‘distribution’ may oscillate between various invariant measures, possibly
uncountably many of them. Rigorously this may be described as follows. Let
T be a homeomorphism of a locally compact space X. Let z € X and for
any natural number N let 7y be the probability measure which is the aver-
age of the N point masses supported at the points z, Tz, ..., TV ~lz; that is,
for any Borel set E, my(E) = N'25' x2(T(z)), xr being the character-
istic function of E. The orbit of z being uniformly distributed with respect
to a measure u is equivalent to 7y converging to p (in the weak topology
on the space of measures, with respect to bounded continuous functions) as
N — co. In considering convergence it is convenient to have the space to be
compact and therefore if X is noncompact we view the measures as being on
its one-point compactification, say X; if X is compact we set X = X. Then
convergence of {7y} to a probability measure on X is equivalent to there be-
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ing a unique limit in the space of probability measures on X and its assigning
zero mass to the point at infinity. It is easy to see that any limit point is a
T-invariant probability measure. If X is compact and there is only one in-
variant probability measure, namely if the transformation is uniquely ergodic,
then this immediately implies that the orbit is uniformly distributed. On the
other hand if there are several invariant probability measures then different
subsequences of {my} may converge to different probability measures. This
is what is meant by oscillation of the distribution of the orbit. For a general
dynamical system this happens quite frequently (see e.g.[DGS], [DMu]).

Before proceeding further it may be noted that a similar discussion applies
to one-parameter flows. If {¢:} is a one-parameter subgroup of homeomor-
phisms of a locally compact space X and x € X then for any T > 0 we
define a probability measure w7 by setting 7 (E), for any Borel set E, to be
T-({t € [0,T]]| ¢:(x) € E}), where [ is the Lebesgue measure on JR. The or-
bit of z under {¢;} being uniformly distributed with respect to a probability
measure y is equivalent to mp converging to 4 as T — oo.

In a general sense the task of proving uniform distribution of an orbit can
be divided in to two parts; first to understand all invariant measures of the
transformation or flow in question and then to identify which of them can
occur as limit points of the families of measure associated to any particular
orbit, as above.

Using Theorem 5.4 on the classification of invariant measures of the horo-
cycle flow it was shown, in [D9] for I' = SL(2, Z) and in [DS] for a general
lattice, that all nonperiodic orbits are uniformly distributed with respect to
the invariant volume. That is,

7.1. Theorem: Let G = SL(2,R), T be any lattice in G and U = {u:},

where u; = ((1) i) forallt € R. Let x € G/T be such that v # x for any

t > 0. Then the {u;}-orbit of . is uniformly distributed with respect to the
G-invariant probability measure. Also, for any s # 0, {ulz}32, is uniformly
distributed with respect to the G-invariant probability measure.

Before going over to the general case, let me note the following interesting
consequence of the SL(2, Z)-case of the above theorem, proved in [D9].

7.2. Theorem: Let a be an irrational number. For any T > 0 let I(T)
denote the set of all natural numbers k such that k < T <ka> and the
integral part of ka is coprime to k. Then
1
T

6
E[(T) <k0[>_1 — 5

L
¢(2)

as T — oo, where { is the Riemann zeta function.



FLOWS ON HOMOGENEOUS SPACES 95

The classification of invariant measures of flows made it possible to address
the questions of closures and distribution of the orbits formulated earlier.
Using Ratner’s theorem together with a technique from [DM2] Nimish Shah
[Sh1] proved Conjecture 4.1 in the cases when either G is a reductive Lie
group of R-rank 1 or G = SL(3, R) (he proved Theorem 7.3 in these cases).
More complete results in this respect were obtained by Ratner around the
same time, by a totally different method, proving the following.

7.3. Theorem (Ratner, 1991): Let G be a connected Lie group and I" be a
lattice in G. Let U = {u;} be a unipotent one-parameter subgroup of G. Then
for any x € G/T" there exists an algebraic probability measure p such that the
{us}-orbit of x is uniformly distributed with respect to .

She proved also the corresponding assertion for cyclic subgroups generated
by unipotent elements. From the theorem she deduced Raghuanthan’s con-
jecture (see Conjecture 4.1) for unipotent subgroups and also the following
stronger assertion.

7.4. Theorem (Ratner, 1991): Let G and U be as in Theorem 5.4. Let T’
be a lattice in G. Then for any x € G/T, Uz is a homogeneous subset with
finite invariant measure; that is, there exists a closed subgroup F such that
Fz admits a finite F-invariant measure and Uz = F.

Let G, T and U be as in Theorem 7.3. We call a point x € G/I" generic for
the U-action if there does not exist any proper closed subgroup F' containing
U such that Fz admits a finite F-invariant measure; a posteriori, in view of
Theorem 7.3 this coincides with the usual notion of generic points when U
is either cyclic or a one-parameter subgroup; in the sequel however we shall
mean only the condition described here. Consider the orbit of a generic point
z. In this case the assertion of Theorem 7.3 is that it is uniformly distributed
‘with respect to the G-invariant probability measure, say m. Let me say a
“few words about how the assertion of the theorem is proved in this case; (for
a non-generic point the theorem would follow if we consider an appropriate
homogeneous subspace). For 7' > 0 let mp be the probability measure on
G/T given by mp(E) = T~ 1I({t € [0,#]|usz € E}). We have to show that 7r
converge to m as T — oo. Let X denote G/T" if the latter is compact and the
one-point compactification if it is noncompact. We view 7 as measures on
X, in the obvious way. It is then enough to show that if {T;}2, is a sequence
such that T; — oo and the sequence {77} converges, to say =, in the space
of probability measures on X then 7 is the measure assigning 0 mass to the
complement of G/T in X and G-invariant on the subset G/I". Let such a
sequence {T;} be given and let = be the limit of {r7, }. If G/T"is noncompact
and oo is the point at infinity then the desired condition 7(c0) = 0 follows
from Theorm 6.2. Now consider 7 as a probability measure on G/I". Recall
that any limit such as 7 is U-invariant. The G-invariance of 7 is deduced by
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proving that 7(X (H,U)T'/T") = 0 for all H € H (carrying this out constitutes
the major task in the proof) and applying Corollary 5.5.

For proving that 7(X (H,U)T'/T") = 0 for H € H, I will indicate a different
approach than in Ratner’s proof in [R4]. This approach is involved in many
papers by now, including [DM2], [DM5], [Sh1], [Sh2], [MS], [EMS]; the argu-
ments in [DS] also follow the same scheme, though in a simpler context. The
main idea in this is that the sets X (H, U)['/T" are locally like affine subman-
ifolds and a trajectory of U = {u;} corresponds to a polynomial trajectory
and hence it does not spend too much time too close to the submanifold.
To make sense out of this one associates to each H € H a representation
puy + G — GL(Vy) over a finite-dimensional real vector space Vy, and a
py € Vi such that the following holds: if 7y : G — Vg denotes the orbit
map g — pg(g)py and Ag is the subspace of Vg spanned by ny(X(H,U))
then X(H,U) = 7Y Ax) = {9 € G| nu(g) € An}; specifically py may be
chosen to be the h-th exterior power of the adjoint representation of G, where -
h =dim H, and py to be a nonzero point in the one-dimensional subspace
corresponding to the Lie subalgebra of H; see [DM6] for details (see also
[EMS)).

The main ingredients in the proof are as follows. Let {T;} be the sequence
as above and for each i let o; = {u;z|0 <t < T;}. Firstly we prove that if A
is an algebraic subvariety in a vector space V, then for any compact subset C
of A and € > 0 there exists a (larger) compact subset D of A such that for any
segment the proportion of time spent near C to that spent near D is at most
¢; specifically, for any neighbourhood @ of D there exists a neighbourhood ¥
of C such that for y ¢ ®, any unipotent one-parameter subgroup {v:} of G
and T > 0,

I({t€[0,T]| vy € ¥}) < el({t € [0,T]|vey € ®}).

This depends on certain simple properties of polynomials and the fact that
orbits of unipotent one-parameter subgroups in linear spaces are polynomial
curves. Now consider Vi and any compact subset C of Ay and let D be the
corresponding subset as above. Let g € G be such that gI' = 2. We apply
the above assertion to the segments {u,gypy |0 <t < T;}, v € ['. It turns
out that there exists a neighbourhood @ of D such that the points gypy are
contained in ® for at most two distinct -y, if we restrict to g € G such that g’
lies in a compact set disjoint from the ‘self-intersection set’ of X (H,U)I'/T,
namely the union of its proper subsets of the form (X (H,U)NX(H,U)a)T'/T,
« € . Using this and an inductive argument for the points on the self-
intersection set we can combine the information about the individual seg-
ments and conclude that u(ng' (C)) < e. Varying C and e we get that
pw(ng' (A)T/T) = 0, as desired.
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It was noted earlier that Raghunathan’s conjecture (Theorem 7.4) and
even the weaker result Theorem 4.2 implies Oppenheim’s conjecture. The
former has the following stronger consequence in that direction; the particular
case of it for k = 2 follows from Theorem 4.2 (see [DM1], Theorem 1).

7.5. Corollary: Let B be a real nondegenerate symmetric bilinear form on
IR, where n > 3, which is not a multiple of a rational form. Let1 < k < n—1
and vi, ...,V € IR™. Then for any € > 0 there exist primitive integral vectors
T1, s Tk SUCh that

|B(z;,%;) — B(vg,v;)| < € foralli,j=1,.., k.

§8 Aftermath of Ratner’s work

The classification of invariant measures of unipotent flows has yielded not
only to a proof of Raghunathan’s orbit-closure conjecture but a host of other
interesting results as well. This section will be devoted to describing some of
these.

Let me begin with some strengthenings of Theorem 7.3 on uniform dis-
tribution of orbits of unipotent one-parameter subgroups. Let G be a Lie
group, I' a lattice and U = {w;} be a unipotent one-parameter subgroup. As
noted earlier, the theorem implies in particular that if £ € G/T is a generic
point then its orbit is uniformly distributed with respect to the G-invariant
probability measure, say m. Thus, for any bounded continuous function ¢ on
G/T

1 /T .
?/0 ‘P(Utx)dt—)/a/r wdm asi— oo

for any generic point . A natural question is whether the convergence of
the averages (for a fixed ¢) is uniform over compact subsets of the set of
_generic points. Similarly one may ask what happens if we vary the unipotent
one-parameter subgroup. These questions were considered in [DM6] and the
results were applied to obtain lower estimates for the number of solutions in
large enough sets, for quadratic inequalities as in Oppenheim’s conjecture; see
Corollary 8.3 below. One of our first results in this direction is the following:

8.1. Theorem: Let G be a connected Lie group, I' be a lattice in G and m
be the G-invariant probability measure on G/T. Let {ugl)} be a sequence of
unipotent one-parameter subgroups converging to a unipotent one-parameter
subgroup {u.}; that is uﬁ’) — u; for allt, asi — oco. Let {z;} be a sequence in
G/T converging to a point z € G/T. Suppose that x is generic for the action
of {us}. Let {Ti} be a sequence in R*, T; — oco. Then for any bounded
continuous function ¢ on G/T,

! /Ti (u{z;)dt / dm asi— oo
— )dt — .
Ti 0 U "2 ¢/r ®
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(Marina Ratner has mentioned in [R6] that Marc Burger had pointed out
to her in December 1990, which happens to be before we started our work on
the above questions, that such a strengthening of her theorem can be derived
applying her methods).

In proving the theorem we use Theorem 5.4 on classification of invariant
measures but not Theorem 7.3 on uniform distribution. Our approach, which
was indicated in the previous section in the special case of Theorem 7.3, is
quite different from Ratner’s approach.

We also proved another such ‘uniform version’ of uniform distribution in
which we consider also the averages as on the left hand side for non-generic
points as well, together with those for the generic points. The unipotent
one-parameter subgroup is also allowed to vary over compact sets of such
subgroups; the class of unipotent one-parameter subgroups of G is considered
equipped with the topology of pointwise convergence, when considered as.
maps from IR to G.

Let G and T be as above and let H, X (H,U) (for any subgroups H and
U) be as defined in §6. Recall that the set of generic points for the ac-
tions of a one-parameter subgroup U = {u.} consists of Ugey X(H,U)T/T.
The following result deals simultaneously with averages for generic as well
as non-generic points outside certain compact subsets from finitely many
X(H,U)T'/T.

8.2. Theorem: Let G, T and m be as before. Let U be a compact set of
unipotent one-parameter subgroups of G. Let a bounded continuous function
@ on G/T, a compact subset K of G/T and € > 0 be given. Then there exist
finitely many subgroups H, ..., H, € H and a compact subset C of G such
that the following holds: For any U = {u;} € U and any compact subset F
of K — UL, (C N X(H;,U))T/T there exists a Ty > 0 such that for allz € F
and T > Ty,

1 /T
T/o w(utx)dt-—/G/Fcpdm | < e

In [DMS6] this was proved for U consisting of a single one-parameter sub-
group; essentially the same proof goes through for a general compact set of
one-parameter subgroups.

iFrom Theorem 8.2 we deduced the following asymptotic lower estimates
for the number of solutions of quadratic inequalities in regions of the form
{v e R"|v(v) < r}, as r — oo, where v is a continuous ‘homogeneous’
function on IR™; we call a function v homogeneous if v(tv) = tv(v) for all
t > 0 and v € IR™. We use the notation # to indicate cardinality of a set and
A for the Lebesgue measure on IR".
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8.3. Corollary: Letn >3, 1 < p < n and let Q(p,n) denote the set of all
quadratic forms on IR™ with discriminant +1 and signature (p,n —p). Let
K be a compact subset of Q(p,n) (in the topology of pointwise convergence).
Let v be a continuous homogeneous function on IR™ such that v(v) > 0 for
all v # 0. Then we have the following:

i) for any interval I in IR and 6 > 0 there exists a finite subset £ of K such
that each @ € & 15 a scalar multiple of a rational form and for any Q € K—&

#{zeZ"| Qz)e,v(z) <1} 2 (1-OA{ve R"|Q(v) €I, v(v) <7})

for all large 7; further, for any compact subset C of K—& there exists 1o > 0
such that for all Q € C the inequality holds for all v > ry.

1) if n > 5, then for € > 0 there exist ¢ > 0 and ro > 0 such that for all
QeK andr >

#HeeZ"| Q)| <ev(z) <7} ZeA({ve R |Qv)] <¢ v(v) <r}).

There exist nondegenerate rational quadratic forms in 4 variables with no
nontrivial integral solutions. Since for a rational form, for sufficiently small
¢ > 0 the set as on the left hand side consists of integral solutions, it follows
that the condition that n > 5 is necessary for the conclusion in the second
assertion to hold. On the other hand for n > 5 by Meyer’s theorem any
nondegenerate rational quadratic form in n variables has a nontrivial integral
solution (see [Se]); the theorem is used in the proof of the second part of the
corollary.

It can be verified that in terms of 7 the volume terms appearing on the
_right hand side of the inequalities are of the order of r"~2. A particular
case of interest is of course when v is the euclidean norm, in which case the
regions involved are balls of radius r. I may mention here that for a single
quadratic form which is not a multiple of a rational form, an estimate as in (i)
was obtained, for the case of balls, by S. Mozes and myself, with a (possibly
small) positive constant in the place 1 — @ as above (unpublished).

In Theorem 8.1 we considered the trajectories of a sequence of points {z;}
which converge to a generic point. Evidently it is not a necessary condition
for the conclusion of the theorem to hold. The following theorem describes
the general picture of what happens if we omit the condition.

8.4. Theorem: Let {u§’>} be a sequence of unipotent one-parameter sub-
groups such that uﬁi) — uy for all t, let U; = {ugi)} for all i and U = {u;}.
Let {x;} be a convergent sequence in G/T' such that for any compact sub-
set of ® of G, {i € IN|z; € (2N X(H,U))T/T'} is finite. Let x be the
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limit of {z;}. Then for any H € H such that x € X(H,U)I'/T" there ez-
ists a sequence {7;} of positive real numbers such that the following holds: if
o; = {u,@le 0 <t < T;}, where {T;} is a sequence in R*, T; — oo and the
normalised linear measures on the segments o; converge to i as i — oo then

1) if limsup (T;/7;) = oo then w(X(H,U)I'/T) =0 and

i) if limsup (T;/7;) < oo then there erists a curve ¥ : ([0,1] — D) —
X(H,U), where D is a finite subset of [0,1], such that ng o 9 extends to
a polynomial curve from [0,1] to Vg, supp u meets Y(t)N°(H)T'/T for all
t € [0,1]—D and is contained in their union; here N°(H) denotes the subgroup
of the normaliser of H in G consisting of the elements g for which the map
h+— ghg™! preserves the Haar measure on H.

An analogue of this result can also be proved for divergent sequences, that
is, when z; — oo in X, for co in the place of X (H,U)I'/T.

Roughly speaking the theorem says that given the sequence {z;} if we take
long enough segments then any limit of linear measures along the segments
is G-invariant. If the segments are rather short (in the particular context
of the sequences), though of lengths tending to infinity, then the limit gets
distributed over a family of sets of the form ¢, HT'/T, for certain H € H.
With some further analysis one can describe an ergodic decomposition of the
limit.

The theorem also readily implies that for {u,(f)} and {z;} as in the hypoth-
esis there exists a sequence {7;} of positive real numbers such that the conclu-
sion as in Theorem 8.1 holds for any sequence {7;} such that T;/7; — co. On
the other hand one can also conclude that the topological limit of sufficiently
long orbit-segments contains generic points. Specifically, the following holds
(cf. [DM6], Theorem 4).

8.5. Theorem: Let {ui’)} and {x;} be as in Theorem 8.4. Then there exists
a sequence {t;} in R such that {uyz;} has a subsequence converging to a
generic point with respect to the limit one-parameter subgroup. Further, {t;}
may be chosen from any subset R of IR* for which there exists an a > 0 such
that (RN [0,T)) > oT for all T > 0.

The classification of invariant measures and the method sketched in the
last section for analysing the limit measures has been used recently in many
papers and several interesting results have been obtained: Mozes and Shah
[MS] show that the set of probability measures on G/T" which are invariant and
ergodic under the action of some (not a fixed one) unipotent one-parameter
subgroup is a closed subset of the space of probability measures. Shah [Sh2]
applies the method to extend Ratner’s uniform distribution theorem (The-
orem 7.3) to polynomial trajectories. His result implies in particular the
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following assertion, which is in the spirit of H. Weyl’s theorem of uniform
distribution of polynomial trajectories (see [L]), in a more general context.

8.6. Theorem: Let G be a closed subgroup of SL(n,R) for some n > 2
and T’ be a lattice in G. Let ¢ : IR — SL(n,IR) be a polynomial map (all
coordinate functions are polynomials) such that ¢(G) is contained in G. Then
the curve {¢(t)['/T}iso is uniformly distributed in G/T with respect to an
algebraic measure.

There are also more technical variations of this and multivariable versions
(for polynomial maps from IR™) proved in the paper. Using the multivariable
case the author also generalises Theorem 7.3 to actions of higher-dimensional
unipotent groups, answering in the affirmative a question raised by Ratner
in [R4]. Incidentally, though in discussing distribution of orbits I have re-
stricted to only cyclic or one-parameter subgroups it is possible to consider
similar questions for actions of a larger class of groups, including all nilpotent
Lie groups. The result of Shah pertains to such a question for actions on
homogeneous spaces as above.

The set of ideas was applied by Eskin, Mozes and Shah [EMS] to get
some notable results on the growth of the number of lattice points on certain
subvarieties of linear spaces, within distance r from the origin, as r — oo.
Their results generalise the results of Duke, Rudnik and Sarnak [DRS] and
Eskin and McMullen [EM]; the results of these earlier papers apply essentially
only to affine symmetric varieties, a limitation which has been overcome in
[EMS]. This is achieved through the study of limits of certain sequences of
probability measures on G/T', where G is a reductive Lie group and I is a
lattice in G. Specifically, the sequences are of the form {g;u}, where {g;}
is a sequence in G and p is an algebraic probability measure corresponding
. to some closed orbit of a reductive subgroup H (which may not necessarily
contain any nontrivial unipotent element). In the case when H is a maximal
connected reductive subgroup of G intersecting I' in a lattice and {g;} is
such that {g;H} is a divergent sequence in G/H (namely, has no convergent
subsequence) then {g;u} converges to the G-invariant probability measure on
G/T'. Appropriate generalisations are also obtained in the case when H is
not necessarily maximal, but I will not go into the details. I will also not
go into the details of the application to the counting problem as above in
its generality, but content myself by describing an interesting particular case;
the reader is referred to [BR] for some consequences of the result.

8.7. Theorem: Let p be a monic polynomial of degree n with integer coef-
ficients and irreducible over §). Then the number of integral n X n matrices
with p as the characteristic polynomial and Hilbert-Schmidt norm less than T
is asymptotic to ¢, T""V/2 where c, is a constant.
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§9 Miscellanea

1. Other applications :

In the earlier sections in discussing applications I concentrated largely on
diophantine approximation and related questions. The ideas and results have
found applications in various in other contexts also. Let me mention here
some of the problems, without going in to the details (but giving suitable
references wherever possible), to which the results are applied. No attempt is
made to be exhaustive in respect of the applications and I am only mentioning
the results which have come to my notice, just to give a flavour of the variety
of possibilities in this regard.

Classification of transformations and flows upto isomorphism is one of the
central problems in ergodic theory. Similarly it is of interest to understand
factors of such systems, joinings etc. Ratner’s theorem on invariant mea-
sures enables one to understand these issues satisfactorily in the context of
the unipotent flows (or translations by unipotent elements) on homogeneous
spaces of finite volume. On the other hand Ratner’s work on the classification
of invariant measures and Raghunathan’s conjecture draws quite considerably
from her earlier work on these problems. The reader is referred to [R2] and
[Wi2] for details on the problems and the results on them.

In the course of his work on the structure of lattices in semisimple Lie
groups Margulis showed that if G is a semisimple group of [R-rank at least
2, P is parabolic subgroup of G and I' is a lattice in G then all measurable
factors of the T'-action on G/P are (up to isomorphism) the actions on G/@Q,
where @ is a parabolic subgroup containing P (see [Mar5], [22]). He raised
the question whether a similar assertion is true for topological factors of the
action. The question was answered in the affirmative in [D11]; certain partial
results were obtained earlier in [Z1] and [Sp]. The arguments are based on
results about orbit closures of certain subgroups. A more general result in
this direction has been proved by Shah in [Sh3], where he considers, given a
connected Lie group L, a closed semisimple subgroup G of L, a lattice A in L
and a parabolic subgroup P of G the factors of the G-actions on L/A x G/P
which can be factored further to get the projection factor on to G/P; under
certain appropriate additional conditions it is shown that the factor is of the
form L/A x G/Q for a parabolic subgroup @ of G. In the case when L = G
this corresponds to studying the factors of the I-action on G/P.

A. N. Starkov has applied Ratner’s theorem on invariant measures (The-
orem 5.4) to prove a conjecture of B. Marcus that any mixing flow on a
finite-volume homogeneous space is mixing of all degrees (see [St6]). The
idea of proving mixing via the study of invariant measures was earlier em-
ployed by S. Mozes [Moz1], who proved that for a Lie group G such that Ad G
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is closed and the center of G is finite, any mixing action on a Lebesgue space
is mixing of all degrees.

R. Zimmer has applied Ratner’s invariant measures theorem in [Z5], to
obtain interesting information on the fundamental groups of compact mani-
folds with an action of a semisimple Lie group of R-rank greater than one.
He also used it in [Z4] to show that for certain homogeneous spaces G/H,
where G is a real algebraic group and H is an algebraic subgroup, there are
no lattices; that is, there exist no discrete subgroups I' of G such that ['\G/H
is compact. E. Glasner and B. Weiss [GW] have used Ratner’s description of
joinings of the horocycle flows to give an example of a simple weakly mixing
transformation with nonunique prime factors.

2. Asymptotics of the number of integral solutions

It is natural to ask whether the expressions for the lower estimates as in
Corollary 8.3 are actually assymptotic to the corresponding numbers on the
left hand side. It was shown by P. Sarnak that there exist quadratic forms in
3 variables for which this is not true. Recently A. Eskin, G. A. Margulis and
S. Mozes have shown the answer to be in the affirmative for all nondegenerate
indefinite quadratic forms with signatures different from (2,1) and (2,2),
in particular for all nondegenerate indefinite quadratic forms in 5 or more
variables; for forms with signatures (2,1) and (2, 2) the authors obtain upper
estimates which are log r times larger than the lower estimates as in Corollary
8.3; (at the time of this writing the results are in the process of being written).

3. FExtensions

The reader would have noticed that in the results on orbit closures and
invariant measures there has always been a condition involving unipotence.
It should be noted that even in the case of affine automorphisms of tori the
dynamical behaviour is quite different when the automorphism component
has an eigenvalue of absolute value other than 1 (see [DGS] and [F1]); however
if all eigenvalues are of absolute value 1 then the behaviour is similar to the
unipotent case (see [DMu]). Ratner’s work has been followed up in this
respect by A. N. Starkov (see [St4] and [St7]), to get a wider perspective
in the case of flows on finite-volume homogeneous spaces, namely on G/C,
where G a Lie group and C € F(G), defined by one-parameter subgroups
{g:}. He shows that if {g;} is quasiunipotent, namely for all ¢ all (complex)
eigenvalues of Ad g; are of absolute value 1, then all orbit closures are smooth
manifolds and all finite ergodic invariant measures consist of smooth measures
on these manifolds; they need not however be homogeneous spaces when the
one-parameter subgroup is not unipotent. On the other hand it is shown
that if {g;} is not quasiunipotent then there exist orbit-closures which are
not smooth manifolds.
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In another direction, one can also look for other subgroups, not necessarily
generated by unipotent elements, for which the conclusion as in Theorems 5.4
or 7.4 hold. Certain interesting examples of such subgroups have been given
by Ratner (see [R6], Theorem 9) and Mozes (see [Moz2]).

Before concluding I would like to mention that analogues of many of the
results for actions of unipotent subgroups and in particular the conjecture
of Raghunathan have been proved in p-adic and S-arithmetic cases as well
(see [MT] and [R7]). The analogue of Oppenheim’s conjecture in the p-adic
and S-arithmetic cases was proved earlier by A. Borel and Gopal Prasad (see
[BP1], [BP2], [B1], and [B2]).

Acknowledgement: The author would like to thank Nimish Shah for his com-
ments on a preliminary version of this article.
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