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Abstract: Let G be a connected semisimple Lie group such that the associ-
ated symmetric space X is Hermitian and let Γg be the fundamental group of
a compact orientable surface of genus g ≥ 2. We survey the study of maximal
representations of Γg into G, that is the subset of Hom(Γg, G) characterized
by the maximality of the Toledo invariant ([17] and [15]). Then we concen-
trate on the particular case G = Sp(2n,R), and we show that if ρ is any
maximal representation then the image ρ(Γg) is a discrete, faithful realiza-
tions of Γg as a Kleinian group of complex motions in X with an associated
Anosov system, and whose limit set in an appropriate compactification of X
is a rectifiable circle.
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1. Introduction

Let Γg be the fundamental group of a compact orientable topological surface
Σg of genus g ≥ 2. For a general real algebraic group G the representation variety
Hom(Γg, G) is a natural geometric object which reflects properties both of the
discrete group Γg and of the algebraic group G and enjoys an extremely rich
structure. For example, Hom(Γg, G) is not only a topological space, but also
a real algebraic variety, which in addition parametrizes flat principal G-bundles
over Σg; furthermore, it admits an action of the group of automorphisms of Γg by
precomposition which commutes with the action by postcomposition with (inner)
automorphisms of G. It is natural to consider homomorphisms up to conjugation,
thus we introduce the topological quotient

Rep(Γg, G) := Hom(Γg, G)/G ;

although this quotient is not necessarily a Hausdorff space, it contains a large
part which is Hausdorff, namely the space Repred(Γg, G) of homomorphisms with
reductive image modded out by G-conjugation. The general theme of this note
is the study of certain connected components of Hom(Γg, G) or Rep(Γg, G) anal-
ogous to Teichmüller space, and their relation to geometric and dynamical struc-
tures on Σg.

Recall that if G = PU(1, 1), the space Rep(Γg, G) has 4g − 3 connected com-
ponents ([34], [36]), two of which are homeomorphic to R6g−6 and correspond to
the two Teichmüller spaces Tg – one for each orientation of Σg – that is to the
space of marked complex, alternatively hyperbolic, structures on the topological
surface Σg.

If on the other hand G = SL(3,R), Goldman and Choi proved [21] that one of
the three connected components of Hom(Γg, G) [42] parametrizes convex projec-
tive structures on Σg, that is diffeomorphisms of Σg with Ω/Γ, where Γ < SL(3,R)
is a faithful discrete image of Γg and Ω ⊂ P(R3) is a convex invariant domain;
incidentally, this component coincides with the Hitchin component that we define
below.

If G = PSL(2,C), there is an open subset of Rep(Γg, G) consisting of all quasi-
Fuchsian deformations of Γg, which is diffeomorphic to the product Tg × Tg of
two copies of Teichmüller space.
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In each of these three cases, a representation ρ belonging to such a “special
component” in Rep(Γg, G) is faithful and with discrete image, and ρ(Γg) < G
gives rise, as a Kleinian group, to many interesting dynamical and geometric
structures.

When G is a simple split real Lie group – such as G = PSL(n,R), PSp(2n,R),
PO(n, n) or PO(n, n + 1) – Hitchin singled out a component RepH(Γg, G) of
Rep(Γg, G) which he proved, using Higgs bundle techniques, to be diffeomorphic
to R|χ(Σg)| dimG, [42] and which is now commonly known as Hitchin component.
For example, if G = PSL(n,R) for n ≥ 2, this component is the one containing
the homomorphisms of Γg into SL(n,R) obtained by composing a hyperbolization
with the n-dimensional irreducible representation of SL(2,R). As Hitchin however
points out [42], the analytic point of view does not shed any light on the geometric
significance of the representations in this component.

Recently the concept of Anosov representation, which links the surface Σg to
flag manifolds associated to G was introduced in [50] and used to show that,
if G = PSL(n,R), representations in the Hitchin component are discrete and
faithful, and that they provide quasiisometric embeddings of Γg into G, [50], [51].

In parallel, Goncharov and Fock developed for surfaces with nonempty bound-
ary and in the case of split real Lie groups a tropical-algebro-geometric viewpoint
of Rep(Γg, G), singling out positive real points in Rep(Γg, G) which correspond
to discrete and faithful representations, [30], [29].

There is another natural extension of the case G = PU(1, 1) in a different
direction, that is to connected semisimple Lie groups G such that the associated
symmetric space X admits a G-invariant complex structure, just like in the case of
the Poincaré disk. This includes notably groups like SU(p, q), Sp(2n,R), SO∗(2n),
SO(2, n). Symmetric spaces with this property are called Hermitian.

In the same framework, the topology and the number of connected components
of the space of reductive representations into SU(p, q) and Sp(2n,R) have been
studied in a series of papers by Bradlow, Garćıa-Prada, Gothen, Mundet i Riera
and Xia ([6], [4], [7], [37], [32], [68]), extending the analytic approach introduced
by Hitchin.

The additional feature for symmetric spaces which are Hermitian is the pres-
ence of a Kähler form ωX on X which allows to associate to every representation
ρ : Γg → G a characteristic number, called the Toledo invariant Tρ (see § 3),
which is constant on connected components of Hom(Γg, G) and which satisfies a
Milnor–Wood type inequality

|Tρ| ≤ |χ(Σg)| rkX ,(1.1)
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where rkX is the real rank of X. A representation is maximal if equality holds in
(1.1), and the set Hommax(Γg, G) of such representations is then a union of com-
ponents of Hom(Γg, G). If G = PU(1, 1), Goldman proved in [34] that maximal
representations are exactly those lying in the two Teichmüller components.

In the first part of this article we illustrate, mostly without proofs, results
concerning the geometric significance of maximal representations. To fix the no-
tation, let G := G(R)◦, where G is a semisimple real algebraic group and assume
that the symmetric space X associated to G is Hermitian. In complete analogy
with Goldman’s theorem, any maximal representation ρ : Γg → G is injective
with discrete image (Theorem 4.6). This fact depends on a careful study of the
Zariski closure L of the image ρ(Γg) and the fact that there is an essential restric-
tion on L := L(R)◦, namely that it is reductive and it preserves a subHermitian
symmetric space of X which is of tube type and maximal with respect to this
property. On the constructive side, the study of maximal representations into
G does not reduce to the study of classical Teichmüller space; in fact, if X is
of tube type, any representation which is the composition of a hyperbolization
Γg → SU(1, 1) with the homomorphism SU(1, 1) → G associated to the realiza-
tion of the Poincaré disk diagonally in a maximal polydisk in X can be deformed
into a representation with Zariski dense image in G (Theorem 4.7); such a rep-
resentation is by construction maximal. For examples of discrete representations
into SU(1, n) with prescribed Toledo invariant see [35].

These results are proven in greater generality in [15], where for the represen-
tation of the fundamental group of a surface with boundary, we define a Toledo
invariant whose definition and properties however require some vigorous use of
bounded cohomology. In the context of this paper, continuous bounded coho-
mology will appear as a tool in the proofs; in particular it allows to define the
notion of tight homomorphism, more general and flexible than that of maximal
representation, and which is an essential tool to study the geometric properties of
the inclusion XL ↪→ X , where XL is the subsymmetric space associated to L (see
above). A systematic study of tight homomorphisms and the companion notion
of tight embedding is the subject matter of [16] and a few highlights of this theory
are presented in § 5.

While the first part of the paper is expository, in the second part we give an
elementary treatment of a certain number of results on maximal representations
into the symplectic group Sp(V ) of a real symplectic vector space V . The results
are stated in § 6 and their proofs in § 8 are independent of the rest of the paper
(see § 8).

Observe at this point that Sp(V ) is at the same time real split, and hence falls
into the context of the Hitchin component, and is the group of automorphisms of
the Siegel upper half space, a fundamental class of Hermitian symmetric spaces.
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We have the inclusion

RepH

(
Γg,Sp(V )

)
⊂ Repmax

(
Γg,Sp(V )

)
,

but while the representations in the Hitchin component are all irreducible [50],
there are (at least when dimV ≥ 4) components of maximal representations
which contain reducible representations, so that the above inclusion is strict.

For a representation ρ : Γg → Sp(V ) and a fixed hyperbolization Σ of Σg, we
associate the flat symplectic bundle Eρ over the unit tangent bundle T 1Σ of Σ
with fiber V . The geodesic flow lifts canonically to a flow gρ

t on Eρ; we adapt some
of the ideas in [50] to our situation and, combining them with the results in § 5 and
§ 7, prove that if ρ is maximal then Eρ is the sum of two continuous Lagrangian
subbundles Eρ

+ ⊕ Eρ
− on which gρ

t acts contracting and expanding respectively.
Moreover, this bundle will also come with a field of complex structures in each
fiber, exchanging Eρ

± and positive for the symplectic structure (see § 5). As a
consequence, one deduces that any maximal representation ρ : Γg → Sp(V ) is
a quasiisometric embedding, where Sp(V ) is equipped with a standard invariant
metric. This implies that the action of the mapping class group Out(Γg) on
Repmax

(
Γg,Sp(V )

)
is properly discontinuous.

Acknowledgments: The authors thank Domingo Toledo for bringing to their
attention [45] and [62] and Domingo Toledo and Nicolas Monod for useful com-
ments on a preliminary version of the paper.

2. Hermitian Symmetric Spaces and Examples

Let X be a symmetric space and let G := Isom(X )◦ be the connected com-
ponent of its group of isometries. Recall that X is Hermitian if it admits a
G-invariant complex structure. An equivalent definition is that X is a Hermitian
manifold such that every point x ∈ X is the isolated fixed point of an isometric in-
volution sx. In this paper we shall consider only symmetric spaces of noncompact
type.

Let J be the G-invariant complex structure and let g : TX ×p TX → R be
the Riemannian metric, where TX ×p TX denotes the fibered product over the
projection p : TX → X . Then

ωX (X,Y ) := g(JX, Y )

defines a G-invariant differential two-form on X which is nondegenerate.

Lemma 2.1. Let X be a symmetric space and G = Isom(X )◦. Then any G-
invariant differential form on X is closed.



560 M. Burger, A. Iozzi, F. Labourie, A. Wienhard

Proof. Let α be a G-invariant differential k-form on X and let s ∈ Isom(X ) be
the geodesic symmetry at a basepoint 0 ∈ X . Since G is normal in Isom(X ), then
sgs ∈ G and hence sα is also G-invariant, since

g(sα) = s2g(sα) = s(sgs)α = sα .

Moreover, since s|T0X = −Id we have that (sα)0 = (−1)kα0, and since α and sα
are both G-invariant, the equality (sα)x = (−1)kαx holds for every x ∈ X . Since
dα is also G-invariant, from

(−1)kdα = d(sα) = s(dα) = (−1)k+1dα

we deduce that dα = 0. �

The immediate consequence of the above lemma is that a Hermitian symmet-
ric space X is a Kähler manifold with Kähler form ωX . Furthermore, using the
existence of a Kähler form on X , one can prove that for an irreducible symmetric
space X being Hermitian is equivalent to the center of a maximal compact sub-
group of Isom(X )◦ having positive dimension (and in fact being one-dimensional).

A fundamental result which makes the study of Hermitian symmetric spaces
accessible to techniques from function theory à la Bergmann is the following
theorem of Harish-Chandra which for classical domains is due to E. Cartan, [20].

Theorem 2.2 (Harish-Chandra, [40]). Any Hermitian symmetric space of non-
compact type is biholomorphic to a bounded domain in a complex vector space.

The bounded realization D ⊂ CN of a Hermitian symmetric space X has
a natural compactification, namely the topological closure D in CN , on which
G := Isom(X )◦ acts by restriction of birational isomorphism of CN . The Shilov
boundary Š is a subset of the topological boundary ∂D of the bounded domain;
it can be defined in function theoretical terms, and it is also the unique closed
G-orbit in D. It is a homogeneous space of the form G/Q, where Q is a (specific)
maximal parabolic subgroup of G, and plays a prominent role in our study, for
example as target of appropriate boundary maps. Notice that only if X is of real
rank one, the Shilov boundary coincides with the whole boundary ∂D.

Recall that the rank rkX of a symmetric space X is the maximal dimension of
a flat subspace, that is an isometric copy of Euclidean space.

Expositions of different aspects of the geometry of Hermitian symmetric spaces
are [46], [23], [58], [57], and [67].

2.1. Examples of Hermitian Symmetric Spaces. We give here examples of
two families of Hermitian symmetric spaces which are of fundamental nature and
with which we shall illustrate our results.
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2.1.1. SU(W ). Let W be a complex vector space of dimension n, and h( · , · ) a
nondegenerate Hermitian form of signature (p, q), p ≤ q, so that p is the maximal
dimension of a subspace L ⊂ W on which the restriction h( · , · )|L is positive
definite. A model for the symmetric space associated to

SU(W ) :=
{
g ∈ SL(W ) : h(gx, gy) = h(x, y),∀x, y ∈W

}
is

XSU(W ) :=
{
L ∈ Grp(W ) : h( · , · )|L is positive definite

}
which, as an open subset of the Grassmannian Grp(W ) of p-dimensional sub-
spaces of W , is a complex manifold on which G acts by automorphisms. To
realize XSU(W ) as a bounded domain, fix W+ ∈ XSU(W ), and let W− := W⊥

+ be
its orthogonal complement with respect to the form h. Since the orthogonal pro-
jection prε : W → Wε, ε ∈ {+,−}, is an isomorphism for ε = + when restricted
to any L ∈ XSU(W ), we can define

E : XSU(W ) →Lin(W+,W−)(2.1)

by

E(L) := pr− ◦ (pr+|L)−1 .

It is easy to see that this defines a biholomorphic map from XSU(W ) to the
bounded domain

(2.2) DSU(W ) :=
{
A ∈ Lin(W+,W−) : Id −A∗A is positive definite

}
where the adjoint is taken with respect to the structures of the unitary spaces(
W+, h( · , · )|W+

)
and

(
W−,−h( · , · )|W−

)
. Moreover the closure X SU(W ) of XSU(W )

in Grp(W ) is mapped by E to

DSU(W ) =
{
A ∈ Lin(W+,W−) : Id −A∗A is positive semidefinite

}
.

To determine the preimage of the Shilov boundary in the hyperboloid model
XSU(W ), observe that there are precisely (p+1) orbits of SU(W ) in X SU(W ), only
one of which is closed, namely the Grassmannian of maximal isotropic subspaces

Isp(W ) :=
{
L ∈ Grp(W ) : h( · , · )|L = 0

}
,

which is hence sent via E to the Shilov boundary

ŠSU(W ) =
{
A ∈ Lin(W+,W−) : Id −A∗A = 0

}
⊂ DSU(W )

of the bounded domain DSU(W ). The real rank of XSU(W ) is p.

Identifying W with Cp+q in such a way that h is the standard Hermitian form
of signature (p, q), we denote SU(p, q) := SU(W ) and

Dp,q =
{
Z ∈Mq,p(C) : Id − tZZ is positive definite

}
the corresponding bounded domain with Shilov boundary

Šp,q =
{
Z ∈Mq,p(C) : Id − tZZ = 0

}
⊂ Dp,q .



562 M. Burger, A. Iozzi, F. Labourie, A. Wienhard

In particular D1,1 is the Poincaré disk.

2.1.2. The Symplectic Group. Let V be a real vector space equipped with a sym-
plectic form 〈 · , · 〉, that is a nondegenerate antisymmetric bilinear form. In
particular V must be even dimensional and we fix dimV = 2n. The group

Sp(V ) :=
{
g ∈ GL(V ) : 〈gx, gy〉 = 〈x, y〉,∀x, y ∈ V

}
is the real symplectic group. The fact that on a complex vector space the imagi-
nary part of a nondegenerate Hermitian form is a symplectic form for the under-
lying real structure suggests to introduce the space

X :=
{
J ∈ GL(V ) :J is a complex structure on V and

hJ(x, y) := 〈x, Jy〉 + i〈x, y〉 is a positive definite

Hermitian form on (V, J)
}
,

so that, if J ∈ X , then �hJ(x, y) = 〈x, Jy〉 is a symmetric positive definite form.
It is easy to see that, among complex structures on V , this property characterizes
the elements of X . Furthermore, for the transitive action by conjugation of Sp(V )
on X , the stabilizer of J is a maximal compact subgroup isomorphic to U(n) and
hence X is the symmetric space XSp(V ) associated to Sp(V ); in particular, since
the center of U(n) has positive dimension, XSp(V ) is Hermitian symmetric and,
as such, there is a Sp(V )-invariant complex structure on XSp(V ) which one can
explicit as follows.

Let VC be the complexification of V and let σ : VC → VC be the complex con-
jugation σ(x+ iy) := x− iy for x, y ∈ V . Then there is a bijective correspondence
between complex structures J on V and decompositions VC = L+⊕L− into com-
plex subspaces satisfying σ(L±) = L∓, given by the eigenspace decomposition of
J ⊗C 11 into ±i-eigenspaces. If now 〈 · , · 〉C is the complexification of 〈 · , · 〉, then

h(x, y) := i〈x, σ(y)〉C
is a nondegenerate Hermitian form of signature (n, n) on VC; if in particular
J ∈ XSp(V ), then the restriction h|L+×L+ is positive definite, so that we obtain a
map

XSp(V ) → XSU(VC)

J �→ L+
(2.3)

which is equivariant with respect to the natural homomorphism
λ : Sp(V ) → SU(VC)

g �→ g ⊗C 11 .

Since XSU(VC) inherits a natural complex structure as an open subset of the Grass-
mannian Grn(VC) of n-planes in VC and

M :=
{
L ∈ Grn(VC) : 〈 · , · 〉C|L×L ≡ 0

}
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is an algebraic subvariety of Grn(VC), then XSU(VC)∩M acquires a natural complex
structure as an open subset of M . But

〈 · , · 〉C|L±×L± ≡ 0

for all J ∈ XSp(V ), so that the map in (2.3) is a λ-equivariant bijection between
XSp(V ) and XSU(VC)∩M by the use of which the complex structure on XSU(VC)∩M
defines the Sp(V )-invariant complex structure on XSp(V ).

Let us denote by SSp(V ) := XSU(VC) ∩M the Siegel space associated to Sp(V )
with its Sp(V )-action via the homomorphism λ.

To determine the bounded domain realization of XSp(V ), it is enough to observe
that – with the notations of § 2.1.1, where W = VC – the Siegel space SSp(V ) is
mapped by the map E defined in (2.1) to the subdomain

DSp(V ) :=
{
A ∈ DSU(VC) : 〈 · , A · 〉C|W+×W+ is symmetric

}
,

and, accordingly, SSp(V ) is mapped to

DSp(V ) :=
{
A ∈ DSU(VC) : 〈 · , A · 〉C|W+×W+ is symmetric

}
.

One can verify again that the closure SSp(V ) in Grn(VC) decomposes into (n+ 1)
orbits under the symplectic group, only one of which is closed, namely

Isn(VC) ∩ SSp(V ) =
{
L ∈ Grn(VC) : 〈 · , · 〉C|L×L = 0 and h|L×L ≡ 0

}
and hence is the preimage, under the map E in (2.1), of the Shilov boundary in
the bounded domain realization of SSp(V ). To give an intrinsic description of the
Shilov boundary observe that, since we have the alternative description

Isn(VC) ∩ SSp(V ) =
{
L ∈ Grn(VC) : 〈 · , · 〉C|L×L = 0 and σ(L) = L

}
,

we conclude that the map

L(V ) → Isn(VC) ∩ SSp(V )

L �→ L⊗ C ,

where L(V ) is the space of Lagrangians in V , is an Sp(V )-equivariant bijection.
Thus the space of Lagrangian subspaces is, as a Sp(V )-homogeneous space, iso-
morphic to the Shilov boundary of the bounded domain DSp(V ).

If we identify V with the direct sum of n symplectic planes, that is copies of R2

with the standard symplectic form, then accordingly we denote the symplectic
group by Sp(2n,R) and the Siegel space by Sn.
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3. The Toledo Invariant and Maximal Representations

Let Σg be a compact oriented surface of genus g ≥ 2, G a connected semisimple
Lie group with finite center and associated symmetric space X which we assume
to be Hermitian, and ρ : Γg → G a homomorphism. Then there is a smooth
Γg-equivariant map f̃ : Σ̃g → X , where Σ̃g denotes the universal covering of Σg,
which can be obtained by lifting a smooth section of the flat bundle Γg\

(
Σ̃g ×

X
)
→ Σg with contractible fiber X . The pullback f̃∗ωX is then a Γ-invariant

differential form on Σ̃g, which hence descends to a form on Σg. Since any two
such sections are homotopic and hence the map f̃ is unique up to ρ-equivariant
homotopy, the result of the integration over Σg of any two forms obtained in this
way does not depend on the particular choice of a section: we can hence define
the Toledo invariant of ρ

Tρ :=
1
2π

∫
Σg

f̃∗(ωX ) .

Normalizing the metric on X once and for all so that the minimal holomorphic
sectional curvature is −1, we can summarize the properties of the Toledo invariant
in the following

Proposition 3.1. There exists a rational number �X ∈ Q such that the Toledo
invariant Tρ of a representation ρ : Γg → G has the following properties:

(1) Tρ ∈ �XZ;
(2) the map T : Hom(Γg, G) → �XZ is constant on connected components of

the representation variety, and
(3) |Tρ| ≤ |χ(Σg)| rkX , where rkX is the real rank of X .

Remark 3.2. (1) The constant �X can be explicitly computed from the re-
stricted root system of the real Lie group G (see [14]). In fact, the metric
of minimal holomorphic sectional curvature −1 on X is the �X -multiple
of the Bergmann metric given by the bounded domain realization of X .

(2) The inequality in Proposition 3.1(3) is due to J. Milnor in the case G =
SL(2,R) [54], to V. Turaev in the case G = Sp(2n,R) [64], to A. Domic
and D. Toledo in the classical cases [24] and to J. L. Clerc and B. Ørsted
in the general case [22].

We want to give now a very concrete interpretation of the Toledo invariant of a
representation Γg → G in the case in which G = Isom(X )◦, in terms of generators
of Γg; this is very much in the spirit of Milnor’s formula for the Euler number
(see [54]).
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Let 0 ∈ X be a basepoint and K its stabilizer in G. We already alluded to
the fact that the center of K is of positive dimension (see § 2). In fact, the C-
vector space structure on the tangent space T0X gives an action of U(1) := {z ∈
C : |z| = 1} which can be “integrated”, in the sense that there is a continuous
homomorphism

u0 : U(1) → K(3.1)

such that for z ∈ U(1) the differential of the isometry of X defined by u0(z) at 0
is the multiplication v �→ zv for all v ∈ T0X . In particular, since K acts on T0X
faithfully by C-linear maps, the image of u0 is in the center Z(K) of K and in
fact coincides with Z(K) when X is irreducible.

Assume hence for the following discussion that X is irreducible. The homo-
morphism in (3.1) induces a homomorphism on the level of fundamental groups
Z → π1(K) = π1(G) and hence an isomorphism

Z → π1(G)/π1(G)tor .

Denoting by Ĝ the covering of G associated to π1(G)tor , we obtain a topological
central extension

0 �� Z �� Ĝ �� G �� (e) .

The commutator map Ĝ× Ĝ→ Ĝ factors via Z to give rise to a smooth map

G×G→ Ĝ

(a, b) �→ ̂[a, b] .
Given a standard presentation of Γg,

Γg =
〈
a1, b1, . . . , ag, bg :

g∏
i=1

[ai, bi] = e

〉
,

to any homomorphism ρ : Γg → G we can thus associate
g∏

i=1

̂[ρ(ai), ρ(bi)] ∈ Z

and the same argument as in [54], shows that

Tρ = �X
g∏

i=1

̂[ρ(ai), ρ(bi)] .

As an immediate consequence we have that the Toledo invariant depends con-
tinuously on the representation and hence (1) and (2) of Proposition 3.1 follow at
once. The proof of part (3) of the same proposition is more delicate; one efficient
way to prove it uses the value of the simplicial area of Σg and the value of the
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norm of the bounded Kähler class in bounded cohomology determined by Domic
and Toledo [24] and by Clerc and Ørsted [22], and will be explained in § 5.

If G = PU(1, 1) and X is the Poincaré disk, the constant �X in Proposition 3.1
equals 1 and hence for the Toledo invariant of a homomorphism

ρ : Γg → PU(1, 1)

we have that Tρ ∈ Z and |Tρ| ≤ 2g − 2. Thus Tρ can achieve at most 4g − 3
values. In fact:

Theorem 3.3 (Goldman, [34], [36]). The fibers of

Hom
(
Γg,PU(1, 1)

)
→ {−(2g − 2), . . . , 0, . . . , 2g − 2}

ρ �→ Tρ

are exactly the connected components of Hom
(
Γg,PU(1, 1)

)
. Moreover Tρ =

±(2g − 2) if and only if ρ is a hyperbolization, that is it is faithful with discrete
image.

Let now G be any connected semisimple Lie group with finite center such that
the associated symmetric space X is Hermitian. Inspired by Proposition 3.1(3)
and by Goldman’s result, we give the following

Definition 3.4. We say that a representation ρ : Γg → G is maximal if Tρ =
±χ(Σg) rkX .

In the sequel we shall show that, in this degree of generality, maximal repre-
sentations contain a remarkable amount of structure. Historically, the following
result of H. Kneser seems to be the birth certificate of this theme.

Theorem 3.5 (Kneser, [45]). Let f : Σg → Σh be a continuous map of compact
orientable surfaces, where h ≥ 2. If df is the degree of f we have

|df (h− 1)| ≤ |g − 1| ,
with equality if and only if f is homotopic to a covering map, necessarily of degree
df .

G. Lusztig observed that this inequality is a consequence of Milnor’s inequality
(see [26] for this remark as well as a proof using harmonic maps), by taking a
hyperbolization

ρ : π1(Σh) → PU(1, 1)

of Σh and considering the Toledo invariant of the composed homomorphism

ρ ◦ f∗ : π1(Σg) → PU(1, 1) .

Actually, continuing along these lines and applying Goldman’s theorem charac-
terizing maximal representations into PU(1, 1) leads to a proof of the equality
case in Kneser’s theorem. The reader might find instructive to fill in the details.
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3.1. Examples of Maximal Representations. It is a nontrivial and remark-
able geometric fact that any maximal flat in a Hermitian symmetric space can
be “complexified” hence leading to the existence of maximal polydisks.

Definition 3.6. A maximal polydisk in X is a subHermitian symmetric space in
X isomorphic to the r-fold Cartesian product (D1,1)r of the Poincaré disk, where
r = rkX .

The fact that maximal polydisks exist (and are all conjugate under Isom(X )◦)
[67, p. 280] is a crucial ingredient in some of the examples to follow and their
generalization (see Theorem 4.7).

Example 3.7. The embedding
(D1,1)p → Dp,q

(z1, . . . , zp) �→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1
. . .
zp

0 . . . 0
...

...
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is isometric and holomorphic and hence defines a maximal polydisk P ⊂ Dp,q

associated to the obvious homomorphism

τP : SU(1, 1)p → SU(p, q) .

Example 3.8. Let R2n = R2 ⊕ · · ·⊕R2 be the direct sum of n symplectic planes.
Then the embedding

(XSp(2,R))
n → XSp(2n,R)

(J1, . . . , Jn) �→

⎛
⎜⎝J1

. . .
Jn

⎞
⎟⎠

defines a maximal polydisk P ⊂ XSp(2n,R) associated to the obvious homomor-
phism

τP :
(
Sp(2,R)

)n → Sp(2n,R) .

Now we present some examples of maximal representations, though the proof
of their maximality is not necessarily immediate at this point.

Example 3.9. Let X be any Hermitian symmetric space of rank r, and P ⊂ X
a maximal polydisk with associated homomorphism

τP : SU(1, 1)r → G := Isom(X )◦ .



568 M. Burger, A. Iozzi, F. Labourie, A. Wienhard

Given now r orientation preserving hyperbolizations h1, . . . , hr : Γg → SU(1, 1),
the representation

h : Γg −→ SU(1, 1)r

γ �→
(
h1(γ), . . . , hr(γ)

)
as well as the composition

τP ◦ h : Γg → G

are maximal.

Example 3.10. Let h : Γg → SL(2,R) be an orientation preserving hyperboliza-
tion and let ρ2n : SL(2,R) → SL(2n,R) be the 2n-dimensional irreducible rep-
resentation of SL(2,R). Since ρ2n

(
SL(2,R)

)
preserves the standard symplectic

form on R2n, we obtain a representation

ρ2n ◦ h : Γg → Sp(2n,R)

which can be proven to be maximal. Observe that such a representation ρ2n ◦ h
is in the Hitchin component RepH

(
Γg,Sp(2n,R)

)
(see § 1).

The fact that τP ◦ h and ρ2n ◦ h are maximal depends on the property of τP
and ρ2n being “tight homomorphisms”, a concept to which we shall return in § 5.

Example 3.11. Because of Proposition 3.1(2), any deformation of any of the
above representations is maximal. In particular, all representations in the Hitchin
component are maximal.

Example 3.12. Let Σg be a compact oriented surface of genus g ≥ 2. Our
objective is to give an example of maximal representation with Zariski dense
image in Sp(4,R) constructed via an explicit deformation of the representation
in Example 3.9. This was triggered by a comment of Toledo, who pointed out
that a disk diagonally embedded into a polydisk does not determine uniquely the
polydisk.

To this end, write Σg as the sum of two surfaces ΣA,ΣB identified along a
separating simple closed loop γ on which we choose a basepoint p and realize Γg

as an amalgamated product ΓA ∗〈γ〉 ΓB of ΓA := π1(ΣA, p) and ΓB := π1(ΣB , p)
over the infinite cyclic subgroup 〈γ〉.

Let h : Γg → PSp(2,R)2 be defined by h(γ) :=
(
h1(γ), h2(γ)

)
, where h1, h2 :

Γg → PSp(2,R) are two inequivalent hyperbolizations, and let us choose some
lift to Sp(2,R)2, denoted again by h with a small abuse of notation,

h : Γg → Sp(2,R)2

γ �→
(
h1(γ), h2(γ)

)
.
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ΣA
ΣB

γ

Figure 1.

We shall assume that:

(∗) h(γ) ∈ Δ, where Δ is the diagonal of Sp(2,R)2, and
(∗∗) the restriction of the two hyperbolic structures to ΣA and to ΣB are

inequivalent,

and we denote by

hA : ΓA → Sp(2,R)2

α �→
(
h1,A(α), h2,A(α)

)
and

hB : ΓB → Sp(2,R)2

β �→
(
h1,B(β), h2,B(β)

)
the restrictions of h to ΓA and ΓB respectively.

Let now R4 = R2 ⊕ R2 be the sum of two standard symplectic real planes (as
in 2.1.2), so that

Sp(4,R) =
{
g =

(
A B
C D

)
∈ GL(4,R) : tg

(
J 0
0 J

)
g =

(
J 0
0 J

)}

where J =
(

0 1
−1 0

)
. Consider the homomorphism

τP : Sp(2,R)2 → Sp(4,R)

(A,D) �→
(
A 0
0 D

)
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associated to the maximal polydisk

P =
{(

J1 0
0 J2

)
∈ XSp(4,R) : J1, J2 are complex structures on R2

}
.

Then the centralizer Z in Sp(4,R) of the image τP(Δ) of the diagonal is

Z =
{(

aId2 bId2

cId2 dId2

)
:
(
a b
c d

)
∈ O(2)

}
.

Denoting by Int(z) the conjugation by z ∈ Z, the homomorphisms τP ◦ hA and
Int(z) ◦ τP ◦ hB coincide on 〈γ〉 (see (∗)). Thus by the universal property of
amalgams, there is a unique homomorphism

ρz : Γg → Sp(4,R)

whose restriction to ΓA is τP ◦ hA and to ΓB is Int(z) ◦ τP ◦ hB .

Proposition 3.13. With the above notations:

(1) For every z ∈ Z◦ the representation ρz : Γg → Sp(4,R) is maximal, and

(2) if z =
(
aId2 bId2

cId2 dId2

)
∈ Z satisfies ac �= 0, then ρz(Γg) is Zariski dense in

Sp(4,R).

Proof. (1) If z = Id , ρId is the composition of h : Γg → Sp(2,R)2 with τP :
Sp(2,R)2 → Sp(4,R). The latter homomorphism is associated to an embedding
realizing (XSp(2,R))2 as a maximal polydisk in the Siegel space XSp(4,R) and hence
ρId is maximal (see Example 3.9). Every z ∈ Z◦ can be connected to Id by a
continuous path, thus ρz is in the same component of Hom

(
Γg,Sp(4,R)

)
as ρId

and thus maximal.

(2) It follows from (∗∗) that the image ρz(Γg) is Zariski dense in the algebraic
group L < Sp(4,R) generated by P := τP

(
Sp(2,R)2

)
and zPz−1. Now the

condition on z guarantees that the Lie algebra p of P is strictly contained in the
Lie algebra l of L. But it is easily verified that the representation of Sp(2,R)2 on
the Lie algebra sp(4,R) of Sp(4,R) obtained by composing τP with the adjoint
representation is a sum of p and the irreducible representation in dimension 4,
tensor product of the standard 2-dimensional representation of Sp(2,R) with
itself. This implies that l = sp(4,R) and hence proves the proposition. �

Example 3.14. A smooth fiber bundle over a surface Σg with typical fiber Σn

leads, via the monodromy representation on the first homology group of the fiber,
to a representation

ρ : Γg → Sp(2n,Z) .
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For such representations, D. Kotschick [47] showed that

|Tρ| ≤
1
2
|χ(Σg)|(n− 1) ,

and in particular ρ is far from being maximal. On the other hand D. Toledo has
given examples of maximal representations into Sp(4n,Z) for all n ≥ 1, [62].

4. Tube Type Subdomains and Maximal Representations

Let G be a semisimple real algebraic group with associated symmetric space
X of Hermitian type. In view of Goldman’s theorem (see Theorem 3.3), a basic
question concerning a maximal representation ρ : Γg → G is whether it is faithful
with discrete image. In addition, when X is not the Poincaré disk, ρ(Γg) cannot be
a lattice in G and thus in this general setting there is the question of determining
how “large” the image of ρ can be. Concerning the latter question, it is natural
to turn one’s attention to the Zariski closure L of ρ(Γg). While in the preceding
examples we have seen that L(R) can be a product Sp(2,R)r, or more interestingly
Sp(4,R), it turns out however that there are restrictions on L and that moreover
the determination of these restrictions is an essential step in order to answer the
question about faithfulness and discreteness of ρ.

To this purpose, an instructive special case is the family of Hermitian sym-
metric spaces of real rank one, that is the complex hyperbolic spaces D1,q. This
case, beyond q = 1, was examined by Toledo and in order to state his result we
recall that a complex geodesic is an isomorphic copy of D1,1 in D1,q; equivalently,
complex geodesics are obtained by taking the exponential of a complex line in
TxD1,q, for x ∈ D1,q; they constitute the maximal polydisks in D1,q.

Theorem 4.1 (Toledo, [63]). Any maximal representation ρ : Γg → PU(1, q)
stabilizes a complex geodesic.

Since the stabilizer in PU(1, q) of a complex geodesic is, modulo a compact
kernel, isomorphic to PU(1, 1), Goldman’s theorem [34] applies, and thus ρ is
basically obtained via a hyperbolization of Σg.

The proof of Toledo’s theorem is very much in the spirit of the Gromov–
Thurston proof of Mostow rigidity theorem and uses notably �1-homology and
smearing. (Incidentally, �1-homology will play a role also in our treatment of
the Milnor–Wood type inequality in Proposition 3.1(3) as described in § 5). A
special case of Theorem 4.1 was already proven by Toledo in [61] using harmonic
mappings techniques. In the same spirit, taking up Hitchin’s approach via Higgs
bundles, Bradlow, Garćıa-Prada and Gothen made a comprehensive study of the
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topology of the connected components of Homred

(
Γg,PU(p, q)

)
and obtained in

particular for the maximal representations the following

Theorem 4.2 (Bradlow–Garćıa-Prada–Gothen, [4]). Assume that 1 ≤ p ≤ q.
If ρ : Γg → PU(p, q) is maximal and reductive, then its image is contained in
P

(
U(p, p) × U(q − p)

)
up to conjugation.

This result had been previously obtained by L. Hernández in the case p = 2,
[41]. Moreover, an analogous result has been proven by Bradlow, Garćıa-Prada
and Gothen for SO∗(2n), if n is odd [5].

An equivalent way of stating the theorem asserts that ρ(Γg) preserves a Her-
mitian symmetric subspace of Dp,q conjugate to Dp,p. In order to understand the
situation in general, the relevant concept here is the one of tube type domain.
For instance, the Hermitian symmetric space associated to PU(1, 1) has a real-
ization as upper half plane but, unlike the bounded domain realization, this type
of realization is not available for all Hermitian symmetric spaces.

Definition 4.3. A Hermitian symmetric space X is of tube type if it is biholo-
morphic to a domain

{u+ iv : u ∈ V, v ∈ Ω} ⊂ V ⊕ iV

where V is a real vector space and Ω ⊂ V is a proper open cone.

Example 4.4. The space Dp,q associated to SU(p, q) is of tube type if and only
if p = q, in which case it is biholomorphic to

Hermp(C) + iHerm+
p (C) ,

where Hermp(C) is the real vector space of Hermitian matrices and Herm+
p (C) is

the open cone of positive definite ones. The biholomorphism is given explicitly
by restricting to Dp,p the Cayley transformation

C : Mp,p(C) → Mp,p(C)

Z �→ i(Id + Z)
(Id − Z)

.

The Cayley transformation C sends the real Zariski open subset of the Shilov
boundary Šp,p of Dp,p consisting of matrices Z ∈Mp,p(C) such that det(I−Z) �= 0
bijectively into Hermp(C). Considering Herm+

p (C) as an open cone in the tangent
space of Hermp(C) at 0, and taking its image under the differential at 0 of C−1,
one obtains a cone Ω in the tangent space T−Id Šp,p which is invariant under the
stabilizer of −Id in SU(p, p). Translating this cone by the SU(p, p)-action, one
obtains a smooth family of open cones Ωx ⊂ TxŠp,p, that is a causal structure on
the Shilov boundary, which is SU(p, p)-invariant.
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Example 4.5. Under the same Cayley transformation, the bounded domain re-
alization of the Siegel space is sent biholomorphically to

Symn(R) + iSym+
n (R) ,

where Symn(R) denotes the vector space consisting of real symmetric n× n ma-
trices, and realizes the symmetric space associated to Sp(2n,R) as a tube type
domain.

The open cone Sym+(R) defines in the same way as above an Sp(V )-invariant
causal structure on L(V ) which will be used in the proof of Corollary 6.3.

The examples above serve to illustrate the general fact that the Shilov bound-
ary of a bounded symmetric domain of tube type admits an invariant causal
structure. Among bounded symmetric domains, this property characterizes those
of tube type. The general classification of Hermitian symmetric spaces relative
to the notion of tube type is as follows:

Tube Type Non-Tube Type
SU(p, p) SU(p, q)

p < q
Sp(2n,R)
SO∗(2n) SO∗(2n)
n even n odd

SO(2, n)
E7(−25) E6(−14)

where E7(−25) and E6(−14) correspond to the exceptional Hermitian symmetric
spaces of complex dimension 27 and 16 respectively.

An essential feature of a Hermitian symmetric space of rank rkX is that (holo-
morphically embedded) maximal Hermitian subdomains of tube type always ex-
ist, are of rank rkX and are all conjugate.

Notice that in the rank one case, that is for complex hyperbolic n-space, the
notion of maximal tube type subdomain and maximal polydisk coincide. This
ambiguity left open the correct generalization of Toledo’s theorem until the con-
struction of a maximal representation with Zariski dense image in a tube type
domain [17], of which Example 3.12 is a particular case.

We can finally state the structure theorem for maximal representations.

Theorem 4.6 ([17], [15]). Let G be a connected semisimple real algebraic group
and assume that the symmetric space XG associated to G := G(R)◦ is Hermitian
symmetric. Let ρ : Γg → G be a maximal representation. Then:
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(1) Γg acts properly discontinuously, via ρ, on XG;
(2) the Zariski closure L of ρ(Γg) is reductive;
(3) the connected component L := L(R)◦ stabilizes a maximal tube type

subdomain T ⊂ XG;
(4) the symmetric space XL associated to L is Hermitian of tube type and

the isometric embedding XL ↪→ T is tight.

We illustrate the above theorem in the examples of § 3. For the notion of tight
embedding see § 5.

Example. 3.9 The orientation preserving hyperbolizations h1, . . . , hr fall into s
equivalence classes modulo SU(1, 1)-equivalence, with 1 ≤ s ≤ r; the group L
is then isomorphic to SU(1, 1)s and XL is a product of s-subdiagonals in the
maximal polydisk P. Any diagonal disk in P determines the same maximal tube
type domain T and XL ⊂ P ⊂ T . The first statement of the theorem is obvious
in this example.

Example. 3.10 In this case L ∼= Sp(2,R), T = XSp(2n,R), and XL ⊂ XSp(2n,R) is
a geodesically embedded disk, holomorphic if and only if n = 1. Item (1) of the
theorem is obvious also in this case.

Example. 3.12 Under the conditions of Proposition 3.13(2), the maximal repre-
sentation

ρz : Γg → Sp(4,R)

has Zariski dense image, so L = Sp(4,R) and XL = T = XSp(4,R) by construction.
On the other hand, Theorem 4.6(1) implies that ρz is injective with discrete
image, a fact that in this case is not at all obvious from the construction.

As alluded to earlier, Example 3.12 is a particular case of a general fact which
we now state. Let r = rkX , let P ⊂ X be a maximal polydisk and

τP : SU(1, 1)r → Isom(X )◦ .

the associated homomorphism.

Theorem 4.7 ([17], [15]). Assume that X is of tube type and let ρ0 : Γg →
Isom(X )◦ be the maximal representation obtained by composing a hyperboliza-
tion of Γg → SU(1, 1) with the diagonal embedding of SU(1, 1) in SU(1, 1)r fol-
lowed by τP . Then ρ0 admits a continuous deformation ρt : Γg → Isom(X )◦, for
t ≥ 0, such that ρt(Γg) is Zariski dense in Isom(X )◦ for t > 0.

Observe that ρt, being a continuous deformation of a maximal representation,
is maximal as well.



Maximal Representations of Surface Groups 575

5. Tight Homomorphisms

A fundamental role in the study of maximal representations of surface groups
is played by tight homomorphisms, which generalize maximal representations of
surface groups, in that it is a notion defined for any continuous homomorphism
of a locally compact group into the group of isometries of a Hermitian symmetric
space.

The definition of tight homomorphism rests on basic concepts in bounded con-
tinuous cohomology which we briefly recall; for a comprehensive treatment see
[56] and [19]. We start with the more familiar concept of continuous group coho-
mology. For a locally compact group G, its continuous cohomology H•

c(G,R) is
the cohomology of the complex

(
C(G•,R)G, d•

)
of G-invariant real valued con-

tinuous cochains, where d• is the usual homogeneous coboundary. The bounded
continuous cohomology H•

cb(G,R) is then the cohomology of the subcomplex(
Cb(G•,R)G, d•

)
of G-invariant bounded continuous cochains. The complex(

Cb(G•,R)G, d•
)

equipped with the supremum norm is a complex of Banach
spaces with continuous coboundary operators, and hence H•

cb(G,R) is endowed
with a quotient seminorm. Also, the inclusion of the complex of bounded con-
tinuous functions into the one of continuous functions gives rise to a comparison
map

c•G : H•
cb(G,R) → H•

c(G,R)(5.1)

which encodes subtle properties of G of geometric and algebraic nature. See [1],
[33], [55], [18], [19, § V.13], [13], and also [8], [9], [38], [60], [2], [28], [31], [27], [3],
[49], [48] in relation with the existence of quasi-morphisms.

If now G is a connected semisimple Lie group with finite center and associated
symmetric space X , we have seen that the complex

(
Ω•(X )G, d•

)
of G-invariant

differential forms on X coincides with its cohomology (see Lemma 2.1) and, in
fact, there is a canonical isomorphism [65]

H•
c(G,R) ∼= Ω•(X )G .

Let us now specialize to the case of interest to us, namely when X is Hermitian
symmetric and ωX ∈ Ω2(X )G is its Kähler form. A continuous cocycle defining
the class κX ∈ H2

c(G,R) corresponding to ωX is

cX (g1, g2, g3) =
∫

Δ(g1x,g2x,g3x)
ωX ,

where x ∈ X is a basepoint and Δ(g1x, g2x, g3x) is any smooth two-simplex with
geodesic sides and vertices g1x, g2x, g3x.
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There is a general conjecture of Dupont to the extent that cocycles obtained
by integrating G-invariant differential forms (of any degree) should be bounded,
[25]. In terms of the comparison map, this suggests the following

Question. Let G be a connected semisimple Lie group with finite center. Is the
comparison map (5.1) surjective in all degrees?

This turns out to be true for forms representing specific classes (see [39], [25],
[59], [10], [52]) and in particular for the Kähler form was first shown by Dupont
[25]. In fact, with the assumed normalization on the metric of X (see § 3), one
has the equality

‖cX ‖∞ = π rkX(5.2)

due to Domic and Toledo for classical domains [24] and to Clerc and Ørsted in the
general case [22]. Thus cX defines a continuous bounded class κb

X ∈ H2
cb(G,R)

to which we shall refer to the bounded Kähler class; and for which one has the
following theorem (see also Proposition 7.4):

Theorem 5.1 (Domic–Toledo [24], Clerc–Ørsted [22]). If the metric on X is
normalized to have minimal holomorphic sectional curvature −1, then

‖κb
X ‖ = π rkX .

Given now locally compact groups H and G, any continuous homomorphism
ρ : H → G induces canonical pullbacks ρ• and ρ•b respectively in continuous
and bounded continuous cohomology, by precomposition of continuous (bounded)
cochains with ρ; the resulting linear maps have the property that the diagram

H•
cb(G,R)

ρ•b ��

c•G
��

H•
cb(H,R)

c•H
��

H•
c(G,R)

ρ• �� H•
c(H,R)

(5.3)

commutes, and moreover the pullback in bounded continuous cohomology is norm
decreasing, namely for all α ∈ Hn

cb(G,R),

‖ρ(n)
b (α)‖ ≤ ‖α‖ .

Definition 5.2 ([16], [66]). Let G be a connected semisimple group with finite
center and such that the associated symmetric space X is Hermitian, and let H
be any locally compact group. A continuous homomorphism ρ : H → G is tight
if it preserves the norm of the bounded Kähler class, that is if∥∥ρ(2)

b (κb
X )

∥∥ =
∥∥κb

X
∥∥ .
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To motivate this definition, we sketch a proof of the inequality in Proposi-
tion 3.1(3). Since Σg is a K(Γg, 1), we have in particular a canonical isomorphism

H2(Γg,R) → H2(Σg,R)

which, if κX ∈ H2
c(G,R) allows us to see ρ(2)(κX ) ∈ H2(Γg,R) as a singular class

in H2(Σg,R) and evaluate it on the fundamental class [Σg] ∈ H2(Σg,R) of Σg;
recall that Σg is oriented once and for all. Then if

〈 · , · 〉 : H2(Σg,R) × H2(Σg,R) → R

denotes the pairing, analogously to the classical case of the Euler number, we
have

Tρ =
1
2π

〈
ρ(2)(κX ), [Σg]

〉
.

The proof of the Milnor–Wood type inequality in Proposition 3.1(3) will follow
from the interpretation of this invariant in bounded cohomology. To this pur-
pose, following Gromov [39], recall that the �1-homology of Σg is the homology
H•,�1(Σg,R) of the complex of singular �1-chains, while the bounded cohomology
H•

b(Σg,R) is the cohomology of the dual Banach space complex; consequently,
�1-homology and bounded cohomology acquire quotient seminorms and there is
the canonical pairing

〈 · , · 〉b : Hn
b(Σg,R) × Hn,�1(Σg,R) → R

which satisfies the property that for all α ∈ Hn
b(Σg,R) and all a ∈ Hn,�1(Σg,R)

|〈α, a〉b| ≤ ‖α‖ ‖a‖�1 .

These notions have been introduced by Gromov for any topological space X and
one has the Gromov–Brooks canonical isometric isomorphism (see [39] and [8])

H•
b

(
π1(X),R

) ∼= H•
b(X,R) ,

a rather deep fact depending on higher homotopy groups being Abelian and hence
amenable. In our situation one can explicitly write an isometric isomorphism

H2
b(Γg,R) ∼= H2

b(Σg,R)(5.4)

compatible with the isomorphism in ordinary cohomology, by choosing a hyper-
bolic metric on Σg and using the technique of straightening simplices.

Starting now with the bounded Kähler class κb
X ∈ H2

cb(G,R), and applying the
pullback in bounded cohomology and the isomorphism (5.4), we obtain the class
ρ

(2)
b (κb

X ) ∈ H2
b(Σg,R) which corresponds, using (5.3), to ρ(2)(κX ) ∈ H2(Σg,R)

under the comparison map in singular cohomology

H2
b(Σg,R) → H2(Σg,R) .

This latter being the dual of the natural map

H2(Σg,R) → H2,�1(Σg,R),(5.5)
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we have that 〈
ρ(2)(κX ), [Σg]

〉
=

〈
ρ

(2)
b (κb

X ), [Σg]�1
〉
b
,

where [Σg]�1 denotes the image of [Σg] under (5.5). Thus

|Tρ| ≤
1
2π

∥∥ρ(2)
b (κb

X )
∥∥ ∥∥[Σg]

∥∥
�1
.

Recall now that the �1-norm
∥∥[Σg]

∥∥
�1

of the fundamental class is called the sim-
plicial area of Σg and, by [39],∥∥[Σg]

∥∥
�1

= 4g − 4 .

This, together with the norm decreasing property of the pullback in bounded
cohomology and the value of the norm of the Kähler class in Theorem 5.1, implies
on the one hand the inequality in Proposition 3.1(3) and on the other the following

Proposition 5.3. Any maximal representation is a tight homomorphism.

The following general result about tight homomorphisms, together with the
above proposition, implies part of Theorem 4.6.

Theorem 5.4 ([16], [66]). Let G be a semisimple real algebraic group, H a
locally compact group, and assume that the symmetric space XG associated to
G := G(R)◦ is Hermitian. Then for a tight homomorphism ρ : H → G the
following holds:

(1) The Zariski closure L of the image ρ(H) is reductive;
(2) the real reductive group L := L(R)◦ has compact centralizer in G; and
(3) the symmetric space XL ⊂ XG associated to L is Hermitian.

Notice that the totally geodesic embedding XL ⊂ XG in (3) is not necessar-
ily holomorphic. However, there is a notion of tight embedding for Hermitian
symmetric spaces which parallels the one for homomorphisms.

Definition 5.5 ([16], [66]). Given a totally geodesic embedding

f : Y → X
of Hermitian symmetric spaces, we say that f is tight if

sup
Δ⊂Y

∫
Δ
f∗ωX = sup

Δ⊂X

∫
Δ
ωX

where the supremum is taken over all smooth triangles with geodesic sides.

This corresponds for the associated homomorphism

ρ : HY → Isom(X )◦ ,(5.6)
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where HY is an appropriate finite covering of Isom(Y)◦, to be a tight homomor-
phism. With this terminology, the inclusion XL ⊂ XG in Theorem 5.4(3) is a
tight embedding.

Here are some examples of tight embeddings:

Example 5.6. The homomorphism τP : SU(1, 1)r → X associated to a maximal
polydisc P ⊂ X is tight; evidently, the embedding P ⊂ X is both holomorphic
and tight.

Example 5.7. The irreducible representation ρ2n : SL(2,R) → Sp(2n,R) is tight,
and the associated totally geodesic embedding of H2

R
→ XSp(2n,R) is a tight em-

bedding which is holomorphic only if n = 1.

Example 5.8. The embedding T ⊂ X of a maximal tube type subdomain in X
is tight and holomorphic.

Example 5.9. If Y is an irreducible Hermitian symmetric space and f : Y → X
is a totally geodesic embedding, then f is tight if and only if

f∗ωX = ±rkX
rkY

ωY .

Example 5.10. The embedding XSp(V ) → XSU(VC) in Example 2.1.2 is tight and
holomorphic.

Observe now the following simple

Proposition 5.11. Let H,G be connected semisimple Lie groups with finite
center and associated symmetric spaces of Hermitian type. If ρ : Γg → H is
maximal and ρ′ : H → G is tight, then ρ′ ◦ ρ is maximal.

This, together with Examples 5.6 and 5.7 above justifies the maximality of the
representations in Examples 3.9 and 3.10.

Notice that in general totally geodesic embeddings between bounded symmetric
domains do not induce maps between the corresponding Shilov boundaries even if
they are holomorphic. This is however something else that tight homomorphism
can provide for us, namely

Theorem 5.12 ([16], [66]). Let X ,Y be Hermitian symmetric spaces and f : Y →
X a tight embedding with associated homomorphism ρ : HY → Isom(X )◦ (see
(5.6)). Then there exists a ρ-equivariant map

f̌ : ŠY → ŠX .

Remark that, since the Shilov boundary of a Hermitian symmetric space is a
homogeneous space, if such ρ-equivariant map exists, it is unique (up to transla-
tions).
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The above theorem allows us also to deduce in great generality the existence of
boundary maps for tight homomorphisms. Let Λ be a countable discrete group
and let θ be a probability measure on Λ. Recall that a Poisson boundary of the
pair (Λ, θ) is a measurable Λ-space B with a quasiinvariant probability measure
ν such that there exists an isometric isomorphism between the space of bounded
θ-harmonic functions

H∞(Λ, θ) :=
{
f : Λ → R : f is bounded and

f(g) =
∫

Λ
f(gh)dθ(h),∀g ∈ Λ

}
and the space L∞(B, ν), given by the Poisson formula

f(g) =
∫

B
ψ(gx)dν(x) .(5.7)

Although we shall not need it here, we recall that, under natural assumptions on
the measure θ, a Poisson boundary in fact exists even for locally compact second
countable groups, [44].

An immediate consequence of the Poisson formula (5.7) is that the measure ν
is θ-stationary, that is θ ∗ ν = ν. Moreover, it will be essential for our purposes
that the action of Λ on the Poisson boundary B is amenable with respect to the
measure ν, [69].

Theorem 5.13. Let Λ be a countable discrete group with probability measure θ
and let G be a semisimple real algebraic group such that the symmetric space
X associated to G := G(R)◦ is Hermitian. If (B, ν) is a Poisson boundary for
(Λ, θ) and ρ : Λ → G is a tight homomorphism, then there exists a ρ-equivariant
measurable map

ϕ : B → ŠX .

Proof. Let L be the Zariski closure of ρ(Λ). By Theorem 5.4 the symmetric space
Y associated to L := L(R)◦ is Hermitian symmetric and the embedding Y → X
is tight, so that Theorem 5.12 implies the existence of a ρ-equivariant map f̌
between the corresponding Shilov boundaries

f̌ : ŠY → ŠX .(5.8)

Let Q < L be a maximal parabolic subgroup defined over R such that ŠY ∼=
L(R)/Q(R), and let P < Q be a minimal parabolic subgroup defined over R
contained in Q, so that we have an equivariant map

L(R)/P(R) � L(R)/Q(R) ∼= ŠY .(5.9)

Since the action of Λ on (B, ν) is amenable, there exists a ρ-equivariant mea-
surable map

ϕ0 : B → M1
(
L(R)/P(R)

)
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where M1
(
L(R)/P(R)

)
denotes the space of probability measures on L(R)/P(R).

Since ρ : Λ → L has Zariski dense image, the Λ-action on L(R)/P(R) is mean
proximal (see [13, Theorem 7.3]): this, together with the fact that ν is θ-stationary,
implies that for ν-a. e. b ∈ B, ϕ0(b) is a Dirac measure, thus providing a map

ϕ0 : B → L(R)/P(R)

which composed with the maps in (5.8) and (5.9) provides the required ρ-equivariant
map. �

As an application, given a compact surface group Γg, choose a hyperbolization
of Σg and let Γ be the realization of Γg as a cocompact lattice in PU(1, 1). Then
Γ acts naturally on S1 = ∂D1,1 and, in fact, a theorem of Furstenberg asserts
that there exists a probability measure θ on Γ such that S1 with the Lebesgue
measure λ is a Poisson boundary of (Γ, θ).

Corollary 5.14. Let G be a semisimple real algebraic group such that the
symmetric space X associated to G := G(R)◦ is Hermitian and let ρ : Γ → G
be a tight embedding of a cocompact lattice Γ < PU(1, 1). Then there exists a
ρ-equivariant measurable map

ϕ : S1 → ŠX .

Remark 5.15. For technical purposes one can show that if F ⊂ ŠX is the set
of points which are not transverse to a given point in ŠX , and ϕ is the map in
Corollary 5.14, the set ϕ−1(F ) has Lebesgue measure zero in S1.

6. Symplectic Anosov Structures

We focus in this section on maximal representations into a symplectic group
Sp(V ). Let thus ρ : Γg → Sp(V ) be any representation. We choose a hyperboliza-
tion Σ of Σg, and let Γ < PU(1, 1) = Aut(D1,1)◦ be the resulting realization of
Γg. From now on we consider ρ as a representation of Γ. The geodesic flow g̃t

on the unit tangent bundle T 1D1,1 gives rise to a flow g̃t
ρ on the total space of

the flat symplectic bundle Ẽρ := T 1D1,1 × V over T 1D1,1 commuting with the
diagonal Γ-action given by γ(u, x) :=

(
γu, ρ(γ)x

)
which hence descends to a flow

gρ
t on the quotient Eρ := Γ\(T 1D1,1 × V ) which is a flat symplectic bundle over

the unit tangent bundle T 1Σ. The projection

p : Eρ → T 1Σ(6.1)

is then equivariant with respect to the gρ
t -action on Eρ and to the action of the

geodesic flow gt on T 1Σ.
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Let 〈 · , · 〉 : Eρ ×p E
ρ → R be the symplectic form on Eρ. A positive complex

structure on the symplectic bundle is a continuous section

J : T 1Σ → End(Eρ)

such that

(1) Ju is a complex structure on the fiber Eρ(u), and
(2) the form 〈 · , J · 〉 is symmetric and positive definite in each fiber.

We denote by ‖ · ‖ : Eρ → R+ the resulting Euclidean norm, and by ‖ · ‖u its
value on the fiber Eρ(u) above the point u ∈ T 1Σ.

Observe that any symplectic bundle over a paracompact base admits a positive
complex structure. A Lagrangian subbundle of a symplectic bundle is a subbundle
such that each fiber is a Lagrangian subspace. With this terminology we have
then the following

Theorem 6.1. Assume that ρ : Γ → Sp(V ) is a maximal representation. Then
there is a gρ

t -invariant splitting

Eρ = Eρ
− ⊕ Eρ

+

into continuous Lagrangian subbundles, and there exist a positive complex struc-
ture J and a constant A > 0 such that

(1) J interchanges Eρ
− and Eρ

+, and
(2) for all t ≥ 0,

‖gρ
t ξ‖ ≤ e−At‖ξ‖ for all ξ ∈ Eρ

+

and

‖gρ
−tξ‖ ≤ e−At‖ξ‖ for all ξ ∈ Eρ

− .

This result has interesting consequences on the metric properties of a maximal
representation. To describe them, as well as for convenience in the proofs in § 8,
we specify a left invariant metric on the symmetric space XSp(V ) associated to
Sp(V ). Recall that XSp(V ) is the set of complex structures J on V such that
〈 · , J · 〉 is symmetric and positive definite. Denoting by qJ the corresponding
Euclidean norm on V , and by ‖Id‖J1,J2 the norm of the identity map between
(V, qJ1) and (V, qJ2), we set

d(J1, J2) :=
∣∣ ln ‖Id‖J1,J2

∣∣ +
∣∣ ln ‖Id‖J2,J1

∣∣ J1, J2 ∈ XSp(V ) .

Of course, this distance is equivalent to the G-invariant Riemannian distance on
XSp(V ), but it is more convenient for our purposes.

The statement of the next corollary does not depend on the choice of a hyper-
bolization.
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Corollary 6.2. Let ρ : Γg → Sp(V ) be a maximal representation, J ∈ XSp(V ) a
basepoint and � the word length on Γg. Then the orbit map

ρJ : Γg → XSp(V )

γ �→ ρ(γ)J

is a quasiisometric embedding, that is there are constants A,B > 0 such that for
every γ ∈ Γ

A−1�(γ) −B ≤ d
(
ρ(γ)J, J

)
≤ A�(γ) +B .

Essential in the proof of Theorem 6.1 is the existence of the boundary map
obtained in Corollary 5.14 from the boundary S1 = ∂D1,1 of the Poincaré disk
into the space of Lagrangians L(V ) which relates the Maslov cocycle (see § 7)
to the orientation cocycle on S1. A priori this map is only measurable, but as a
consequence of the continuity of the splitting in Theorem 6.1, it turns out to be
continuous. In fact, this map plays a role analogous to the one of hyperconvex
curves in the study of the Hitchin component of Hom

(
Γg,SL(n,R)

)
in [50].

Corollary 6.3. Let ρ : Γ → Sp(V ) be a maximal representation. Then there is
a ρ-equivariant continuous injective map

ϕ : S1 → L(V )

with rectifiable image.

7. Bounded Cohomology at Use

The definition of continuous bounded cohomology in § 5 is not very useful from
a practical point of view, as many natural cocycles of geometric origin are not
continuous. The homological algebra approach developed in [19], [56], [12] and
[11] allows us to overcome this obstacles in the usual way: as in the homological
algebra approach to continuous cohomology, there are appropriate notions of
coefficients modules, of relatively injective modules and of strong resolutions, that
is resolutions with an appropriate homotopy operator. The underlying philosophy
is that we need not restrict to the standard resolution in § 5, but any resolution
satisfying certain conditions will suffice to compute the bounded cohomology in a
completely canonical way. More specifically, the prominent role played by proper
actions in the case of continuous cohomology is played by amenable actions in
the case of bounded continuous cohomology.

Theorem 7.1 (Burger–Monod [19], Monod [56]). Let G be a locally compact
second countable group and (S, ν) a regular amenable G-space. Then the contin-
uous bounded cohomology of G is isometrically isomorphic to the cohomology of
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the complex

0 ��L∞
alt(S,R)G d ��L∞

alt(S
2,R)G d �� . . .

with the usual homogeneous coboundary operator.

Here L∞
alt(S

n,R) denotes the subspace of L∞(Sn,R) consisting of functions
such that f(s) = sign(σ)f

(
σ(s)

)
for all s ∈ Sn and σ any permutation of the

coordinates.

Without getting into the details of the amenability of an action (for which we
refer the reader to [70]), let us mention that the action of a group Λ on the Poisson
boundary (B, ν) relative to a probability measure θ is amenable, as well as the
action of a connected semisimple Lie group G on the quotient G/P by a minimal
parabolic subgroup P < G. So, for example, the action of a surface group Γg on
S1 via a hyperbolization is amenable, but if X is a Hermitian symmetric space
the action of Isom(X )◦ on the Shilov boundary ŠX is not, unless the symmetric
space has real rank one.

If in addition to being amenable the action of G on (S, ν) is mixing, that is
the diagonal action on (S×S, ν× ν) is ergodic, then any G-invariant measurable
function on S×S must be essentially constant, and hence L∞

alt(S
2,R)G = 0. This,

together with Theorem 7.1 implies the following

Corollary 7.2. Let G be a locally compact second countable group and (S, ν)
a regular amenable mixing G-space. If ZL∞

alt(S
3,R) denotes the subspace of

cocycles in L∞
alt(S

3,R), then we have a canonical isometric isomorphism

H2
cb(G,R) ∼= ZL∞

alt(S
3,R)G .

Example 7.3. Since the Γg-action on S1 is amenable and mixing, then

H2
b(Γg,R) ∼= ZL∞

alt

(
(S1)3,R

)Γg .

Likewise if G is a connected semisimple Lie group and P < G is a minimal
parabolic, then

H2
cb(G,R) ∼= ZL∞

alt

(
(G/P )3,R

)G
.

On the one hand this shows immediately that in degree two continuous bounded
cohomology is a Banach space, on the other it allows us to represent bounded
cohomology classes via meaningful cocycles defined on boundaries.

From now on we shall apply these considerations to the symplectic group G =
Sp(V ); for ease of notation, set dimV = 2n. Following Kashiwara [53, § 1.5], we
recall that the Maslov index βn of three Lagrangians L1, L2, L3 ∈ L(V ) is defined
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as the index βn(L1, L2, L3) ∈ Z of the quadratic form
L1 ⊕ L2 ⊕ L3 −→ R

(x1, x2, x3) �→ 〈x1, x2〉 + 〈x2, x3〉 + 〈x3, x1〉 .
The function βn : L(V )3 → Z is a cocycle which takes integer values in the
interval [−n, n]; more specifically, on the space L(V )(3) of triples of Lagrangians
which are pairwise transverse, its set of values is {−n,−n+ 2, . . . , n− 2, n}, and
each fiber of βn is precisely an open Sp(V )-orbit. Remark also that β1 is nothing
but the orientation cocycle on S1.

The space F(V ) of complete isotropic flags is a homogeneous space of Sp(V )
with a minimal parabolic subgroup as stabilizer, and therefore the Sp(V )-action
on F(V ) is amenable. Let

pr : F(V ) → L(V )

be the projection

pr
(
{0} � V1 � · · · � Vn

)
:= Vn .

With these notations we have:

Proposition 7.4. The map

βn ◦ pr3 : F(V )3 → Z(7.1)

is a bounded Sp(V )-invariant alternating cocycle such that π(βn ◦ pr3) corre-
sponds to the bounded Kähler class κb

Sp(V ) ∈ H2
cb(Sp(V,R) under the isometric

isomorphism in Corollary 7.2. In particular∥∥κb
Sp(V )

∥∥ = ‖π(βn ◦ pr3)‖∞ = π n .

Of course the drawback of the acquired freedom in going from continuous func-
tions to L∞ functions – or, more specifically, function classes – is that now the
implementation of the pullback of a bounded cohomology class cannot be done
mindlessly as before, since pullbacks even via continuous maps do not define, in
general, a well defined equivalence class of measurable functions. However, the
situation is much simpler in our case, given that our class admits as a representa-
tive the Borel function in (7.1) for which the cocycle identity holds everywhere.
The following important result is a particular case of a general phenomenon for
which we refer the reader to [12].

Theorem 7.5. Let Γg → Sp(V ) be a homomorphism, and assume that there
exists a ρ-equivariant measurable map

ϕ : S1 → L(V ) ,

where Γg acts on S1 via a hyperbolization. Then the pullback

ρ
(2)
b

(
κb

Sp(V )

)
∈ H2

cb(Γg,R)
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is represented by the cocycle π(βn ◦ ϕ3) : (S1)3 → R defined by

(x, y, z) �→ πβn

(
ϕ(x), ϕ(y), ϕ(z)

)
.

Now we succeeded in implementing the pullback in a rather effective way, but
we find ourselves in the infinite dimensional Banach space H2

b(Γg,R). To size
things down again, we shall need to make use of the transfer map.

Choose a hyperbolization of Σg and let as before Γ be the realization of Γg as
a cocompact lattice in PU(1, 1). Inspired by Example 7.3 and by the fact that

H2
cb

(
PU(1, 1),R

) ∼= ZL∞
alt

(
(S1)3,R

)PU(1,1)
,

define a transfer map

t : L∞(
(S1)3,R

)Γ → L∞(
(S1)3,R

)PU(1,1)

by

tf(x, y, z) :=
∫

Γ\PU(1,1)
f(gx, gy, gz) dμ(g) ,

where μ is the PU(1, 1)-invariant probability measure on Γ\PU(1, 1). Since by
Proposition 7.4

H2
cb

(
Sp(V ),R

) ∼= R · (βn ◦ pr3)

and

H2
cb

(
PU(1, 1),R

) ∼= R · β1 ,

composition of the pullback implemented as in Theorem 7.5 followed by the trans-
fer map in cohomology

H2
cb

(
Sp(V ),R

) ρ
(2)
b ��H2

b(Γ,R) t(2) ��H2
cb

(
PU(1, 1),R

)
(7.2)

implies that there exists a constant c ≥ 0 such that for almost all x, y, z ∈ S1∫
Γ\PU(1,1)

βn

(
ϕ(gx), ϕ(gy), ϕ(gz)

)
dμ(g) = cβ1(x, y, z) .(7.3)

An analogous composition of maps as in (7.2) in ordinary cohomology and their
interplay via the comparison map which for Sp(V ) and PU(1, 1) are isomorphisms
[19], allow us to explicit the constant c in (7.3) as explained in [43, § 3] in the
context of Matsumoto’s theorem.

Theorem 7.6. Let ρ : Γg → Sp(V ) be a homomorphism, Γ < PU(1, 1) a hyper-
bolization of Γg, and assume that there exists a ρ-equivariant measurable map
ϕ : S1 → L(V ). Then for almost every x, y, z ∈ S1

(7.4)
∫

Γ\PU(1,1)
βn

(
ϕ(gx), ϕ(gy), ϕ(gz)

)
dμ(g) =

Tρ∣∣χ(Σg)
∣∣β1(x, y, z) .
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Observe that if either ρ(Γ) is Zariski dense or ρ is tight, such a measurable
Γ-equivariant map exists. The following corollary is then immediate from Theo-
rem 5.13 and Theorem 7.6.

Corollary 7.7. Let ρ : Γ → Sp(V ) be a maximal representation. Then there
exists a ρ-equivariant measurable map ϕ : S1 → L(V ) and it satisfies

βn

(
ϕ(x), ϕ(y), ϕ(z)

)
= nβ1(x, y, z)

for almost every x, y, z ∈ S1.

8. Symplectic Anosov Structures: Proofs

In this section we prove the results stated in § 6. These proofs rest entirely on
Corollary 7.7 and are otherwise independent of the machinery used to establish
Corollary 7.7.

8.1. The Geometry of Triples of Lagrangians. Here we collect a few basic
facts about the Maslov cocycle. Our reference is [53, § 1.5].

The space L(V )(3) of triples of pairwise transverse Lagrangians decomposes as
a union �n

j=0On−2j of (n+ 1) open Sp(V )-orbits such that On−2j is the level set
of βn where βn takes the value n− 2j.

The maximal value n is special in that, if L1, L2, L3 are not pairwise transverse,
then

∣∣βn(L1, L2, L3)
∣∣ < n, [53, Proposition 1.5.10]. Thus we observe that

(8.1)
if βn(L1, L2, L3) = ±n,

then L1,L2, L3 are pairwise transverse.

Given L1, L and L3 with L1 and L transverse to L3, consider the linear map
T13 : L1 → L3 defined by

L =
{
�1 + T13(�1) : �1 ∈ L1

}
and the quadratic form QL1,L3

L : L1 → R defined by

QL1,L3

L (x) :=
〈
x, T13x

〉
.

Let now

t(L3) :=
{
L ∈ L(V ) : L ∩ L3 = {0}

}
and let Q(L1) be the space of quadratic forms on L1. Then we have a diffeomor-
phism

t(L3) → Q(L1)

L �→ QL1,L3

L

(8.2)
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�1

�3 �1 + �3

L1

L

L3

0

Figure 2. Let L1 and L be transverse to L3. Then the vector �3 ∈ L3

is the image of the vector �1 ∈ L1 under the isomorphism T13 : L1 → L3

defined by L. The value at �1 of the quadratic form QL1,L3
L on L1 based

at L3 and induced by L measures the signed area of the parallelogram
with vertices 0, �1, �1 + �3, �3. Moreover, if also L1 and L are transverse,
then QL1,L3

L (�1) = −QL3,L1
L (�3), where �1 and �3 are related as above.

and moreover (see [53, Lemma 1.5.4])

βn(L1, L, L3) = sign
(
QL1,L3

L

)
.(8.3)

If τ := (L1, L2, L3) is a triple of pairwise transverse Lagrangians, we have an
endomorphism J(τ) of V = L1 ⊕ L3 given in block form by

J(τ) :=
(

0 −T31

T13 0

)
(8.4)

which, since J(τ)2 = −Id , defines a complex structure on V ; moreover 〈 · , J(τ)· 〉
is symmetric and the associated quadratic form qJ(τ) is the orthogonal direct
sum of QL1,L3

L2
on L1 and −QL3,L1

L2
on L3 (see Figure 2); in particular qJ(τ) has

signature

2βn(L1, L2, L3) = sign
(
QL1,L3

L2

)
− sign

(
QL3,L1

L2

)
.

If now L(V )3max denotes the set of triples τ for which βn(τ) = n, we obtain an
Sp(V )-equivariant map

L(V )3max → XSp(V )

τ �−→ J(τ)
(8.5)

into the symmetric space XSp(V ) associated to Sp(V ).
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Definition 8.1. We say that a quadruple τ ′ of Lagrangians is maximal if β(τ) =
n for any subtriple of Lagrangians τ taken in the same cyclic order as in τ ′.

In particular (8.1) implies that a maximal quadruple consists of pairwise trans-
verse Lagrangians. Finally we have the following important monotonicity prop-
erty:

Lemma 8.2. Assume that the quadruple of Lagrangians (L0, L1, L2, L∞) is max-
imal. Then

0 < QL0,L∞
L1

< QL0,L∞
L2

and

QL∞,L0

L1
< QL∞,L0

L2
< 0 .

Proof. For �0 ∈ L0, let �∞, �′∞ ∈ L∞ with �0 + �∞ ∈ L1 and �0 + �′∞ ∈ L2. Then

QL0,L∞
L2

(�0) −QL0,L∞
L1

(�0) = 〈�0, �′∞ − �∞〉
= 〈�0 + �∞, �′∞ − �∞〉
= QL1,L∞

L2
(�0 + �∞) ,

where the last equality follows from the fact that (�0 + �∞) ∈ L1, �′∞− �∞ ∈ L∞,
and their sum �0+�′∞ ∈ L2. Maximality of (L1, L2, L∞) implies that QL1,L∞

L2
> 0,

and maximality of (L0, L1, L∞) implies thatQL0,L∞
L1

> 0. Hence the assertion. �

Notice that in the proof of Lemma 8.2 what was used is exactly the fact
that the Lagrangians L0, L1, L2, L∞ are pairwise transverse and that the triples
(L0, L1, L∞) and (L1, L2, L∞) are maximal, which however, via the cocycle iden-
tity for βn, is equivalent to the maximality of the quadruple (L0, L1, L2, L∞) (see
the proof of Lemma 8.4).

8.2. Proofs of the Results in § 6. Let ρ : Γ → Sp(V ) be a maximal rep-
resentation and let ϕ : S1 → L(V ) be the ρ-equivariant measurable map given
by Corollary 7.7. Paramount in the study of regularity properties of the map ϕ
is the closer analysis of its essential graph which we now introduce. Let λ be
the Lebesgue measure on S1. The essential graph Eϕ of ϕ is the closed subset
Eϕ ⊂ S1 ×L(V ) which is the support of the pushforward of the measure λ under
the map

S1 → S1 ×L(V )

x �→
(
x, ϕ(x)

)
.

Here and in the sequel we shall often use the observation that

for almost every x ∈ S1,
(
x, ϕ(x)

)
∈ Eϕ .(8.6)
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Lemma 8.3. Let (x1, L1), (x2, L2), (x3, L3) ∈ Eϕ, and assume that

(1) x1, x2, x3 are pairwise distinct, and
(2) L1, L2, L3 are pairwise transverse.

Then βn(L1, L2, L3) = nβ1(x1, x2, x3) .

Proof. We may assume that β1(x1, x2, x3) = 1. Using that (xi, Li) ∈ Eϕ, Corol-
lary 7.7 and the definition of essential graph imply that we may find sequences
L

(k)
i , i = 1, 2, 3, k ∈ N, such that βn

(
L

(k)
1 , L

(k)
2 , L

(k)
3

)
= n and

(
L

(k)
1 , L

(k)
2 , L

(k)
3

)
converges to (L1, L2, L3). In particular, (L1, L2, L3) is in the closure On in L(V )3

of On. Since on the other hand this triple belongs to �n
j=0On−2j , observing that

Ok ∩ On = ∅ for k �= n, we conclude that (L1, L2, L3) ∈ On. �

Notice now that any two (distinct) points x1, x2 ∈ S1 determine an interval in
S1, by defining

((x1, x2)) := {t ∈ S1 : β1(x1, t, x2) = 1} .

Lemma 8.4. Let (x1, L1) and (x2, L2) ∈ Eϕ with x1 �= x2. Then L1 and L2 are
transverse.

Proof. Using Corollary 7.7, (8.6) and Remark 5.15 twice, we may choose a ∈
((x1, x2)) such that

(
a, ϕ(a)

)
∈ Eϕ and ϕ(a) is transverse to L1, L2, and choose

b ∈ ((x2, x1)) so that
(
b, ϕ(b)

)
∈ Eϕ and ϕ(b) is transverse to ϕ(a), L1, L2.

Applying the cocycle property of βn to the quadruple ϕ(a), L2, ϕ(b), L1, we
have that

βn

(
L2, ϕ(b), L1

)
− βn

(
ϕ(a), ϕ(b), L1

)
+βn

(
ϕ(a), L2, L1

)
− βn

(
ϕ(a), L2, ϕ(b)

)
= 0 ;

since it follows from Lemma 8.3 that

βn

(
ϕ(a), ϕ(b), L1

)
= n = βn

(
ϕ(a), L2, ϕ(b)

)
,

we obtain that

βn

(
L2, ϕ(b), L1

)
+ βn

(
ϕ(a), L2, L1

)
= 2n ,

which implies in turn that

βn

(
L2, ϕ(b), L1

)
= βn

(
ϕ(a), L2, L1

)
= n .

It follows hence from (8.1) that L1 and L2 are transverse. �

From Lemmas 8.3 and 8.4 we deduce the following
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Corollary 8.5. For (x1, L1), (x2, L2), (x3, L3) ∈ Eϕ with (x1, x2, x3) pairwise
distinct, we have

βn(L1, L2, L3) = nβ1(x1, x2, x3) .

For the following, it will be convenient to define for A ⊂ S1 the “image of A”
by Eϕ

FA :=
{
L ∈ L(V ) : there exists a ∈ A such that (a,L) ∈ Eϕ

}
which is closed if A ⊂ S1 is so. Now let us fix any two distinct points x, y ∈ S1.

Lemma 8.6. The sets F ((y,x)) ∩F{x} and F ((x,y)) ∩F{x} both consist of one point.

Proof. Assume that there are L0, L
′
0 ∈ F ((x,y)) ∩ F{x} and fix L∞ ∈ F{y}. By

hypothesis, there are sequences (xn, Ln) and (x′n, L′
n) in Eϕ with

(1) xn, x
′
n ∈ ((x, y)), and lim xn = limx′n = x;

(2) limLn = L0 and limL′
n = L′

0 .

By Lemma 8.4 all Ln and L′
n are transverse to L∞ and we may thus use the

diffeomorphism in (8.2)

t(L∞) → Q(L0)

L �→ QL0,L∞
L

and study the situation in the model Q(L0). Dropping the superscript L0, L∞,
we have that limQLn = QL0 = 0. For every k ≥ 1, there is N(k) such that
x′n ∈ ((x, xk)) for all n ≥ N(k), and consequently L0, L

′
n, Lk, L∞ is maximal;

using Lemma 8.2, this implies that

QL0 = 0 ≤ QL′
n
≤ QLk

and hence limnQL′
n

= 0. This shows that limn L
′
n = L0 and hence L′

0 = L0. �

According to Lemma 8.6, for every x ∈ S1 define

ϕ+(x) ∈F ((y,x)) ∩ F{x} and ϕ−(x) ∈ F ((x,y)) ∩ F{x} .

From the definitions one deduces immediately the following

Corollary 8.7. The maps

ϕ+, ϕ− : S1 → L(V )

defined above are respectively left and right continuous and strictly Γ-equivariant.

Now we turn to our symplectic bundle Eρ introduced in § 6 and the study of the
properties of the flow gρ

t . To define the Lagrangian splitting of Eρ we parametrize
T 1D1,1 by the set (S1)(3) of distinct triples of points on S1, as follows: to a unit
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vector u ∈ T 1D1,1 based at x associate the triple (u−, u0, u+) ∈ S1, where u− ∈ S1

and u+ ∈ S1 are respectively the initial and ending point of the geodesic [u−, u+]
determined by u, and u0 ∈ S1 is the endpoint of the geodesic perpendicular to
[u−, u+] at x ∈ D1,1 and oriented in such a way that u0 ∈ ((u−, u+)). Notice
that as u moves along the geodesic [u−, u+] in the positive direction, the point
u0 approaches u+ but the points u−, u+ stay unchanged, so that the vector gtu
corresponds to the triple (u−, ut, u+) (see Figure 3).

u−
u0

ut

u+

u

gtu

Figure 3. The identification of T 1D1,1 with (S1)(3).

Let ϕ−, ϕ+ : S1 → L(V ) be respectively the right and left continuous Γ-
equivariant map in Corollary 8.7. For every u ∈ T 1D1,1, since u− �= u+,
Lemma 8.4 implies that ϕ−(u−) and ϕ+(u+) define transverse and hence com-
plementary Lagrangians

V = ϕ−(u−) ⊕ ϕ+(u+) .

In this way we obtain a splitting of Ẽρ into
(
g̃ρ
t

)
-invariant Borel subbundles

Ẽρ = Ẽρ
− ⊕ Ẽρ

+ which descends to a
(
gρ
t

)
-invariant splitting

Eρ = Eρ
− ⊕ Eρ

+ .

Using Corollary 8.5 we deduce that the triples
(
ϕ−(u−), ϕ±(ut), ϕ+(u+)

)
are

maximal for every t, so that we can associate to each of them complex structures
J(gtu,+) and J(gtu,−) on V as in (8.5), and hence positive quadratic forms
qJ(gtu,+) and qJ(gtu,−), which thus give rise to two families ‖ · ‖+

gtu and ‖ · ‖−gtu of
Euclidean metrics on Eρ(gtu), for t ∈ R, u ∈ T 1D1,1.

Lemma 8.8. Let p : Eρ → T 1Σ be the projection defined in (6.1) and, if ξ ∈ Eρ,
let u := p(ξ) ∈ T 1Σ. Then
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(1) For every ξ ∈ Eρ
+

lim
t→+∞ ‖gρ

t ξ‖+
gtu = 0 monotonically, and ‖gρ

−tξ‖±g−tu ≥ ‖ξ‖±u for all t ≥ 0 .

(2) For every ξ ∈ Eρ
−

lim
t→+∞ ‖gρ

−tξ‖−g−tu = 0 monotonically, and ‖gρ
t ξ‖±gtu ≥ ‖ξ‖±u , for all t ≥ 0 .

v v

ϕ−(u−)ϕ−(u−)

ϕ+(u0)

ϕ+(ut)

ϕ+(u+)ϕ+(u+)

Figure 4.

Proof. We prove (1), as the proof of (2) is analogous. Working in Ẽρ as we may,
let ξ ∈ Ẽρ, ξ = (u, v), v ∈ V . Let v ∈ ϕ+(u+). We use the Euclidean metrics
‖ · ‖+

gtu defined by the triple(
ϕ−(u−), ϕ+(ut), ϕ+(u+)

)
,

that is ∥∥g̃ρ
t ξ

∥∥+

gtu
=

∣∣∣Qϕ+(u+),ϕ−(u−)
ϕ+(ut)

(v)
∣∣∣ ,

which, since ϕ+ is left continuous and hence

lim
t→+∞ϕ+(ut) = ϕ+(u+) ,

implies immediately that

lim
t→+∞

∥∥g̃ρ
t ξ

∥∥+

gtu
= 0 .

Monotonicity follows from Lemma 8.2. In fact, for every 0 ≤ t1 < t2, the quadru-
ple (

ϕ−(u−), ϕ+(ut1), ϕ+(ut2), ϕ+(u+)
)

is maximal and hence Lemma 8.2 implies that∥∥g̃ρ
t2ξ

∥∥+

gt2u
≤

∥∥g̃ρ
t1ξ

∥∥+

gt1u
.

To prove the second statement in (1), observe that for t ≥ 0 the quadruple(
ϕ−(u−), ϕ+(u−t), ϕ+(u0), ϕ+(u+)

)
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is maximal and hence Lemma 8.2 implies that∥∥g̃ρ
−tξ

∥∥+

g−tu
=

∣∣Qϕ+(u+),ϕ−(u−)
ϕ+(u−t)

(v)
∣∣ ≥ ∣∣Qϕ+(u+),ϕ−(u−)

ϕ+(u0) (v)
∣∣ = ‖ξ‖+

u .

The statement for the metrics ‖ · ‖−gtu follows analogously. �

The metrics ‖·‖+
u and ‖·‖−u are Borel metrics on the bundle Eρ. Since the basis

T 1Σ is compact, any two continuous Euclidean metrics on Eρ are equivalent: we
have then

Lemma 8.9. The metrics ‖ · ‖+
u and ‖ · ‖−u are equivalent to a continuous metric.

This follows easily from the following two facts:

- The proper action of Γ on (S1)(3) has compact quotient.
- For any compact subset C ⊂ (S1)(3), the set of metrics{

‖ · ‖±u : (u−, u0, u+) ∈ C
}

is bounded.

Proof of Theorem 6.1. Fix a continuous Euclidean metric ‖ · ‖ on Eρ. Then it
follows from Lemmas 8.9 and 8.8 that

Eρ
± :=

{
ξ ∈ Eρ : lim

t→±∞ ‖gρ
t ξ‖ = 0

}
.

This implies by the following classical argument that the subbundles Eρ
+ and Eρ

−
are continuous. Let um be a converging sequence in T 1Σ with limit u, and let
F ⊂ Eρ(u) be any accumulation point of{

Eρ
+(um) : m ≥ 1

}
in the Grassmann n-bundle of Eρ. Let {mk} be a subsequence with limk→∞Eρ

+(umk
) =

F . For every ξ ∈ F take ξk ∈ Eρ
+(umk

) with limk→∞ ξk = ξ. Then the function

R+ → R+

t �→
∥∥gρ

t ξ
∥∥

being a uniform limit on compacts of the sequence of functions t �→
∥∥gρ

t ξk
∥∥ which

vanish at infinity, vanishes at infinity as well, which implies that ξ ∈ Eρ
+(u) and

hence F ⊆ Eρ
+(u); since both spaces have the same dimension, we conclude that

F = Eρ
+(u). This shows continuity of the splitting.

This implies by the definition of Ẽρ
± that both maps ϕ+ and ϕ− from S1 to

L(V ) are continuous. But this implies easily that ϕ− = ϕ+; we shall denote
from now on by ϕ this continuous Γ-equivariant map. This implies now the first
assertion of Corollary 6.3.
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We are thus in the following situation: for every u ∈ T 1D1,1, we have the
splitting

V = ϕ(u−) ⊕ ϕ(u+), u = (u−, u0, u+)

which gives rise to the splittings

Ẽρ = Ẽρ
− ⊕ Ẽρ

+

and

Eρ = Eρ
− ⊕Eρ

+

into continuous g̃ρ
t and gρ

t invariant subbundles. We denote by J(u) ∈ XSp(V ) the
complex structure associated to the triple(

ϕ(u−), ϕ(u0), ϕ(u+)
)

as in (8.5). It is now immediate that the map

T 1D1,1 →XSp(V )

u �−→J(u)
(8.7)

gives a positive complex structure J of Eρ with the required properties (see (8.4)).
Let ‖ · ‖u be the Euclidean metric on Eρ induced by the quadratic form qJ(u).

In the notation of Lemma 8.8, we have ‖ · ‖+
u = ‖ · ‖−u = ‖ · ‖u and hence for

every ξ ∈ Eρ
± with p(ξ) = u

lim
t→∞

∥∥g±tξ
∥∥

g±tu
= 0 monotonically.

We claim now that there exists T > 0 such that for every ξ ∈ Eρ
+,∥∥gρ

t ξ
∥∥

gtu
≤ 1

2
‖ξ‖u for t ≥ T .

Indeed, if this were not the case, by Lemma 8.8 there would exist a sequence
ξn ∈ Eρ

+ and Tn → +∞ with ‖ξn‖ = 1 and ‖gρ
Tn
ξn‖gTnun = 1

2 . We may assume
that ξn converges to a point ξ ∈ Eρ

+. Then the sequence of functions

R+ −→ R+

t �→ ‖gρ
t ξn‖gtun

converges uniformly on compact sets to

t �→ ‖gρ
t ξ‖gtu .

But, by monotonicity, we have that

‖gρ
t ξn‖gtun ≥ 1

2
, for t ∈ [0, Tn],

and since Tn → +∞, we deduce that

‖gρ
t ξ‖gtu ≥ 1

2
for all t ≥ 0 ,
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which contradicts the fact that ξ ∈ Eρ
+. Applying the inequality∥∥gρ

T ξ
∥∥ ≤ 1

2
‖ξ‖

to nT , for n ∈ N, we obtain the exponential decay. �

Proof of Corollary 6.2. The proof will rely on the metric properties of the map
defined in (8.7).

Fix a unit tangent vector v ∈ T 1D1,1 based at 0 ∈ D1,1 and let J0 := J(v) ∈
XSp(V ) be the corresponding complex structure on V . Observe first of all that
d
(
J0, ρ(γ)J0

)
is bounded above linearly by the word length �(γ) of γ, as an argu-

ment by recurrence on �(γ) easily shows. In order to show the lower bound, we
shall use the contraction–dilation property of the Anosov flow in Theorem 6.1(2).

The essential step is estimating the distance in XSp(V ) between J(u) and J(gtu),
given by

d
(
J(u), J(gtu)

)
=

∣∣ ln ‖Id‖J(u),J(gtu)

∣∣ +
∣∣ ln ‖Id‖J(gtu),J(u)

∣∣ ,
for any u ∈ T 1D1,1 and any t ≥ 0 (see § 6).

For x ∈ ϕ(u−), applying Theorem 6.1, we have that

qJ(gtu)(x) ≥ e2AtqJ(u)(x)

and likewise for x ∈ ϕ(u+)

qJ(gtu)(x) ≤ e−2AtqJ(u)(x) .

These inequalities, together with the fact that ϕ(u−) ⊕ ϕ(u+) is an orthogonal
decomposition for both qJ(u) and qJ(gtu), imply that

‖Id‖J(u),J(gtu) ≥ eAt

and

‖Id‖J(gtu),J(u) ≥ eAt ,

from which we deduce that

d
(
J(u), J(gtu)

)
≥ 2At .(8.8)

Let now γ ∈ Γ and let us choose u ∈ T 1D1,1 to be the tangent vector at 0 ∈ D1,1

to the geodesic segment connecting 0 to γ0 and let t = d(0, γ0). Applying (8.8)
to this situation and observing that gtu = γu, we get that

d
(
J(u), ρ(γ)J(u)

)
≥ 2Ad(0, γ0)

and hence

d
(
J0, ρ(γ)J0

)
≥ 2Ad(0, γ0) − 2C ,
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where

C := sup
{
d
(
J(w1), J(w2)

)
: w1, w2 are based at 0

}
.

Finally, d(0, γ0) is bounded linearly below in terms of �(γ), as follows from the
Milnor–Svarc lemma. �

Proof of Corollary 6.3. The injectivity of the Γ-equivariant continuous map

ϕ : S1 → L(V )

obtained in the proof of Theorem 6.1, follows for instance from Corollary 7.7
because of continuity. So we finally turn to the proof of the rectifiability of the
image of ϕ. For this we shall put to use the Sp(V )-invariant causal structure on
L(V ).

Let us fix a �= b ∈ S1, let L0 := ϕ(a) and L∞ := ϕ(b), so that on S1 \ {b}, ϕ
takes values in t(L∞). Composing the restriction of ϕ to S1 \ {b} with the usual
diffeomorphism

t(L∞) → Q(L0)

L �→ QL0,L∞
L ,

gives rise to a continuous map

c : S1 \ {b} → Q(L0)

whose restriction to the interval ((a, b)) has the following properties:

(1) it takes values in the cone Q+(L0) of positive definite quadratic forms,
and

(2) for every t1, t2 ∈ ((a, b)) such that a, t1, t2, b are in positive cyclic order,
c(t2) − c(t1) ∈ Q+(L0).

Fixing a scalar product on L0, we can identify Q(L0) with the space Sym(L0) of
symmetric endomorphisms of L0 and Q+(L0) with the cone Sym+(L0) of positive
definite ones. On Sym(L0) we have a natural scalar product

〈〈A,B〉〉 := trAB

and we have that for every A,B ∈ Sym+(L0)

〈〈A,B〉〉 > 0 ,

that is Sym+(L0) is an open convex acute cone. The assertion then follows from
the following general fact

Lemma 8.10. Let C ⊂ E be an open convex acute cone in an Euclidean space
and let f : [0, 1] → C be a continuous map such that for every t1 < t2,

f(t2) − f(t1) ∈ C .
Then f is of finite length.
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Proof. Fix e ∈ C. We claim that since C is acute

k := inf
x∈C

〈〈x, e〉〉
‖x‖ > 0 .

Indeed, otherwise there is a nonzero x ∈ C such that 〈〈x, e〉〉 = 0. On the other
hand, since C is open, for s < 0 and |s| small enough we have that

e′ := sx+ (1 − s)e ∈ C ,

which implies that 〈〈e′, x〉〉 < 0 and contradicts the fact that 〈〈u, v〉〉 ≥ 0 for all
u, v ∈ C.

Let 0 ≤ s < t ≤ 1; then f(t) − f(s) ∈ C and applying the claim, we obtain:

‖f(t) − f(s)‖ ≤ 1
k
〈f(t) − f(s), e〉 .

Given any subdivision 0 = t0 < t1 < · · · < tn−1 < tn = 1 of the interval [0, 1], we
deduce that

n∑
i=1

‖f(ti) − f(ti−1)‖ ≤ 1
k

n∑
i=1

〈f(ti) − f(ti−1), e〉 =
〈f(1) − f(0), e〉

k

which proves that f is rectifiable. �
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