

Available online at www.sciencedirect.com





C. R. Acad. Sci. Paris, Ser. I 336 (2003) 387-390

Group Theory/Geometry

# Surface group representations with maximal Toledo invariant

# Sur les représentations d'un groupe de surface compacte avec invariant de Toledo maximal

Marc Burger<sup>a</sup>, Alessandra Iozzi<sup>b</sup>, Anna Wienhard<sup>c</sup>

<sup>a</sup> FIM, ETH Zentrum, CH-8092 Zürich, Switzerland <sup>b</sup> Department of Mathematics, ETH Zentrum, CH-8092 Zürich, Switzerland <sup>c</sup> Mathematisches Institut, Rheinische Friedrich-Wilhelms Universität Bonn, 53115 Bonn, Germany

Received and accepted 24 January 2003

Presented by Étienne Ghys

### Abstract

We study representations of compact surface groups on Hermitian symmetric spaces and characterize those with maximal Toledo invariant. *To cite this article: M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).* © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

# Résumé

Nous étudions les représentations d'un groupe de surface compacte sur un espace symétrique hermitien et caractérisons celles avec invariant de Toledo maximal. *Pour citer cet article : M. Burger et al., C. R. Acad. Sci. Paris, Ser. I 336 (2003).* © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

# 1. Introduction

Let  $\Gamma = \pi_1(\Sigma_g)$  be the fundamental group of a compact oriented surface  $\Sigma_g$  of genus  $g \ge 2$ , and X a Hermitian symmetric space of noncompact type, equipped with its Bergman metric. The Toledo invariant  $\tau_\rho$  of a representation  $\rho: \Gamma \to \text{Is}(X)^\circ$  is the integral over  $\Sigma_g$  of the pullback of the Kähler form  $\omega_X$  of X by any smooth equivariant map  $\widetilde{\Sigma}_g \to X$ . Then  $|\tau_\rho| \le 2|\chi(\Sigma_g)|\pi r_X$ ,  $r_X$  being the rank of X [8,7]. The classical problem of characterizing representations with maximal Toledo invariant has been solved when X is of rank 1 [9,15] and partial results are available when X is associated to SU(p, q) [10,2].

**Theorem 1.1.** Let  $\rho: \pi_1(\Sigma_g) \to \text{Is}(X)^\circ$  be a representation with maximal Toledo invariant. Then

- (a) the Zariski closure L of the image of  $\rho$  is reductive;
- (b) the symmetric subspace  $Y \subset X$  associated to L is isometric to a tube type domain;

E-mail addresses: burger@math.ethz.ch (M. Burger), iozzi@math.ethz.ch (A. Iozzi), wienhard@math.uni-bonn.de (A. Wienhard).

<sup>1631-073</sup>X/03/\$ - see front matter © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés. doi:10.1016/S1631-073X(03)00065-7

(c) the group  $\pi_1(\Sigma_g)$  acts on Y properly discontinuously without fixed points.

We give in Section 5 examples where Y is not holomorphically embedded into X. The theorem is optimal also in the following sense:

**Proposition 1.2.** For any Hermitian symmetric space X of tube type and any  $g \ge 2$  there exist representations  $\rho: \pi_1(\Sigma_g) \to Is^{\circ}(X)$  with maximal Toledo invariant and Zariski dense image.

Surface group representations with maximal Toledo invariant provide therefore a class of geometrically meaningful Kleinian groups acting on higher rank Hermitian symmetric spaces.

The proof of the theorem relies heavily on [4,7,12,5] and [3]. For a comprehensive treatment of continuous bounded cohomology, we refer to [13].

#### 2. Maximal representations with Zariski dense image

The Toledo invariant of a representation is the evaluation of a linear form on an appropriate bounded cohomology class. Namely, if  $\rho: \pi_1(\Sigma_g) \to G$  is any homomorphism and  $\kappa \in H^2_{cb}(G)$ , we define  $\tau(\rho, \kappa) := \langle \rho^*(\kappa), [\Sigma_g] \rangle$ , where  $\langle \cdot, \cdot \rangle$  is the natural pairing. Then  $\tau_\rho = \tau(\rho, \kappa_X^b)$ , where  $\kappa_X^b \in H^2_{cb}(G)$  is the bounded Kähler class. Since  $|\tau(\rho, \kappa)| \leq 2|\chi(\Sigma_g)| \|\rho^*(\kappa)\| \leq 2|\chi(\Sigma_g)| \|\kappa\|$ , where  $\chi(\Sigma_g)$  is the Euler characteristic of  $\Sigma_g$  and  $\|\kappa\|$  is the Gromov norm of the class  $\kappa \in H^2_{cb}(G)$ , we say that  $\rho$  is  $\kappa$ -maximal if  $\tau(\rho, \kappa) = 2|\chi(\Sigma_g)| \|\kappa\|$ .

A totally geodesic embedding  $t: \mathbb{D} \to X$  is *tight* if  $t^*(\omega_X) = \|\kappa_X^b\| / \|\kappa_{\mathbb{D}}^b\| \omega_{\mathbb{D}}$ . If t is holomorphic this is equivalent to saying that  $\mathbb{D}$  is mapped diagonally into a maximal polydisc in X.

The main point in the proof of the theorem is the following

**Proposition 2.1.** Let X be an irreducible Hermitian symmetric space and  $\rho: \Gamma \to Is(X)^{\circ}$  a representation with maximal Toledo invariant and Zariski dense image. Then X is a symmetric space of tube type, on which  $\rho(\Gamma)$  acts properly discontinuously without fixed points.

We outline the main steps of the proof using results of [7] and following the methods developed in [4] and [12]. Let  $\mathcal{D} \subset \mathbb{C}^n$  be the Harish-Chandra realization of X as a bounded symmetric domain with normalized Bergman kernel k. We have  $k(x, y) = h(x, y)^{-2}$ , where h is a polynomial in x,  $\bar{y}$ . Following [7] and [4] we say that  $x, y \in \overline{\mathcal{D}}$  are transverse if  $h(x, y) \neq 0$ ; then there is a unique continuous determination of the argument of k(x, y) on the set of pairwise transverse points in  $\overline{\mathcal{D}}$ . Denoting by  $\check{S}^{(3)}$  the set of triples of pairwise transverse points in the Shilov boundary  $\check{S} \subset \partial \mathcal{D}$ , the function  $\check{\beta}_{\mathcal{D}}(x, y, z) := -(\arg k(x, y) + \arg k(y, z) + \arg k(z, x))$ is a well defined continuous alternating G-invariant cocycle on  $\check{S}^{(3)}$ , where  $G = Is(X)^\circ$ . Define as in [4, §5],  $Z_n := \{(x_1, x_2, \dots, x_n) \in \check{S}: x_i, x_j$  are transverse for all  $i \neq j\}$  and let  $(\mathcal{B}^\infty_{alt}(Z_n), d_n)$  be the complex of bounded alternating Borel functions on  $Z_n$ , endowed with the supremum norm. Using the formula for the symplectic area of a geodesic triangle in  $\mathcal{D}$  given in [8,7], and arguing as in [4, Lemmas 5.1 and 5.2], the class  $[\check{\beta}_{\mathcal{D}}]$  corresponds to  $\kappa^b_X$  under the canonical map  $H^\bullet(\mathcal{B}^\infty_{alt}(Z_\bullet)^G) \to H^\bullet_{cb}(G)$ . Next, realize  $\Gamma$  as a cocompact lattice in PSU(1, 1); by using that  $\rho(\Gamma)$  is Zariski dense and that transversality in  $\check{S}$  is given by a polynomial condition, we deduce as in [4, Proposition 6.2] the existence of a  $\Gamma$ -equivariant measurable map  $\varphi: S^1 \to \check{S}$  such that for almost every  $x, y \in S^1$ , the points  $\varphi(x), \varphi(y) \in \check{S}$  are transverse. As a consequence,  $\varphi^*\check{\beta}_{\mathcal{D}}(x, y, z) := \check{\beta}_{\mathcal{D}}(\varphi(x), \varphi(y), \varphi(z))$  is a well defined measurable alternating  $\Gamma$ -invariant bounded cocycle on  $(S^1)^3$ , which corresponds [4, §7] to  $\rho^*(\kappa^b_X)$ under the isomorphism  $H^2_b(\Gamma, \mathbb{R}) \simeq ZL^{alt}_{alt}((S^1)^3)^{\Gamma}$ .

As in [12, §3], we get that for almost every  $x, y, z \in S^1$ 

$$\int_{\Gamma \setminus \text{PSU}(1,1)} \check{\beta}_{\mathbb{D}} \left( \varphi(hx), \varphi(hy), \varphi(hz) \right) dh = \frac{\tau_{\rho}}{2|\chi(\Sigma_g)|} \check{\beta}_{\mathbb{D}}(x, y, z).$$
(1)

If  $\rho$  is maximal,  $\tau_{\rho} = 2|\chi(\Sigma_g)| \|\kappa_X^b\|$ , which together with  $\|\check{\beta}_{\mathcal{D}}\|_{\infty} = \|\kappa_X^b\|$  and (1) implies that for almost every  $x, y, z \in S^1, \check{\beta}_{\mathcal{D}}(\varphi(x), \varphi(y), \varphi(z)) = \|\kappa_X^b\| / \|\kappa_{\mathbb{D}}^b\| \check{\beta}_{\mathbb{D}}(x, y, z)$ . To conclude the proof of Proposition 2.1, fix x and y: by Fubini's theorem, for almost every  $z, \check{\beta}_{\mathcal{D}}(\varphi(x), \varphi(y), \varphi(z)) = \pm \pi r_X$ , hence by [7, Proof of Theorem 4.7] the essential image Ess Im $\varphi$  of  $\varphi$  lies in the Shilov boundary of the tube type domain Y of X determined by  $\varphi(x)$  and  $\varphi(y)$ . Since any two transverse points in Ess Im $\varphi$  determine a tube type subdomain, which hence coincides with Y, it follows that Y is  $\rho(\Gamma)$ -invariant and, by Zariski density, also  $G = Is(X)^\circ$ -invariant. Hence X = Y.

The image  $\rho(\Gamma)$  is discrete: for  $r_X = 1$  this follows from [9] (or by [12]); for  $r_X \ge 2$ , *G* has at least three open orbits in  $\check{S}^3$  since *X* is of tube type [6, Theorem 4.3, Lemma 5.3], while  $\operatorname{Ess}\operatorname{Im}(\varphi^3)$  is contained in the closure of two open orbits in  $\check{S}^3$ , namely  $\{(x, y, z) \in \check{S}^{(3)}: \check{\beta}_{\mathcal{D}}(x, y, z) = \pm \pi r_X\}$ . Hence  $\operatorname{Ess}\operatorname{Im}(\varphi^3) \ne \check{S}^3$ , which implies that  $\rho(\Gamma)$  is not dense, and thus discrete.

The cocycle  $\check{\beta}_{\mathcal{D}}$  can be used to equip the essential graph *F* of  $\varphi$  with a cyclic ordering. Arguing as in [12, Lemma 5.6] we conclude that if  $(x_1, \eta), (x_2, \eta) \in F$  then  $x_1 = x_2$ , hence  $\rho$  is faithful.

# 3. Proof of Theorem 1.1

Let  $L := \overline{\rho(\Gamma)}^{Z}(\mathbb{R})$  be the real points of the Zariski closure of  $\rho(\Gamma)$ . By passing to a finite index subgroup of  $\Gamma$  we may assume that L is connected. Since the radical of L is amenable, the projection  $p: L \to M$  of L to its semisimple part M induces a canonical isometric isomorphism in bounded cohomology,  $H^{2}_{cb}(L) \simeq$  $H^{2}_{cb}(M)$  (see [5, Corollary 4.2.4]), with respect to which the class  $\kappa^{b}_{X} \in H^{2}_{cb}(L)$  defines a class  $k \in H^{2}_{cb}(M)$ . Let  $M' = M_{1} \times \cdots \times M_{\ell}$  be the product of the simple factors of M such that  $k_{i} := k|_{M_{i}} \neq 0$  and let  $\rho_{i} :=$  $\mathrm{pr}_{i} \circ p \circ \rho: \Gamma \to M_{i}$ , where  $\mathrm{pr}_{i}: M \to M_{i}$  is the projection,  $i = 1, \ldots, \ell$ . From  $2|\chi(\Sigma_{g})|||k|| = \tau(\rho, k) =$  $\sum_{i=1}^{l} \tau(\rho_{i}, k_{i}) \leq 2|\chi(\Sigma_{g})| \sum_{i=1}^{l} ||k_{i}||$  and  $||k|| = \sum_{i=1}^{l} ||k_{i}||$ , it follows that for all i, the representations  $\rho_{i}$  are  $k_{i}$ -maximal. Hence Proposition 2.1 implies that the Hermitian symmetric space Y associated to M' is of tube type.

Let H < L be a connected semisimple subgroup which is isogenous to M' via p, and let  $Z \subset X$  be a subsymmetric space associated to H, such that the induced equivariant map  $\psi: Y \to Z$  satisfies  $\psi^*(\kappa_X^b|_Z) = \sum k_i$ . For any triple of points in the Shilov boundary of Y for which  $\check{\beta}_Y$  is defined and maximal, we get by [7, Theorem 4.7] a holomorphic tight embedding  $t: \mathbb{D} \to Y$ . The map  $T = \psi \circ t: \mathbb{D} \to X$  associated to a homomorphism  $\pi: SU(1, 1) \to G$  satisfies  $T^*(\omega_X|_Z) = \|\kappa_X^b\|/\|\kappa_{\mathbb{D}}^b\|\omega_{\mathbb{D}}$ . Since up to scaling T is an isometry and the Euclidean metric on X as a bounded symmetric domain is dominated by the Riemannian metric and T is tight, the map T extends to a  $\pi$ -equivariant map of the boundary  $T: \partial \mathbb{D} \to \partial \mathcal{D}$  with  $T(\partial \mathbb{D}) \subset \check{S}$ . Let C be the centralizer of  $\pi(SU(1, 1))$  in G.

**Lemma 3.1.** Let  $\gamma$  be a geodesic in  $T(\mathbb{D})$  connecting two points  $x, y \in T(\partial \mathbb{D}) \subset \check{S}$ . Then for all  $g \in C$  the geodesic  $g\gamma$  connects the same points x, y.

**Proof.** One can realize the Shilov boundary, which is represented as G/Q, as the equivalence classes of asymptotic maximal singular Weyl chamber walls of type Q. There are natural projections  $G/Q' \rightarrow G/Q$  for all parabolic subgroups  $Q' \subset Q \subset G$ , where G/Q' can also be realized as the equivalence classes of asymptotic Weyl chamber (walls) of type Q'. The geodesic  $\gamma$  connects  $x, y \in \check{S}$  and hence lies in a Weyl chamber (wall) of type Q' for some  $Q' \subset Q$ . The geodesic  $g\gamma$  lies in a Weyl chamber (wall) of the same type. Since  $g \in C$ , the distance between  $\gamma$  and  $g\gamma$  is uniformly bounded, it follows that they determine the same point in G/Q', hence in  $G/Q = \check{S}$ .  $\Box$ 

By the above lemma, any three distinct points  $x, y, z \in T(\partial \mathbb{D})$  are fixed by *C*, hence *C* fixes the barycenter of *x*, *y*, *z* and is therefore compact.

If L were not reductive, by [1] it would be contained in a proper parabolic subgroup P of G. But then the center of an appropriate Levi component of P would be contained in C and noncompact, which is a contradiction since C is compact. Therefore L is reductive and hence  $\rho(\Gamma)$  acts on Y. By Proposition 2.1 the action is properly discontinuous without fixed points.

# 4. Maximal Zariski dense representations into a tube type domain

For the construction of a representation as in Proposition 1.2, realize the fundamental group as an amalgamated product over a separating geodesic,  $\Gamma = A *_{\langle \gamma \rangle} B$ . Choose a hyperbolization of  $\Gamma$ ,  $\pi : \Gamma \to PSU(1, 1)$  and use the diagonal embedding  $\Delta : PSU(1, 1) \to PSU(1, 1)^r$  to define hyperbolizations  $\rho_i := pr_i \circ \Delta \circ \pi |_A : A \to PSU(1, 1)$ and  $\omega_i := pr_i \circ \Delta \circ \pi |_B : B \to PSU(1, 1)$ . Let  $t_A, t_B : PSU(1, 1)^r \to G$  be two different embeddings, which coincide on  $\Delta(PSU(1, 1))$ . Choose now two one-parameter families of deformations  $\rho_i^t, \omega_i^t$ , such that the  $\rho_i^t$ 's,  $i = 1, \ldots, r$ , respectively the  $\omega_i^t$ 's, are pairwise not conjugated for all t and  $\rho_i^t(\gamma) = \rho_i(\gamma)$ , respectively  $\omega_i^t(\gamma) = \omega_i(\gamma)$ , for all t. The representations of A, respectively B, given by  $\rho^t(a) = t_A(\rho_1^t(a), \ldots, \rho_r^t(a))$ , respectively  $\omega^t = t_B(\omega_1^t(a), \ldots, \omega_r^t(a))$ , have Zariski dense image in  $t_A(PSU(1, 1)^r)$ , respectively  $t_B(PSU(1, 1)^r)$ , and define a representation  $\pi^t : \Gamma \to G$  by the universal property of amalgamated products. By construction  $\pi^t$  has maximal Toledo invariant, hence the Zariski closure of its image is reductive and of maximal rank, since it contains the image of  $t_A$ . The symmetric space corresponding to its semisimple part is of tube type and holomorphically embedded into X. Using the characterizations of holomorphic embeddings in [14,11], one can choose  $t_A, t_B$  in such a way that the group generated by its images coincides with G.

# 5. Nonholomorphic tight embeddings

The complex irreducible representation  $\pi_p$  of SU(1, 1) of dimension 2p admits an invariant hermitian form unique up to scaling, which is of signature (p, p). The corresponding homomorphism  $\pi_p : SU(1, 1) \to SU(p, p)$ gives rise to a tight embedding  $\mathbb{D} \to X_{p,p}$  into the Hermitian symmetric space associated to SU(p, p), which is holomorphic if and only if p = 1. For  $p \ge 2$  this gives rise to representations of surface groups on  $X_{p,p}$  with maximal Toledo invariant, and preserving a nonholomorphically tight embedded disc.

### Acknowledgements

We are grateful to D. Toledo for many useful comments and for pointing out a mistake in a preliminary version of this Note. We thank J.L. Clerc for making available the preprint [7]. The third named author wishes also to thank the *Forschungsinstitut für Mathematik* at ETH, Zürich, for its hospitality and the *SFB 611* at Bonn University for partial support.

#### References

- [1] A. Borel, J. Tits, Eléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math. 12 (1971) 95-104.
- [2] S.B. Bradlow, O. Garcia–Prada, P.B. Gothen, Surface group representations, Higgs bundles, and holomorphic triples, Preprint, 2002, http://arxiv.org/abs/math.AG/0206012.
- [3] M. Burger, A. Iozzi, Boundary maps in bounded cohomology, Geom. Funct. Anal. 12 (2002) 281-292.
- [4] M. Burger, A. Iozzi, Bounded Kähler class rigidity of actions on Hermitian symmetric spaces, Preprint, 2002, http://www.math.ethz. ch/~iozzi/supq.ps.
- [5] M. Burger, N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002) 219-280.
- [6] J.L. Clerc, B. Ørsted, The Maslov index revisited, Transformation Groups 6 (2001) 303–320.
- [7] J.L. Clerc, B. Ørsted, The Gromov norm of the Kähler class and the Maslov index, Preprint, 2002.
- [8] A. Domic, D. Toledo, The Gromov norm of the Kähler class of symmetric domains, Math. Ann. 276 (1987) 425-432.
- [9] W.M. Goldman, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980.
- [10] L. Hernàndez Lamoneda, Maximal representations of surface groups in bounded symmetric domains, Trans. Amer. Math. Soc. 324 (1991) 405–420.
- [11] S. Ihara, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan 19 (3) (1967).
- [12] A. Iozzi, Bounded cohomology, boundary maps, and representations into Homeo<sub>+</sub>(S<sup>1</sup>) and SU(1, n), in: Rigidity in Dynamics and Geometry, Cambridge, UK, 2000, Springer-Verlag, Heidelberg, 2000, pp. 237–260.
- [13] N. Monod, Continuous bounded cohomology of locally compact groups, in: Lecture Notes in Math., Vol. 1758, Springer-Verlag, Heidelberg, 2001.
- [14] I. Satake, Holomorphic imbeddings of symmetric domains into a Siegel space, Amer. J. Math. 87 (1965) 425-461.
- [15] D. Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989) 125–133.