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ANNA WIENHARD

Abstract. Various exotic cohomology groups can be defined by im-
posing boundedness conditions on cochains. This note discusses what
happens if we impose boundedness conditions in the standard deRham
complex of differential forms on a Riemannian manifold and surveys
relations of the resulting bounded deRham cohomology to bounded co-
homology and l∞-cohomology.

1. Introduction

Given an exact smooth differential form α on a Riemannian manifold M
there exists a primitive, that is a smooth differential form β such that dβ =
α. Sometimes it is useful to consider the growth of β and in particular to
address the question when a differential form α admits a bounded primitive.

This question has been raised by Gromov in [14] and [13] when α is of de-
gree 2 and in [12] when α is the volume form. In degree 2 the existence of a
bounded primitive is strongly related to co-filling inequalities and hyperbol-

icity phenomena. When M = X̃ is the universal cover of a negatively curved
Riemannian manifold X, every closed form α of degree ≥ 2 on M admits
a bounded primitive. When X is a Kähler manifold with Kähler form ω
Gromov gave the following definition in [13] : X is called Kähler hyperbolic

if the pull-back ω̃ of ω to the universal covering X̃ admits a bounded prim-
itive 1. Furthermore he proved that for closed Kähler hyperbolic manifolds

the space Hp,q(X̃) of L2-harmonic forms of type (p, q) vanishes except for
p + q = dimC(X). This implies in particular that Kähler hyperbolic mani-
folds satisfy that sign(χ(X)) = (−1)dimC X , which is also known as “Hopf’s
conjecture”. Gromov suggests that Kähler hyperbolic manifolds should be
regarded as being hyperbolic with respect to their complex geometry. This
indeed seems appropriate when considering some Kähler hyperbolic man-
ifolds which are not negatively curved, as for example compact quotients
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of Hermitian symmetric spaces or the moduli space of Riemann surfaces of
genus g ≥ 2 which admits several Kähler metrics with respect to which it
is Kähler hyperbolic [17]. Both these examples are known to exhibit some
hyperbolicity phenomena.

In this note we consider the problem of finding bounded primitives in all
degrees and relate it to vanishing (and non vanishing) of various cohomology
groups. In particular, for symmetric spaces of noncompact type we show
that in several cases bounded primitives exist.

Proposition 1. Let M be a symmetric space of noncompact type of rank
rM and α a closed bounded smooth differential form of degree k on M . If
k ≥ rM + 1 then there exists a bounded (k − 1)-form β on M with dβ = α.

When we restrict to differential forms invariant under the group of isome-
tries we can drop the condition on the degree of α.

Proposition 2. Let M be a symmetric space of noncompact type and G =
Isom(M)◦ the connected component of the group of isometries. Let α be a
G-invariant differential form on M , then there exists a bounded differential
form β with dβ = α. Moreover, β can be chosen to be P -invariant for a
minimal parabolic subgroup P < G.

Corollary 3. Let G be a semisimple Lie group with finite center and P <
G a minimal parabolic subgroup. Then the restriction map H•

c(G,R) →
H•

c(P,R) in continuous cohomology is zero.

Remark 4. The proofs rely on a Poincaré-Lemma with respect to a point
at infinity. Proposition 1 has also been proven in [8]. Proposition 2 might
be known to experts, but the author is not aware of any reference.

Let us consider the space

Ωk
∞(M) := {α ∈ Ωk(M) | ||α||∞ < ∞, ||dα||∞ < ∞}

of bounded differential forms on M whose differential is also bounded, and
the corresponding subcomplex of the standard deRham complex. We denote
by H•

bdR(M,R) = H(Ω•
∞(M)) the cohomology of this subcomplex and call

it the bounded deRham cohomology of M . Proposition 1 translates to a
vanishing result for H•

bdR(M,R) above the rank.

When X̃ is a Hermitian symmetric space the form ω̃ is not only the
coboundary of a bounded one-form, but moreover the complex area (mea-

sured with respect to ω̃) of geodesic triangles in X̃ is uniformly bounded. As
a consequence ω̃ defines a bounded cohomology class. This stronger prop-
erty (together with further knowledge) has been applied extensively to study

homomorphisms into the isometry group of X̃, see [2, 4, 5, 6]. The exam-
ple of Hermitian symmetric spaces motivates to investigate whether there
is a more general relation between the existence of bounded primitives and
whether the differential form defines a bounded cohomology class. When
G is a connected semisimple Lie group with finite center, M its associated
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symmetric space, and L < G a closed subgroup, then any continuous co-
homology class κ ∈ Hk

c (L,R) can be realized by an L-invariant differential
form on M . Recently Burger and Iozzi showed in [3] that the comparison
map c•L : H•

cb(L,R) → H•
c(L,R) (see Section 3.1 for the definition of the

continuous bounded cohomology H•
cb(G,R) of a group G) factors as

H•
cb(L,R)

((QQQQQQQQQQQQ

c•
L

// H•
c(L,R),

H(Ω•
∞(M,R)L) .

66nnnnnnnnnnnn

In particular, a continuous cohomology class κ ∈ Hk
c (L,R) which lies in the

image of c
(k)
L can be represented by a bounded L-invariant differential form.

More importantly in our context is the following statement which is a
direct consequence of the more precise result proven in [3, Lemma 3.3],
which we will recall in Section 3.

Proposition 5. Let κ ∈ Hk
c (L,R). Assume that κ lies in the image of c

(k)
L ,

then κ can be represented by a bounded L-invariant differential form α on
M which admits a bounded primitive β ∈ Ωk−1

∞ (M,R).

It is a very interesting open question whether the comparison map c•G :
H•

cb(G,R) → H•
c(G,R) is surjective (for G as above). From this point of

view Proposition 2 states that the necessary condition given by Proposition 5
is satisfied. Similarly Proposition 1 shows that, when Γ < G is a cocompact
lattice, the corresponding necessary condition for the surjectivity of c•Γ :
H•

cb(Γ,R) → H•
c(Γ,R) in degrees • ≥ rM + 1 is satisfied. Unfortunately,

this does not even come close to any sufficient condition.
When Γ is the fundamental group of an aspherical manifold X, the

bounded deRham cohomology of the universal cover X̃ is strongly related
to another exotic cohomology, the l∞-cohomology (or bounded valued co-
homology) H•

∞(Γ,R), which has been introduced and studied by Gersten in
[9, 10, 11] for finitely generated groups. More precisely one has

Proposition 6. [11] The l∞-cohomology Hk
∞(Γ,R) is isomorphic to a direct

summand of Hk
bdR(X̃,R).

Bounded cohomology, (continuous) cohomology and l∞-cohomology are
connected by a sequence of natural maps

H•
b(Γ,R)

c•Γ
// H•(Γ,R)

h•

Γ
// H•

∞(Γ,R),(1)

whose composition is zero. The behavior of the natural maps c•Γ : H•
cb(Γ,R) →

H•
c(Γ,R) and h•

Γ : H(Γ,R) → H∞(Γ,R) in general is quite mysterious, but
in the cases where it is known, their properties are complementary to each
other:
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– In degree 1 the map h
(1)
Γ is injective, whereas the image of c

(1)
Γ is

zero because H1
cb(Γ,R) = 0.

– If Γ is amenable h•
Γ is injective [9, Theorem 10.13], whereas

H•
cb(Γ,R) = 0 for • ≥ 1.

– If Γ is hyperbolic h•
Γ is the zero map in degrees • ≥ 2 [11, Corol-

lary 4.4], whereas c•Γ is surjective in degrees • ≥ 2 [18].

Proposition 1 together with Proposition 6 implies

Proposition 7. Let G be a connected semisimple Lie group with finite cen-
ter, M its associated symmetric space, and Γ < G a cocompact lattice, then

h•
Γ : H•(Γ,R) → H•

∞(Γ,R)

is the zero map in degrees • ≥ rM + 1.

It is tempting to ask the following

Question 8. When is the sequence of natural maps in (1) exact?

It seems unreasonable to expect a simple answer to this question. For
cocompact lattices Γ < G exactness in degrees • ≥ rM + 1 would imply
the surjectivity of the comparison map c•Γ in the corresponding degrees.
The surjectivity of the comparison map is a very difficult problem, e.g. the

surjectivity of c
(dim(M))
Γ is equivalent to the positivity of the simplicial volume

of M/Γ. In full generality the positivity of the simplicial volume has only
recently been proven by Lafont and Schmidt [16], and by Bucher [1] in the
case when G is locally isomorphic to SL(3,R), which is excluded in [16].

In Section 5 we introduce a variant of Gersten’s l∞-cohomology which can
be defined more generally for second countable topological groups. It allows
to address the above mentioned questions in this more general context. We
show that when Γ is a finitely generated group admitting a K(Γ, 1)-space
with finite n-skeleton, then this variant agrees with Gersten’s l∞-cohomology
in degrees i ≤ n.

The paper is organized as follows: In Section 2 we prove Proposition 1
and Proposition 2. We review bounded cohomology and the construction of
Burger and Iozzi in Section 3. Section 4 and Section 5 review and discuss
Gersten’s l∞-cohomology and our variant of bounded valued cohomology.

2. Bounded Differential Forms on Symmetric Spaces

2.1. Bounded deRham cohomology. Let

Ωk
∞(M) := {α ∈ Ωk(M) | ||α||∞ < ∞, ||dα||∞ < ∞},

be the space of bounded differential forms on M whose differential is also
bounded, where

||α||∞ = sup
m∈M

sup
v1,...,vk∈T 1

mM

|αm(v1, . . . , vk)|
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and T 1
mM denotes the unit tangent sphere of M in m ∈ M . By definition

the exterior differential satisfies d(Ωk
∞(M)) ⊂ Ωk+1

∞ (M), so
(
Ωk
∞(M), d

)
is

a subcomplex of the standard deRham complex. The cohomology of this
subcomplex is called bounded deRham cohomology and is denoted by

H•
bdR(M,R).

When N is a compact Riemannian manifold and M = Ñ its universal
cover, then we have a natural map

H•
dR(N,R) ∼= H•

bdR(N,R) → H•
bdR(M,R).

2.2. Vanishing Results for Bounded deRham cohomology. Let X be
a symmetric space of noncompact type and G = Isom(X)◦ the connected
component of its isometry group. Let dX be a G-invariant Riemannian
distance function on X. The rank of X, denoted by rX , is the maximal
dimension of an isometrically and totally geodesically embedded Euclidean
subspace in X. Such a Euclidean subspace of maximal dimension is called
a maximal flat in X. The group G acts transitively on the set of maximal
flats.

The visual boundary ∂X of X is defined as

∂X := {c : R+ → X | c is a unit speed geodesic ray }/ ∼,

where c ∼ c′ if and only if c and c′ are asymptotic, that is supt dX(c(t), c′(t)) <
∞. Given a base point x0 ∈ X we can identify ∂X with the unit tangent
sphere T 1

x0
X and we endow ∂X with the topology of the latter.

A geodesic ray c is called regular if the geodesic c extending c is contained
in a unique maximal flat. A point ξ ∈ ∂X is said to be regular if ξ can be
represented by a regular geodesic ray. Then every geodesic ray representing
ξ is regular. The stabilizer P = StabG(ξ) of a regular point ξ ∈ ∂X is a
minimal parabolic subgroup in G.

Let ξ ∈ ∂X be a regular point and c : R → X a regular geodesic such that
c(0) = x0 and c|R+ represents ξ. The Busemann function Bξ : X ×X → R,
defined by

Bξ(x, y) := lim
t→∞

(dX(x, c(t)) − dX(y, c(t))) ,

measures the relative distance from ξ. We set B0
ξ (x) := Bξ(x, x0) and call it

the normalized Busemann function. Then B0
ξ (c(0)) = 0 and B0

ξ (c(t)) = −t.

The level sets of B0
ξ are horospheres centered at ξ. Let Vξ = −gradB0

ξ be

the negative gradient vector field of B0
ξ and φξ

t : X → X the corresponding

flow. Then |Vξ| = 1, Vξ and φξ
t are independent of the choice of the geodesic

c representing ξ ∈ ∂X and of the normalization. In particular Vξ and φξ
t are

StabG(ξ)-invariant.
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Proposition 2.1. Let α ∈ Ωk(X) be a closed bounded smooth differential
k-form on X such that for every maximal flat F ⊂ X and every x ∈ F

α|TxF
= 0.(2)

Then there exists β ∈ Ωk−1(X) such that

dβ = α and β is bounded.

Proof. The basic idea is to prove a Poincaré Lemma with respect to a point
at infinity. For this we replace the distance function from a point by the
Busemann function with respect to a regular point ξ ∈ ∂X. The condition
(2) will ensure that the improper integral we have to consider is well defined.

Let ξ ∈ ∂X be a regular point. For every x ∈ X consider cx : R → X

defined by cx(t) := φξ
t (x). Then cx is the unique unit speed geodesic through

x = cx(0) which is asymptotic to ξ at +∞. In particular cx is a regular
geodesic and is hence contained in a unique maximal flat Fx. The family
of flats Fx, x ∈ X constitute a smooth foliation F of X by totally geodesic
Euclidean subspaces.

For any unit tangent vector u ∈ TX perpendicular to F the sectional
curvature K(u, Vξ) is negative. By homogeneity of X the sectional curvature
K(u, Vξ) is bounded away from 0 by a uniform constant independent of u.
In particular, the Jacobi fields of geodesic variations by geodesics cx and
perpendicular to F decay uniformly exponentially. Since α vanishes along
F by assumption, there exists κ > 0, which does not depend on α such that
for all v1, . . . vk ∈ T 1

xX

|(φξ
t )

∗α(v1, . . . , vk)| ≤ e−tκ||α||∞.

In particular the integral

α′ := −

∫ ∞

0
(φξ

t )
∗αdt

is well defined, and α′ is a bounded smooth differential form on X. By
construction LVξ

α′ = α and dα′ = 0, where LVξ
denotes the Lie derivative

in the direction of Vξ.
Setting

β = iVξ
α′,

where iVξ
denotes the contraction with the vector field Vξ, we get that

α = LVξ
α′ = d(iVξ

α′) + iVξ
(dα′) = dβ.

Since α′ is bounded and |Vξ | = 1, we have that β is bounded. �

The dimension of a maximal flat F ⊂ X is rX , so the condition that
α|TxF

= 0 for every maximal flat F ⊂ X and every x ∈ F is satisfied if

α ∈ Ωk(X) with k > rX .

Corollary 2.2. Let α ∈ Ωk
∞(X) be a closed form, k ≥ rX + 1, then [α] =

0 ∈ Hk
bdR(X,R). In particular Hk

bdR(X,R) = 0 for k ≥ rX + 1.
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Another instance when the vanishing condition (2) is satisfied is when
α ∈ Ωk(X) is a G-invariant form.

Lemma 2.3. Let α ∈ Ωk(X)G, then α|TxF
= 0 for every maximal flat

F ⊂ X and every x ∈ F .

Proof. Since α is G-invariant and G acts transitively on the set of (pointed)
maximal flats we just have to prove that there exists some x0 ∈ X and a
maximal flat F0 through x0 such that α|Tx0F0

= 0.

Let x0 ∈ X, K = StabG(x0) a maximal compact subgroup of G and
g = k ⊕ p the Cartan decomposition of the Lie algebra g of G with respect
to x0. Then Tx0X can be identified with p. Let a ⊂ p be a maximal abelian
subalgebra contained in p and A = exp(a) < G the corresponding subgroup
of G. Then F0 := Ax0 is a maximal flat through x0 and Tx0F0 is naturally
identified with a. The maximal compact group K acts on Tx0X ≃ p via the
isotropy representation. This induces an action of the Weyl group W (A) =
NK(A)/ZK(A) of A on a. Here NK(A) and ZK(A) are the normalizer and
centralizer of A in K respectively. The restriction of the G-invariant form
α to a is a W (A)-invariant skew-symmetric multi-linear form on a.

Let ∆ = {α1, · · ·αrX
} ⊂ a∗ be a system of positive simple roots of g

relative to a. Let {α∗
1, · · ·α

∗
rX

} be the basis of a dual to {α1, · · ·αrX
} ⊂ a∗.

The Weyl group W (A) acts on a by reflections in the hyperplanes Hαi
=

kerαi. We can choose gαi
∈ NK(A) such that gαi

generates the reflection in
Hαi

. Then α|a is invariant by gαi
. But since the vectors α∗

i are perpendicular
to Hαi

and span a this implies α|Tx0F0
= α|a = 0. �

Corollary 2.4. Let α ∈ Ωk(X)G, then there exists β ∈ Ωk−1
∞ (X) such that

dβ = α. Moreover, β can be constructed such that β ∈ Ωk−1(X)P .

Proof. Note first that since α is G-invariant we have in particular that α
is closed and bounded. By Lemma 2.3 and Proposition 2.1 there exists
β ∈ Ωk−1

∞ (X) such that dβ = α.
Since α is G-invariant, it is in particular P -invariant for P = StabG(ξ)

with ξ ∈ ∂X being a regular point. Furthermore Vξ and φξ
t are P -invariant,

so the differential form

β = iVξ

(
−

∫ ∞

0
(φξ

t )
∗αdt

)

constructed above is a P -invariant differential form. �

Corollary 2.5. The restriction map H•
c(G,R) → H•

c(P,R) is zero.

Proof. For every closed subgroup L < G in a connected semisimple Lie group
with finite center, the continuous cohomology H•

c(L,R) is isomorphic to the
cohomology of the complex of L-invariant differential forms on X. �

3. Bounded Cohomology and Bounded Differential Forms
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3.1. Bounded Cohomology. Let G be a locally compact second count-
able group. The continuous bounded cohomology H•

cb(G,R) of G is the
cohomology of the complex of G-invariants

0 // Cb(G,R)G
d

// Cb(G
2,R)G

d
// · · ·

where

Cb(G
k+1,R) := {f : Gk+1 → R | f is continuous and

||f ||∞ = sup
(g0,...,gk)∈Gk+1

|f(g0, . . . , gk)| < ∞}

is a G-module via

(hf)(g0, . . . , gk) = f(h−1g0, . . . , h
−1gk).

and d is the homogeneous coboundary operator

df(g0, . . . gk+1) :=
k+1∑

i=0

f(g0, . . . , ĝi, . . . , gk+1).

The inclusion of complexes Cb(G
•+1,R) ⊂ C(G•+1,R), where C(G•+1,R)

denotes the space of continuous real valued functions induces a natural com-
parison map

c•G : H•
cb(G,R) → H•

c(G,R)(3)

from continuous bounded cohomology to continuous cohomology.
The comparison map is in general neither injective nor surjective and its

behavior is not well understood except in very special cases.

3.2. Factoring Through Bounded Differential Forms. For the case
that G is a connected semisimple Lie group (of noncompact type) with finite
center, X the associated symmetric space and L < G a closed subgroup,
Burger and Iozzi showed in [3] that there is a map δ•∞ such that the following
diagram commutes

H•
cb(L,R)

δ•
∞

((PPPPPPPPPPPP

c•
L

// H•
c(L,R),

H(Ω•
∞(M,R)L)

i•
66nnnnnnnnnnnn

,

(4)

where i• is the natural map induced by the inclusion Ω∞(X,R)L ⊂
Ω(X,R)L.

Let us describe the construction of the map δ•∞ in more detail. It relies
on the functorial approach to continuous bounded cohomology (see [19, 7])
in particular on the fact that the continuous bounded cohomology of L can
be realized by bounded measurable functions on (G/P )•, where P < G is a
minimal parabolic subgroup.
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Let ν0 be the unique K-invariant probability measure on G/P and denote
by

L∞
alt

(
(G/P )k+1, νk+1

0

)

the space of alternating bounded measurable functions on (G/P )k+1, equipped
with the structure of an L-module as above. Then H•

cb(L,R) is canonically
isometrically isomorphic to the cohomology of the complex of L-invariants

0 // L∞
alt ((G/P ), ν0)

L d
// L∞

alt

(
(G/P )2, ν2

0

)L d
// · · · ,

where d is the homogeneous boundary operator.
The homogeneous space G/P can be embedded into the visual boundary

∂X. For this let a+ ⊂ a be the positive Weyl chamber associated to a choice
of positive roots Ψ+ of g relative to a. Let b ∈ a+ be the barycenter, that
is the vector predual to the sum of all positive roots in Ψ+. Let ξb ∈ ∂X be
the point represented by the geodesic ray starting at x0 in the direction of
b. Then ξb is regular and its G-orbit Gξb ⊂ ∂X is naturally identified with
G/P . The measure ν0 on G/P defines a probability measure ν0 on ∂X with
support on G/P ⊂ ∂X.

For any ξ ∈ ∂X let us define a function

eξ : X → R

x 7→ e−h(X)B0
ξ
(x),

where h(X) is the volume entropy of X.

Proposition 3.1. [3, Lemma 3.3.] Let c ∈ L∞
alt

(
(∂X)k+1, νk+1

0

)
. Then

αc :=

∫

(∂X)k+1

(
c(ξ0, · · · , ξk)e

ξ0deξ1 ∧ · · · ∧ deξk

)
dν0(ξ0, · · · , ξk)

is a bounded differential form. Moreover, the map

δ•∞ : L∞
alt

(
(∂X)•+1, ν•+1

0

)
→ Ω•

∞(X)

c 7→ αc

is a G-invariant map of complexes.

Remark 3.2. Note that even in the case when κ ∈ Hk
c (L,R) is known to

be represented by a bounded cocycle, this construction gives a very specific
representative for κ. For applications we refer the reader to [3].

Corollary 3.3. Let κ ∈ Hk
c (L,R). Assume that κ lies in the image of c

(k)
L ,

then κ can be represented by a bounded L-invariant differential form α on
M which admits a bounded primitive β ∈ Ωk−1

∞ (M,R).

Proof. Assume that κ = c
(k)
L (κb) and let cκ ∈ L∞

alt

(
(∂X)k+1, νk+1

0

)L

be a

cocycle representing κb. The complex

0 // L∞
alt ((G/P ), ν0)

d
// L∞

alt

(
(G/P )2, ν2

0

) d
// · · · ,
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is exact and so there exists bκ ∈ L∞
alt

(
(∂X)k, νk

0

)
with dbκ = cκ. Therefore

setting α = δ
(k+1)
∞ (cκ) and β = δ

(k)
∞ (bκ) Proposition 3.1 implies that α is a

bounded L-invariant k-form representing κ and β is a bounded (k− 1)-form
satisfying dβ = α. �

So Proposition 3.1 does give necessary conditions for cohomology classes
to be represented by bounded classes, which by Corollary 2.2 and Corol-
lary 2.4 are satisfied for example

(i) if L < G is a cocompact lattice and the degree k ≥ rX + 1, or
(ii) if L = G.

4. Gersten’s l∞-cohomology

When Γ is a finitely generated group and X a K(Γ, 1)-space with finite
n-skeleton Gersten defined the l∞-cohomology (or also bounded valued co-
homology) Hi

∞(Γ,R) for i ≤ n (see [10]).

Let us denote an i-cell of X by e(i). The l1-norm || · ||1 of a chain c is the
sum of the absolute values of the coefficients of c with respect to a natural
basis of cells of X.

Definition 4.1. A CW -complex U is said to have bounded geometry in
dimension ≤ n if there exists some M ∈ N such that ||∂e(i)||1 ≤ M for all

i-cells e(i) of U and all i ≤ n.

Let X̃ be the universal cover of X and π : X̃ → X the covering map. Then

X̃ is carries a CW -structure induced from X, ẽ(i) = π∗e(i), with respect to
which it has bounded geometry in dimension ≤ n.

For all i ≤ n define

Ci
∞(X̃,R) ⊂ Ci(X̃,R)

to be the subset of bounded valued cochains, that is

Ci
∞(X̃,R) := {φ ∈ Ci(X̃,R) | ∃N ∈ N such that |φ(ẽ(i))| ≤ N}.

Since X̃ has bounded geometry the co-boundary

δ : Ci(X̃,R) → Ci+1(X̃,R)

satisfies δ(Ci
∞(X̃,R)) ⊂ Ci+1

∞ (X̃,R) for all i ≤ n.
The l∞-cohomology (or bounded valued cohomology) is defined to be the

cohomology of this subcomplex:

Hi
∞(Γ,R) := Hi

∞(X̃,R).

Gersten proved that Hi
∞(Γ,R) indeed does not depend on the choice of a

K(Γ, 1)-space with finite n-skeleton. Moreover he proves [9, Theorem 11.4.]
that if Γ,Γ′ are quasi-isometric and both groups admit an Eilenberg-
MacLane space with finite n-skeleton, then for all i ≤ n

Hi
∞(Γ,R) ∼= Hi

∞(Γ′,R).
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Remark 4.2. A finitely presented group Γ always admits a K(Γ, 1)-space
with finite 2-skeleton, so that H2

∞(Γ,R) is well defined. It is strongly related
to isoperimetric inequalities in Γ.

There is a natural map hΓ : Hi(Γ,R) → Hi
∞(Γ,R) constructed as follows:

Since X is a K(Γ, 1)-space we have that Hi(Γ,R) = Hi(X,R). Let f ∈

Ci(X,R) be a cochain and π∗f ∈ Ci(X̃,R) its lift. Then

sup
ẽ(i)

||π∗f(ẽ(i))|| = sup
e(i)

||f(e(i))||,

which is obviously bounded for i ≤ n since X has a finite n-skeleton.

Lemma 4.3. [9, Proposition 10.2.] The composition of natural maps

Hi
b(Γ,R)

cΓ
// Hi(Γ,R)

hΓ
// Hi

∞(Γ,R)

is the zero map

We will not recall Gersten’s proof here, because it is immediate once we
consider our variant of bounded valued cohomology in the next section.

In the special situation when X is an aspherical manifold with fundamen-
tal group π1(X) = Γ, Gersten’s l∞-cohomology is related to the bounded

deRham cohomology of X̃.

Proposition 4.4. [11, Proposition 12.2] The l∞-cohomology Hi
∞(Γ,R) =

Hi
∞(X̃,R) is isomorphic to a direct summand of Hi

bdR(X̃,R).

The proof of this goes back to a construction of Whitney [21, page 139].
Corollary 2.2 implies

Corollary 4.5. Let G be a connected semisimple Lie group with finite cen-
ter, M its associated symmetric space, and Γ < G a cocompact lattice, then

h•
Γ : H(Γ,R) → H∞(Γ,R)

is the zero map in degrees • ≥ rM + 1.

5. A Variant of Bounded Valued Cohomology

Let G be a locally compact second countable group. The space Cb(G,R)
of bounded continuous functions on G is a Banach G-module with respect to
the supremum-norm and the G-action (hf)(g) := f(h−1g) for all h, g ∈ G.

In particular we can consider continuous cohomology of G with coefficients
in Cb(G,R). That is what we want to call (continuous) bounded valued
cohomology of G (with coefficients in R):

Hi
c,∞(G,R) := Hi

c(G,Cb(G,R)).

The inclusion of coefficients R → Cb(G,R), where R is identified with
the constant functions, gives rise to a natural map

h•
G : H•

c(G,R) → H•
c,∞(G,R).
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Proposition 5.1. The composition of natural maps

H•
cb(G,R)

c•G
// H•

c(G,R)
h•

G
// H•

c,∞(G,R)

is zero in positive degrees.

Proof. Consider the commutative diagram

H•
cb(G,R)

ι•

((QQQQQQQQQQQQQ

c•
G

// H•
c(G,R)

h•

G
// H•

c,∞(G,R)

H•
cb(G,Cb(G,R))

c•
G

66mmmmmmmmmmmmm

and note that ι• is the zero map in positive degrees, because Cb(G,R) is a
relative injective coefficient module (see [19, Proposition 4.14 and Proposi-
tion 7.4.1]). �

Proposition 5.2. Let Γ be a finitely generated group and X a K(Γ, 1)-space
with finite n-skeleton. Then

Hi
∞(Γ,R) ∼= Hi

c,∞(Γ,R).

for all i ≤ n.

Proof. Since X is a classifying space for Γ we have that Hi
c,∞(Γ,R) =

Hi(X,Cb(G,R)). Let X̃ be the universal cover of X, endowed with the

induced CW-structure. For every i-cell e(i) of X let us choose coherently (in

a Γ-equivariant way) a lift ẽ
(i)
0 , which is an i-cell of X̃, so that we enumerate

all i-cells ẽ(i) of X̃ by elements γ ∈ Γ, where ẽ
(i)
γ = γ(ẽ

(i)
0 ). We define

Φ : Ci(X,Cb(G,R)) → Ci
∞(X̃,R)

f 7→ Φ(f),

where Φ(f)(ẽ
(i)
γ ) := f(e(i))(γ−1), and

Ψ : Ci
∞(X̃,R) → Ci(X,Cb(G,R))

α 7→ Ψ(α),

where Ψ(α)(e(i))(γ) := α(ẽ
(i)
γ−1). Then clearly Φ and Ψ commute with the

differentials. Moreover we have

Ψ ◦ Φ(f)(e(i))(γ) = Φ(f)(ẽ
(i)
γ−1) = f(e(i))(γ)

and

Φ ◦ Ψ(α)(ẽ(i)
γ ) = Ψ(α)(e(i))(γ) = α(ẽ(i)

γ ).

So Φ and Ψ induce isomorphisms on the level of cohomology. �

The following Proposition was proved by Gersten [9, Theorem 10.13] for
l∞-cohomology of finitely generated groups.
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Proposition 5.3. Let G be amenable, then

h•
G : H•

c(G,R) → H•
c,∞(G,R).

is injective.

Proof. If G is amenable the inclusion of coefficients

R → Cb(G,R)

has a norm one left inverse G-morphism Cb(G,R) → R (see for example
[19, Corollary 5.1.3.]), which yields a left inverse to h•

G. �

Finally we would like to relate H•
c,∞(G,R) to the bounded deRham co-

homology of some associated space X. In general this will not be possible.
However in the situation that G is a connected semisimple Lie group with
finite center and X is the associated symmetric space we have:

Proposition 5.4. Let L < G be a closed subgroup. Assume that L acts
transitively on X. Then the cohomology H•

c,∞(L,R) is isomorphic to a direct
summand of H•(Ω∞(X))

Proof. Note first that H•
c,∞(L,R) ∼= Ω•(X,Cb(L,R))L. The action of L on

Ω•(X,Cb(L,R)) is given by

(g∗α)p(v1, . . . , vk)(h) = αg−1p(g∗v1, . . . g∗vk)(g
−1h).

Let us define

Φ : Ωk(X,Cb(L,R))L → Ωk
∞(X,R)

α 7→ Φ(α),

where Φ(α)p(v1, . . . , vk) := αp(v1, . . . vk)(1). This map Φ is well defined. To
see this let us fix a base point x0 ∈ X. Then supg∈L supv1,...,vk∈T 1

x0
X |αx0(v1, . . . , vk)(g)|

is bounded by a constant Kx0 . Since L acts transitively on X by isometries,
we can choose gp ∈ L such that gp(x0) = p. Then

|αp(v1, . . . , vk)(1)| = |(g∗pα)p(v1, . . . , vk)(1)|

= |αg−1p(g∗v1, . . . g∗vk)(g
−1)|

= |αx0(g∗v1, . . . g∗vk)(g
−1)| ≤ Kx0,

hence Φ(α) ∈ Ωk
∞(X,R). Define

Ψ : Ωk
∞(X,R) → Ωk(X,Cb(L,R))L

β 7→ Ψ(β),

where Ψ(β)p(v1, . . . , vk)(g) := (g∗β)p(v1, . . . , vk). Then Ψ and Φ commute
with the differentials and we have

Ψ ◦ Φ(α)p(v1, . . . , vk)(g) = Φ(α)g−1p(g∗v1, . . . , g∗vk)

= αg−1p(g∗v1, . . . , g∗vk)(1)

= (g∗α)p(v1, . . . , vk)(g) = αp(v1, . . . , vk)(g),

where the last equality holds because α is L-invariant. �
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This proposition together with Corollary 2.4 implies

Corollary 5.5. The natural map H•
G : H•

c(G,R) → H•
c,∞(G,R) is zero.

Bounded valued cohomology can be defined for more general coefficient
modules E (instead of the trivial coefficients) as defined in [19]. Suitable
adaptations of Proposition 5.2 and Proposition 5.3 hold in this context.
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