Homework problem set 7

Submission deadline on 6 December 2021 at noon

Problem 1 (Affine currents and Sugawara construction). Consider a general CFT with primary fields $j^a(z)$ satisfying the OPE's

$$j^{a}(z)j^{b}(w) \sim \frac{k^{ab}}{(z-w)^{2}} + \frac{ic_{c}^{ab}}{(z-w)}j^{c}(w)$$

(i) Show that the modes of $j^a(z) = \sum_{m \in \mathbb{Z}} j_m^a z^{-(m+1)}$ satisfy

$$[j_m^a, j_n^b] = mk^{ab}\delta_{m+n} + ic_c^{ab}j_{m+n}^c$$

and deduce that $c_c^{ab} = f_c^{ab}$ must be the structure constants of some Lie algebra g. *Hint:* Use Cauchy's integral formula.

- (ii) Assume g is simple and finite dimensional. Use the Jacobi identity for j_1^a, j_0^b, j_{-1}^c to show that $k^{ab} = k\delta^{ab}$ for some complex constant k. *Hint:* For simple Lie algebra's there exist a up to normalization unique bilinear form B on g called the Killing form, such that for every $x, y, z \in g, B([x, y], z) + B(y, [x, z]) = 0$. You may assume that in the given Basis of g the components of B are δ^{ab} .
- (iii) Consider the operator

$$T_S(z) = \gamma \sum_{a=1}^{\dim \mathfrak{g}} : j^a j^a : (z)$$

where γ is some constant. We require that the j^a have conformal dimension h = 1. Show that this fixes

$$\gamma^{-1} = 2(k + C_{\mathfrak{q}})$$

where $\sum_{b,c} f^{bac} f^{bcd} = -2C_g \delta^{ad}$ defines the dual Coxeter number of the Lie algebra g. For g = su(n) we have $C_g = n$.

(iv) Show that $T_S(z)$ satisfies the OPE of the Energy-momentum tensor, i.e.

$$T_{S}(z)T_{S}(w) \sim \frac{c^{\mathfrak{g},k}}{2(z-w)^{4}} + \frac{2}{(z-w)^{2}}T_{S}(w) + \frac{1}{z-w}\partial T_{S}(w)$$

where the central charge is

$$c^{\mathfrak{g},k} = \frac{k\dim\mathfrak{g}}{k+C_{\mathfrak{g}}}.$$

Hint: You can either work with the OPE of the j^a or you can use that the OPE is equivalent to the commutators of the modes and show that the modes of $T_S(z)$ satisfy the Virasoro algebra with central charge $c^{\mathfrak{g},k}$. Either way, you need to be careful about the normal ordering in the definition of $T_S(z)$.

Problem 2 (More on ghosts). The action of the bc-ghost-system in complex coordinates takes the form

$$S_{bc} = \frac{1}{2\pi} \int d^2 x \left[b_{\mu\nu} \partial^{\mu} c^{\nu} \right].$$

Prof. Dr. Johannes Walcher Raphael Senghaas Here the ghost field c^{μ} is a worldsheet vector and anti-ghost $b_{\mu\nu}$ is a symmetric traceless tensor. In complex coordinates we write $c = c^{z}$ and $\overline{c} = c^{\overline{z}}$ and similarly for the non-zero components $b = b_{zz}$ and $\overline{b} = b_{\overline{z}\overline{z}}$. The (holomorphic component of the) energy momentum tensor for this system is given by

$$T(z) =: (2\partial cb + c\partial b):$$

(i) Show that the OPE for *b* and *c* in complex coordinates is

$$b(z)c(w) \sim \frac{1}{z - w} \tag{1}$$

Use this result and show by using Wick's theorem that c is a primary field of conformal dimension $h_c = -1$ and b is a primary field of conformal dimension h = 2. Calculate T(z)T(w) to compute the central charge.

Hint: In order to find the OPE (1) write $S = \int d^2x d^2y b_{\mu\nu}(x) P^{\mu\nu}_{\alpha}(x,y) c^{\alpha}(y)$ and find the propagator for *P*. Use that in complex coordinates $\partial_{\overline{z}} \frac{1}{z} = 2\pi \delta^{(2)}(z,\overline{z})$.

(ii) More generally one can change the energy-momentum tensor by a total derivative, i.e.

$$T(z) =: (\partial b)c : -\lambda \partial (:bc:)$$

for $\lambda \in \mathbb{R}$. Compute the conformal dimensions for the *b* and *c* and the central charge. *Hint:* Proceed analogous to part (*i*) and note that the OPE's for *b* and *c* and don't change. The conformal dimension and central charge will depend on λ . The result for the central charge should look familiar from earlier exercises.