Homework problem set 6

Submission deadline on 29 November 2021 at noon

Problem 1 (Super-ghosts...). Let g be a finite dimensional Lie algebra with Basis (e_{α}) and dual basis (c^{α}) (the ghosts) satisfying $\{c^{\alpha}, c^{\beta}\} = 0$. The anti-ghosts are defined as $b_{\alpha} = \iota_{e_{\alpha}}$. They satisfy $\{\beta_{\alpha}, \beta_{\beta}\} = 0$ and $\{c^{\alpha}, b_{\beta}\} = \delta^{\alpha}_{\beta}$. In the lecture we saw that we can define a BRST-differential

$$Q = c^{\alpha} \rho_{\alpha} - \frac{1}{2} f^{\alpha}_{\beta\gamma} c^{\beta} c^{\gamma} b_{\alpha}$$

where $[e_{\alpha}, e_{\beta}] = f_{\alpha\beta}^{\gamma} e_{\gamma}$ and $\rho_{\alpha} = \rho(e_{\alpha}) \in Hom(M, M)$ for some representation (M, ρ) of \mathfrak{g} .

(i) Consider now a grade Lie-algebra \mathfrak{h} with bosonic generators $\{e_{\alpha}\}$ and fermionic generators $\{f_{\beta}\}$, i.e. define the Fermion number F as $F(e_{\alpha}) = 0$ and $F(f_{\beta}) = 1$. Then for two generators h_{α}, h_{β} we have that

$$[h_{\alpha}, h_{\beta}] = (-1)^{F(h_{\alpha})F(h_{\beta})+1}[h_{\beta}, h_{\alpha}]$$

(in other words $f_{\alpha\beta}^{\gamma} = (-1)^{F(h_{\alpha})F(h_{\beta})+1}f_{\beta\alpha}^{\gamma}$). Define suitable ghosts and anti-ghosts for the system and construct a BRST-charge Q satifying $Q^2 = 0$.

Problem 2 (...and no-ghosts...). In the proof of the no-ghost theorem we wrote $Q = Q_1 + Q_0 + Q_{-1}$ with $[N^{l.c}, Q_j] = jQ_j$ where

$$Q_1 = -\alpha_0^+ \sum_{n \neq 0} \alpha_n^-$$

where $\alpha_0^+ = \sqrt{2\alpha'}p^+$. In the lecture the cohomology of Q_1 was calculated rather abstractly. Alternatively one can compute the cohomology directly by considering the action of Q_1 in the occupation basis.

(i) Restrict the sum above to $n = \pm 1$. This gives the truncated operator $Q' = \alpha_0^+ (\alpha_{-1}^- c_1 + \alpha_1^- c_{-1})$. Calculate the cohomology of Q' by considering its action on

$$(b_{-1})^{N^b}(c_{-1})^{N^c}(\alpha^+_{-1})^{N^+}(\alpha^-_{-1})^{N^-}v_0.$$

(ii) Generalize this to the full Q_1 .

Problem 3 (Schwarz derivative). The Schwarzian derivative of a holomorphic function f of one complex variable z is defined by

$$(Sf)(z) := \frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

(i) Let f and g be holomorphic functions show that the Schwarzian derivative of $f \circ g$ is given by the chain rule

$$(S(f \circ g))(z) = (Sf)(g(z)) \cdot g'(z)^2 + Sg.$$
 (1)

Deduce that for a global coordinate transformation w = w(v) we have $S(w)(z) = -(w')^2 S(z)(w)$.

(ii) Show that Sf = 0 if and only if

$$f = \frac{ax+b}{cx+d} \tag{2}$$

for complex numbers $a, b, c, d \in \mathbb{C}$ such that ad - bc = 0.