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Homework problem set 12

Submission deadline on 24 January 2022 at noon

Problem 1 (Narain Moduli Space). It was explained in Lecture 19 that a flat metric on a
E-dimensional torus T%* = [R?f,/(ZnZk) is induced by identifying Tk = Rﬁ/(2nA), where Rﬁ is
equipped with the standard euclidean metric and A = RZ*, where R = (R,ix) is an invertible & x &
matrix, that a string background requires the datum of a flat B-field, which in x-coordinates
can be thought of as an anti-symmetric matrix B;; = —B;;, but that to understand the moduli
space it is best to replace both with the set of left/right-moving charges
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where S = ), which I' is an even and self-dual lattice with respect to the
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(i) Describe explicitly the change of basis that shows S € SO(%, k;R).

My, =

(i) Argue that every even, self-dual lattice of signature (n,n) arises for some S as above.

(iii) Show in detail that the one-loop partiton function
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is modular invariant. Hin¢: You may use without additional argument the general Poisson
summation formula 1
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where A = detS, and £ is the Fourier transform of f.

Problem 2 (Dimensional Reduction of Yang-Mills theory). Consider (p + 1)-dimensional U(N)
Yang-Mills theory with action
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(i) Show that upon Kaluza-Klein compactification on a circle in the trivial background A, =0,
the massless fields consist of a p-dimensional U(N) gauge multiplet and an adjoint-valued

scalar.

(ii) Describe what happens in a non-trivial background with constant A, and give a geometric
interpretation in terms of Dp-branes wrapped on the circle, or D(p — 1)-branes wrapped on
the dual circle.

(iii) Find the field content and scalar potential for dimensional reduction to 1 dimension (i.e., in
the trivial background).
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