Homework problem set 1

Submission deadline on 25 October 2021at noon

Aufgabe 1 (Little things). (a) We denote by $\mathcal{L} = SO^+(1,d)$ the (proper, orthochronous, d+1-dimensional) Lorentz group and for $p = (p_\mu) \in \mathbb{R}^{1,d}$ by

$$W_p = \{ \Lambda \in \mathcal{L} | \Lambda(p) = p \}$$

the stabilizer of p.

Show that W_p is constant (as an abstract group) on the orbit of p under \mathcal{L} , which comes in one of four types, depending on the invariant mass $m^2 = p^2 = p_{\mu}p^{\mu}$:

- 1. $m^2 > 0$ (time-like hyperboloid / massive particle)
- 2. $m^2 = 0, p \neq 0$: (light-cone / massless particle)
- 3. $m^2 = p = 0$ (origin / vacuum)
- 4. $m^2 < 0$ (space-like hyperboloid / tachyonic particle)

and determine W_p (then called Wigner's Little Group) in each of these four cases. *Hint:* Bring p in a standard form by using the action of \mathcal{L} . Do not worry (too much) about global issues. The second is the only tricky case.

(b) Wigner introduced W_p for the study of the *irreducible unitary representations* of the Poincaré group \mathscr{P} , the affine version of \mathscr{L} . Recall from your elementary courses that $\mathscr{P} = \mathbb{R}^{1,d} \rtimes \mathscr{L}$ is the semi-direct product of \mathscr{L} by the translations, i.e., an element $(a,\Lambda) \in \mathscr{P}$ acts on $x \in \mathbb{R}^{1,d}$ by $x \mapsto \Lambda(x) + a$. Then, if (\mathscr{H},U) is a Hilbert space carrying a unitary representation of the Poincaré group, we may diagonalize translations and decompose (formally)

$$\mathcal{H} = \bigoplus_{p} \mathcal{H}_{p}$$

into joint eigenspaces. In other words, $U(a,1)|\psi\rangle = e^{ia\cdot p}|\psi\rangle$ for all $|\psi\rangle \in \mathcal{H}_p$.

Show that \mathcal{H}_p carries a natural representation of W_p and that if \mathcal{H} is irreducible, then so is \mathcal{H}_p . It is a fundamental fact that only finite-dimensional possibilities for W_p are realized by Nature.

Hint: In order to show that \mathcal{H}_p carries a representation of W_p you need to show that $U((0,\Lambda))|\psi\rangle \in \mathcal{H}_p$ if $|\psi\rangle \in \mathcal{H}_p$ and $\Lambda \in W_p$. For the irreducibility first check that there is a $m^2 \in \mathbb{R}$ such that for all \mathcal{H}_p either $p^2 = m^2$ or $\mathcal{H}_p = 0$.

Aufgabe 2 (Upside down). We consider a system of two uncoupled equal-period harmonic oscillators, with familiar creation/annihilation operators a^{\dagger} , a and b^{\dagger} , b, and Hamiltonian

$$H_{+} = a^{\dagger}a + b^{\dagger}b + const.$$

(a) Show that real and imaginary parts of $J=a^{\dagger}b$ are symmetries of the system and give them a physical interpretation, for instance by rewriting them in terms of positions and momenta. Also review the spectrum of H_+ , including the degeneracy of states.

(b) Replace H_+ with

$$H_{-}=a^{\dagger}a-b^{\dagger}b+const.,$$

- discuss its symmetries, and show that its spectrum is infinitely degenerate and unbounded below. Why is that a problem?
- (c) By switching (the role of) b and b^{\dagger} , one may restore a unique ground state for H_{-} and recover a more conventional spectrum. Why is this not a good idea?