SUPERGEOMETRY AND SUPERGRAVITY HW 4

HEIDELBERG UNIVERSITY 2017/18

1. CARTAN CALCULUS

Problem 1 (Chern-Simons Forms): Consider a principal connection on a principal G = GL(r)-bundle over a manifold M, locally represented by a connection one-form $A \in \Omega^1(U, \mathfrak{g})$. Verify by explicit computation that

(1)
$$dC_3 = \operatorname{tr}(F \wedge F)$$
$$dC_5 = \operatorname{tr}(F \wedge F \wedge F)$$

where $F = dA + \frac{1}{2}[A \wedge A]$ is the curvature form and

(2)

$$C_{3} = \operatorname{tr}\left(F \wedge A - \frac{1}{3}A \wedge A \wedge A\right)$$

$$C_{5} = \operatorname{tr}\left(F \wedge F \wedge A - \frac{1}{2}F \wedge A \wedge A \wedge A + \frac{1}{10}A \wedge A \wedge A \wedge A \wedge A\right)$$

Also show (explicitly) that C_3 and C_5 change by an exact form under infinitesimal gauge transformations $\delta A = d\lambda + [A \wedge \lambda]$ (for some local function $\lambda \in \Omega^0(U, \mathfrak{g})$).

Problem 2 (The First Order formalism): We showed in class that the Palatini action

(3)
$$S_P = \int_M \epsilon \big(\Omega \wedge \theta \wedge \dots \wedge \theta \big)$$

for vielbein θ plus connection (one-form) ω is equivalent to ordinary Einstein gravity. Here, $\epsilon : \otimes^n TM \to \mathbb{R}$ is the SO(n) invariant projection (determinant) factoring through the isomorphism $\wedge^n TM \cong \mathbb{R}$ otherwise known as Riemannian volume form.

When n = 4, $\otimes^4 TM$ contains an alternative scalar invariant that can be described as the inner product $\eta : \wedge^2 TM \times \wedge^2 TM \to \mathbb{R}$ induced by the pseudo-Riemannian metric gon M. Evaluate the Immirzi action

(4)
$$S_I = \int_M \eta (\Omega \wedge \theta \wedge \theta)$$

and its variation with respect to θ and ω in terms of contraction of the Riemann and torsion tensor. (With respect to a local trivialization of TM one has simply:

(5)
$$\eta \big(\Omega \wedge \theta \wedge \theta \big) = \underset{1}{\Omega_{ab}} \wedge \theta^a \wedge \theta^b \quad \big)$$

HEIDELBERG UNIVERSITY 2017/18

2. Symplectic Geometry

Problem 3 (Tautological 1-form): Let X be a smooth n-dimensional manifold and $M = T^*X$ its cotangent bundle. Choose a local coordinate chart \mathcal{U} on X with coordinates (x_1, \ldots, x_n) where $x_i : \mathcal{U} \to \mathbb{R}$. Use the projection $\pi : T^*X \to X$ to construct a canonical 1-form $\lambda : TM \to \mathbb{R}$ on the cotangent bundle M of X.

If $\xi \in T_x^*X$, then $\xi = \sum_{i=1}^n \xi_i(dx_i)_x$ for some real coefficients ξ_i . The chart $T^*\mathcal{U}$ with coordinates $(x_1, \ldots, x_n, \xi_1, \ldots, \xi_n)$ is a coordinate chart for M. Write λ in terms of local coordinates.

Problem 4 (Lagrangian Submanifolds): If $\phi : TX \to \mathbb{R}$ is a 1-form on a (smooth) manifold X then we can consider it as a mapping from X to T^*X . Show that $\phi(X)$ is a Lagrangian submanifold if and only if ϕ is closed.

It follows that Lagrangian submanifolds of T^*X that project diffeomorphically onto X are in bijection with closed 1-forms on X. If the 1-form corresponding to a Lagrangian submanifold is of the form dS, S is called a *generating function*. Hence we can think of Lagrangian submanifolds of T^*X as "generalized functions" on X.

Let $f: M_2 \to M_1$ be a diffeomorphism. The graph of f is by definition

$$\Gamma_f = \{ (f(x), x) | x \in M_2 \} \subset M_1 \times M_2.$$

Problem 5 (Symplectomorphisms): Show that Γ_f is a Lagrangian submanifold of $(M_1, \omega_1) \times (M_2, -\omega_2) = (M_1 \times M_2, \pi_1^* \omega_1 - \pi_2^* \omega_2)$ if and only if f is a symplectomorphism.

Problem 6 (Canonical Transformations): Explain the canonical transformations of type I, II, II, and IV in terms of the previous problem. Fix the discussion at https://en.wikipedia.org/wiki/Canonical_transformation.